Меню Закрыть

Состав незамерзайки: Состав незамерзающих жидкостей для авто

Содержание

Состав и основа незамерзайки — спирты и гликоли: из чего состоит незамерзающая жидкость

Состав хорошего качественного стеклоомывателя. Разберем на примере LIqui Moly Antifrost.
Основные компоненты спирт и вода.
Если брать высококачественный омыватель, то применяются гликоли, которые позволяют сократить кол-во спирта, улучшают текучесть жидкости, и улучшаются тем самым смазывающие свойства.

Комплекс очищающих поверхностно активных веществ.

Отдушка, чаще присутствует, чем нет, этот краситель нужен для того, чтобы не перепутать жидкость. В обязательном порядке имеется смачивающий компонент и специальный комплекс по уходу за резиной. Ну и, конечно вода.

Особенности незамерзайки

Если говорить о незамерзайке liqui moly, то данный продукт производится в России.

Основные компоненты поставляются из Германии, и сделаны по стандартам Европы. Даже большая часть спирта поставляется оттуда же. По той причине, что требования очень высокие, если делать жидкость под европейский стандарт, то необходимо соответствовать этим нормам, которые предъявляются в частности в Германии специальным органом. Часто задают вот такой вопрос: » Почему нельзя просто привести жидкость из Германии, откуда такая сложность, чтобы делать его в России». Ответ кроется в законодательстве. Европейские жидкости по стандартам делаются на основе этилового спирта, а в России, этот спирт под строгим контролем, для которого нужен акциз, специальные лицензии на реализацию и т.п. Поэтому жидкость ликви моли состоит из изопропилового спирта и делается в России.

Спирты из которых делается жидкость стеклоомывающая.

1. Рассмотрим этиловый спирт, он же этанол

2. Метиловый спирт — метанол, очень ядовитый спирт. На основе этого продукта разливаются контрафактная продукция, которая продается на дорогах.

3. Изопропиловый спирт — изопропанол. Единственный спирт, который по законодательству можно применять в различных жидкостях, в частности омывающей.

ВНИМАНИЕ! Обращайте внимание на этикетку жидкости, которую покупаете. Метиловый спирт запрещен к использованию в соответствии с законом РФ, так как является ядовитым. В частности рассмотрим изопропил, на основе которого сделаны основные хорошие качественные незамерзайки.

Данный спирт абсолютно легален. Это более сложный спирт со своими плюсами и минусами.

Плюсы: продукт легальный, малотоксичны, безвреден для здоровья.

Минусы.

1. Высокая цена сырья, особенно если речь идет о высокой степени очистки.

2. Спирт обладает самым сильным резким запахом. Такова ситуация, что единственный легальный в России спирт отличается тем, что у него сильно повышена резкость запаха. Поэтому бывает такое, что в случае попадания в воздухозаборники незамерзайки на основе изопропила, в машине невозможно уже находиться и кружится голова, поэтому часто открывают окна или выходят из машины, для того чтобы проветрить. Но при этом этот продукт не наносит вреда человек, в плане здоровья.

А вот на основе метила, водитель ничего не почувствует до ухудшения самочувствия, вплоть до отказа сердца, или аллергии в области гортани, что затруднит дыхание, воспалится слизистая оболочка, и еще много последствий.

какой спирт должен быть – три типа

О спирте, который должен быть в незамерзающей жидкости для омывателя автомобиля, сложено немало мифов: один ядовит, второй замерзает, третий пьянит. Так какой на самом деле должен быть спирт в незамерзайке?

Есть три спирта, которые можно использовать в незамерзающей жидкости для омывателя – в смеси с водой и ароматизаторами. Собственно, все они и используются производителями, причем иногда в одной жидкости есть два вида спиртов.

От типа спирта, который есть в основе незамерзайки, в морозы зависит чистота стекла, а еще – аромат в салоне

Этиловый спирт (этанол)

Данный продукт известен также как пищевой или медицинский спирт. В качестве основы для омывайки он хорош всем: наименее вреден для организма, обладает высокими моющими свойствами, не теряет текучести при сильном морозе.

Также интересно: Сколько градусов должна быть незамерзайка

Это самый распространенный из спиртов в нашей стране, и в отличие от других стран, у нас он один из самых дешевых. В крайнем случае не исключено использование вместо незамерзающей жидкости этанола домашнего приготовления – самогона. Конечно, годится и водка фабричного производства.

Изопропиловый спирт (изопропанол)

Именно из этого спирта изготавливают абсолютное большинство жидкостей, которые поступают в официальную продажу в Украине. Между тем, у изопропанола есть существенные недостатки: имеет худшие во всей тройке моющие свойства, вреден для человека, а самое главное – на морозе он густеет, (не кристаллизуется, а именно густеет – меняет плотность). Это очень важно для автомобилей с новомодными форсунками маленького диаметра, которые распыляют жидкость тонким веером – когда совсем холодно, изопропиловая омывайка не достает до лобового стекла.

Современные форсунки, распыляющие жидкость веером, более всего чувствительны к плотности незамерзайки на морозе

Метиловый спирт (метанол)

Этим спиртом давно пугают людей – мол, ядовит настолько, что как минимум можно потерять зрение. Правда, надо добавить: если выпить 10 граммов. Интересно, что если выпить изопропиловый спирт, результат будет примерно тот же. Но остальные качества метанола как специально подобраны для его “работы” в качестве омывайки: имеет высокие моющие свойства, не имеет неприятного запаха, не густеет на морозе и стоит откровенно дешево.

Также интересно: Незамерзайка для авто: можно ли залить в бачок спирт или водку

Что интересно, пары метанола менее токсичны, чем пары изопропанола: предельно допустимой концентрации в салоне последний достигает за 5 – 10 секунд, а метанол – за 300 секунд. Однако, в легальных незамерзающих жидкостях в Украине не используется, причина – высокая токсичность при употреблении внутрь организма. Тем не менее, в развитых странах с холодным климатом именно метиловый спирт является основой жидкостей для омывателя лобового стекла.

Как видим, получается, что метиловый спирт наиболее удобен для использования его в качестве основы незамерзающей жидкости для омывателя. Но в реальности все наоборот: обычно производители берут за основу изопропиловый спирт – тот, что наименее пригоден для этого.

Метиловый спирт, несмотря на недобрую славу, имеет наилучший комплекс характеристик для “работы” в качестве незамерзайки.

Рекомендация Авто24

По большому счету, автомобилисту должно быть безразлично, на какой основе сделали омывайку, плещущуюся в бачке под его капотом. Принципиальных отличий между всеми тремя спиртами нет ни в плане безопасности для организма, ни в плане эффективности. Есть разве что один нюанс насчет изопропанола – при сильном морозе он становится гуще, и заметно теряет текучесть уже при – 15

оС. Но если вы живете не на севере страны, для вас это вряд ли будет иметь значение. Ну а поскольку наилучший баланс характеристик имеет метанол, в идеале было бы использовать именно его.

ТАКЖЕ ИНТЕРЕСНО: Как выбрать незамерзайку: мифы и правда о метанол

Незамерзайка своими руками в домашних условиях: состав, пропорции.

Зима, холода – обычную воду в бачек омывателя авто не зальешь — замерзнет. Как раз для таких экстремальных зимних температур и была разработана незамерзающая жидкость. В 10, 15 и даже 30 градусный мороз, такая жидкость делает лобовое стекло чистым и без разводов. Все дело в составе незамерзайки.

 

Основные компоненты состава незамерзайки:

  • Вода. Основной компонент незамерзайки составляет большую часть объема.
  • Спирт. Этот компонент как раз и делает незамерзающую жидкость незамерзающей. Чем больше спирта, тем ниже температура замерзания. Как правило, используют следующие спирты:

Метиловый – имеет низкую температуру замерзания, низкую стоимость, но является ядовитым, при попадании в организм человека способен вызвать слепоту или привести к летальному исходу. Поэтому на территории России изготовление незамерзайки из метилового спирта запрещено.

Этиловый – не имеет неприятного запаха, не ядовит для человека. Правда, незамерзайку в состав которой входит этиловый спирт практически невозможно найти на прилавках, из-за дороговизны спирта (не выгодно).

Изопропиловый —  не ядовит для человека, имеет неприятный запах. В основном такой спирт используют для производства незамерзайки и надо помнить, чем ниже температура замерзания жидкости, тем сильнее будет неприятный запах.

  • Краситель и ароматизаторы. Используют для предания стороннего запаха, например, яблоко, дыня и так далее. Соответственно и краситель используют под стать ароматизатору для яблока — зеленый, для дыни – желтый. В основном используется для маркетинга, для привлечения внимания покупателя.
  • Моющие средства. Вспомогательный компонент, который улучшает чистящие характеристики жидкости.

Теперь зная состав незамерзайки, вы может ее без труда приготовить дома или даже в гараже. На самом деле  вам будут необходимы всего три компонента.

Как сделать незамерзайку в домашних условиях.

Существует два способа изготовления незамерзайки в домашних условиях – это народный рецепт и магазинный. Итак, приступим.

Народный рецепт.

Для изготовления незамерзайки потребуется следующие пропорции:

  • Бутылка самой дешевой водки 0.5 литра;
  • Вода 2 литра;
  • Моющие средство для посуды (фери) две-три капли.

Если вы хотите, чтобы ваша незамерзайка была более устойчивой к холоду, то уменьшите пропорцию воды. Запомните, чем больше водки, тем ниже температура замерзания воды.

Магазинный способ.

На прилавках автомагазинов есть концентраты незамерзающей жидкости, как говориться просто добавь воды, согласно инструкции.

Более способов изготовления незамерзайки дома мне не ведомо, так как приобрести в свободном доступе спирт не так уж и легко. Можно конечно использовать соляные или уксусные растворы, соленая вода тоже плохо замерзает. Однако, соль и уксус губительны для некоторых элементов автомобиля, например, кузова, резинок и так далее, да и белые разводы на стекле нам не к чему.

Покупая незамерзайку остерегайтесь подделок. Старайтесь покупать незамерзайку в прозрачной таре, у которой не должно быть осадка на дне, при взбалтывании канистры должна образовываться пена, пробка должна быть ровно и плотно закрыта, а на этикетке должна быть полная информация о продукте.

И в заключении хотелось бы добавить о том, что делать, если замерзла незамерзайка. Тут ответ один, для начала, нужно прогреть автомобиль в стоячем положении, до срабатывания системы принудительного охлаждения (вентилятора). Затем, заглушить двигатель и дать автомобилю немного постоять минут 15 – 20 и бачек и трубки за это время должны отойти от мороза, добавить водки или незамерзайки с более низкой температурой замерзания и обязательно пролить систему (несколько раз обильно помыть стекло). Если замерзли форсунки, то тут спасет только тряпка, обмоченная в кипятке.

Отзывы о незамерзайках оставляйте, пожалуйста, в комментариях. Спасибо.


Чем отличается зеленая, красная и синяя незамерзайки?

Заходя в автомобильный магазин, многие автомобилисты отмечают огромный выбор незамерзайки. Производители выпускают её не только в разнообразных упаковках, но и различного цвета. Некоторые водители считают, что смешивать отличающиеся по цвету омывающие жидкости категорически запрещено, но так ли это на самом деле?

Состав незамерзайки

Омывающие жидкости имеют достаточно простой состав, они состоят из спирта, присадок и красителя. Государство разрешает производить и продавать только незамерзайки на основе безопасного, но очень вонючего изопропилового спирта. Тем не менее, в свободной продаже достаточного много омывающей жидкости, сделанной из запрещённого ядовитого метилового спирта. Кроме спирта, в состав обязательно добавляют этиленгликоль – это вещество не даёт незамерзайке превращаться в ледяную глыбу на сильном морозе, вместо этого она становится густой. Ещё одной обязательной составляющей любой омывайки являются ПАВы, которые отмывают жир и грязь с лобового стекла. Последним компонентом является краситель.

Разница в цвете?

Возможно, мнение о недопустимости смешивания незамерзаек разных цветов было перенесено с антифриза, который перед тем как смешивать, нужно проверить на совместимость. Омывающие жидкости для стёкол не имеют подобных ограничений. Производители используют примерно одинаковые рецепты, а чтобы хоть как-то выделять их на полке в магазине, применяют разные цвета. Большинство брендов красят незамерзайку в «классический» синий цвет, но есть и красная, и жёлтая, и розовая, и зелёная.

Некоторых водителей также могут смущать надписи на упаковках, так как на одних канистрах написано «До -25», а на других — «До -30». Можно ли их смешивать? Подобные надписи на самом деле никак не отражают характеристики жидкости, заявленная температура замерзания, как правило, сильно превышает фактическую, поэтому не стоит обращать на это внимание. Смешивание омывающих жидкостей от разных производителей никак не влияет на их характеристики. Поэтому если в продаже не оказалось привычного вам бренда, то можно брать любой другой и спокойно доливать его в бачок.


Фото с интернет-ресурсов

Из чего сделана незамерзайка

Не секрет, что далеко не каждый автолюбитель знает полный химический состав Незамерзающей жидкости, которую он регулярно заливает в бочек омывателя почти каждый день в зимнюю пору. Как правило все его, знания заканчиваются на том, что какую-то незамерзайку изготавливают из каких-то спиртов. Иногда даже бытуют заблуждения, что крепость и качество незамерзайки зависят от глубины цвета или же пенистости жидкости, что зеленная выдерживает морозы выше, чем синяя, что дорогая изопропиловая безопаснее, дешевой на дороге и прочие…

Из чего сделана незамерзайка

В настоящее время российским законодательством регулируется лишь один элемент химического состава незамерзающей жидкости и это действительно спирт, он должен быть изопропиловым, а не метиловым.

