Меню Закрыть

Впрыск топлива – Системы впрыска топлива бензиновых двигателей: виды и принцип работы

Содержание

Как работает система впрыска топлива?

Как работает система впрыска топлива?
 
C годами, системы подачи топлива, которые используются в современных автомобилях, претерпели значительные изменения для того, чтобы соответствовать стандартам топливной и эмиссионной эффективности. Subaru Justy 1990 г. была последним автомобилем с карбюратором, проданным на территории США, все последующие модельные ряды Justy имели систему впрыска топлива. Однако системы впрыска топлива существовали с 1950-х, а системы электронного впрыска топлива широко использовались в европейских автомобилях с 1980-х. Сейчас все автомобили, продающиеся в США, имеют системы впрыска топлива.
 
В этой статье мы узнаем о том, как топливо попадает в цилиндр двигателя, а также, что означают такие термины, как «впрыск топлива во впускной тракт» и «впрыск топлива в корпусе дроссельных заслонок».
 
Отказ от карбюраторов
 
В течение долгого времени, карбюратор был устройством подачи топлива в двигатели внутреннего сгорания. Он до сих пор используется в таких устройствах, как газонокосилки и бензопилы. Однако с развитием автомобилей, конструкция карбюраторов становилась все сложнее в попытке соответствовать всем техническим требованиям. Например, для того, чтобы справиться с некоторыми задачами, карбюраторы имели пять различных узлов:
 
Главная дозирующая система — Обеспечивает подачу топлива, достаточного при движении автомобиля со средними скоростями
Система холостого хода — Обеспечивает подачу топлива, необходимого для работы двигателя на низких оборотах
Ускорительный насос — Обеспечивает впрыск дополнительного топлива при нажатии на педаль газа для предотвращения остановки двигателя и перебоев в его работе при разгоне автомобиля
Система обогащения смеси — Обеспечивает подачу дополнительного топлива при движении автомобиля в гору или использовании прицепа
Воздушная заслонка — Обеспечивает подачу дополнительного топлива для запуска холодного двигателя
 
Для соответствия ужесточающимся требованиям к качеству выхлопных газов, стали применять каталитический конвертер. Для эффективной работы каталитического конвертера необходим тщательный контроль состава топливно-воздушной смеси. Кислородные датчики отслеживают количество кислорода в выхлопе, и блок управления двигателем (ECU) использует данную информацию для корректировки состава топливно-воздушной смеси в реальном времени. Это называется регулирование с обратной связью — данный метод невозможно было применять при использовании карбюраторов. Время карбюраторов с электронным управлением было недолгим, после чего стали использоваться системы впрыска топлива, однако устройство электронных карбюраторов было намного сложнее механических.
 
Вначале, карбюраторы заменили на систему впрыска топлива в корпусе дроссельных заслонок
(также известная как система одноточечного или центрального впрыска топлива), которая объединяла в себе клапаны инжектора с электрическим управлением и дроссельную заслонку. Такие системы стали простым решением для замены карбюраторов, при этом производителям автомобилей не пришлось значительно изменять конструкции двигателей.
 
Постепенно, с разработкой новых двигателей, система впрыска топлива в корпусе дроссельных заслонок была заменена на систему впрыска топлива во впускной тракт (также известную как точечный, многоточечный или последовательный  впрыск топлива). В этих системах для каждого цилиндра установлен свой инжектор, обычно расположенный таким образом, чтобы впрыск происходил непосредственно во впускной клапан. Такие системы обеспечивают более точный замер расхода топлива и являются более чувствительными.
 
Когда Вы нажимаете на педаль газа
 
Педаль газа Вашего автомобиля соединяется с дроссельной заслонкой — клапаном, который регулирует количество воздуха, поступающего в двигатель. Таким образом, педаль газа — это педаль подачи воздуха.

Когда Вы нажимаете на педаль газа, дроссельная заслонка открывается больше, подавая больше воздуха. Блок управления двигателем (ECU, компьютер, контролирующий все электронные компоненты двигателя) «видит», что дроссельная заслонка открылась, и увеличивает подачу топлива в связи с увеличением подачи воздуха. Необходимо увеличивать подачу топлива при открытии дроссельной заслонки; в противном случае, при нажатии на педаль газа может произойти задержка, т.к. воздух поступает в цилиндры без топлива.

 
Датчики отслеживают массу воздуха, поступающую в двигатель, а также количество кислорода в выхлопе. Блок управления двигателем использует данную информацию для точной регулировки подачи топлива, чтобы обеспечить необходимый состав топливно-воздушной смеси.
 
Инжектор
 
При подаче питания на инжектор, электромагнит перемещает плунжер, который открывает клапан, который распыляет топливо под давлением через небольшую форсунку. Форсунка предназначена для распыления топлива — чем мельче распыление, тем легче сгорает топливо.
 

Срабатывание инжектора
 
Количество топлива, подаваемого на двигатель, определяется временем, в течение которого форсунка остается открытой. Это называется длительность импульса и контролируется блоком управления двигателем.
Инжекторы устанавливаются на впускном коллекторе для распыления топлива непосредственно во впускные клапаны. Труба, которая называется

топливная рампа, осуществляет подачу топлива на все инжекторы.
Для обеспечения подачи необходимого количества топлива, блок управления двигателем оснащен множеством датчиков. Давайте рассмотрим некоторые из них.

Датчики двигателя
 
Для обеспечения подачи необходимого количества топлива для всех условий езды, блок управления двигателем (ECU) оснащен множеством датчиков. Ниже представлены некоторые из них:
 
·        Датчик массового расхода воздуха — Передает на блок управления двигателем массу воздуха, поступающего в двигатель
·        Датчик(и) кислорода — Отслеживает количество кислорода в выхлопе для того, чтобы блок управления определил, насколько богатой или бедной является топливная смесь, и произвел необходимые корректировки

·        Датчик положения дроссельной заслонки — Отслеживает положение дроссельной заслонки (которое определяет количество воздуха, поступающего в двигатель) для того, чтобы блок управления произвел корректировку, понижая или повышая количество поступающего топлива
·        Датчик температуры охлаждающей жидкости — Позволяет блоку управления определить, что двигатель разогрелся до нужной рабочей температуры
·        Датчик напряжения — Отслеживает напряжение бортовой сети для того, чтобы блок управления мог увеличить скорость холостого хода при падении напряжения (что является показателем высокой электрической нагрузки)
·        Коллекторный датчик абсолютного давления — Отслеживает давления воздуха во впускном коллекторе
·        Количество поступающего в двигатель воздуха является хорошим показателем производимой мощности; чем больше воздуха поступает в двигатель, тем ниже давление в коллекторе, эти данные используются для определения производимой мощности.
·        Датчик скорости вращения коленчатого вала — Отслеживает число оборотов двигателя, что является одним из показателей для расчета длительности импульса
 
Существует два основных типа контроля многоточечных систем: Все инжекторы могут срабатывать одновременно, либо каждый срабатывает отдельно перед открытием соответствующего впускного клапана цилиндра (такой тип называется последовательный многоточечный впрыск топлива).
 
Преимущество последовательного впрыска топлива заключается в том, что если при езде происходят резкие изменения, то система более быстро реагирует на них, т.к. для изменения необходимо дождаться лишь пока не откроется следующий впускной клапан, вместо того, чтобы дожидаться начала следующего оборота двигателя.

Управление двигателем и Модули увеличения мощности
 
Алгоритмы, контролирующие двигатель, являются довольно сложными. Программное обеспечение должно позволять автомобилю соответствовать требованиям по выхлопу на каждые 100.000 км, требованиям Управления по охране окружающей среды, а также препятствовать раннему износу двигателя. Помимо этого, существует множество требований, которым необходимо соответствовать.
 
Блок управления двигателем использует формулу и большое количество поисковых таблиц для определения длительности импульса для заданных условий работы. Формула представляет собой ряд показателей, умноженных друг на друга. Большая часть показателей берется из поисковых таблиц. Давайте рассмотрим упрощенную формулу вычисления

длительности импульса инжектора. В данном примере уравнение будет содержать всего три показателя, в то время как система управления может использовать несколько сотен или даже больше.
 
Длительность импульса = (Начальная длительность импульса) х (Показатель А) х (Показатель В)
 
Для вычисления длительности импульса, блок управления двигателем в первую очередь определяет длительность опорного импульса в поисковой таблице. Начальная длительность импульса представляет собой функцию частоты вращения двигателя (об/мин) и нагрузки (которая вычисляется по абсолютному давлению во впускном коллекторе). Допустим, что частота вращения двигателя составляет 2.000 об/мин при нагрузке 4. Нужное значение мы найдем на пересечении 2.000 и 4, что составляет 8 мс.
 об/минНагрузка
12345
1.00012345
2.000246810
3.0003691215
4.00048121620
 
В следующих примерах, A и B являются показателями, которые поступают с датчиков. Предположим, что A — это температура охлаждающей жидкости, а B — это уровень кислорода. Если температура охлаждающей жидкости равна 100, а уровень кислорода равен 3, то, исходя из данных таблицы, мы получаем, что Показатель А = 0,8, а Показатель В = 1,0.
 AПоказатель А
BПоказатель B
01,2
01,0
251,1
11,0
501,0
21,0
750,9
31,0
1000,8
40,75
 
Итак, теперь мы знаем, что начальная длительность импульса является функцией нагрузки и частоты вращения, и что длительность импульса = (начальная длительность импульса) x (Показатель A) x (Показатель B), общая длительность импульса в нашем примере равна:
 
8 x 0,8 x 1,0 = 6,4 мс
 
Исходя из этого примера, Вы теперь понимаете, как система управления совершает корректировки. Если показатель В — это уровень кислорода в выхлопе, в таблице указано, что значение показателя В соответствует (согласно данным конструкторов двигателя) повешенному содержанию кислорода в выхлопе; при этом блок управления двигателем сокращает подачу топлива.
 