Незамерзающая жидкость помимо спиртов содержит поверхностно-активные вещества, которые используются в качестве моющих средств. Именно этот компонент способствует хорошей очистке от различных природных загрязнителей, а также от хим реагентов и песка, в обилие присутствующих на зимней дороге.

Еще одним неотъемлемым компонентом в  незамерзайке являются различные ароматизаторы и отдушки. В основном их используют в незамерзающей жидкости из изопропилового спирта, для того что бы смягчить или перебить невыносимый, едкий запах. Следующий компонент, это краситель, здесь стоит отметить, что кроме обычного химического красителя используют пищевой краситель, применяемый во многих продуктах питания. Выбирая незамерзающую жидкость стоит обратить внимания на глубину цвета, вить слишком темная незамерзайка, насыщенного ядерного цвета сама может стать причиной загрязнения автомобиля, особенно это хорошо заметно по налету на бочке и при попадании такой незамерзайки в щели.

Последним, и одним из основных компонентов, входящих в состав жидкости для омывания стекол, является вода. Однако далеко не каждую воду можно использовать в производстве.При производстве качественной и химически стабильной незамерзающей жидкости возможно использовать воду, которая прошла полный цикл фильтрации от механических фракций и солей. Вить обычная водопроводная вода может стать причинной выпадения осадка в стеклоомывателе и дальнейшего повреждения и загрязнения фарсунков. В  ходе использования полученной таким образом незамерзающей жидкости возможно появление совсем ненужных царапин на стеклах автомобиля. Покупайте только качественную и сертифицированную продукцию!

Из чего должна состоять не ядовитая незамерзайка

Автор Андрей На чтение 3 мин. Просмотров 336 Опубликовано

От ядовитых незамерзаек болит голова, слезятся глаза и притупляется внимание. Салон машины они превращают в газовую камеру. Несколько советов автолюбителям о том, как отличить безобидную химию от подкапотной мины. Каков состав хорошей незамерзайки?

Любая стеклоочистительная жидкость содержит два главных компонента: воду и спирт. Именно спирт не дает воде замерзнуть и помогает удалить грязь со стекол. Он может быть этиловый, изопропиловый или метиловый. Последний запрещен, так как его пары опасны для здоровья. В салон машины они попадают через воздухозаборники.

Первые отравления метанолом случились из-за употребления знаменитого тройного одеколона. Его придумали в 1910 году на одной из московских парфюмерных фабрик. По одной из версий свое название одеколон получил благодаря тройной очистке вредного метилового спирта. Копеечный парфюм моментально стал популярным у любителей горячительных напитков и домохозяек. Он отлично отмывал оконные стекла и зеркала.

Как же действуют на водителя ядовитые пары? Если залить запрещенную незамерзайку с метиловым спиртом, то уже минут через 5 езды наблюдаются первые симптомы: у водителя начинает болеть голова, повышается артериальное давление.

Еще через полчаса головная боль усиливается, в горле начинает першить, глаза слезятся. При этом посторонних запахов в салоне автомобиля не чувствуется. Еще через 20 минут езды становится совсем паршиво, внимание рассеяно. Такое ощущение, что пьян или сильно уставший. Лучше остановится от греха подальше.

Производство метаноловых жидкостей в России запрещено. Метиловый спирт – сильнейший яд. Выпив всего пол чайной ложки, человек получит сильнейшее отравление, а столовая ложка уже смертельная доза.

Визуально отличить, запрещенная это жидкость или хорошая незамерзайка, практически невозможно. Даже запах у них примерно одинаковый. Чтобы вода не замерзала в тридцатиградусный мороз достаточно всего одной трети метанола. К тому же он самый дешевый из спиртов. Именно поэтому метаноловые незамерзайки до сих пор в продаже.

Пары изопропилового спирта практически безвредны. Самые лучшие незамерзайки производят на основе этилового спирта, но и стоят они значительно дороже.

Теперь вы знаете про состав хорошей незамерзайки. А головная боль, слезящиеся глаза, першение в горле – это реакция организма на отраву, которая находится под капотом. Немедленно слейте такую незамерзайку. Экономия на здоровье обходится очень дорого!

Видео

Рекомендации по эксплуатации и другие советы автолюбителям:

Оцените статью: Поделитесь с друзьями!

Как производители «незамерзайки» обманывают водителей

Многие супермаркеты ещё чуть ли не в феврале сделали существенные скидки на зимнюю стеклоомывающую жидкость — «незамерзайка» в этом году дешевле, чем когда бы то ни было. Дешёвую жидкость можно купить в интернет-магазинах автозапчастей, появится она и в обычных магазинах после карантина. На фоне финансового спада многие экономные автовладельцы захотят сделать запас на следующий зимний сезон. Но это может стать большой ошибкой. Почему — подробности в материале NEWS.ru.


Прошедшая зима была аномально тёплой и сухой. Производители стеклоомывающей жидкости начали откровенно халтурить, разбавляя её водой сверх меры для экономии спирта, однако, как обычно и бывает, не удосужились сменить этикетки на канистрах и баклажках, сообщив о своих «экспериментах» потребителям. Так или иначе, спрос на «назамерзайку» в этом сезоне был существенно ниже обычного, и сейчас на складах скопилось приличное количество нераспроданной жидкости, на которую делаются хорошие скидки.

Рамиль Ситдиков/РИА Новости

В начале весны редакция NEWS.ru купила несколько канистр зимней жидкости разных производителей в крупных сетевых супермаркетах по очень, на первый взгляд, привлекательной цене — едва ли не вдвое дешевле обычной. Налицо чистая экономия, мечта любого «плюшкина». Можно воспользоваться случаем и сделать резерв на следующий год, чтобы не стоять в очередях и не переплачивать за подскочивший в цене сезонный товар в конце осени. Но не так всё просто…

На этикетках всех канистр, как и положено, имелись успокаивающие надписи, типа «-20 °C», «-25 °C», «-30 °C», однако состав (в который редко кто всматривается) был достаточно странный: вода — более 30%; изопропиловый спирт — более 15%, но менее 30%; этиленгликоль — более 5%, но менее 15%; ПАВ; отдушка; краситель.

Главный компонент любой «незамерзайки» — изопропиловый спирт (встречается ещё питьевой этиловый и откровенно ядовитый метиловый, но оба — существенно реже). Температура замерзания купленного на распродаже «коктейля», согласно той же этикетке — не ниже −20 °C. Но все ли знают, какое количество изопропилового спирта требуется реально, чтобы его раствор с водой не замерз? То-то же.

Смотрим табличку!

NEWS.ru

Чтобы обеспечить температуру замерзания −20 градусов Цельсия, количество изопропанола в водном растворе должно составлять не менее честной половины. Как мы понимаем, лукавые «более 15%, но менее 30%» даже близко не подтягиваются к нужным нам 50%. Про предел в минус 30 — и говорить нечего. Хитрые производители уже в январе поняли, что «зимы не будет», и начали безбожно разбавлять состав водой, цена которой, в отличие от спирта, стремится к нулю…

Проверяем нашу жидкость в морозильной камере, выставив температуру −15 °C — результат предсказуем: все три образца купленной по скидке и в приличных магазинах «незамерзайки» замерзли в камень… Это, к слову, говорит, что и при −10 (что даже в центрально-европейской части России за мороз сроду не считалось) жидкость превратилась в «шугу» (рыхлую взвесь ледяных фракций) и стала фактически бесполезна для очистки стекла — насос «шугу» не прокачивает, а расположение бачка (на большинстве современных машин он находится в нише переднего крыла или бампера) не позволяет разогреть «омывайку» теплом мотора.

NEWS.ru

Кстати, в вышеприведенном составе некачественной «омывайки» кто-то отметит наличие этиленгликоля, который так же, как и спирт, препятствует замерзанию. Так и есть — собственно, многие автовладельцы отлично знают, что это вещество является основой любого антифриза для двигателя, и не замерзать в мороз — его прямая обязанность. Однако, судя по тому, как стеклоомывающая жидкость превратилась в лёд под воздействием весьма умеренного холода, можно и без всякой химической экспертизы с уверенностью заявить — этиленгликоля там так же мало, как и спирта. Если он вообще есть. Тем более, что этого химиката, по-хорошему, в стеклоомывателе быть не должно.

Возьмите упаковку любого этиленгликолевого моторного антифриза и почитайте рекомендации — почти наверняка вы увидите требование: не допускать попадания антифриза на лакокрасочное покрытие, которое от этиленгликоля способно мутнеть и разрушаться. А «омывайка» в процессе использования обильно орошает и капот, и крышу. Плюс многие автовладельцы по опыту знают, что моторная охлаждающая жидкость на пальцах ощущается слегка маслянистой — подобное свойство никак не способствует качественной очистке лобового стекла, вызывая разводы и полосы, особенно при старых щётках.

NEWS.ru

Так как же поступать автолюбителям, приобретая «незамерзайку» (особенно желающим сэкономить и сделать запас), чтобы не нарваться на разбавленную дрянь прошлого сезона, которая реально не выдерживает и −10?

В идеале, конечно, нужно отдать предпочтение продукции марок, которые ставят на канистры штамп с годом и месяцем производства, и избегать партий, выпущенных зимой сезона 2019-2020. Вот только какой окажется жидкость свежего «завара» на зиму 2020-2021 — никто пока не знает. Есть опасение, что производители могут, памятуя об аномально тёплой прошлой зиме, начать и следующий сезон с халтуры…

Поэтому остаётся рекомендовать лишь тщательнее изучать перед покупкой состав — чтобы спирта в нём было не «от 15 до 30%», а от 30% и выше, ибо с этого процента стартует худо-бедно пригодная для использования «жижа», имеющая предел незамерзаемости хотя бы до −15 °C.

Следите за отсутствием в составе этиленгликоля, который разрушает краску кузова и портит резину щёток стеклоочистителя. Ну и делайте «контрольную закупку» — приобретите одну канистру и проверьте дома её содержимое на замерзание в обычной бытовой морозилке. Если тест пройден — можно вернуться в магазин и взять уже нужное количество канистр гарантированно эффективной «незамерзайки» в запас.

Antifreeze — обзор | Темы ScienceDirect

Антифризы

Растения и пойкилотермные животные, такие как насекомые и холодноводные рыбы, как известно, защищают себя от замерзания как антифризами, такими как гликоли, так и специальными пептидами и гликопептидами, которые действуют как антифризные белки и гликопротеины, которые действуют препятствуя росту кристаллов льда (Klomp et al., 1997). Гликопептиды, состоящие из аланина, треонина, галактозы и N -ацетилгалактозамина, присутствуют у животных в районе Антарктики.У других северных рыб были обнаружены пептиды, содержащие аланин, аспартат, глутамат, треонин и серин (DeVries, 1982).

Микробы демонстрируют необычайное разнообразие приспособлений к экстремальным условиям. Термофилы — это организмы, которые выживают при температурах, близких к температуре кипения воды, а психрофилы — это бактерии, которые переносят необычно низкие температуры. Чтобы выжить при температурах ниже точки замерзания обычной воды, эти микробы защищаются от растущих кристаллов льда, которые могут повредить клеточные мембраны.Они производят криопротекторы, которые снижают температуру зародышеобразования для льда. Эти криопротекторы включают белки зародышеобразования льда (Walker et al., 2008). Рост кристаллов льда можно подавить даже в присутствии небольших количеств таких веществ. Скорости гомогенного зародышеобразования и кристаллизации чувствительны к низким концентрациям.

Антифризная активность гликопротеинов является результатом сорбции белка на активных участках роста кристаллов льда (Franks et al., 1987).По мере того как белки адсорбируются, они изменяют кривизну поверхности, что очень затрудняет зарождение и рост кристаллов льда (Walker et al., 2008). Напротив, зародышевые белки предотвращают сильное переохлаждение и позволяют образовывать лед, близкий к температуре замерзания. Белки-антифризы проявляют три вида активности (Wang, 2000):

1.

Они могут поддерживать переохлажденное состояние жидкостей организма, подавляя обычный рост льда,

2.

Они обладают способностью подавлять перекристаллизацию, а

3.

Они могут служить защитниками плазматической мембраны при низких температурах.

Белки-антифризы подразделяются на несколько основных типов, которые приведены в таблице 13.12 (Tokunaga et al., 2008).

Таблица 13.12. Типы антифризов

Тип Характеристики
I Одинарная, длинная, амфипатическая α -спираль
II Глобулярные белки с высоким содержанием цистеина с дисульфидными фрагментами
III Общая гидрофобность сходна с белками типа I
IV α -Справочные белки, богатые глутаматом и глутамином
V Большое значение теплового гистерезиса

Эффект типа I был исследован белок-антифриз рыб из озимой камбалы Pleuronectes americanus (Walbaum) на образование клатрат-гидрата тетрагидрофурана.Белок-антифриз действует, изменяя морфологию кристаллов гидрата клатрата с октаэдрической на пластинчатую. Белок кажется более эффективным, чем поливинилпирролидон. Кроме того, эксперименты предполагают, что рост пропан-гидрата также может быть ингибирован (Zeng et al., 2003).

В качестве задействованного механизма была предложена поверхностная адсорбция. После того, как молекулы белка прикрепляются к поверхности льда, рост кристаллов льда становится неблагоприятным в области между адсорбированными молекулами белка, поскольку они вызывают увеличение кривизны поверхности.Эта кривизна впоследствии препятствует дальнейшему росту кристаллов льда (Zeng et al., 2005).

Низшие спирты, гликоли и неорганические соли являются депрессантами точки плавления, то есть антифризами, которые можно использовать для предотвращения образования гидратов. Однако при высокой степени переохлаждения, наблюдаемой в глубоких водах, их необходимо добавлять в значительных количествах, вплоть до количества, равного количеству добываемой воды, чтобы они были эффективными (Klomp et al., 1997).

Для ингибирования газовых гидратов были предложены не только сами белки-антифризы, но и производные из них активные фрагменты, а также миметики белков-антифризов.Подходящие белки или фрагменты содержат Р-спираль или 3-спирали, Р-валик, гликопротеин или глобулярную структуру. Такие антифризы могут быть получены из животных, растений, грибов, простейших или бактерий (Walker et al., 2003). Специальные примеры белков-антифризов приведены в Таблице 13.13.

Таблица 13.13. Белки-антифризы (Walker et al., 2003)

Происхождение Ссылка
Насекомые
Жук-мучной червь ( T.molitor ) Graham et al. (1999)
Червь еловая ( C. fumiferana ) Walker et al. (1999)
Жук молочая ( Oncopeltus fasciatus ) Patterson et al. (1981)
Dendroides canadensis Duman (1997)
Растения
Ржаная трава ( Lolium perenne ) Kuiper et al.(2001)
Паслен горько-сладкий ( Solanum dulcamara ) Worrall et al. (1998)
Озимая рожь ( Secala cereale ) Worrall et al. (1998)
Морковь ( Daucus carota ) Byass et al. (2000)

Дезоксирибонуклеиновые кислоты (ДНК), кодирующие антифризные белки Tenebrio molitor , были выделены и, как было обнаружено, кодируют 7-13 кДальтон, богатые цистином белки, состоящие в основном из 12 повторяющихся аминокислотных единиц (Graham et al. al., 1997, 1999). ДНК Choristoneura fumiferana , кодирующая антифризные белки размером 9–12 кДальтон, также была клонирована (Doucet et al., 2002).

Треонины соответствуют решетке льда в моделях антифриз протеин / лед. В некоторых белках-антифризах треонины заменены валином или изолейцином, которые представляют собой аминокислоты с метильными группами и пространственными объемами, аналогичными треонину. Считается, что неполярные взаимодействия могут быть важны для подавления роста льда (Walker et al., 2003). Белки-антифризы из насекомых обладают большей активностью, чем белки-антифризы из рыб, на 1-2 порядка. К сожалению, несмотря на их замечательные характеристики, их производство и использование в нефтяных месторождениях было сочтено неэкономичным (Klomp et al., 1997).

Состав антифриза двигателя — Ethylene Chemical Co., Ltd.

УРОВЕНЬ ТЕХНИКИ

1. Область изобретения

Настоящее изобретение относится к композиции охлаждающей жидкости антифриза двигателя, и более конкретно к композиции охлаждающей жидкости антифриза двигателя, которая оказывает хорошее предотвращающее коррозию действие на металлические материалы, такие как алюминиевые сплавы, использование в двигателях внутреннего сгорания.

2. Уровень техники

Металлические материалы, такие как алюминиевые сплавы, медь и медные сплавы, широко используются для изготовления блоков двигателей, головок цилиндров, радиаторов и водяных насосов. Недостатком этих металлических материалов является отсутствие коррозионной стойкости к воде, содержащей коррозионные соли, содержащейся в охлаждающей жидкости двигателя, или к спиртам, присутствующим в охлаждающих жидкостях антифриза двигателя; поэтому существует потребность во включении различных ингибиторов коррозии в вышеупомянутые антифризы для двигателей.

Типичные примеры ингибитора коррозии, который можно использовать в обычных охлаждающих жидкостях двигателя, включают те, которые указаны в BS (Британский стандарт) 3150, BS 3151 и BS 3152. Как триэтаноламинфосфат, так и натриевая соль меркаптобензотиазола, как бензоат натрия, так и нитрит натрия. , и бура включены в качестве ингибитора коррозии в охлаждающую жидкость антифриза, содержащую этиленгликоль в качестве основного компонента в BS 3150, BS 3151 и BS 3152 соответственно. Однако, когда эти ингибиторы коррозии вводятся по отдельности в охлаждающую жидкость-антифриз, полученная охлаждающая жидкость-антифриз не оказывает удовлетворительного антикоррозионного эффекта на металлические материалы для использования в вышеупомянутом механизме охлаждения двигателя; поэтому в литературе было предложено несколько методов (см., например, японские патентные публикации №40916 1989 г., 14385 1990 г., 28625 1990 г., 1355 1991 г., 56272 1991 г. и 14193 1992 г.), где использование новой смеси вышеуказанных ингибиторов или использование дополнительного нового ингибитора коррозии, выбранного из амина соли, силикаты и соединения двухвалентных металлов, включая соединения магния, кальция или цинка.

Проблема, связанная с использованием соли амина в качестве ингибитора коррозии, заключается в образовании токсичного нитрозамина, когда соль амина объединяется с нитритом в охлаждающей жидкости.Недостатки использования силиката в качестве ингибитора коррозии заключаются в следующем: а) силикаты обладают низкой термической стабильностью по своей природе, б) включение силиката делает охлаждающую жидкость-антифриз нестабильной по отношению к pH, и в) гель легко образуется в охлаждающая жидкость, когда силикат вводится в охлаждающую жидкость, которая содержит другие соли, что снижает присущий охлаждающей жидкости эффект предотвращения коррозии.

Кроме того, при использовании в присутствии соли фосфата и жирной кислоты соединение двухвалентного металла в качестве ингибитора коррозии легко взаимодействует с этими солями, вызывая осаждение солей и уменьшая антикоррозионный эффект охлаждающей жидкости.Таким образом, совместное использование этих ингибиторов коррозии с другими ингибиторами оказывает вредное влияние.

КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Целью настоящего изобретения является создание экологически чистой и нетоксичной антифризовой охлаждающей композиции, которая оказывает хорошее предотвращающее коррозию действие на металлические материалы, такие как алюминиевые сплавы, для использования в двигателях внутреннего сгорания.

После интенсивных исследований заявители обнаружили, что намеченная цель может быть достигнута путем включения определенного количества лимонной кислоты и / или ее солей в антифриз, содержащий гликоли в качестве основного компонента, который содержит по крайней мере один традиционный ингибитор коррозии, кроме силикатов. .Настоящее изобретение было выполнено на основе этого открытия.

То есть, первый аспект изобретения направлен на охлаждающую композицию антифриза, содержащую большое количество гликолей в качестве основного компонента, по меньшей мере, один ингибитор коррозии, кроме силикатов, и от примерно 0,005 до примерно 0,5% по массе лимонной кислоты. и / или их соли в качестве основного компонента.

Второй аспект изобретения направлен на композицию охлаждающей жидкости антифриза согласно первому аспекту, в которой ингибитор коррозии представляет собой по меньшей мере один, выбранный из группы, состоящей из фосфатов, аминовых солей, боратов, нитратов, нитритов, молибдатов, вольфраматов, бензоаты, триазолы, тиазолы и соли жирных кислот.

ПОДРОБНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ

Примеры гликоля, используемого в настоящем изобретении, включают этиленгликоль, пропиленгликоль, 1,3-бутиленгликоль, гексиленгликоль, диэтиленгликоль и глицерин, причем предпочтительным гликолем является этиленгликоль и пропиленгликоль.

Ингибиторы коррозии, которые можно использовать в изобретении, кроме силикатов. Силикаты по своей природе обычно не обладают термостойкостью. Добавление силиката делает охлаждающую жидкость-антифриз нестабильной по отношению к pH.Кроме того, гель образуется в охлаждающей жидкости, когда силикат включается в охлаждающую жидкость, которая содержит другие соли, что снижает антикоррозионный эффект охлаждающей жидкости.

Примеры ингибитора коррозии, подходящего для использования в составе охлаждающей жидкости антифриза согласно изобретению, включают фосфаты, соли аминов, бораты, нитраты, нитриты, молибдаты, вольфраматы, бензоаты, триазолы, тиазолы, соли жирных кислот и их смеси.

Типичные примеры ингибитора коррозии включают обычные ингибиторы, такие как ортофосфорная кислота, октановая кислота, себациновая кислота, пара-трет.-бутилбензоат, бензоат натрия, молибдат натрия, натриевая соль меркаптобензотиазола, бензотриазол, толилтриазол, нитрат натрия, нитрит натрия, бура, триэтаноламин и гидроксид калия.

В дополнение к вышеуказанному ингибитору композиция охлаждающей жидкости антифриза по изобретению содержит лимонную кислоту и / или ее соли в качестве основного компонента в количестве от примерно 0,005 до примерно 0,5% по массе, предпочтительно от примерно 0,03 до примерно 0,1%. по весу, более предпочтительно примерно от 0.04 примерно до 0,06% по весу.

Когда вместо лимонной кислоты используется органическая кислота, отличная от лимонной кислоты и ее солей, трехосновная кислота или двухосновная кислота, полученная охлаждающая жидкость имеет слабый антикоррозионный эффект, независимо от того, имеет ли органическая кислота гидроксильную группу. в молекуле или нет.

Когда количество лимонной кислоты и / или ее солей в составе антифриза составляет менее 0,005% по весу, полученная охлаждающая жидкость не оказывает удовлетворительного антикоррозионного эффекта на металлические материалы, такие как алюминиевые сплавы, что приводит к увеличение потери веса металлических материалов из-за коррозии, а также нежелательное изменение состояния поверхности металлических материалов в черный цвет.И наоборот, когда оно составляет более примерно 0,5% по весу, полученная охлаждающая жидкость также не оказывает желаемого эффекта предотвращения коррозии, что приводит к увеличению потери веса испытательных образцов из литого алюминия из-за коррозии и появлению состояние поверхности испытательных образцов из литого алюминиевого сплава нежелательно становиться черным.

В композициях охлаждающих жидкостей для двигателей, соответствующих настоящему изобретению, могут использоваться другие необязательные добавки, такие как пеногасители, красители и горькие добавки, если они не отклоняются от сущности изобретения.

Как описано выше, когда определенное количество лимонной кислоты и / или ее солей вводится в охлаждающую жидкость-антифриз, содержащую большое количество гликолей в качестве основного компонента, который содержит по крайней мере один традиционный ингибитор коррозии, кроме силикатов, охлаждающая жидкость-антифриз, имеющая может быть получен хороший эффект предотвращения коррозии на металлических материалах, таких как алюминиевые сплавы, используемые в двигателях внутреннего сгорания. С другой стороны, когда вместо лимонной кислоты и / или ее солей используется органическая кислота, отличная от лимонной кислоты и ее солей, трехосновная органическая кислота или двухосновная органическая кислота, полученная охлаждающая жидкость имеет слабую защиту от коррозии. влияние на металлические материалы, такие как алюминиевые сплавы, независимо от того, имеет ли органическая кислота гидроксильную группу в молекуле или нет.

Хотя причина этого не доказана, возможно, верно, что синергизм и взаимодействие между ингибиторами коррозии, гликолями и лимонной кислотой и / или их солями вносят большой вклад в вышеупомянутый хороший антикоррозионный эффект композиций охлаждающей жидкости антифриза изобретение. Синергетический эффект не может быть достигнут за счет использования отдельных компонентов.

ПРИМЕРЫ

Хотя преимущества композиций согласно настоящему изобретению будут подробно описаны ниже в сочетании со следующими примерами, следует отметить, что объем изобретения не должен ограничиваться этими примерами.

Примеры 1-8

Были приготовлены антифризы согласно настоящему изобретению. В таблице 1 приведены формулы. Эффективность охлаждающих жидкостей для предотвращения коррозии алюминиевого сплава в условиях теплопередачи оценивалась в соответствии с методом испытаний, предписанным ASTM D 4340-84 (Коррозия литых алюминиевых сплавов в охлаждающих жидкостях двигателя в условиях отвода тепла), и коррозия металла. свойство было оценено в соответствии с методом испытаний, предусмотренным JIS K 2234-1987 (Engine Antifreeze, 7.4 Испытание на коррозионную стойкость металла).

В таблицах 2 и 3 показаны элементы испытаний, условия испытаний и требования, указанные в вышеупомянутых стандартах ASTM и JIS, соответственно. В таблицах 4–5 представлены сводные результаты испытаний.