Настоящие системы управления используют более 100 показателей, для каждого из которых имеется соответствующая таблица. Некоторые показатели меняются со временем с учетом поправки на изменения эффективности работы некоторых компонентов двигателя, например, каталитического конвертера. И, в зависимости от частоты вращения двигателя, блок управления двигателем выполняет данные вычисления более 100 раз в секунду.
 
Модули увеличения мощности
 
Далее логично будет перейти к модулям увеличения мощности. Теперь, когда мы немного разобрались в том, как работают алгоритмы управления, мы можем понять, что же делают производители модулей увеличения мощности для повышения мощности двигателя.
 
Модули увеличения мощности изготавливаются компаниями, работающими на послегарантийном рынке, и используются для повышения мощности двигателя. В блоке управления двигателем находится модуль, в котором хранятся все поисковые таблицы; модуль увеличения мощности заменяет его. Таблицы в модуле увеличения мощности содержат данные, которые позволяют увеличить подачу топлива в определенных условиях езды. Например, может подаваться больше топлива при полном дросселе на любых оборотах двигателя. Также может быть изменена установка момента зажигания (для этого также существуют таблицы). В связи с тем, что производители модулей увеличения мощности, в отличие от производителей автомобилей, не связаны такими обязательствами, как надежность, пробег и контроль выхлопа, они могут использовать более высокие значения в поисковых таблицах.
 
Для получения большей информации по системам впрыска топлива, рекомендуем ознакомиться с ссылками на следующей странице.

Источник:  http://auto.howstuffworks.com/fuel-injection6.htm
 

 

www.exist.ru

Cистема впрыска топлива — из чего она состоит?

Система впрыска топлива Одной из важнейших рабочих систем практически любого автомобиля, является система впрыска топлива, ведь именно благодаря ей определяется объем топлива необходимый двигателю в конкретный момент времени. Сегодня мы рассмотрим принцип действия данной системы на примере некоторых ее видов, а также ознакомимся из существующими датчиками и исполнительными механизмами.

1. Особенности работы системы впрыска топлива

На выпускаемых сегодня двигателях, уже давно не применяется карбюраторная система, которая оказалась полностью вытесненной более новой и усовершенствованной системой впрыска топлива. Впрыском топлива принято называть систему дозированной подачи топливной жидкости в цилиндры мотора транспортного средства. Она может устанавливаться как на бензиновых, так и на дизельных двигателях, однако, понятно, что конструкция и принцип работы будут разные. При использовании на бензиновых двигателях, при впрыске, появляется однородная топливовоздушная смесь, которая принудительно воспламеняется под воздействием искры свечи зажигания.

Впрыск топлива

Что касается дизельного типа двигателя, то здесь впрыск топлива осуществляется под очень высоким давлением, при чем, необходимая порция топлива смешивается с горячим воздухом и практически сразу воспламеняется. Величина порции впрыскиваемого топлива, а заодно и общая мощность двигателя, определяется давлением впрыска. Следовательно, чем больше давление, тем вышей становится мощность силового агрегата.

На сегодняшний день, существует довольно весомое количество видового разнообразия этой системы, а к основным видам относят: систему с непосредственным впрыском, с моно впрыском, механическую и распределенную система.

Принцип работы системы прямого (непосредственного) впрыска топлива заключается в том, что топливная жидкость, с помощью форсунок, подается прямо в цилиндры двигателя (например, как у дизельного мотора). Впервые такая схема использовалась в военной авиации времен Второй Мировой и на некоторых автомобилях послевоенного периода (первым был Goliath GP700). Однако, система прямого впрыска того времени, не смогла завоевать должной популярности, причиной чего стали требуемые для работы дорогие топливные насосы высокого давления и оригинальная головка блока цилиндров.

В итоге, инженерам так и не удалось добиться от системы рабочей точности и надежности. Лишь в начале 90-годов ХХ века, из-за ужесточения экологических норм, интерес к непосредственному впрыску опять начал возрастать. В числе первых компаний, запустивших производство таких двигателей, были Mitsubishi, Mercedes-Benz, Peugeot-Citroen, Volkswagen, BMW.

Система впрыска топлива В целом, прямой впрыск можно было бы назвать пиком эволюции систем питания, если бы не одно но…Такие двигатели очень требовательны в плане качества топлива, а при использовании обедненных смесей, еще и сильно выделяют оксид азота, с чем приходится бороться путем усложнения конструкции мотора.

Одноточечный впрыск (еще называют «моновпрыском» или «центральным впрыском») — представляет из себя систему, которая в 80-х годах ХХ века начала применятся как альтернатива карбюратору, тем более что принципы их работы очень схожи: потоки воздуха смешиваются с топливной жидкостью во впускном коллекторе, вот только на смену сложному и чувствительному к настройкам карбюратору, пришла форсунка. Конечно, на начальной стадии развития системы, никакой электроники вообще не было, а подачей бензина управляли механические устройства. Однако, не смотря на некоторые недостатки, использование впрыска все равно обеспечивало двигателю куда более высокие показатели мощности и значительно большую топливную экономичность.

А все благодаря той же форсунке, которая позволила намного точнее дозировать топливную жидкость, распыляя ее на мелкие частицы. В результате смеси с воздухом, получалась однородная смесь, а при изменении условий движения автомобиля и режима работы мотора, практически мгновенно менялся и ее состав. Правда, без минусов тоже не обошлось. К примеру, так как, в большинстве случаев, форсунка устанавливалась в корпус бывшего карбюратора, а громоздкие датчики утрудняли «дыхание мотора», поступающий в цилиндр поток воздуха встречал серьезное сопротивление. С теоретической стороны, такой недостаток мог быть легко устранен, но вот с имеющимся плохим распределением топливной смеси, никто и ничего тогда сделать не смог. Наверное, поэтому, и в наше время, одноточечный впрыск так редко встречается.

Механическая система впрыска появилась еще в конце 30-х годов ХХ века, когда начала использоваться в системах топливного питания самолетов. Она была представлена в виде системы впрыска бензина дизельного происхождения, используя для этого топливные насосы высокого давления и закрытые форсунки каждого отдельного цилиндра. Когда же их попытались установить на автомобиль, то оказалось, что они не выдерживают конкуренцию карбюраторных механизмов, а виной тому существенная сложность и высокая стоимость конструкции.

Система впрыска топлива Впервые, система впрыска низкого давления была установлена на автомобиле компании MERSEDES в 1949 году и по эксплуатационным характеристикам сразу же превзошла топливную систему карбюраторного типа. Данный факт дал толчок дальнейшим разработкам идеи впрыска бензина для автомобилей, оборудованных двигателем внутреннего сгорания. С точки зрения ценовой политики и надежности в эксплуатации, наиболее удачной в этом плане, получилась механическая система «K-Jetronic» компании BOSCH. Ее серийной производство было налажено еще в 1951 году и она, практически сразу, получила широкое распространение почти на всех марках европейских автомобильных производителей.

Многоточечный (распределенный) вариант системы впрыска топлива, отличается от предыдущих наличием индивидуальной форсунки, которая устанавливалась во впускном патрубке каждого отдельного цилиндра. Ее задача – подавать топливо непосредственно на впускной клапан, что означает приготовление топливной смеси прямо перед подачей в камеру сгорания. Естественно, что в таких условиях, она будет иметь однородный состав и примерно одинаковое качество в каждом из цилиндров. Как результат, значительно повышается мощность мотора, его топливная экономичность, а также снижается уровень токсичности выхлопных газов.

На пути развития системы распределенного впрыска топлива иногда встречались определенные сложности, однако, она все равно продолжала совершенствоваться. На начальном этапе, она также, как предыдущий вариант, управлялась механическим путем, однако, стремительное развитие электроники, не только сделало ее более эффективной, но и дало шанс скоординировать действия с остальными компонентами конструкции мотора. Вот и получилось, что современный двигатель способен просигнализировать водителю о неисправности, в случае необходимости самостоятельно переключится на аварийный рабочий режим или заручившись поддержкой систем безопасности, исправить отдельные ошибки в управлении. Но все это, система выполняет с помощью определенных датчиков, которые призваны фиксировать малейшие изменения в деятельности той или иной ее части. Рассмотрим основные из них.

2. Датчики системы впрыска топлива

Датчики системы впрыска топлива предназначены для фиксации и передачи информации от исполнительных устройств к блоку управления работой двигателя и обратно. К ним относят следующие устройства:

Датчик кислорода Датчик кислорода. Его чувствительный элемент размещен в потоке выхлопных (отработанных) газов, а когда рабочая температура достигает значения 360 градусов по Цельсию, датчик начинает вырабатывать собственную ЭДС, которая прямо пропорциональна количеству кислорода в отработанных газах. С практической точки зрения, когда петля обратной связи замкнута, сигнал датчика кислорода являет собой быстро меняющееся напряжение, находящееся между 50 и 900 милливольтами. Возможность смены напряжения вызвана постоянным изменением состава смеси рядом с точкой стехиометрии, а сам датчик не приспособлен для генерации переменного напряжения.

В зависимости от подачи питания выделяют два вида датчиков: с импульсным и постоянным питанием нагревательного элемента. При импульсном варианте, подогрев датчика кислорода осуществляет электронный блок управления. Если же его не прогреть, то он будет иметь высокое внутреннее сопротивление, что не позволит вырабатывать собственную ЭДС, а значит блок управления будет «видеть» только указанное стабильное опорное напряжение. В ходе прогрева датчика, происходит уменьшение его внутреннего сопротивления и начинается процесс генерации собственного напряжения, что сразу становится известным ЭБУ. Для блока управления это есть сигналом готовности к применению в целях регулировки состава смеси.