ТАБЛИЦА 1
__________________________________________________________________________
Примеры 1 2 3 4 5 6 7 8
__________________________________________________________________________

Лимонная кислота 0.005
0,02
— — 0,30
— 0,50
0,05
Цитрат натрия
— — 0,10
— — 0,30
— —
Цитрат аммония
— — — 0,20
— — — — —
Бензоат натрия
— 6,0 — 3,0 2,0 2,0 3,0 2,0
п-трет-бутилбензоат
3,0 — — — 2,0 — 1,0 2,0
Октановая кислота
3,0 — — — — — 2,0 — —
Себациновая кислота
— — — — — — 1,0 —
75% фосфорная кислота
0,4 — 0,7 0,4 0,8 0,6 0.5 0,4
Нитрит натрия
— — — — — — 0,5 —
Нитрат натрия
0,5 — 0,3 0,5 0,5 0,3 0,5 0,5
Натрий — — — — 0,1 — — — —
молибдат. 2H 2 O
Натрий — — — 3,0 — — — —
тетраборат. 10H 2 O
Бензотриазол
0,3 — — 0,3 0,3 — 0,3 0,1
Трилтриазол
— 0,2 — — — 0,2 — 0,1
Меркаптобензотиазол.
0,3 — 0,3 0,3 0,1 0,1 — 0,3
Na соль
Триэтаноламин
— — 3.6 — — — — —
Гидроксид калия
1,5 — 0,5 0,6 1,6 1,0 2,2 1,2
Вода 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0
Этиленгликоль
88,984
91,769
92,489
89,689
90,289
91,489
88,989

Пропиленгликоль
— — — — — — — 91,339
Краситель 0,01
0,01
0,01
0,01
0,01
0,01
0,01
0,01
Пеногаситель 0,001
0,001
0,001
0,001
0.001
0,001
0,001
pH (30 об.%)
7,9 7,6 8,9 8,2 8,3 7,9 7,6 8,2
__________________________________________________________________________
ТАБЛИЦА 2-1
______________________________________
Схема DTM 4340 Позиции метода испытаний Условия испытаний
______________________________________

Концентрация антифриза (%)
25
Образец для испытаний Литье из алюминиевого сплава
Температура образца (° C.)
135
Количество испытательного раствора (мл)
500
Часы работы (час)
168
Содержание хлорид-иона в испытательном растворе
100
(мг / л)
Давление (кПа) 193
______________________________________
ТАБЛИЦА 2-2
______________________________________
Требование, указанное в ASTM D 4340 Метод испытания Пункт Требование
______________________________________

Изменение массы (мг / см 2 )
± 1.0 макс.
______________________________________

Концентрация охлаждающей жидкости антифриза (%)
30
Температура испытательного раствора (° C.)
88
Количество испытательного раствора (мл)
750
Часы работы (час)
336
Обдув сухим воздухом (мл / мин)
100
Металлический испытательный образец Пять видов
ТАБЛИЦА 3-1
______________________________________
Краткое изложение JIS K 2234 Метод испытания на коррозионную стойкость металла для антифризов двигателя Условия испытаний
______________________________________
______________________________________
ТАБЛИЦА 3-2
__________________________________________________________________________
Требования, указанные в JIS K 2234 (охлаждающие жидкости для двигателей, испытание на коррозионную стойкость металлов) Требования Пункты Класс 1, класс 2
__________________________________________________________________________

Изменение массы
Алюминиевое литье
± 0.60 ± 0,30
(мг / см 2 )
Чугун ± 0,60 ± 0,30
Сталь ± 0,30 ± 0,15
Латунь ± 0,30 ± 0,15
Припой ± 0,60 ± 0,30
Медь ± 0,30 ± 0,15
Внешний вид Визуально не должно быть заметная коррозия
на испытательном образце, за исключением
части, контактирующей с прокладкой, но
изменение цвета допустимо.
Пенообразование во время
Нет вытекания пены из охладителя.
операция
Свойства
значение pH 6.5-11.0
раствор после испытания
Изменение pH ± 1,0
Изменение резервной щелочности
необходимо сообщить
(%)
Жидкая фаза Нет значительного изменения цвета. Нет
значительного изменения щелока, такого как отделение
, образование геля.
Количество осадков
0,5 макс.
(об.%)
__________________________________________________________________________
ТАБЛИЦА 4
______________________________________
Результаты испытаний (метод испытания ASTM D 4340) Внешний вид металлического образца для испытания Изменение массы Примеры после испытания (мг / см 2 )
______________________________________

1 Визуально не заметная коррозия
-0.87
2 Нет визуально заметной коррозии
-0,46
3 Нет визуально заметной коррозии
-0,38
4 Нет визуально заметной коррозии
-0,22
5 Нет визуально заметной коррозии
-0,18
6 Нет визуально заметной коррозии
-0,16
7 Нет визуально заметная коррозия
-0,14
8 Визуально не заметная коррозия
-0,23
______________________________________
__________________________________________________________________________
ТАБЛИЦА 5
________________________________________________________________________
Примеры 1 2 3 4 5 6 7 8

Внешний вид испытательного образца
Принято
Принято
Принято
Принято
Принято 90 269 ​​Принято
Принято
Принято
Изменение массы
Алюминий
-0.02 -0,08 -0,02 0,00 -0,06 0,02 -0,03 -0,02
(мг / см 2 )
литье
Чугун
0,00 0,02 0,00 0,02 0,00 0,03 0,03 0,02
Сталь 0,00 -0,01 0,01 0,00 -0,01 0,00 0,02 0,00
Латунь -0,03 -0,02 -0,03 -0,02 -0,03 -0,04 -0,03 -0,03
Припой
0,02 0,00 0,02 0,03 0,02 -0,01 0,03 0,00
Медь
-0,04 -0,03 -0,04 -0,03 -0,05 -0,06 -0,04 -0,04
Внешний вид решение
Принято
Принято
Принято
Принято
Принято
Принято
Принято
Принято
Изменение pH -0.1 0,4 0,2 0,1 0,3 0,2 0,5 0,4
__________________________________________________________________________

Сравнительные примеры 1–18

Для сравнения охлаждающие антифризы были приготовлены в соответствии с формулами, приведенными в таблицах 6–7. Приготовленные таким образом образцы , затем были протестированы таким же образом, как в примерах выше. Таблицы 8–10 суммируют результаты испытаний.

ТАБЛИЦА 6
__________________________________________________________________________
Сравнительные примеры 1 2 3 4 5 6 7 8 9 10
__________________________________________________________________________

Лимонная кислота — 0.001
1,0 — — — — — — —
Натрий — — — 6,0 — 3,0 2,0 2,0 3,0 —
бензоат
п-трет-бутил
3,0 3,0 3,0 — — — — 2,0 — 1,0 3,0
бензоат
октановая кислота
3,0 3,0 3,0 — — — — 2,0 — 3,0
себациновая кислота
— — — — — — — — 1,0 —
75% фосфорная
0,4 0,4 ​​0,4 ​​- 0,7 0,4 0,8 0,6 0,5 0,4
кислота
Нитрит натрия
— — — — — — — — 0,5 —
Нитрат натрия
0,5 0,5 0 .5 — 0,3 0,5 0,5 0,3 0,5 0,55
Молибдат натрия
— — — — — — 0,1 — — —
Натрий — — — — — 3,0 — — — — —
тетраборат. 10H 2 O
Бензотриазол
0,3 0,3 0,3 — — 0,3 0,3 — 0,3 0,3
Трилтриазол
— — — 0,2 — — — 0,2 — —
Меркаптобензотиазол .
0,3 0,3 0,3 — 0,3 0,3 0,1 0,1 — 0,3
Na соль
Триэтаноламин
— — — — 3,6 — — — — —
Гидроксид калия
1.5 1,5 1,7 — 0,5 0,6 1,6 1,0 2,2 1,5
Вода 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0
Этиленгликоль
88,989
88,988
87,789
91,789
92,589
89,889
90,589
91,789
87,989
88,789 0,0269 Dyest 0,01
0,01
0,01
0,01
0,01
0,01
0,01
0,01
0,01
Противовспениватель 0,001
0,001
0,001
0,001
0,001
0,001
0,001
0,001
0,001 —
—аровая кислота — — — — — 0.2
pH (30 об.%)
7,9 7,9 7,9 7,6 8,9 8,2 8,3 7,9 7,6 7,9
__________________________________________________________________________
ТАБЛИЦА 7
__________________________________________________________________________
14 Сравнительные примеры 11 12 13 17 18 19 20
__________________________________________________________________________

Лимонная кислота — — — — — — — — — —
Бензоат натрия
— — — — — — — — 3.0 4,2
п-трет-бутил
3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 0,5 —
бензоат
Октановая кислота
3,0 3,0 3,0 3,0 3,0 3,0 3,0 0,5 —
Себациновая кислота
— — — — — — — — — 1,5
75% фосфорная
0,4 0,4 ​​0,4 ​​0,4 ​​0,4 ​​0,4 ​​0,4 ​​0,4 ​​- —
кислота
Нитрит натрия
— — — — — — — — — —
Нитрат натрия
0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,2 —
Молибдат натрия
— — — — — — — — — —
Натрий — — — — — — — — — 3.0 —
тетраборат. 10H 2 O
Силикат натрия 9H 2 O
— — — — — — — — 0,15
0,3
Бензотриазол
0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,2 0,05
Трилтриазол
— — — — — — — — 0,1 0,15
Маркаптобензотиазол.
0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,1 —
Na соль
Триэтаноламин
— — — — — — — — — —
Гидроксид калия
1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,0 2.0
Вода 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0
Этиленгликоль
88,789
88,789
88,789
88,789
88,789
88,789
88,789
88,789
89,237
89,789
Красители 0,01 0,01
0,01

0,01
0,01 0,01
0,01
0,01
0,01
Пеногаситель 0,001
0,001
0,001
0,001
0,001
0,001
0,001
0,001
0,001
0,001
Биттеры — — — — — — — — 0.002

(BITREX ™)
Винная кислота
— — — — — — — — — —
Аконитовая кислота
0,2 — — — — — — — — —
Трикарбаллитовая кислота
— 0,2 — — — — — — — —
Яблочная кислота — — 0,2 — — — — — — — — —
Молочная кислота — — — 0,2 — — — — — —
Салициловая кислота
— — — — 0,2 — — — — —
Галловая кислота — — — — — — 0,2 — — — —
Додекановая 2-кислота
— — — — — — 0.2 — — —
Адипиновая кислота — — — — — — — 0,2 — —
pH (30 об.%)
7,9 7,9 7,9 7,9 7,9 7,9 7,9 7,9 8,5 9,2
__________________________________________________________________________
ТАБЛИЦА 8
______________________________________
Результаты испытаний (метод испытания ASTM D 4340) Сравнительный внешний вид металлического испытательного образца Изменение массы Примеры после испытания (мг / см 2 )
______________________________________

1 Почерневший -1.22
2 Чёрный -1,43
3 Нет значительного изменения цвета
-0,21
4 Чёрный -1,78
5 Чёрный -1,32
6 Чёрный -2,48
7 Чёрный -1,52
8 Чёрный -1,73
9 Точеный черный -2,33
10 стал черным -1,35
11 стал черным -1,47
12 стал черным -1,36
13 стал черным -1.52
14 Черное точение -1,62
15 Черное точение -1,38
16 Черное точение -1,32
17 Черное -1,56
18 Черное -1,54
19 Отсутствие визуально заметной коррозии
-0,47
20 Визуально заметная коррозия
-0,28
______________________________________
ТАБЛИЦА 9
__________________________________________________________________________
Сравнительные примеры 1 2 3 4 5 6 7 8 9 10
________________________________________________269 Внешний вид испытательного образца
Принято
Отклонено
Принято
Принято
Принято
Принято
Принято
Принято
Принято epted
Заменить алюминий
-0.08
-0,06
-0,36
-0,12
-0,10
-0,08
-0,12
-0,08
-0,09
-0,06
массы
отливка
(мг / см 2 )
Чугун
0,03
0,00
0,00
0,00
-0,98
0,02
0,00
0,02
0,00
0,02
0,02
0,03
Сталь 0,00
0,00
-0,12
-0,01
0,01
0,00
-0,01
0,00
0,02
0,00
Латунь -0,03

-0,02
-0,03
-0,02
-0.03
-0,04
-0,03
-0,04
Припой
0,00
-0,02
-0,01
0,00
0,02
-0,03
-0,02
-0,01
-0,03
-0,02
Медь
-0,05
-0,04
-0,03
-0,04
-0,03
-0,05
-0,06
— 0,04
-0,05
Внешний вид раствора
Принято
Принято
Принято
Принято
Принято
Принято
Принято
Принято
Изменено
Принято
.8 1,5 0,5 0,3 0,2 0,3 0,4 0,5 0,7 0,8
__________________________________________________________________________
ТАБЛИЦА 10
__________________________________________________________________________
Сравнительные примеры 11 12 13 14 15 16 17 18 19 20
______________________________________________________________________________________________________________________________

Внешний вид образца для испытаний
Принято
Принято
Принято
Принято
Принято
Принято
Принято
Принято
Принято
Принято
Изменить
Алюминий
-0.05
-0,03
-0,05
-0,04
-0,07
-0,09
-0,03
-0,06
-0,02
0,00
массы
отливка
(мг / см 2 )
Чугун
0,02
0,02

0,04
0,02
0,04
0,03
0,02
0,02
0,01
Сталь 0,03
0,00
0,01
0,03
0,02
0,00
0,01
-0,04
0,00
0,01


-0,02
-0,02
-0,02
-0,02 -0,05
-0,06
-0,07
-0.05
-0,03
-0,04
Припой
-0,04
-0,02
-0,03
-0,03
-0,02
-0,05
-0,06
-0,07
0,02
0,00
Медь
-0,03
-0,01
-0 0,07
-0,07
-0,09
-0,08
-0,07
— 0,05
-0,04
Внешний вид раствора
Принято
Принято
Принято
Принято
Принято
Принято
Принято
Принято Изменение
Гель

0.5 0,4 0,9 0,9 1,2 1,3 0,4 0,4 ​​-0,2 -0,6
__________________________________________________________________________

В сравнительных примерах 1–2 и 4–18 все образцы охлаждающих жидкостей вызвали скорость коррозии при теплопередаче алюминия, превышающую требуемую. 1,0 мг / см 2 / неделя и были отклонены при испытании с применением метода, предписанного стандартами ASTM.

В сравнительном примере 3, хотя образец охлаждающей жидкости был принят при испытании на скорость коррозии при теплопередаче алюминия методом ASTM, охлаждающая жидкость была отклонена при испытании на внешний вид состояния поверхности и изменение веса испытательных образцов посредством применяя метод JIS (испытание на коррозионную стойкость металла).

Когда количество лимонной кислоты было ниже примерно 0,005% по весу (например, 0,001% по весу в Сравнительном примере 2), образцы охлаждающих жидкостей приводили к скорости коррозии при теплопередаче алюминия, превышающей требуемую 1,0 мг / см 2 / неделя (например, 1,43 мг / см 2 / неделя в сравнительном примере 2), и внешний вид поверхности испытательных образцов стал нежелательным.

И наоборот, когда количество лимонной кислоты было больше примерно 0.5% по весу (например, 1,0% по весу в Сравнительном примере 3), образцы охлаждающих жидкостей вызвали изменение веса испытательных образцов алюминиевой отливки больше, чем требуется -0,30 мг / см 2 / неделя (например, -0,36 мг / см 2 / неделя в сравнительном примере 3), и внешний вид состояния поверхности образцов для испытаний алюминиевой отливки стал черным при испытании с применением метода JIS (испытание на коррозионную способность металла).

Кроме того, когда вместо лимонной кислоты и / или ее солей использовалась органическая кислота, отличная от лимонной, трехосновная органическая кислота или двухосновная органическая кислота, все охлаждающие жидкости для образцов (сравнительные примеры с 10 по 18) скорость коррозии при теплопередаче алюминия выше, чем требуется 1.0 мг / см 2 / неделя при испытании с применением метода ASTM.

В сравнительном примере 19 образец хладагента был принят при испытании как методами ASTM, так и JIS на предмет коррозионных свойств металла, но гель образовался в образце хладагента после выдержки в течение примерно 30 дней. Было показано, что состав охлаждающей жидкости непригоден для использования.

В сравнительном примере 20, хотя образец охлаждающей жидкости не был отклонен при испытании с применением метода ASTM для элементов, включая внешний вид состояния поверхности алюминиевых образцов для испытаний, гель также образовался в охлаждающей жидкости после испытания на коррозию при применении JIS. метод.

В отличие от охлаждающих жидкостей в сравнительных примерах, композиции охлаждающих жидкостей согласно настоящему изобретению (примеры с 1 по 8) содержат лимонную кислоту и / или ее соли в качестве основного компонента в дополнение по меньшей мере к одному ингибитору коррозии, выбранному из группы состоит из ингибиторов коррозии аминового типа, типа буры, типа ароматической барбоновой кислоты, типа жирной кислоты и нитритного типа. В результате хладагенты согласно изобретению вызывают коррозию алюминия при теплопередаче меньше, чем требуется 1.0 мг / см 2 / неделя, а также демонстрируют удовлетворительный внешний вид состояния поверхности образцов для испытаний.

Кроме того, нет видимого изменения цвета образцов охлаждающих жидкостей после испытания на коррозию, что указывает на то, что охлаждающие жидкости по настоящему изобретению оказывают хорошее предотвращающее коррозию действие на металлические детали для использования в охлаждающем механизме двигателей внутреннего сгорания, в частности на детали из алюминиевого сплава для использования на тепловыделяющих поверхностях.

Таким образом, ожидается, что композиции охлаждающей жидкости двигателя с антифризом по настоящему изобретению будут выполнять полезную работу для постепенного внедрения автомобильных алюминиевых деталей и для результирующей экономии топлива.

Что такое антифриз?

Антифриз — это добавка, которая может использоваться для понижения точки замерзания, а также повышения температуры кипения любой жидкости на водной основе. Одним из распространенных примеров является автомобильная промышленность, где антифриз в виде этиленгликоля добавляется к воде в качестве охлаждающей жидкости двигателя в транспортных средствах и предотвращает замерзание двигателя при низких температурах.

Если было использовано мало или совсем не было антифриза, а вода замерзла в двигателе, это создало бы огромное внутреннее давление из-за расширения, что привело бы к серьезному повреждению двигателя.Точно так же перегретый двигатель может иметь разрушительные (и дорогостоящие) последствия. Забота о охлаждающей жидкости для вашего автомобиля — ключ к успеху!

Из чего сделан антифриз?

Антифриз можно приготовить с использованием любого из этих четырех основных агентов, смешанных с водой: метанола, глицерина, этиленгликоля и пропиленгликоля. У каждого агента есть свои преимущества и недостатки, в зависимости от того, как вы хотите его использовать.

  • Метанол: легковоспламеняющаяся, токсичная жидкость. Метанол используется в жидкости для омывателей ветрового стекла и в антиобледенительных устройствах.
  • Глицерин (также называемый глицерином): нетоксичный и способный выдерживать более высокие температуры, чем его аналоги, глицерин был первым антифризом, используемым в автомобильных двигателях. Иногда его называют «природным антифризом». Его производят из животных и растительных веществ.
  • Этиленгликоль: наиболее распространенный автомобильный антифриз, используемый вместо глицерина из-за его более низкой точки замерзания, хотя он токсичен для человека. Этиленгликоль также является лучшим антифризом для защиты как от низких, так и от высоких температур благодаря своим характеристикам теплопередачи.
  • Пропиленгликоль: менее токсичен, чем этиленгликоль, но для достижения того же результата его необходимо использовать в больших количествах. Идеально подходит для использования там, где этиленгликоль может быть опасен, например, в пищевой промышленности.

Эти составы могут продаваться в виде концентрата или разбавленного водой. Разведение 50%: 50%, которое дает температуру замерзания приблизительно -37 ° C (-34,6 ° F), обычно используется в Великобритании, но в более теплом или холодном климате при необходимости используются более слабые или более сильные разведения.

Антифриз может также содержать другие добавки, такие как фосфаты и силикаты, которые помогают защитить от коррозии и роста биологических веществ. Преимущество этого состоит в том, что если позволить коррозии или биологическим веществам накапливаться, они могут ограничить действие антифриза и вызвать повреждение.

Почему антифриз бывает разных цветов?

Возможно, вы знаете, что антифризы бывают разных цветов, от красного и синего до зеленого и оранжевого, которые создаются путем добавления красителя.Почему? В основном по историческим причинам — разные цвета отражали либо место производства продукта, марку, которая его производила, либо тип содержащегося в нем химиката, предотвращающего коррозию.

Например, в более старых антифризах использовалась технология неорганических добавок, и они были либо синими, либо зелеными. По мере развития технологий антифризы перестали содержать силикаты и использовали технологию органических кислот. Эти антифризы с увеличенным сроком службы обычно были оранжевого цвета. В наши дни цвет не отражает сам продукт, поэтому нелегко определить, какие химические вещества содержит антифриз, просто посмотрев, является ли он синим, зеленым, желтым или оранжевым.

Антифриз — это то же самое, что охлаждающая жидкость?

В отношении жидкости в системе охлаждения двигателя, антифриз и охлаждающая жидкость — это слова, которые можно использовать как синонимы, поскольку они оба описывают жидкость, которая помогает двигателю работать при нужной температуре.

Разница между антифризом и охлаждающей жидкостью заключается в том, что двигатель необходимо охлаждать до нужной температуры 365 дней в году независимо от погоды, а это означает, что охлаждающая жидкость требуется двигателю в любое время.В холодное время года антифризные свойства охлаждающей жидкости должны предотвращать замерзание жидкости.

История антифриза

Шарль Адольф Вюрц, французский химик, открыл этиленгликоль в конце 1850-х годов, но не смог найти ему применения. Примерно пятьдесят лет спустя было обнаружено, что этиленгликоль является отличным хладагентом, а также использовался в качестве замены глицерина при взрывах во время Первой мировой войны. После войны он производился в больших количествах для охлаждающих жидкостей двигателей и стал революционным в развитии как автомобильной, так и авиационной промышленности.У антифриза, каким мы его знаем сейчас, есть множество применений.

Характеристики антифриза

Антифриз синий — готов к использованию

Описание Пределы Единицы
Внешний вид Прозрачная синяя жидкость, без частиц Плотность при 20 ° C 1,055 — 1,075 г / мл
Содержание моноэтиленгликоля 47-50 % по массе
Соответствует BS 6580 2010
Замораживание Точка (при поставке) <-35 ° C

Нетоксичный антифриз

Описание Пределы Единицы
Внешний вид Прозрачный, бесцветная жидкость
Соответствует ASTM D3306 Тип II, ASTM D 4985, SAE J 1034 , BS 6580 (1992), AFNOR NF R15-601
S.G. @ 15 ° C (ASTM D 4052) 1,030 — 1,065 г / мл
Равновесная точка кипения с обратным холодильником ° C (ASTM D 1120) > 152 ° C
pH ( 50% об.) 7,5 — 9,5
Точка замерзания, разбавление водой 50% об. -34 ° C
Точка замерзания 33% об. Разбавление водой -15 ° C

Паспорт безопасности антифриза (MSDS)

В паспорте безопасности антифриза перечислены соединения, которые считаются серьезными опасностями при использовании в соответствии с рекомендациями, включая силикат натрия, борат натрия и бензоат денатония.

Паспорта безопасности антифризов приведены ниже. В этих паспортах безопасности перечислены потенциальные опасности (включая опасность для здоровья, пожар, реактивность и опасность для окружающей среды) антифриза, а также способы его безопасного использования или работы с ним.

И, наконец,… Производство антифриза, чтобы оставаться теплым

Невероятно, но в 2014 году ученые объявили, что они обнаружили пять семейств антарктических обитающих рыб, которые естественным образом производят «антифризные» белки, что позволяет им выжить в холодном Южном океане.Эта способность делает их настолько успешными, что эти рыбы составляют более 90% всей биомассы рыб в этом районе.

Хотя мы не можем предоставить возможность оставаться в тепле в Антарктике, мы поставляем широкий спектр готовых к использованию и индивидуальных антифризов, включая нетоксичные варианты.

PEAK Антифризы и охлаждающие жидкости | OAT Антифриз | 50/50 Охлаждающая жидкость

ЧТО ТАКОЕ АНТИФРИЗ?

Антифриз, также известный как охлаждающая жидкость двигателя, представляет собой жидкость на основе гликоля, которая используется в радиаторе двигателя транспортного средства для поддержания его температуры.

ЧТО ДЕЛАЕТ АНТИФРИЗ?

Antifreeze, как следует из названия, предотвращает замерзание воды в радиаторе двигателя при более низких температурах. При упоминании охлаждающей жидкости жидкость выполняет функцию конвективного теплопереноса, предотвращая перегрев двигателя транспортного средства.

ГДЕ АНТИФРИЗ?

Антифриз попадает в радиатор двигателя автомобиля. Нажмите здесь, чтобы посетить PEAK® DIY Hub, чтобы узнать больше об антифризе и промывке радиатора.

ИЗ ЧЕГО СДЕЛАН АНТИФРИЗ?

Antifreeze имеет разный химический состав в зависимости от типа используемого антифриза.Антифриз Inorganic Acid Technology (IAT) может быть этиленгликолем (EG) или пропиленгликолем (PG). Антифризы на основе органических кислот (OAT) в основном основаны на этиленгликоле (EG). Антифриз Hybrid Organic Acid Technology (HOAT) представляет собой комбинацию технологии неорганических кислот (IAT) и технологии органических кислот (OAT).

КАКОГО ЦВЕТА АНТИФРИЗ?

Цвета антифриза: красный, оранжевый, желтый, розовый, синий и зеленый. Антифриз разного цвета используется для определения типа используемого антифриза.Антифриз Inorganic Acid Technology (IAT) зеленого цвета. Антифриз на основе органических кислот (OAT) бывает оранжевого, красного, зеленого, розового или синего цвета. Антифриз Hybrid Organic Acid Technology (HOAT) имеет оранжевый или желтый цвет.

КАК ПРОВЕРИТЬ АНТИФРИЗ? СКОЛЬКО АНТИФРИЗА Я ИСПОЛЬЗУЮ?

Антифриз можно проверить, открыв крышку радиатора и посмотрев, достигает ли жидкость линии полного заполнения.

КАК УТИЛИЗИРОВАТЬ АНТИФРИЗ?

Antifreeze можно утилизировать законным и безопасным образом, сдав его в любой крупный магазин автозапчастей.


Этапы проверки состояния и уровня охлаждающей жидкости двигателя

Примечания: 1) Перед запуском найдите радиатор, бачок перелива охлаждающей жидкости и герметичную крышку. Резервуар будет расположен на высоком месте по обе стороны от двигателя и может быть рядом с радиатором или в задней части двигателя рядом с лобовым стеклом. 2) Герметичная крышка системы охлаждения может находиться на удаленном перепускном бачке, если не на радиаторе.

Герметичная крышка на радиаторе или рядом с ним (типично для старых моделей автомобилей)

ВНИМАНИЕ: НЕ СНИМАЙТЕ КРЫШКУ ДАВЛЕНИЯ, КОГДА ДВИГАТЕЛЬ ГОРЯЧИЙ.

1- При выключенном и остывшем двигателе снимите герметичную крышку с радиатора.
2- Уровень охлаждающей жидкости должен быть в верхней части радиатора, в идеале на одном уровне с нижней частью седла герметичной крышки.
3- Если уровень охлаждающей жидкости низкий, добавьте либо 50/50 предварительно смешанного антифриза / охлаждающей жидкости, либо смесь 50/50 антифриза / концентрата охлаждающей жидкости и воды хорошего качества, пока уровень охлаждающей жидкости не достигнет седла крышки. Замените герметичную крышку.
4- Затем обратитесь к руководству пользователя для получения рекомендаций по обслуживанию системы охлаждения и обратите внимание на рекомендации по уровню антифриза / охлаждающей жидкости, который должен храниться в резервуаре.
5- Найдите линию наполнения сбоку от расширительного бачка. Если уровень охлаждающей жидкости низкий, снимите крышку резервуара и добавьте либо 50/50 предварительно смешанного антифриза / охлаждающей жидкости, либо смесь 50/50 антифриза / концентрата охлаждающей жидкости и воды хорошего качества, пока уровень охлаждающей жидкости не достигнет уровня, отмеченного на баке. Заменить колпачок.

Герметичный колпачок на перепускном резервуаре (типичный для новых автомобилей)

ВНИМАНИЕ: НЕ СНИМАЙТЕ КРЫШКУ ДАВЛЕНИЯ, КОГДА ДВИГАТЕЛЬ ГОРЯЧИЙ.

1- Убедитесь, что двигатель выключен и остыл. Обратитесь к руководству пользователя, чтобы узнать о рекомендуемом техническом обслуживании системы охлаждения, и обратите внимание на рекомендации по уровню антифриза / охлаждающей жидкости, который должен храниться в резервуаре.
2- Найдите заливную линию сбоку бака. Если уровень охлаждающей жидкости низкий, снимите герметичную крышку и добавьте либо 50/50 предварительно смешанного антифриза / охлаждающей жидкости, либо смесь 50/50 антифриза / концентрата охлаждающей жидкости и воды хорошего качества, пока уровень охлаждающей жидкости не достигнет уровня, указанного на баке.Замените герметичную крышку.
Периодически проверяйте уровень охлаждающей жидкости и защиту от замерзания.