Датчик массового расхода воздуха используется для получения оценки количества воздуха, который поступает в двигатель машины. Он – часть электронной системы управления работой двигателя. Данное устройство может применятся вместе с некоторыми другими датчиками, такими как датчик температуры воздуха и датчик атмосферного давления, которые выполняют корректировку его показаний.

В состав датчика расхода воздухавходят две платиновые нити, нагреваемые электротоком. Одна нить пропускает через себя воздух (охлаждаясь таким способом), а вторая является контрольным элементом. С помощью первой платиновой нити, вычисляется количество воздуха попавшего в двигатель.

Датчик массового расхода воздуха Основываясь на информации получаемой от датчика расхода воздуха, ЭБУ рассчитывает требуемый объем топлива, необходимый для поддержания стехиометрического соотношения воздуха и топлива в заданных рабочих режимах двигателя. Кроме того, электронный блок использует полученную информацию для определения режимной точки мотора. На сегодняшний день существует несколько различных видов датчиков, отвечающих за массовый расход воздуха: например, ультразвуковые, флюгерные (механические), термоанемометрические и т.д.

Датчик температуры охлаждающей жидкости (ДТОЖ). Имеет вид термистора, тоесть резистора, в котором электрическое сопротивление может изменяться в зависимости от температурных показателей. Термистор располагается внутри датчика и выражает отрицательный коэффициент сопротивления температурных показателей (с нагреванием сила сопротивления уменьшается).

Соответственно, при высокой температуре охлаждающей жидкости – наблюдается низкое сопротивление датчика (примерно 70 Ом при 130 градусах за Цельсием), а при низкой – высокое (примерно 100800 Ом при -40 градусах за Цельсием). Как и большинство других датчиков, данное устройство не гарантирует точные результаты, а значит говорить о зависимости сопротивления температурного датчика охлаждающей жидкости от температурных показателей можно только примерно. В общем, хоть описанное устройство и практически не ломается, но иногда серьезно «заблуждается».

Датчик положения дроссельной заслонки Датчик положения дроссельной заслонки. Монтируется на дроссельный патрубок и связывается с осью самой заслонки. Он представлен в виде потенциометра, имеющего три конца: на один подается плюсовое питание (5В), а другой соединяется с массой. Третий вывод (от ползунка) передает выходной сигнал к контролеру. Когда при нажатии педали дроссельная заслонка поворачивается, выходное напряжение датчика меняется. Если дроссельная заслонка пребывает в закрытом состоянии, то, соответственно, оно ниже 0,7 В, а когда заслонка начинает открываться – напряжение растет и в полностью открытом положении должно быть больше 4 В. Следя за выходным напряжением датчика, контролер, в зависимости от угла открытия дроссельной заслонки, совершает коррекцию подачи топлива.

Учитывая, что контролер сам определяет минимальное напряжение устройства и принимает его за нулевое значение, данный механизм не нуждается в регулировке. По мнению, некоторых автолюбителей, датчик положения дросселя (если он отечественного производства) – это самый ненадежный элемент системы, требующий периодической замены (часто уже через 20 километров пробега). Все бы ничего, но и замену произвести не так то просто, особенно не имея при себе качественного инструмента. Все дело в креплении: нижний винт вряд ли получится открутить обычной отверткой, а если и получится, то сделать это довольно трудно.

Кроме того, при закручивании на заводе, винты «сажают» на герметик, который так из «припечатывает», что при откручивании часто срывается шляпка. В таком случае, рекомендуется полностью снять весь дроссельный узел, а в худшем случае – придется его выковыривать насильно, но только если Вы полностью уверены в его нерабочем состоянии.

Датчик положения коленвала Датчик положения коленчатого вала (ДПВК). Служит для передачи контролеру сигнала о частоте вращения и положении коленвала. Такой сигнал является серией повторяемых электроимпульсов напряжения, которые генерируются датчиком в ходе вращения коленчатого вала. Основываясь на полученных данных контролер может осуществлять управление форсунками и системой зажигания. Датчик положения коленвала устанавливается на крышке масляного насоса, на расстоянии одного миллиметра (+0,4мм) от шкива коленчатого вала (имеет 58 зубцов расположенных по кругу).

Что бы обеспечить возможность генерации «импульса синхронизации», два зуба шкива отсутствуют, тоесть фактически их 56. Когда коленвал вращается, зубцы диска меняют магнитное поле датчика, создавая тем самым, импульсное напряжение. Исходя из характера импульсного сигнала, поступающего от датчика, контролер может определить положение и частоту вращения коленвала, что позволяет рассчитать момент срабатывания модуля зажигания и форсунок.

Датчик положения коленчатого вала является самым главным из всех приведенных здесь и в случае появления неисправности механизма, двигатель автомобиля работать не будет. Датчик скорости. Принцип деятельности этого устройства основывается на эффекте Холла. Суть его работы заключается в передаче контролеру импульсов напряжения, с частотой прямо пропорциональной скорости вращения ведущих колес транспортного средства. Исходя из присоединительных разъемов колодки жгута, все датчики скорости могут иметь некоторые отличия. Так, например, разъем квадратной формы используется в системах «Бош», а круглый – соответствует системам Январь4 и GM.

На основе исходящих сигналов датчика скорости, система управления может определить пороги отключения подачи топлива, а также установить электронные скоростные ограничения автомобиля (доступно в новых системах).

Датчик положения распределительного вала (или как его еще называю «датчик фаз») – это устройство, предназначенное для определения угла распределительного вала и передачи соответствующей информации в электронный блок управления транспортного средства. После этого, на основе полученных данных, контролер может осуществить управление системой зажигания и подачей топлива на каждый отдельный цилиндр, что собственно, он и делает.

Датчики детонации Датчик детонации применяется с целью поиска детонационных ударов в двигателе внутреннего сгорания. С конструктивной точки зрения, он является заключенной в корпусе пьезокерамической пластиной, располагающейся на блоке цилиндров. В наше время, существует два вида датчика детонации – резонансный и более современный широкополосный. В резонансных моделях, первичная фильтрация сигнального спектра, проводиться внутри самого устройства и напрямую зависит от его конструкции. Поэтому, на разных типах двигателя используются разные модели датчиков детонации, отличающиеся друг от друга резонансной частотой. Широкополосный вид датчиков обладает ровной характеристикой в диапазоне шумов детонации, а фильтрацию сигнала выполняет электронный блок управления. На сегодняшний день, резонансные датчики детонации уже не устанавливаются на серийных моделях автомобилей.

Датчик абсолютного давления. Обеспечивает отслеживание перемен в атмосферном давлении, которые случаются в результате изменения барометрического давления и/или изменения показателей высоты над уровнем море. Барометрическое давление можно измерить в ходе включения зажигания, до того как двигатель начнет прокручиваться. С помощью электронного блока управления, есть возможность «обновления» данных о барометрическом давлении при работающем моторе, когда, на малой частоте вращения двигателя, дроссельная заслонка практически полностью открыта.

Также, использовав датчик абсолютного давления, есть возможность измерить изменение давления во впускной трубе. К переменам в давлении приводят изменения нагрузок двигателя и частоты вращения коленвала. Датчик абсолютного давления трансформирует их в выходной сигнал, имеющий определенное напряжение. Когда дроссель находится в закрытом положении, получается, что выходной сигнал абсолютного давления дает сравнительно низкое напряжение, в то время как полностью открытая дроссельная заслонка — соответствует сигналу высокого напряжения. Появление высокого выходного напряжения объясняется соответствием атмосферного давления и давления внутри впускной трубы при полном открытой дроссельной заслонки. Показатели внутреннего давления трубы рассчитываются электронным блоком управления, основываясь на сигнале датчика. Если оказалось, что оно высокое, значит требуется повышенная подача топливной жидкости, а если давление низкое, то наоборот – пониженная.

Электронный блок управления Электронный блок управления (ЭБУ). Хоть это и не датчик, но учитывая, что он имеет непосредственное отношение к работе описанных устройств, мы посчитали за нужное внести и его в данный список. ЭБУ – «мозговой центр» системы впрыска топлива, который постоянно обрабатывает информационные данные получаемые от разных датчиков и на основе этого совершает управление выходными цепями (системы электронного зажигания, форсунок, регулятором холостого хода, разными реле). Блок управления оборудован встроенной диагностической системой, способной распознавать сбои в работе системы и, с помощью контрольной лампы «CHECK ENGINE», предупреждать о них водителя. Более того, в его памяти хранятся диагностические коды, которые указывают конкретные области неисправности, что значительно облегчает проведение ремонтных работ.

В состав ЭБУ входит три вида памяти: постоянное запоминающее устройство с возможностью программирования (RAM и ППЗУ), оперативное запоминающее устройство (RAM или ОЗУ) и запоминающее устройство подлежащее электрическому программированию (ЭПЗУ или EEPROM). ОЗУ используется микропроцессором блока для временного хранения результатов измерений, расчетов и промежуточных данных. Данный вид памяти зависит от энергического обеспечения, а значит требует для сохранения информации, постоянной и стабильной подачи питания. В случае перерыва подачи электропитания, все имеющиеся в ОЗУ коды диагностики неполадок и расчетная информация сразу стираются.

ППЗУ хранит общую рабочую программу, которая содержит последовательность необходимых команд и разную калибровочную информацию. В отличие от предыдущего варианта, данный вид памяти не есть энергозависимым. ЭПЗУ применяется для временного сохранения кодов-паролей иммобилайзера (противоугонной автомобильной системы). После того, как контролер принял эти коды от блока управления иммобилайзера (если такой имеется), они сравниваются с уже сохраненными в ЭПЗУ, а затем, принимается решение о разрешении или запрещении запуска мотора.