Для получения дополнительной информации и видеороликов о техническом обслуживании охлаждающей жидкости двигателя ознакомьтесь с нашими видеороликами DYI.

Как правильно выбрать охлаждающую жидкость для вашего автомобиля |

  • Размещено: Nov 1 2019
  • Автор: admin

Значительный объем продаж Hy-per Lube связан с нашим знаменитым продуктом Super Coolant, и мы кое-что знаем о производительности системы охлаждения.

Давайте начнем с основ, которые МНОГО людей игнорируют, когда дело касается систем охлаждения.

Техническое обслуживание — важная часть владения автомобилем. Уход за автомобилем может сэкономить вам деньги и продлить срок его службы. Многие автовладельцы полагаются на регулярные поездки в магазин для проведения технического обслуживания, например, для замены масла. Вы можете помочь автомобилю работать бесперебойно, выполняя дома несколько простых задач, например заменяя охлаждающую жидкость в автомобиле и другие жидкости.

При замене охлаждающей жидкости двигателя выполняется промывка охлаждающей жидкости.Разным автомобилям может потребоваться разная охлаждающая жидкость, но каждому автомобилю необходимо промывать охлаждающую жидкость примерно каждые пять лет или каждые 30 000 миль. Выбор подходящей охлаждающей жидкости зависит от нескольких факторов, в том числе от возраста и типа автомобиля. Вот как выбрать лучшую охлаждающую жидкость для колес.

Что такое охлаждающая жидкость двигателя?

Охлаждающая жидкость двигателя предохраняет двигатель от перегрева и помогает избежать дорогостоящего ремонта. Охлаждающая жидкость помогает защитить ваш двигатель от экстремальных температур, как горячих, так и холодных.Двигатель вашего автомобиля нагревается во время работы, достаточно горячий, чтобы повредить важные детали. Охлаждающая жидкость поглощает тепло двигателя автомобиля и возвращается обратно к радиатору. Зимой из-за сильного холода блок двигателя может замерзнуть и даже потрескаться. Охлаждающая жидкость предотвращает как перегрев, так и замерзание. В соответствии со своим названием охлаждающая жидкость двигателя, также известная как антифриз, не замерзает при минусовых температурах. Охлаждающая жидкость двигателя, обычно называемая антифризом, содержит ингредиенты, которые помогают предотвратить коррозию деталей двигателя вашего автомобиля.Охлаждающая жидкость двигателя бывает нескольких различных разновидностей, но ее основные ингредиенты включают этилен или пропиленгликоль и воду.

Радиатор вашего автомобиля имеет резервуар, в котором хранится охлаждающая жидкость двигателя. Из этого резервуара охлаждающая жидкость поступает в блок двигателя и циркулирует через него, защищая ваш автомобиль от сильной жары или холода. Система теплоносителя работает по простому контуру. Насос будет подавать охлаждающую жидкость двигателя в блок двигателя, когда автомобиль работает. Оттуда охлаждающая жидкость будет поступать в радиатор автомобиля, также называемый теплообменником, а затем обратно в насос.Когда вы впервые заводите автомобиль, позволяя двигателю прогреться, охлаждающая жидкость будет обходить радиатор. Когда автомобиль нагревается, клапан системы охлаждения будет пропускать охлаждающую жидкость через радиатор.

Зачем нужна охлаждающая жидкость двигателя?

Охлаждающая жидкость двигателя циркулирует через двигатель и радиатор вашего автомобиля, помогая контролировать экстремальные температуры. Охлаждающая жидкость необходима для предотвращения перегрева двигателя. Это также помогает предотвратить замерзание двигателя вашего автомобиля, когда ртуть опускается ниже 32 градусов по Фаренгейту или 0 градусов по Цельсию.Вашему автомобилю требуется охлаждающая жидкость двигателя для эффективной и безопасной работы.

Если вы ведете машину, не промывая двигатель через определенные промежутки времени, вы рискуете повредить систему охлаждения автомобиля, в том числе радиатор, водяной насос и трубы, к дорогостоящему повреждению. Со временем охлаждающая жидкость становится менее эффективной. Ржавчина и грязь начнут накапливаться и негативно повлияют на систему охлаждения вашего автомобиля. Если вы видите дым, выходящий из-под капота, скорее всего, виновато игнорирование потребности вашего автомобиля в охлаждающей жидкости. Приборная панель вашего автомобиля, скорее всего, выдаст вам предупреждение, прежде чем это дойдет до этого.Как только ваш автомобиль сообщит вам, что пришло время промывать охлаждающую жидкость, лучше всего заменить охлаждающую жидкость.

Наряду с заменой охлаждающей жидкости двигателя через определенные промежутки времени очень важно выбрать правильный тип охлаждающей жидкости для вашего автомобиля.

Что делает охлаждающую жидкость хорошей?

Эффективная охлаждающая жидкость двигателя предохраняет двигатель вашего автомобиля от замерзания и перегрева. Он также может защитить ваш двигатель от агрессивных элементов и улучшить его производительность. Какие ингредиенты входят в состав высокоэффективной охлаждающей жидкости двигателя?

  • Вода .Большинство охлаждающих жидкостей двигателя на 50 процентов состоит из воды. Прямой антифриз не содержит воды. Добавление воды в антифриз в соответствии с инструкциями производителя создает охлаждающую жидкость. Некоторые автовладельцы выбирают этот метод своими руками, в то время как другие покупают предварительно смешанную охлаждающую жидкость.
  • Этиленгликоль . Основным активным ингредиентом большинства охлаждающих жидкостей двигателя является этиленгликоль. Впервые он был использован в качестве охлаждающей жидкости после Первой мировой войны. Это химическое вещество отвечает за то, чтобы жидкость, циркулирующая в двигателе вашего автомобиля, не замерзала при сильном морозе и не испарялась при сильной жаре.
  • Пропиленгликоль . В некоторых охлаждающих жидкостях двигателя вместо этиленгликоля используется пропиленгликоль. Пропиленгликоль более вискозный, а это означает, что этиленгликоль имеет более эффективную теплопередачу. Пропиленгликоль считается менее токсичным при проглатывании, что является важным аргументом для владельцев автомобилей с детьми и домашними животными.
  • Ингибиторы коррозии . Вода и этиленгликоль (или пропиленгликоль) составляют основу большинства охлаждающих жидкостей двигателя, но различные присадки для предотвращения коррозии создают разные типы охлаждающей жидкости.Эти ингредиенты могут различаться в зависимости от страны происхождения. Например, автомобили, произведенные в Азии, используют карбоксилаты и фосфаты в качестве антикоррозионных агентов в охлаждающей жидкости двигателя. В охлаждающей жидкости двигателя для автомобилей азиатского производства не могут использоваться силикаты в качестве антикоррозионного средства. С другой стороны, в охлаждающей жидкости для европейских автомобилей используется смесь силикатов и карбоксилатов в охлаждающей жидкости двигателя для защиты от коррозии.

Одно антикоррозионное средство не обязательно превосходит другое.Для решения разных задач используются разные ингредиенты. Например, у автомобилей, произведенных в Азии, были проблемы с плохой теплопередачей. В результате в охлаждающей жидкости двигателя для автомобилей, произведенных в Азии, не используются охлаждающие жидкости с силикатами. Вместо этого фосфаты и карбоксилаты выполняют антикоррозийную роль. В Европе охлаждающая жидкость двигателя решила другую проблему. Жесткая вода, содержащая минералы кальций и магний, вступала в реакцию с ингибиторами фосфата в охлаждающей жидкости двигателя, вызывая образование накипи на двигателях автомобилей.Итак, охлаждающая жидкость двигателя для автомобилей европейского производства не содержит фосфатов. Вместо этого в охлаждающей жидкости, разработанной для европейских автомобилей, используются силикаты и карбоксилаты.

Хотя антифриз является обычным ингредиентом охлаждающей жидкости двигателя, он присутствует не всегда. Вы можете использовать присадки к охлаждающей жидкости без антифриза, чтобы повысить эффективность теплопередачи в вашем двигателе. Некоторые добавки могут быть эффективным вариантом при работе с прямой водой. Кроме того, такая присадка, как Hy-per Cool Super Coolant, совместима практически с любым типом антифриза, который вы уже используете в своем автомобиле.

Какие бывают типы охлаждающей жидкости двигателя?

Различные типы охлаждающих жидкостей двигателя специально разработаны для различных типов транспортных средств. Разновидности охлаждающей жидкости классифицируются по названию и цвету. Всегда следует использовать то, что рекомендовано для вашего автомобиля. Шесть типов охлаждающей жидкости двигателя:

1. Технология неорганических добавок (IAT)

Охлаждающая жидкость двигателя IAT зеленого цвета. Он изготовлен из этиленгликоля с добавлением силиката и фосфатов для предотвращения коррозии.Он используется в старых автомобилях, как правило, в автомобилях, произведенных в Соединенных Штатах до конца 1990-х годов. Как старая формула, она не так эффективна, как некоторые новые типы охлаждающей жидкости двигателя. Если вашему автомобилю требуется охлаждающая жидкость IAT, вам нужно будет промывать ее и заменять примерно каждые два года или каждые 24 000 миль. Формулы IAT содержат силикаты, которые защищают двигатель вашего автомобиля, подавляя эффекты коррозии.

2. Технология органических кислот (ОАТ)

Охлаждающая жидкость двигателя

OAT изготовлена ​​на основе пропиленгликоля.Охлаждающая жидкость двигателя, изготовленная на основе органических кислот (OAT), обычно имеет оранжевый цвет, но может быть и других цветов, например темно-зеленого. Всегда проверяйте этикетку дважды, чтобы случайно не схватить цвет охлаждающей жидкости другого типа. Эта охлаждающая жидкость обычно совместима с автомобилями производства GM, Saab и VW.

В отличие от охлаждающих жидкостей IAT, охлаждающие жидкости OAT предназначены для более новых автомобилей, обычно тех, которые были произведены в 2000-х годах или позже. OAT использует органическую кислоту для защиты двигателя от коррозии. В более современной формуле охлаждающая жидкость OAT должна сливаться и заменяться каждые пять лет или каждые 50 000 миль.Часто охлаждающая жидкость OAT содержит дополнительные присадки, которые помогают защитить двигатель вашего автомобиля.

3. Технология гибридных органических кислот (HOAT)

Технология гибридных органических кислот является одной из трех основных категорий охлаждающих жидкостей двигателя, и она имеет несколько подкатегорий. Охлаждающая жидкость HOAT традиционно была желтой. Теперь он доступен в разных цветах радуги. Вы можете найти охлаждающую жидкость HOAT желтого, оранжевого, зеленого, розового и синего цветов. Чтобы убедиться, что вы выбрали правильную охлаждающую жидкость HOAT, обращайте внимание на название бренда, а не на цвет жидкости.

Состав HOAT представляет собой комбинацию рецептуры OAT и IAT. HOAT использует силикаты и органическую кислоту для защиты двигателя и борьбы с коррозией. Его следует заменять с тем же интервалом, что и охлаждающая жидкость OAT: каждые пять лет через каждые 50 000 миль. Если у вас Ford, Chrysler или европейский автомобиль, он, скорее всего, будет использовать охлаждающую жидкость HOAT.

4. HOAT без фосфатов

HOAT без фосфатов обычно имеет бирюзовый цвет. Эта формула без NAP, сделанная с этиленгликолем, содержит органические и неорганические ингибиторы коррозии для защиты вашего двигателя.Он не содержит фосфатов, таких как нитриты, нитраты и бораты. Это также формула с низким содержанием силикатов.

HOAT без фосфатов может использоваться с BWW, Volvo, Tesla, Mini, Audi, Jaguar, Mercedes, Porsche, Rolls-Royce, Saab, Volkswagen и многими другими типами автомобилей. Не содержащий фосфатов состав разработан с учетом безопасности прокладок и уплотнений вашего автомобиля.

5. HOAT фосфатированный

Phosphated HOAT использует фосфаты и органические кислоты для предотвращения коррозии деталей вашего двигателя.Охлаждающая жидкость обычно бывает розовой или синей.

Фосфатированная охлаждающая жидкость HOAT обычно рекомендуется для использования в транспортных средствах, произведенных в Азии, таких как автомобили KIA, Honda, Hyundai, Nissan и Toyota. Из-за проблем с теплопередачей азиатские производители автомобилей требуют использования охлаждающей жидкости этого типа. В охлаждающей жидкости используются карбоксилаты и фосфаты, а не силикаты, для подавления коррозионного воздействия на двигатель вашего автомобиля.

6. Силиконовая HOAT

Силиконовая HOAT обычно узнаваема по яркому фиолетовому цвету.В нем используются силикаты и органические кислоты для подавления коррозионного воздействия на ваш двигатель. Его формула не содержит нитритов, нитратов, фосфатов, боратов, аминов и имидазола. Вместо этого используется силикатная, органическая технология.

Охлаждающая жидкость обеспечивает защиту на пять лет или 150 000 миль в случае легкого применения. В случае тяжелых условий эксплуатации эта формула защищает в течение трех лет или 300 000 миль. Силиконовый HOAT — это охлаждающая жидкость премиум-класса, используемая в таких автомобилях, как Mercedes-Benz, Audi, VW, Porsche, Bentley и Lamborghini.

Если вы занимаетесь обслуживанием охлаждающей жидкости двигателя своими руками, следите за пройденными километрами и временем. Проактивное обслуживание означает более счастливую машину, более счастливого водителя и более счастливого кошелька.

Обратите внимание: если ваш автомобиль был дооснащен новыми или другими деталями, это может повлиять на тип охлаждающей жидкости, в которой он нуждается. Всегда проводите исследования, чтобы убедиться, что ваш автомобиль находится в наилучшем рабочем состоянии.

Какая охлаждающая жидкость лучше всего подходит для моей машины?

Лучшая охлаждающая жидкость двигателя для вашего автомобиля зависит от типа автомобиля, возраста и места производства.Информация о марке, модели и году выпуска вашего автомобиля поможет вам выбрать подходящую охлаждающую жидкость. Выбор неправильного продукта может привести к снижению производительности или еще большему немедленному отказу двигателя. Следуйте этим советам, чтобы убедиться, что вы сделали правильный выбор

Проверьте цвет

Различные цвета охлаждающей жидкости соответствуют разной совместимости с автомобилем. Например, охлаждающая жидкость IAT обычно зеленого цвета, а охлаждающая жидкость HOAT — бирюзового цвета. Но помните, что цвет не всегда является точным показателем выбора охлаждающей жидкости для вашего автомобиля.Существуют и другие марки, предназначенные для определенных типов автомобилей и стран происхождения, которые могут иметь различные цвета, которые могут сбивать с толку. Используйте цвет в качестве ориентира, но всегда обязательно читайте бутылку, чтобы проверить совместимость охлаждающей жидкости с вашим автомобилем.

Перейти к источнику

В руководстве по эксплуатации вашего автомобиля содержится много информации. Он подскажет, какой тип охлаждающей жидкости лучше всего использовать в вашем автомобиле. Если у вас нет копии руководства пользователя, скорее всего, вы сможете найти необходимую информацию в Интернете.Формулы, предлагаемые в вашем представительстве, и ваше руководство по эксплуатации, вероятно, будут одобрены производителем оригинального оборудования (OEM), но, вероятно, есть и эквиваленты послепродажного обслуживания, из которых можно выбрать.

Не забывайте о воде

При замене охлаждающей жидкости в автомобиле всегда читайте содержимое бутылки, чтобы узнать, нужно ли смешивать формулу с водой. Некоторые типы охлаждающей жидкости можно заливать прямо в систему вашего автомобиля без добавок, но другие типы предназначены для смешивания с водой в соотношении 50/50.Смягченная водопроводная вода сделает свое дело

Производительность вашего автомобиля имеет значение для вас, поэтому будьте точны при измерении передаточного числа. Создание слишком слабой или слишком сильной охлаждающей жидкости может привести к снижению производительности. Тип вашего автомобиля может указывать на то, что лучше всего — предварительно разбавленная или охлаждающая жидкость, которую вы можете разбавить самостоятельно.

Вот небольшой совет, если вы когда-нибудь окажетесь в критической ситуации. Если уровень охлаждающей жидкости в вашем автомобиле низкий, вы можете использовать воду, чтобы добраться до ближайшего автомагазина или заправочной станции.

Как я могу лучше всего защитить двигатель своего автомобиля?

Независимо от того, какая охлаждающая жидкость нужна вашему автомобилю, вы можете доверять проверенным и проверенным продуктам Hy-per Lube, которые помогут улучшить защиту двигателя и его производительность. Мы поддерживаем нашу продукцию со 100-процентной гарантией удовлетворенности, и мы — известное имя в отрасли, когда речь идет о системах охлаждения и смазки. Наши охлаждающие жидкости:

1. Очиститель радиатора Hy-per Cool и система Super Flush

Hy-per Cool Radiator and Super Flush — это формула профессионального уровня, совместимая со всеми бензиновыми и дизельными двигателями.Охлаждающая жидкость может безопасно очистить и защитить ваш двигатель в течение 30 минут. Формула для тяжелых условий эксплуатации безопасна для использования со всеми деталями системы охлаждения, включая пластик и алюминий. Hy-per Cool Radiator и Super Flush эффективно удаляют ржавчину, окалину, остатки и налеты припоя.

В отличие от многих охлаждающих жидкостей, наша формула также содержит смазку для водяного насоса и ингибиторы коррозии, помогая поддерживать чистоту вашего двигателя в будущем. Эта формула является эффективным решением независимо от того, требуется ли вам выполнить легкую промывку двигателя или полную очистку.

Использование очистителя радиатора Hy-per Cool и Super Flush — это простой процесс, состоящий всего из нескольких шагов. Одна бутылка обрабатывает системы размером до 16 литров.

2. Супер охлаждающая жидкость дизельного двигателя

Дизельные двигатели нагреваются, а это значит, что для поддержания этой температуры им требуется сильная охлаждающая жидкость. Diesel Super Coolant от Hy-per Lube, дополнительная присадка к охлаждающей жидкости (SCA), разработана для защиты современных дизельных двигателей с турбонаддувом и промежуточным охлаждением. Водители, увлекающиеся автоспортом и бездорожьем, найдут эту охлаждающую жидкость идеальным решением для увеличения теплоотдачи и снижения температуры деталей двигателя.Независимые испытания показали, что эта супер охлаждающая жидкость снижает температуру до 9 градусов по Фаренгейту. Смесь гликоля и воды в соотношении 50/50 дает температуру двигателя 388 градусов, а смесь с добавлением супер охлаждающей жидкости дает температуру двигателя 379 градусов. Использование простой воды приводит к температуре двигателя 382 градуса, в то время как смесь воды и охлаждающей жидкости для ужина снижает эту температуру на 358 градусов.

SCA совместим с любой стандартной охлаждающей жидкостью дизельного двигателя. Наша дизельная суперохлаждающая жидкость не только увеличивает мощность вашей обычной охлаждающей жидкости, но также увеличивает экономию топлива (от 1 до 2 процентов), увеличивает мощность и ускорение, а также защищает от коррозии.Вы можете быть уверены, что ваш автомобиль будет работать с максимальной эффективностью благодаря Diesel Super Coolant.

Один баллон Diesel Super Coolant компании Hy-per Lube можно использовать для обработки систем объемом от 16 до 26 литров. Используйте одну бутылку с антифризом-коагулянтом 50/50. Если в вашей системе охлаждения используется чистая вода, добавьте две унции суперохлаждающей жидкости для дизельного топлива на каждую кварту емкости системы.

3. Охлаждающая жидкость Hy-per Cool Super Coolant

Hy-per Cool Super Coolant — наша самая популярная присадка №1 в систему охлаждения двигателя с проверенной репутацией. Независимые испытания показали, что эта присадка может снизить температуру двигателя до 25 градусов по Фаренгейту. Смесь антифриза и воды 50/50 дает температуру 230 градусов, а смесь 50/50 средней и супер-охлаждающей жидкости дает температуру 222 градуса. Вода дает только температуру 219 градусов, в то время как смесь воды и супер-охлаждающей жидкости снижает температуру на 194 градуса.

Hy-per Super Coolant совместим практически со всеми типами охлаждающей жидкости двигателя, поэтому водители практически любого транспортного средства могут улучшить защиту и производительность своего двигателя.Присадка не только помогает снизить температуру двигателя, но также увеличивает мощность и улучшает прогрев двигателя в холодных условиях.

Одна бутылка Hy-per Super Coolant может обрабатывать системы объемом от 12 до 20 литров. Если ваша система охлаждения больше или меньше, используйте одну унцию присадки на каждую кварту емкости системы.

Независимо от того, являетесь ли вы опытным механиком DIY или новым энтузиастом по уходу за автомобилем, вы, безусловно, заботитесь о своей машине. Это означает, что вам понадобятся подходящие расходные материалы для замены охлаждающей жидкости двигателя.Hy-Per Lube содержит различные типы присадок к охлаждающей жидкости, которые водители хотят обеспечить максимальной производительностью своих автомобилей. У нас также есть опытный персонал, который ответит на ваши вопросы. Компания Hy-per Lube находится в США и Канаде, поэтому вы можете быть уверены, что она будет рядом с вами и вашим автомобилем. Мы работаем с национальными розничными торговцами, включая Advance Auto Parts, AutoZone, O’Reilly и Walmart. Найдите ближайший магазин, где продаются наши продукты, чтобы защитить двигатель и обеспечить бесперебойную работу автомобиля.

Опубликовано в: Охлаждающая жидкость

Основы антифриза и зачем он нужен вашему автомобилю

Что такое антифриз?

Антифриз — это цветная жидкость, содержащаяся в вашем радиаторе. Антифриз также может называться охлаждающей жидкостью и может быть разных цветов. Он служит нескольким различным целям:
• Антифриз предотвращает замерзание воды в радиаторе и двигателе при низких температурах.
• Антифриз также предотвращает выкипание той же воды при высоких температурах.
• Антифриз также служит смазкой для движущихся частей, с которыми он контактирует, таких как водяной насос.

Основным ингредиентом охлаждающей жидкости, используемой сегодня, является этиленгликоль. Если он смешан правильно (смесь антифриза и воды 50/50 является идеальной), этиленгликоль может предотвратить замерзание радиаторной жидкости даже при температурах, достигающих 30 градусов ниже нуля, а также предотвратить закипание этих жидкостей при температурах до достигает 275 градусов по Фаренгейту.

Вы хотите, чтобы в вашем автомобиле всегда было необходимое количество антифриза. Низкое количество антифриза может привести к перегреву или замерзанию двигателя, что в конечном итоге обойдется вам в большие деньги, поэтому проверяйте эти уровни каждые 2–3 месяца.

Как проверить уровень антифриза?

Не всегда нужно открывать крышку радиатора. Сначала проверьте, достигает ли жидкость линии индикатора «Полный» сбоку бачка охлаждающей жидкости.Этот резервуар-накопитель является частью системы регенерации охлаждающей жидкости. Если уровень жидкости не достигает отметки «Полный», откройте крышку резервуара и добавьте смесь воды и охлаждающей жидкости в соотношении 50/50. Вы можете найти предварительно смешанные охлаждающие жидкости. Раствор-премикс рекомендуется для обеспечения надлежащего процентного содержания воды и антифриза. Проверьте сторону бутылки с охлаждающей жидкостью, чтобы убедиться, что вы предварительно смешали или вам нужно будет добавить воду самостоятельно.

Никогда не добавляйте в систему охлаждающей жидкости только воду, за исключением экстренных случаев.Причина этого в том, что большинство современных двигателей имеют головки блока цилиндров из алюминия. Эти алюминиевые головки блока цилиндров требуют антикоррозионных свойств, присущих вашему антифризу. Не забывайте каждый раз использовать смесь 50/50.

Используйте Осторожно!
Некоторые из этих резервуаров с охлаждающей жидкостью находятся под давлением и имеют герметичную крышку радиатора, которая может «выскочить», когда вы открываете резервуар. Если у вас старый автомобиль, в вашем автомобиле может не быть бачка с охлаждающей жидкостью, поэтому, чтобы проверить уровень охлаждающей жидкости, вам придется открыть крышку на самом радиаторе.

НИКОГДА НЕ ДОБАВЛЯЙТЕ ОХЛАЖДАЮЩУЮ ЖИДКОСТЬ В ГОРЯЧИЙ ДВИГАТЕЛЬ!

Если вы обнаружите, что вам нужно добавить больше жидкости, подождите, пока двигатель не остынет. Это предотвращает возможность ожога или растрескивания блока двигателя. Даже если вы столкнулись с проблемой на обочине дороги и вам нужно просто добавить воды, прежде чем добраться до ремонтной мастерской, подождите, пока ваш двигатель не остынет. Кроме того, не открывайте крышки ни на бачке охлаждающей жидкости, ни на радиаторе, пока двигатель горячий, даже просто для проверки уровней.Если вы это сделаете, особенно в системе под давлением, горячая охлаждающая жидкость может быть выброшена.

Дополнительные примечания к антифризу:
• Если охлаждающая жидкость выглядит бесцветной, ржавой или в ней плавают посторонние предметы, вам необходимо полностью промыть систему охлаждения и добавить новую смесь 50/50.
• Если вы заметили, что ваша антифризная смесь имеет грязную или маслянистую поверхность, немедленно обратитесь к механику. Им нужно будет проверить герметичность внутренней прокладки головки и иметь специальные инструменты для выполнения этой проверки.
• Пощупайте шланги радиатора. Если они протекают, вздуваются или треснуты, немедленно замените их.

AFP-LSE: Прогнозирование белков антифризов с использованием скрытого пространственного кодирования состава пар аминокислот с разнесением k

Параметры оценки

Прогнозирование AFP считается проблемой классификации. Соответственно, мы используем стандартные параметры, зависящие от порога, включая чувствительность, специфичность, точность, MCC, сбалансированную точность, индекс Юдена и оценку F1 для оценки эффективности предлагаемого классификатора.Эти параметры можно оценить с помощью следующих уравнений:

$$ Чувствительность = \ frac {TP} {TP + FN} $$

(1)

$$ Специфичность = \ frac {TN} {TN + FP} $$

(2)

$$ Точность = \ frac {TP + TN} {TP + TN + FP + FN} $$

(3)

$$ MCC = \ frac {TPTN-FPFN} {\ sqrt {(TP + FP) (TN + FN) (TP + FN) (TN + FP)}} $$

(4)

$$ Сбалансированный \, Точность = \ frac {Чувствительность + Специфичность} {2} $$

(5)

$$ Youden {\ prime} s \, Индекс = Чувствительность + Специфичность-1 $$

(6)

$$ F1 \, Score = 2 \ ast \ frac {{Precision} \ ast {Recall}} {{Precision} + {Recall}} $$

(7)

$$ {Точность} = \ frac {TP} {TP + FP} $$

(8)

Здесь TP, FP, TN и FN представляют собой истинно положительный (правильно классифицированный AFP), ложноположительный (неправильная классификация не-AFP как AFP), истинно отрицательный (правильно классифицированный не-AFP) и ложноотрицательный (неправильная классификация AFP). AFP как non-AFP) соответственно.Таким образом, чувствительность указывает на долю AFP, правильно классифицированных как AFP, а специфичность указывает на долю не-AFP, правильно классифицированных как не-AFP. Точность указывает на отношение общего количества правильно классифицированных образцов к общему количеству образцов. Поскольку набор тестовых данных сильно несбалансирован, необходимо выделить параметры, которые оценивают качество предсказателя с учетом несбалансированного распределения тестовых данных. Например, MCC учитывает значения TP, TN, FP и FN и считается сбалансированным показателем, даже если набор тестовых данных несбалансирован.Диапазон MCC лежит между -1 → 1, где -1 указывает наихудшую двоичную классификацию, а 1 указывает на лучшую двоичную классификацию. Кроме того, сбалансированная точность, которая определяется как среднее значение отзыва, полученного для каждого класса, обычно используется, когда набор тестовых данных несбалансирован. Индекс Юдена является мерой для конкретного класса, а F-балл представляет собой гармоническое среднее значение точности и отзывчивости / чувствительности.