3. Исполнительные механизмы системы впрыска

Система впрыска топлива Исполнительные механизмы системы впрыска топлива представлены в виде форсунки, бензонасоса, модуля зажигания, регулятора холостого хода, вентилятора системы охлаждения, сигнала расхода топлива и адсорбера. Рассмотрим каждый из них более подробно. Форсунка. Выполняет роль электромагнитного клапана с нормированной производительностью. Используется для впрыска определенного количества топлива, рассчитанного для конкретного рабочего режима.

Бензонасос. Применяется для перемещения топлива в топливную рампу, давление в которой поддерживается с помощью вакуумно-механического регулятора давления. В некоторых вариантах системы, он может быть совмещен с бензонасосом.

Модуль зажигания являет собой электронные устройство, предназначенное для управления процессом искрообразования. Состоит из двух независимых каналов для поджога смеси в цилиндрах мотора. В последних, модифицированных вариантах устройства, его низковольтные элементы определены в ЭБУ, а что бы получить высокое напряжение используется либо двухканальная выносная катушка зажигания, либо те катушки, которые находятся непосредственно на самой свече.

Регулятор холостого хода. Его задачей есть поддержание заданных оборотов в режиме холостого хода. Регулятор представлен в виде шагового двигателя, управляющего в корпусе дроссельной заслонки обводным каналом воздуха. Это обеспечивает мотор необходимым для работы воздушным потоком, особенно когда дроссельная заслонка закрыта. Вентилятор охладительной системы, как и следует из названия, не допускает перегрева деталей. Управляется ЭБУ, который реагирует на сигналы датчика температуры охлаждающей жидкости. Как правило, разница между положениями включения и выключения составляет 4-5°С.

Данные об употреблении топлива Сигнал расхода топлива – поступает на маршрутный компьютер в соотношении 16000 импульсов на 1 расчетный литр использованного топлива. Конечно, это только приблизительные данные, ведь они рассчитываются на основе суммарного времени, потраченного на открытие форсунок. К тому же, учитывается некий эмпирический коэффициент, который нужен, что бы компенсировать допущение в измерении погрешности. Неточности в расчетах, вызваны работой форсунок в нелинейном участке диапазона, несинхронной топливоотдачей и некоторыми другими факторами.

Адсорбер. Существует в качестве элемента замкнутой цепи в ходе рециркуляции бензиновых паров. Стандарты Евро-2 исключают возможность контакта вентиляции бензобака с атмосферой, а бензиновые пары должны адсорбироваться и в ходе продувки отправляться на дожег.

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

auto.today

Устройство и принцип действия система непосредственного впрыска бензина Bosch Motronic MED 7

Первостепенной целью разработки новых двигателей является снижение расхода топлива и соответствующее ему уменьшение выброса вредных веществ. В трехкомпонентных нейтрализаторах удается преобразовать в безвредные вещества до 99%
выбрасываемых с отработавшими газами углеводородов, оксидов азота и оксида углерода. Выбросы образуемого при сгорании диоксида углерода (CO2), способствующего образованию парникового эффекта, могут быть снижены только в результате уменьшения
расхода топлива. Однако, у двигателей с внешним смесеобразованием (с впрыском бензина во впускной трубопровод) резервы снижения расхода топлива практически отсутствуют. Двигатели с непосредственным впрыском бензина в цилиндры, осуществляемым посредством системы Bosch Motronic MED 7 позволяют экономить до 15% топлива по сравнению с сопоставимым двигателем с впрыском бензина во впускной трубопровод.

Как осуществляется подача топлива?

 

Зачем нужен непосредственный впрыск бензина?

 

Первостепенной целью разработки новых двигателей является снижение расхода топлива и уменьшение выброса вредных веществ.

При этом должны быть получены следующие результаты:

  • снижение благодаря экономии топлива затрат на эксплуатацию автомобиля и получение поощрительных налоговых льгот для автомобилей с низкими выбросами вредных веществ
  • снижение загрязнения среды обитания вредными веществами
  • экономия сырьевых ресурсов

  • Электронное регулирование системы охлаждения, регулируемые фазы газораспределения и рециркуляция отработавших газов уже нашли применение на многих двигателях
  • Ввиду необходимости сохранения достаточной равномерности вращения коленчатого вала отключение цилиндров имеет смысл применять только на многоцилиндровых двигателях. Для снижения вибраций четырехцилиндровых двигателей целесообразно применять уравновешивающие валы
  • Переменная степень сжатия и изменяемые фазы газораспределения реализуются только посредством достаточно мощных
  • механических приводов
  • Дальнейшая разработка различных способов сжигания бедных смесей прекращена в ползу создания двигателей с непосредственным впрыском
  • Непосредственный впрыск бензина принят как наиболее эффективное средство экономии топлива,
  • обеспечивающее его снижение до 20%

 

Преимущества непосредственного впрыска бензина

Уменьшение дросселирования при работе двигателя на бедных послойной и гомогенной смесях.

При работе двигателя на этих смесях коэффициент избытка воздуха изменяется в пределах от 1,55 до 3. При этом дроссельная
заслонка открывается на больший угол, то есть впуск воздуха в цилиндры осуществляется с меньшим сопротивлением.

Работа двигателя на бедных смесях.

При применении послойного смесеобразования удается эффективно сжигать бедные смеси с коэффициентом избытка воздуха от 1,6 до 3, а при работе двигателя на гомогенной бедной смеси коэффициент избытка воздуха равен приблизительно 1,55.

Снижение потерь тепла в стенки.

Так как горение смеси происходит главным образом вблизи свечи зажигания, снижаются потери тепла в стенки цилиндра и
соответственно повышается термический коэффициент полезного действия.

Сжигание гомогенной смеси с высоким содержанием перепускаемых отработавших газов.

Благодаря высокой турбулизации заряда цилиндра двигателя удается эффективно сжигать гомогенные бедные смеси с содержанием отработавших газов до 25%. Чтобы впустить в цилиндры то же количество воздуха, какое поступает в них при перепуске
небольших доз отработавших газов, нужно открывать дроссельную заслонку на больший угол. При этом воздух засасывается в
цилиндры с меньшим сопротивлением, то есть снижаются насосные потери.

Степень сжатия

При непосредственном впрыске бензина затрачиваемое на его испарение тепло отбирается у поступившего в цилиндры
двигателя воздуха. В результате снижается вероятность детонационного сгорания и степень сжатия может быть повышена.
Повышение степени сжатия приводит к росту давления в конце сжатия и соответственно к увеличению термического коэффициента полезного действия.

Расширение диапазона принудительного холостого хода с выключенной подачей топлива.

Частота вращения холостого хода, на которой производится возобновление подачи топлива может быть снижена, так как впрыскиваемое топливо практически не осаждается на стенках цилиндра и большая его часть может быть немедленно использована. Поэтому двигатель работает устойчиво с пониженной частотой вращения.

Способы смесеобразования.

Помимо бедной послойной и стехиометрической гомогенной смесей в двигателе FSI используется смесь третьего вида, а именно, бедная гомогенная смесь. Этот вид смеси позволяет получить меньший расход топлива, чем смесь стехиометрического состава с добавкой перепускаемых отработавших газов. Выбор того или иного способа смесеобразования производится блоком управления двигателем в зависимости от крутящего момента и мощности двигателя с учетом требований к выбросу вредных
веществ и требований безопасности.

Работа двигателя при послойном смесеобразовании.

Послойное смесеобразование используется при работе двигателя при малых и средних нагрузках и частотах вращения.
Благодаря послойному распределению топлива в камере сгорания двигатель работает при общем коэффициенте избытка воздуха от 1,6 до 3.

  • В средней части камеры сгорания, вблизи свечи зажигания, находится легко воспламеняемая рабочая смесь.
  • Эта смесь окружена оболочкой, состоящей в идеальном случае из чистого воздуха и перепускаемых отработавших газов.

Работа двигателя на бедной гомогенной смеси.

На промежуточных режимах, расположенных между режимами работы двигателя на послойной смеси и гомогенной стехиометрической смеси, используются бедная гомогенная смесь. Коэффициент избытка воздуха бедной гомогенной, т. е. однородной во всем объеме камеры сгорания, смеси приблизительно равен 1,55.

Работа двигателя на гомогенной смеси стехиометрического состава.

Двигатель работает на гомогенной смеси стехиометрического состава при выходе на режимы больших нагрузок и высоких частот вращения. Коэффициент избытка воздуха этой смеси равен (согласно определению) единице.

Рабочий процесс.

Рабочий процесс определяется способом смесеобразования и процессами преобразования энергии в камере сгорания.
Работа двигателя на гомогенных смесях При работе двигателя на гомогенных смесях топливо впрыскивается в цилиндр на такте
впуска и равномерно распределяется по всей массе засасываемого воздуха.

Работа двигателя при послойном смесеобразовании.

Послойная смесь формируются около свечи зажигания с помощью поршня специальной формы и за счет вихревого движения воздуха. Форсунка расположена так, что впрыскиваемое ею топливо направляется на выемку в днище поршня и отклоняется ее
стенкой в направлении свечи зажигания. С помощью установленной во впускном канале заслонки и аэродинамической выемки в
поршне в цилиндре двигателя создается вихревое движение воздуха, которое поддерживает перенос топлива к свече зажигания. Таким образом горючая смесь образуется в процессе движения топлива и воздуха.


Работа двигателя при послойном смесеобразовании.

Переход двигателя на режим работы с использованием послойной смеси осуществляется при следующих условиях:

  • нагрузка и частота вращения двигателя соответствуют режимам, на которых эффективно использование послойного смесеобразования;
  • системой не зарегистрирована неисправность, из/за которой может повыситься выброс вредных веществ;
  • температура охлаждающей жидкости выше 50 °C,
  • датчик окислов азота исправен;
  • температура накопительного нейтрализатора находится в пределах от 250°C до 500°C. Если эти предпосылки выполнены, можно перейти на послойное смесеобразование.

Процесс впуска

При работе на послойной смеси дроссельную заслонку открывают по возможности больше, чтобы до максимума снизить потери на дросселирование. При этом установленная во впускном канале вспомогательная заслонка (называемая в дальнейшем впускной заслонкой) перекрывает его нижнюю часть. В результате повышается скорость проходящего через верхнюю часть канала потока воздуха, который закручивается затем в цилиндре.

Движение воздуха в цилиндр двигателя.

Специальная форма выемки в днище поршня способствует образованию и усилению вихря в цилиндре двигателя.

Впрыск топлива.

Топливо впрыскивается в последней трети такта сжатия. Впрыск начинается приблизительно за 60° и заканчивается приблизительно за 45° до в. м. т. такта сжатия. Начало впрыска оказывает значительное влияние на расположение облачка смеси
относительно свечи зажигания.

Топливо впрыскивается в направлении топливной выемки в поршне. Желаемые размеры облачка смеси достигаются подбором геометрических параметров форсунки.

Специальная форма топливной выемки и движение поршня к в. м. т. способствуют отклонению движения капель топлива к свече
зажигания. Это движение топлива поддерживается вихревым движением воздуха. В процессе движения к свече зажигания
топливо смешивается с поступившим в цилиндр воздухом.

Процесс смесеобразования

Для образования послойной смеси предоставляется время, соответствующее повороту коленчатого вала на 40° / 50°. От
продолжительности этого процесса зависит способность смеси к воспламенению. Если время между впрыском и моментом подачи искры слишком мало, смесь оказывается не подготовленной к воспламенению. При слишком большом промежутке времени между этими процессами смесь распределяется по всему объему камеры сгорания. При выполнении указанных выше условий в центре камеры сгорания, т. е. вблизи свечи, образуется легко воспламеняемая смесь. Эта смесь окружена оболочкой, состоящей из свежего воздуха и перепущенных отработавших газов. Общий коэффициент избытка воздуха в камере сгорания может быть равен при этом от 1,6 до 3.

Процесс сгорания.

После поступления топливо/воздушной смеси к свече зажигания она поджигается искрой. При этом воспламеняется только облако смеси, в то время как остальные газы образуют его оболочку. Благодаря изолирующему действию этой оболочки снижаются потери тепла в стенки камеры сгорания и соответственно увеличивается термический к. п. д. двигателя.
Зажигание смеси должно производиться в конце такта сжатия в пределах достаточно узкого угла поворота коленчатого вала,
ограниченного моментом окончания впрыска топлива и промежутком времени, необходимого для образования смеси.

Работа двигателя на бедной гомогенной смеси.

Эта смесь используется на режимах, которые находятся в поле многопараметровой характеристики между режимами работы двигателя при послойном смесеобразовании и режимами его работы на гомогенной смеси стехиометрического состава. Коэффициент избытка воздуха этой смеси равен практически 1,55. Двигатель может эффективно работать на этой смеси при тех же условиях, которые предписаны для послойной смеси.

Процесс впуска.

Как при послойном смесеобразовании, работа двигателя на бедной гомогенной смеси осуществляется с максимально
открытой дроссельной заслонкой при закрытых впускных заслонках. При этом снижаются потери на дросселирование и
создается интенсивное движение воздуха в цилиндре двигателя.

Процесс впрыска топлива

Впрыск топлива осуществляется непосредственно в цилиндр в процессе впуска. Он начинается приблизительно за 300° до
в. м. т. такта сжатия. При этом блок управления двигателем регулирует подачу топлива таким образом, чтобы коэффициент избытка воздуха был равен приблизительно 1,55.

Процесс смесеобразования

Благодаря раннему моменту впрыска предоставляется достаточно большое время до момента зажигания для образования гомогенной смеси во всем объеме камеры сгорания.

Процесс сгорания

Как и при работе на любой гомогенной смеси момент зажигания не зависит от процесса смесеобразования. Смесь горит при этом во всем объеме камеры сгорания.

Работа двигателя на гомогенной смеси стехиометрического состава.

Работу двигателя на гомогенной смеси стехиометрического состава можно сравнить с работой двигателя с впрыском бензина во впускной трубопровод. Существенное различие заключается только в месте впрыска топлива, который производится в данном случае непосредственно в цилиндры двигателя. Крутящий момент двигателя может быть изменен как смещением угла опережения зажигания
(кратковременно), так и изменением поступающей в цилиндры массы воздуха (долговременно). При этом впрыскивается такое количество топлива, которое необходимо для образования стехиометрической смеси, коэффициент избытка воздуха которой (по определению) равен единице.

Процесс впуска

Дроссельная заслонка открывается соответственно перемещению педали акселератора. Впускная заслонка может быть открыта или
закрыта в зависимости от режима работы двигателя. При частичных нагрузках и в среднем диапазоне частот вращения эта заслонка закрыта, в результате чего входящий в цилиндр поток воздуха закручивается, улучшая смесеобразование. По мере увеличения нагрузки и частоты вращения поступление воздуха только через верхнюю часть впускного канала оказывается недостаточным. Поэтому заслонку
поворачивают, открывая нижнюю часть впускного канала.

Впрыск топлива

Впрыск топлива производится непосредственно в цилиндр на такте впуска приблизительно за 300° до в. м. т. такта сжатия.

Процесс смесеобразования

Так как впрыск топлива производится на такте впуска, на процесс смесеобразования отводится относительно много времени.
Благодаря этому впрыснутое в цилиндр топливо равномерно распределяется по всему объему поступившего в него воздуха.
Коэффициент избытка воздуха смеси в камере сгорания равен единице.

Процесс сгорания

Крутящий момент двигателя, расход топлива и выброс вредных веществ при работе на гомогенной смеси зависят от угла опережения зажигания.

 

Система впуска

 

У двигателей с непосредственным впрыском бензина система впуска была изменена в соответствии с их потребностями. Ее особенностью является целенаправленное воздействие на потоки воздуха в цилиндрах двигателя в зависимости от режимов его работы.

  1. Пленочный измеритель массового расхода воздуха с датчиком температуры воздуха на впуске для более точного определения нагрузки двигателя
  2. Датчик давления во впускном трубопроводе для расчета количества перепускаемых отработавших газов
  3. Система заслонок во впускных каналах для целенаправленного управления потоками воздуха на входе в цилиндры двигателя
  4. Электромагнитный клапан системы рециркуляции отработавших газов с увеличенными проходными сечениями для перепуска большего количества газов
  5. Датчик давления для регулирования разрежения в магистрали к вакуумному усилителю тормозного привода
  6. Блок управления дроссельной заслонкой
  7. Клапан продувки адсорбера
  8. Блок управления системой Motronic

Система впускных заслонок


Впускные заслонки и их привод расположены в нижней и верхней частях впускной системы. Заслонки служат для управления потоками воздуха, поступающего в цилиндры двигателя, в зависимости от режимов работы двигателя.

Работа двигателя с закрытыми впускными заслонками

При работе двигателя на послойных и бедных гомогенных смесях, а также на некоторых режимах с использованием гомогенных смесей стехиометрического состава заслонки перекрывают нижние части впускных каналов, расположенных в головке цилиндров. При этом воздух проходит в цилиндры только через верхние части впускных каналов. Форма верхней части впускного канала подобрана
таким образом, чтобы впускаемый в цилиндр воздух закручивался на входе в него. Помимо этого повышенная скорость проходящего через зауженный канал воздуха способствует смесеобразованию.

Реализуются два преимущества:

  • При послойном смесеобразовании вихревое движение воздуха обеспечивает перенос топлива к свече зажигания. Образование смеси осуществляется в процессе этого движения.
  • Вихревое движение воздуха создает условия для образования гомогенных бедной и стехиометрической смесей. Благодаря ему повышается воспламеняемость и достигается стабильное горение бедных смесей

 Работа двигателя с открытыми впускными заслонками

При работе двигателя на режимах с высокой нагрузкой и при высоких частотах вращения воздушные заслонки открыта и воздух
проходит в цилиндры через обе части впускных каналов. Большое сечение впускного канала обеспечивает наполнение цилиндра,
необходимое для получения высокой мощности и крутящего момента

Определение количества перепускаемых отработавших газов

Блок управления двигателем определяет с помощью измерителя расхода поступающую в цилиндры массу воздуха и рассчитывает соответствующее ее величине давление во впускном трубопроводе. При рециркуляции отработавших газов их масса добавляется к массе свежего воздуха и соответственно повышается давление во впускном трубопроводе. Датчик давления во впускном трубопроводе реагирует на это изменением напряжения на его выходе, которое передается на вход блока управления двигателем. По величине этого сигнала определяется суммарное количество воздуха и отработавших газов, поступающих в цилиндры двигателя. Количество перепускаемых отработавших газов определяется вычитанием количества свежего воздуха из суммарной величины. Преимуществом такого метода определения количества перепускаемых отработавших газов является возможность увеличения их доли в рабочей смеси и приближения к границе воспламеняемости смеси.

Последствия при отсутствии сигнала датчика давления во впускном трубопроводе.
При выходе датчика давления во впускном трубопроводе из строя блок управления определяет количество перепускаемых газов
расчетным путем и снижает перепуск против значений, соответствующих многопараметровой характеристике.

Топливная система

Топливная система разделена на контуры высокого и низкого давления. Часть топлива подводится в цилиндры через систему улавливания паров бензина.

Контур низкого давления

Контур низкого давления охватывает часть топливной системы от расположенного в баке электронасоса до насоса высокого давления. Давление топлива в этом контуре обычно равно 3 бар и только при пуске горячего двигателя может быть повышено до 5,8 бар.

Контур высокого давления

Контур высокого давления начинается с топливного насоса высокого давления, который подает топливо в распределительный
трубопровод. На распределительном трубопроводе установлен датчик давления топлива, сигналы которого используются для
поддержания давления в диапазоне от 50 до 100 бар посредством клапана регулятора. Впрыск топлива в цилиндры осуществляется через форсунки высокого давления.

В контур низкого давления входят:
     1. топливный бак
     2. топливный электронасос
     3. топливный фильтр
     4. клапан перепуска топлива
     5. регулятор давления топлива
В контур высокого давления входят:
     6. топливный насос высокого давления
     7. трубопровода высокого давления
     8. распределительный трубопровод
     9. датчик давления топлива
     10. клапан регулятора давления
     11. форсунки высокого давления

Форсунки высокого давления

Форсунки установлены в головке цилиндров. Через них топливо впрыскивается под высоким давлением непосредственно в цилиндры двигателя. Назначение Форсунки должны мелко распыливать топливо за возможно короткий промежуток времени. Способ подачи топлива зависит при этом от режима работы двигателя. При послойном смесеобразовании топливо должно направляться в зону свечи зажигания, а при работе двигателя на гомогенных смесях его необходимо равномерно распределять в объеме камеры сгорания.

Чтобы получить наилучшее распределение топлива при послойном смесеобразовании, угол конуса факела топлива принят равным 70°, а ось конуса наклонена на 20°

Эта система должна обеспечивать выполнение законодательных норм выброса углеводородов. Эта система предотвращает попадание паров бензина из бака автомобиля

в окружающую среду. Пары топлива накапливаются в адсорбере с активированным углем и периодически отсасываются в двигатель, где они сгорают. 

При работе двигателя на гомогенных смесях
При этом рабочая смесь равномерно распределяется по объему камеры сгорания. Поступающие из адсорбера пары бензина сгорают вместе с рабочей смесью во всем объеме камеры сгорания.

При послойном смесеобразовании
При послойном смесеобразовании способная к воспламенению рабочая смесь находится только в зоне свечи зажигания. Часть поступившего из адсорбера топлива оказывается при этом в зоне невоспламеняемой смеси. Это может привести к неполному сгоранию топлива и повышенному выбросу углеводородов с отработавшими газами. Поэтому переход на послойное смесеобразование производится только при небольшом содержании топлива в адсорбере.

Блок управления двигателем рассчитывает количество топлива, которое может быть отведено из адсорбера, и вырабатывает команды на открытие клапана его продувки, изменение дозы впрыскиваемого топлива и установку дроссельной заслонки. Для этого блоком управления используется следующая данные:

  • нагрузка двигателя, определяемая по сигналам измерителя расхода воздуха с пленочным чувствительным элементом
  • частота вращения коленчатого вала, определяемая по сигналам датчика
  • температура воздуха на впуске, определяемая по сигналам датчика
  • заряд адсорбера, определяемый по сигналам датчика кислорода

Система зажигания

Задачей системы зажигания является воспламенение рабочей смеси в нужный момент времени. Для этого блок управления двигателем должен определять для каждого режима работы двигателя угол опережения зажигания, энергию искры и длительность искрообразования. От угла опережения зажигания зависят крутящий момент, выброс вредных веществ и расход топлива двигателя.

При послойном смесеобразовании
момент зажигания может изменяться в узком диапазоне значений угла поворота коленчатого вала, которому соответствует
образование способной к воспламенению смеси.

При работе на гомогенных бедной и стехиометрической смесях.
Требования к зажиганию не отличаются от них у двигателей с впрыском бензина во впускные каналы. Ввиду одинакового распределения
смеси у двигателей с обеими системами впрыска оптимальные углы опережение зажигания практически не отличаются.

При расчете оптимальных углов опережения зажигания используются:

 

Основные исходные данные:
     1. о нагрузке двигателя, определяемые по сигналам измерителя расхода воздуха и датчика температуры воздуха на впуске,
     2. о частоте вращения коленчатого вала, измеряемой по сигналам датчика

Вспомогательные данные, определяемые по сигналам:
     3. датчика температуры охлаждающей жидкости,
     4. с блока управления дроссельной заслонкой,
     5. датчика детонации,
     6. датчиков положения педали акселератора,
     7. датчика кислорода.

Система выпуска

Эта система была приспособлена к двигателю с непосредственным впрыском бензина. До настоящего времени система очистки
отработавших газов двигателей с непосредственном впрыском была проблематичной. Это связано с тем, что образующиеся при работе на бедных гомогенных и послойных смесях оксиды азота не могут быть восстановлены в обычных трехкомпонентных нейтрализаторах до уровня, допускаемого законодательством. Поэтому для двигателей с непосредственным впрыском бензина применяют накопительные нейтрализаторы, которые способны удерживать оксиды азота при работе на бедных смесях. При заполнении
нейтрализатора до предела производится перевод его на режим регенерации, в процессе которого накопленные в нем оксиды азота
выводятся и восстанавливаются до азота.

Охлаждение отработавших газов
Охлаждение отработавших газов применяется для того, чтобы поддерживать температуру в накопительном нейтрализаторе в диапазоне от 250 до 500 °C. Только в этом температурном диапазоне обеспечивается удерживание оксидов азота в накопительном нейтрализаторе. Накопительный нейтрализатор необходимо охлаждать также из-за снижения его аккумулирующей способности при перегреве до температур свыше 850 °C. 

Охлаждение выпускного коллектора
В подкапотном пространстве предусмотрен воздуховод, который позволяет преднамеренно охлаждать выпускной коллектор направляемым на него потоком свежего воздуха и таким образом снижать температуру отработавших газов.

Раздвоенный выпускной трубопровод
Этот трубопровод расположен перед накопительным нейтрализатором. Его установка является вторым мероприятием по
снижению температуры отработавших газов и соответственно накопительного нейтрализатора. Температура газов снижается
за счет увеличения теплоотдачи через развитую поверхность трубопровода.

При одновременном использовании обоих мероприятий удается снижать температуру
отработавших газов на 30*100 °C в зависимости от скорости автомобиля.

Предварительный трехкомпонентный нейтрализатор.
Этот нейтрализатор встроен в выпускной коллектор. Благодаря близости к двигателю он быстро прогревается до рабочей температуры, при которой начинается очистка отработавших газов. Благодаря этому могут быть выполнены жесткие нормы на выбросы вредных веществ.

Назначение
Нейтрализатор служит для каталитического преобразования образующихся при сгорании вредных веществ в безвредные вещества.

Принцип действия

При работе двигателя на гомогенной стехиометрической смеси

Углеводороды (HC) и оксид углерода (CO) отнимают у оксидов азота (NOx) кислород (O), окисляясь до воды (h3O) и диоксида углерода (CO2). При этом оксиды азота восстанавливаются до азота (N2).

При работе двигателя на бедных смесях

Углеводороды и оксид углерода окисляются кислородом, содержащимся в избытке в отработавших газах. При этом кислород у
оксидов азота не отнимается. Поэтому при работе на бедных смесях трехкомпонентный нейтрализатор не может осстанавливать оксиды азота. Последние проходят через трехкомпонентный нейтрализатор и направляются в нейтрализатор накопительного типа.

www.carluck.ru

Несовершенство непосредственности: надежность и проблемы моторов с прямым впрыском

«В новый век – с новой системой питания!». Похоже, с таким девизом европейские производители стали внедрять технологию. А что им оставалось? Требования по снижению расхода топлива заставляли делать моторы сложнее, к тому же непосредственный впрыск (особенно в сочетании с наддувом) позволял увеличить мощность. И при этом оставлял мотор вполне экономичным на малой нагрузке. Начал входить в моду и даунсайз – постепенно для машины С-класса стало вполне нормальным иметь мотор объемом в литр, а мощные авто начинаются с объема в 1,4. Даже седаны D+ и Е классов не брезгуют моторами 1,4 и 1,6 с турбонаддувом.

Снова те же грабли, но в XXI веке

Собственно о минусах подобной системы питания было известно с самого начала. Сложность и высокая стоимость сюрпризом не были – опыт внедрения непосредственного впрыска накопился изрядный. Надежность сложных систем честно постарались увеличить. Правда, цену особенно опустить не пытались.

Как известно, для подачи топлива непосредственно в цилиндры нужен насос высокого давления. Вообще-то и в системах «обычного» распределенного впрыска в системе питания давление немаленькое, но у прямого впрыска оно примерно в 10 раз больше.

На дизельных моторах непосредственный впрыск и ТНВД появился существенно раньше, и ресурс узлов был не таким уж низким. У бензиновых все получилось иначе: насосы оказались весьма недолговечными. Почему? Потому что дизтопливо имеет более высокие смазочные свойства, чем бензин, и без специальных смазывающих присадок ресурс всех узлов трения очень мал.

Современные мембранные ТНВД не так зависят от смазки, как поршневые, но, тем не менее, нуждаются в ней. Да и в целом насос высокого давления – штука довольно хрупкая, любые загрязнения выведут его из строя. Улучшить ситуацию смогли введением стандарта на смазывающие присадки в топливе. Конечно, 15% масла, как в двухтактные моторы, добавлять не стали, но топливо Евро-4 и выше обязательно содержит небольшое количество специальных смазок. Не в последнюю очередь – именно для ТНВД на бензиновых машинах. Учитывая, что официальный запрет на продажу топлива Евро-3 вступил в России в силу лишь 1 января 2015 года, неудивительно, что «непосредственные» машины у нас жили так недолго и несчастливо.

С форсунками ситуация аналогичная, они дороже и менее надежны, чем на системах распределенного впрыска. Требования к их работе тоже намного выше. Небольшое изменение факела распыла, даже без изменения общего расхода подачи, ведет к серьезным нарушением работы мотора. В результате для сохранения работоспособности резко растут требования по чистоте топлива и рабочей температуре.

Пьезофорсунки еще и имеют ограниченное количество циклов срабатывания, чувствительны к перегреву, а также обладают склонностью при выходе из строя «лить» бензин, что может вызвать гидроудар при запуске. Особенно это характерно для очень распространенных «высокоточных» пьезофорсунок Bosch, которые имеют ограниченный ресурс, а компания на протяжении последних десяти лет не может создать действительно хорошо работающий вариант.

Склонность к закоксовке впускных клапанов и худшие условия их работы проявились на моторах Мицубиси довольно быстро. Обычно форсунки подают бензин на впускной клапан и охлаждают его. И заодно смывают с него отложения. У непосредственного мотора такой возможности нет, клапан греется сильнее, больше нагревает воздух, а масло из системы вентиляции картера и из сальника клапана постепенно образует «шубу», которая затрудняет газообмен и приводит к зависанию клапанов и его перегреву. Особенно тяжело приходится моторам с повышенным расходом масла, а в самой критической группе риска – моторы, которые часто работают с малой нагрузкой, то есть в пробках.

Плохие пусковые качества из-за неудовлетворительного испарения топлива при пуске тоже проявились давно. Оказалось, что оптимизация формы факела впрыска на холодном и горячем моторе должна производиться более тщательно. Любое попадание топлива на стенки цилиндра приводит к резкому увеличению количества несгоревшего топлива и попаданию его в масло. А при запуске при отрицательных температурах большое значение приобретает качество распыла бензина: оно должно оказаться намного выше, чем при обычной работе, и давление топлива на пуске должно быть очень высоким. Поначалу этого не учли.

Повышенное количество твердых частиц в выхлопе проявилось позже, когда непосредственный впрыск на европейских машинах уже стал мэйнстримом. Более точные исследования показали, что эта особенность смесеобразования роднит такой бензиновый мотор с дизелем. Действительно, в процессе работы образуются частички сажи, которые необходимо тоже как-то задерживать. Например, вводя сажевый фильтр, как на дизельных моторах. Компания Mercedes уже анонсировала подобную опцию для своих машин.

Попадание топлива в масло из-за неисправностей топливного насоса высокого давления – в общем-то чисто конструктивный недостаток насосов Bosch, но в силу их широкого распространения и общности конструкций насосов свойственен почти всем моторам с непосредственным впрыском. Бензин в масле не так уж и страшен, но в больших количествах ведет к снижению вязкости масла до критической, что приводит к повреждениям моторов. И, к тому же, дает повод многим «экспертам» говорить о том, что топливо является причиной «масляной чумы».

Что же делать?

Почти у всех проблем есть пути решения. Например, двойной впрыск, когда топливо подается и в цилиндры, и во впускной трубопровод – это справляется сразу со сложностью с закоксовкой клапанов, экологичностью и плохим запуском в холода. Такая схема применялась на некоторых двигателях Volkswagen EA888, но продавались они исключительно в США и были заточены под жесткие экологические нормы Калифорнии. Но в конце 2014-го комбинированный впрыск появился и у нас – на моторе 6AR-FE (2 литра, 150 л. с.) Toyota Camry последнего поколения. Пока сложно судить о надежности, ибо пробеги машин пока небольшие в основной массе, однако предпосылки хорошие.

Под капотом 2015–н.в. Toyota Camry XLEПод капотом 2015–н.в. Toyota Camry XLE

С поршневыми кольцами и топливными насосами приходится разбираться чисто конструктивными методами, экспериментируя с формой – часто «дизайн» поршневой группы производители дорабатывают уже после того, как машина вышла на рынок и поразила всех угаром масла. Так, скажем, делала Toyota в 2005 году, доводя до ума моторы серии ZZ (еще без непосредственно впрыска), а позже – Volkswagen с уже упомянутыми выше EA888. Насосы высокого давления тоже стараются сделать надежнее – эта задача технически выполнима.

Но все непросто: система очень сложная и дорогая – накладным для производителей выходит не только себестоимость конечной продукции, но и исследования с экспериментами. А маркетологи не дают возможности по 10 лет заниматься испытаниями, требуют все более новых моторов с еще более привлекательными характеристиками.

Рискнуть в сегодняшнем автобизнесе репутацией производителя ненадежных машин считается делом благородным. Если что, всегда выручит отзывная кампания. Куда хуже – показаться производителем консервативным или, не дай бог, незацикленным на идее спасения планеты от выхлопных газов. Вот это, как мы видимо по примеру Volkswagen и Mitsubishi – действительно страшно. Тут можно и самостоятельность компании потерять, и топ-менеджмента лишиться.

www.kolesa.ru

Главные плюсы и минусы двигателей с непосредственным впрыском топлива

Прямой впрыск топлива – хорошо или плохо?

Двигатели с непосредственным впрыском (также используется термин «прямой впрыск», или GDI) начали появляться на автомобилях не так давно. Однако технология набирает популярность и все чаще встречается на моторах новых автомобилей. Сегодня мы в общих чертах постараемся ответить, что такое технология непосредственного впрыска и стоит ли ее опасаться?

 

Для начала стоит отметить, что главной отличительной особенностью технологии является расположение форсунок, которые размещены непосредственно в головке блока цилиндров, соответственно, и впрыск под огромным давлением происходит напрямую в цилиндры, в отличие от давно зарекомендовавшей себя с лучшей стороны системы впрыска горючего во впускной коллектор.

 

Прямой впрыск впервые был испытан в серийном производстве японским автопроизводителем Mitsubishi. Эксплуатация показала, что среди плюсов главными преимуществами стали экономичность – от 10% до 20%, мощность – плюс 5% и экологичность. Основной минус – форсунки крайне требовательны к качеству топлива.

Стоит также отметить, что схожая система уже долгие десятилетия успешно устанавливается на дизельные двигатели. Однако именно на бензиновых моторах применение технологии было сопряжено с рядом трудностей, которые до сих пор не были окончательно решены.

 

В видео с YouTube-канала «Savagegeese» объясняется, что такое прямой впрыск и что может пойти не так в ходе эксплуатации автомобиля с данной системой. В дополнение к главным плюсам и минусам в видеоролике также объясняются тонкости профилактического обслуживания системы.  Кроме того, в ролике затрагивается тема систем впрыска во впускные каналы, которые можно в изобилии наблюдать на более старых моторах, а также моторы, которые используют оба метода впрыска горючего. Наглядно используя диаграммы Bosch, ведущий объясняет, как все это работает.

 

Чтоб узнать все нюансы, предлагаем посмотреть видео ниже (включение перевода субтитров поможет разобраться, если вы не очень хорошо знаете английский). Для тех, кому не слишком интересно смотреть, об основных плюсах и минусах непосредственного впрыска бензина можно прочитать ниже, после видео:

 

Итак, экологичность и экономичность – благие цели, но вот чем чревато использование современной технологии в вашем автомобиле:

 

Минусы

 

1. Очень сложная конструкция.

 

2. Отсюда вытекает вторая важная проблема. Поскольку молодая бензиновая технология подразумевает внесение серьезных изменений в конструкцию головок цилиндров двигателя, конструкцию самих форсунок и попутное изменение иных деталей мотора, к примеру ТНВД (топливный насос высокого давления), стоимость автомобилей с непосредственным впрыском топлива выше.

 

3. Производство самих частей системы питания также должно быть крайне точным. Форсунки развивают давление от 50 до 200 атмосфер.

 

Прибавьте к этому работу форсунки в непосредственной близости со сгораемым топливом и давлением внутри цилиндра и получите необходимость производства очень высокопрочных компонентов.

 

4. Поскольку сопла форсунок смотрят в камеру сгорания, все продукты сгорания бензина также осаждаются на них, постепенно забивая или выводя форсунку из строя. Это, пожалуй, самый серьезный минус использования конструкции GDI в российских реалиях.

 

5. Помимо этого необходимо очень тщательно следить за состоянием двигателя. Если в цилиндрах начинает происходить угар масла, продукты его термического распада достаточно быстро выведут из строя форсунку, засорят впускные клапаны, образовав на них несмываемый налет из отложений. Не стоит забывать, что классический впрыск с форсунками, расположенными во впускном коллекторе, хорошо очищает впускные клапаны, омывая их под давлением топливом.

 

6. Дорогой ремонт и необходимость профилактического обслуживания, которое тоже недешевое.

Помимо этого, в видео также объясняется, что при ненадлежащей эксплуатации на автомобилях с прямым впрыском могут наблюдаться загрязнение клапанов и ухудшение производительности, в особенности на турбированных двигателях.

 

Смотрите также: Подробное объяснение принципа работы двигателя с переменным сжатием Infiniti

 

Плюсы

 

1. Экологичность.

 

2. Экономичность (правда, здесь нужно сделать оговорку: реальная экономия бензина доступна в условиях, близких к идеальным) – экономия 5-10%.

 

3. Немного более высокая мощность.

 

4. GDI при непосредственном попадании топлива в цилиндр охлаждает головку поршня.

 

5. Происходит лучшее смешение топливовоздушной смеси в цилиндрах.

 

6. Меньше детонация.

 

7. Требуется гораздо меньше топлива, смесь при определенных условиях работы мотора может обедняться до 30:1

 

8. Процесс работы двигателя точнее контролируется при помощи компьютера.

 

Таким образом, если выполнять определенные правила, предписанные автопроизводителем, а именно заправляться на проверенных заправках качественным топливом и регулярно проводить техническое обслуживание топливной системы автомобиля, то ухудшения качеств мотора, а тем более поломок оборудования можно избежать. Специалисты также советуют проводить прочистку форсунок после каждых 50-60 тыс. км.

www.1gai.ru

Послойный и распределенный впрыск топлива

Распределенный впрыск топлива – специальная система, устанавливаемая на двигатель, которая отвечает за подачу топливной жидкости в камеру сгорания. Эта система применяется абсолютно на всех инжекторных автомобилях, однако различается по своему характеру:

  • Механический;
  • Послойный;
  • Непосредственный;
  • Моновпрыск.

Самой известной и распространенной моделью этой системы стал послойный впрыск, с помощью которого подача топливо-воздушной смеси происходит отдельно на каждый цилиндр по определенной схеме. Для такого типа подачи необходимы специальные распределительные форсунки.

Понятие последовательности впрыска

Впрыск топлива

Впрыск топлива

На последовательность или фазы впрыска влияют следующие показатели:

  • На каждый отдельный цикл работы двигателя приходится одна фаза впрыска каждой отдельной форсунки;
  • Время этой фазы для каждого типа двигателя может быть разным, однако количество топлива в основном одинаково.

Ключевой особенностью непосредственного впрыска является значительная экономия топлива, отдельные исследования показывают экономию до 15%.

Суть распределенного впрыска топлива

Если говорить более простым языком, то распределенный впрыск топлива работает по такой схеме:

  • В двигатель подается топливно-воздушная смесь;
  • Контроль подачи воздуха происходит за счет дроссельной заслонки;
  • Перед подачей в двигатель смесь разделяется на четыре отдельных потока;
  • Затем каждый отдельный поток попадает в специальный ресивер, где и аккумулируется под большим давлением;

Размер установленного ресивера подбирается таким образом, чтобы не допустить воздушного голодания цилиндров, то есть система должна иметь достаточное количество воздуха для всех режимов работы. С помощью форсунок эта смесь подается в цилиндры, вернее, в камеру сгорания, куда предварительно уже закачан воздух.

Элементы системы распределенного впрыска

Конечно, стоит перечислить все компоненты, с помощью которых работает эта система:

  • Бензонасос. Работа бензонасоса заключается в подачи бензина в специальную рампу, в которой давление поддерживается на постоянном уровне за счет регулятора давления механического типа. В некоторых моделях регулятор давления и бензонасос совмещены;
  • Форсунки, которые оборудованы специальными электромагнитными клапанами с возможностью регулировки производительности;
  • Зажигательный модуль, с помощью которого происходит регуляция искрообразования. Обычно имеет два канала, работающих независимо друг от друга, с помощью которых происходит воспламенение смеси отдельно в 1 и 4, а также во 2 и 3 цилиндрах;
  • Клапан предохранения, который необходим для защиты всех элементов системы от повышенного давления впрыска, оно наблюдается при температурном расширении топливной смеси;
  • Регулятор холостого хода, который обеспечивает поддержание заданных оборотов;
  • Вентилятор системного охлаждения, обороты которого регулируются электрически;
  • Датчик расхода, с помощью которого подается информация на бортовой компьютер;
  • Адсорбер, который необходим для регуляции паров бензина.
Система впрыска

Система впрыска

Процесс работы распределенного впрыска

Работа этой системы предполагает использование преднамеренно обедненной смеси, за счет этого происходит экономия бензина. По сути это должно приводить к понижению мощности, однако повышенная эффективность распрыскивания топлива позволяет этого избежать. Одно и то же количество топлива может сгорать по разному, в зависимости от размера капли разбрызгиваемого топлива. Чем меньше капля, тем выше вероятность получения тумана из смеси бензина и воздуха, в котором распространение пламени происходит более равномерно. Бензин в этом случае сгорает полностью без остатка, а значит, меньшее количество за счет эффективного мелкодисперсного впрыска может давать большее количество тепла.

На исследования по оптимизации сгорания многие автоконцерны тратят большое количество финансов и сил. Наиболее перспективным подвидом распределенного впрыска стал послойный впрыск топлива. При послойном впрыске топливо-воздушная смесь подается в камеру сгорания не одной порцией, а несколькими, но с очень малым интервалом. Такая подача позволила получить дополнительную оптимизацию процесса сгорания.

Дополнительно за счет точного дозирования смеси и открытия форсунок в строго определенный момент происходит экономия. При помощи компьютера момент открытия форсунки, а также срок этого открытия оперативно меняются при изменении нагрузки на двигатель автомобиля. Помимо системы управления форсунками, с помощью компьютера происходит интеллектуальный контроль фаз газораспределения. В зависимости от нагрузки на двигатель происходит автоматическое изменение режимов работы:

  • Холостые обороты;
  • Движение с повышенным уровнем нагрузки;
  • Движение с малым уровнем нагрузки.

Естественно, при разных режимах количество топлива, которое подается в камеру сгорания форсунками, разное и постоянно меняется блоком управления в зависимости от ситуации.

autodont.ru

Система питания с непосредственным впрыском топлива.


Системы питания инжекторных двигателей




Непосредственный впрыск топлива

Система непосредственного впрыска инжекторных двигателей аналогична по конструкции системе питания дизельных двигателей Common Rail, предложенной в конце 60-х годов прошлого столетия швейцарским инженером Робертом Хубером, и завоевавшей в настоящее время широкую популярность, активно вытесняя классическую систему питания дизелей благодаря существенным достоинствам.

Слабым местом всех систем непосредственного впрыска топлива в цилиндры двигателя является низкая эффективность смесеобразования – для того, чтобы топливо достаточно быстро сгорало, необходимо его тщательно перемешать с воздухом. По понятным причинам, системы с внешним смесеобразованием в этом плане имеют существенное преимущество, поскольку топливо и воздух перемешиваются еще до подачи в цилиндры двигателя и горение протекает интенсивнее.

Поэтому конструкторам, разрабатывающим дизельные двигатели и бензиновые двигатели с непосредственным впрыском топлива, приходится решать достаточно сложную задачу – как в сотые доли секунды получить внутри цилиндра равномерно распределенную по камере сгорания топливовоздушную смесь требуемого состава и качества.

Одним из путей решения проблемы является повышение давления топлива, впрыскиваемого форсункой в цилиндр двигателя. Топливо, вырывающееся под большим давлением из сопла распылителя форсунки, распыляется более интенсивно, широким фронтом, распространяясь при этом по камере сгорания и активно смешиваясь с воздухом.
Второй путь интенсификации смесеобразования, над которым работают конструкторы – создание формы камеры сгорания и головки поршня, способствующей завихрению воздуха при сжатии, что тоже способствует перемешиванию бензина и воздуха в цилиндре.

Для инжекторных двигателей с системой питания, использующей непосредственный впрыск, повышение давления впрыска достигается применением топливного насоса высокого давления, необходимость в котором для систем центрального и распределенного впрыска отсутствует.
Конечно же, топливная аппаратура высокого давления ложится определенным бременем на стоимости всей системы питания, что является одним из недостатков системы непосредственного впрыска, тем не менее, достоинства такой системы тоже очевидны. Двигатель, использующий непосредственный впрыск бензина, экономичнее и экологичнее аналогичных двигателей с внешним впрыском, кроме того, он меньше склонен к детонационным явлениям во время работы.

Итак, для того чтобы обеспечить качественное смесеобразование внутри цилиндра, необходимо повысить давление впрыска. Поэтому в системе непосредственного впрыска топлива насос низкого давления подает топливо через фильтр к насосу высокого давления, который создает в аккумуляторе (накопитель, где топливо находится под высоким давлением) давление 5…13 МПа.
При превышении давления специальный регулятор перепустит избыточное топливо на вход насоса высокого давления. Значение давления в аккумуляторе (накопителе) регистрируется датчиком давления и подается на электронный блок управления (ЭБУ). Топливо из аккумулятора подается к электромагнитным форсункам, которые включаются по команде от микропроцессора.



Благодаря впрыску топлива сразу после подачи искры в цилиндре обеспечивается воспламенение топливовоздушной смеси нормального состава, который поддерживает ЭБУ. При этом в удаленных от электродов зонах состав горючей смеси остается обедненным и даже бедным (в самых крайних зонах). Таким образом, при непосредственном впрыске образуется неравномерный состав топливовоздушной смеси по всему объему камеры сгорания.

Из возникшего у электродов свечи зажигания очага горения фронт пламени распространяется в периферийные зоны, где воспламеняет бедные составы смеси с коэффициентом избытка воздуха α≥2.
В результате существенно повышается топливная экономичность двигателя и снижается вероятность возникновения детонации.

По сравнению с системой распределенного впрыска система непосредственного впрыска обладает следующими недостатками:

  • более высокая стоимость из-за наличия аппаратуры высокого давления;
  • сложные температурные условия работы форсунки, распылитель которой расположен в камере сгорания;
  • сложная форма камеры сгорания, необходимая для лучшего перемешивания воздуха и бензина;
  • повышенные требования к бензину (ограничение содержания серы) и качеству его очистки.

Кроме того, использование насосов высокого давления или насос-форсунок традиционных конструкций осложняется отсутствием у бензина смазывающих свойств.

Тем не менее, благодаря описанным выше преимуществам, в первую очередь – высокой экономичности, система непосредственного впрыска все шире применяется производителями автомобилей и завоевывает популярность у автомобилистов. Можно предположить, что с развитием и совершенствованием технологий изготовления точных деталей системы с непосредственным впрыском займут лидирующие позиции в конструкциях бензиновых автомобильных двигателей.

***

Механическая система впрыска K-Jetronic



k-a-t.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о