Набор данных

Контрольный набор данных 22 получен для оценки эффективности нашего подхода.Набор данных был создан путем первоначального получения 221 AFP из базы данных Pfam в качестве начального числа. Строгий порог ( E = 0,001) был выбран во время PSI-BLAST, чтобы удалить любую избыточность из данных. Была проведена ручная проверка для удаления любых не-AFP, и, наконец, была использована программа CD-HIT для снижения идентичности последовательностей до 40%. Общее количество белков в положительном наборе данных составляет 481. Отрицательный набор данных содержит 9493 не-AFP, которые не перекрываются с AFP. Эти положительные и отрицательные наборы данных были разделены на два подмножества для обучения и тестирования.

Для честного сравнения подмножества поддерживаются так, чтобы они были количественно равными подмножествам, используемым в предыдущих подходах, то есть 300 AFP и 300 не-AFP в обучающем подмножестве, а также 181 AFP и 9193 не-AFP в тестовом подмножестве. Выбор белков из набора данных был случайным, чтобы гарантировать обобщение. В некоторых методах использовался несбалансированный обучающий набор данных для исследования влияния количества не-AFP на производительность прогнозирования 41 . Поэтому, чтобы определить влияние распределения данных, мы провели исследование абляции с 600, 900 и 1200 отрицательными обучающими выборками во время обучения, поддерживая постоянное количество положительных выборок i.e., 300.

Извлечение признаков

Состав пар аминокислот с интервалом k

Для выполнения задачи прогнозирования AFP использовались несколько подходов к машинному обучению 28,42 . Фундаментальной задачей при разработке модели классификации на основе вычислений является перевод белковых последовательностей в кодированные для интерпретации числовые признаки. Поэтому без преобразования последовательности в числовой вектор не обойтись. Для извлечения разнообразной информации из белковых последовательностей были разработаны различные схемы кодирования, в которых используются многочисленные особенности белка.Поскольку считалось, что стратегия выделения отдельных признаков может отражать только частичные знания цели 26 , в многочисленных исследованиях несколько методов выделения признаков комбинируются для повышения эффективности классификации 23,24,26,27 . Однако в недавних исследованиях было замечено, что жизнеспособный метод извлечения признаков, например CKSAAP, может в равной степени способствовать удовлетворительным характеристикам прогнозирования 43,44,45 . Таким образом, мы использовали схему кодирования CKSAAP в методе AFP-CKSAAP 36 .

Этот метод кодирования подчеркивает важность пар аминокислот и используется в различных методах классификации 34,35,46 . Вектор признаков получается путем вычисления частоты пар аминокислот, разделенных k ( j = 0, 1, 2,… k ) числом остатков. Представление основано на частоте k пар аминокислот в окне локальной последовательности. Если k = 2, то рассматриваются k пары с промежутками для j = 0, 1 и 2.Для каждого значения j соответствующие векторы признаков F j , т.е. F 0 , F 1 и F 2 , как показано в уравнениях. (9), (10) и (11), соответственно, оцениваются, каждое из которых имеет длину 400. Окончательный вектор признаков F вычисляется путем конкатенации отдельных векторов признаков, как показано в уравнении. (12). Значение каждого дескриптора вычисляется путем деления количества появлений этой пары аминокислот на общее количество пар остатков, разделенных j ( N 0 , N 1 N j ) в белке.Для j , N j = L — ( j + 1), где L — длина последовательности белка. На рис. 2 только несколько окон выделены для иллюстрации. Однако на практике все пары аминокислот покрываются перекрывающимися окнами с соответствующими значениями промежутков.

$$ {F} _ {0} = {\ left (\ frac {{F} _ {AA}} {{N} _ {0}}, \ frac {{F} _ {AC}} {{ N} _ {0}}, \ frac {{F} _ {AD}} {{N} _ {0}}, \ ldots, \ frac {{F} _ {YY}} {{N} _ {0 }} \ right)} _ {400} $$

(9)

$$ {F} _ {1} = {\ left (\ frac {{F} _ {AxA}} {{N} _ {1}}, \ frac {{F} _ {AxC}} {{ N} _ {1}}, \ frac {{F} _ {AxD}} {{N} _ {1}}, \ ldots, \ frac {{F} _ {YxY}} {{N} _ {1 }} \ right)} _ {400} $$

(10)

$$ {F} _ {2} = {\ left (\ frac {{F} _ {AxxA}} {{N} _ {2}}, \ frac {{F} _ {AxxC}} {{ N} _ {2}}, \ frac {{F} _ {AxxD}} {{N} _ {2}}, \ ldots, \ frac {{F} _ {YxxY}} {{N} _ {2 }} \ right)} _ {400} $$

(11)

$$ F = {F} _ {0} + \, + {F} _ {1} + \, + \ ldots + \, + {F} _ {j} + \, + \ ldots + \, + {F} _ {k}, \, F \ in {{\ mathbb {R}}} ^ {400 \ ast (k + 1)} $$

(12)

Рисунок 2

Иллюстрация вычисления дескриптора CKSAAP для k = 2.

Это очевидно из уравнения. (12) и рис. 2, схема кодирования CKSAAP использует тривиальную информацию из предыдущих функций, включая AAC, DPC и TPC, которые, как было доказано, играют жизненно важную роль в прогнозировании AFP в более ранних исследованиях 22,28, 29 .

Выбор инкрементального признака

Выбор ключевых репрезентативных параметров важен для повышения эффективности прогнозирования классификатора. AFP-CKSAAP был тщательно оценен для определения оптимального значения k путем ручного выполнения метода последовательного прямого выбора для определения наиболее подходящей функции.Наилучшая производительность классификатора была получена при сохранении значения зазора k = 8 36 . Из ссылок также очевидно, что вектор атрибутов, полученный из очень большого значения k , будет включать в себя избыточные функции и может не способствовать предсказанию 33,47 . Из-за важности сохранения этого значения k , в этом исследовании мы выполняем все анализы производительности, поддерживая постоянное значение зазора k = 8.

Из уравнения. (12), можно сделать вывод, что значение промежутка k = 8 в CKSAAP извлекает вектор признаков длиной 3600. В AFP-CKSAAP мы использовали все функции для классификации с использованием глубокой нейронной сети, которая дала удовлетворительные результаты, превзойдя ранее предложенные методы с достаточным запасом. Однако при обучении алгоритма с меньшим количеством обучающих выборок с большими размерами признаков существует вероятность того, что алгоритм AFP-CKSAAP может потерять свое обобщение для новых выборок.Поэтому в этом исследовании мы намерены достичь удовлетворительного прогноза, используя сокращенное количество функций. Это можно сделать путем уменьшения размеров с использованием существующих методов, таких как анализ основных компонентов 48 , индекс Джини 49 и взаимная информация 50 . Однако в последнее время автоматический кодировщик также эффективно используется для уменьшения размеров 51,52 . Автокодировщик, представляющий собой неконтролируемый алгоритм, превратился в успешную структуру нейронной сети, которая учится представлять входные данные в гораздо меньших размерах и регенерирует выходные данные, примерно похожие на входные, которые были ему переданы.Основная функция этого алгоритма — его способность восстанавливать входные данные, используя значительно меньшее количество функций, ограничивая скрытое пространство. Свойства скрытого пространства в автокодировщике делают его подходящим кандидатом для сжатия признаков в этом исследовании. Детали архитектуры автокодировщика и его использования в этом исследовании обсуждаются в следующих разделах.

Обучение в скрытом пространстве для классификации AFP

В этом исследовании мы разрабатываем новую модель классификации на основе автокодировщика для прогнозирования белков AFP.Предлагаемая модель представляет собой комбинацию автокодировщика и классификатора. Одновременно обучая автокодировщик и классификатор, мы успешно изучили представление скрытого пространства без шума, которое состоит из переменных, которые изучили наименее избыточные и наиболее важные атрибуты входных данных. Архитектура предлагаемой модели представлена ​​на рис. 3.

Рисунок 3

Архитектура предлагаемой модели для классификации AFP. Кодировщик состоит из входного слоя и четырех скрытых слоев и внедряет наблюдение в скрытое пространство.Выходной слой кодировщика — это скрытое пространство, связанное с последним скрытым слоем кодировщика, и служит входом для декодера и классификатора. Декодер является дополнением кодировщика и декодирует представление в исходное пространство. Классификатор представляет собой полностью связанный четырехслойный многослойный персептрон, настроенный для выполнения задачи прогнозирования.

Характеристики сети
Автокодировщик

Автокодировщик — это алгоритм обучения без учителя, цель которого — научиться воспроизводить ввод с использованием меньшего количества измерений.Мы предлагаем использовать многослойную архитектуру автокодировщика, которая была упорядочена, чтобы быть разреженной, для создания сжатого скрытого пространства. Применяя штраф за разреженность во время обучения, модель изучает наиболее информативные и отличительные признаки для классификации AFP из входных данных в качестве побочного продукта 40 . Архитектура состоит из трех частей: (i) кодировщик с некоторыми скрытыми слоями, (ii) скрытое пространство, которое представляет закодированный ввод в уменьшенных размерах за счет игнорирования шума на входе 53 , и (iii) декодер. который регенерирует ввод из переменных скрытого пространства.Количество скрытых слоев и количество нейронов в каждом слое кодера и декодера варьируется для получения приемлемой производительности. В этом исследовании кодер и декодер состоят из пяти уровней, включая четыре скрытых уровня. Количество нейронов во входном слое кодировщика равно длине вектора атрибутов, количество нейронов в первом скрытом слое равно 50, количество нейронов во втором и третьем скрытых слоях кодировщика равно 25 каждому. , а четвертый скрытый слой состоит из 10 нейронов.Количество нейронов в скрытом пространстве систематически изменяется для достижения наилучшей производительности. Наилучшая производительность была достигнута при выборе четырех нейронов в пространстве. Декодер является дополнением кодировщика, эта симметрия обеспечивает гладкую процедуру кодирования и декодирования 54 . Следовательно, количество нейронов в первом скрытом слое декодера равно количеству нейронов в последнем слое кодера и так далее, то есть количество нейронов в первом, втором, третьем и четвертом скрытых слоях декодера равно 10. , 25, 25 и 50 соответственно.Наконец, количество нейронов в выходном слое декодера равно длине вектора атрибутов.

Скрытое пространство представляет изученные репрезентативные функции и является средним уровнем автокодировщика. Он используется совместно кодером и декодером, выступая в качестве последнего уровня для кодера и входного уровня для декодера. В предложенной модели скрытое пространство было регуляризовано, чтобы оно было чувствительным к уникальным статистическим характеристикам входных данных, путем добавления члена регуляризации в функцию потерь.

Следовательно, модель извлекает информацию, используя только наиболее отличительные признаки, по существу обслуживая задачу классификации. Таким образом, классификатор обучен доминирующим признакам, а декодер обучен восстанавливать входные данные из скрытых переменных.

Классификатор

Классификатор предназначен для обработки переменных скрытого пространства, генерируемых модулем автоматического кодирования. Для классификации используется подход, аналогичный AFP-CKSAAP 36 i.е., реализован многослойный персептрон (MLP). Архитектура классификатора, показанная на рис. 3, состоит из трех скрытых слоев и выходного уровня. Последний уровень кодировщика, который представляет собой скрытое пространство, служит входным слоем для классификатора. Следовательно, входной слой классификатора имеет 4 нейрона, каждый скрытый слой имеет 10 нейронов, а количество нейронов в выходном слое эквивалентно количеству классов.

Метод обучения

Модель, состоящая из двух модулей, модуля автокодирования и модуля классификатора, как показано на рис.3, обучается с использованием Python на Keras (Tensorflow) в течение 1000 эпох с вариантом алгоритма градиентного спуска под названием Rmsprop 55 . Каждый уровень модуля автокодировщика использует выпрямленный линейный блок (ReLU) в качестве функции активации, чтобы избежать исчезающего градиента. Кроме того, слой исключения с 30% используется после каждого слоя для лучшего обобщения и во избежание переобучения. Для модуля классификации ReLU использовался как функция активации для всех уровней, кроме выходного уровня, где функция softmax используется для генерации вероятностей предсказания класса.

Предлагаемая модель генерирует два типа выходных данных: (i) декодированный вектор признаков и (ii) метку класса входного белка. Для модулей автокодировщика и классификатора мы использовали разные функции потерь, чтобы минимизировать соответствующие значения ошибок. Для обучения автокодировщика мы используем функцию потерь среднеквадратичной ошибки (MSE), тогда как модуль классификатора оптимизирован за счет минимизации двоичной перекрестной энтропии между истинным классом и предсказанными метками классов. MSE вычисляется между входным и декодированным векторами признаков автокодировщика.Результаты значений MSE для всех моделей автокодировщика представлены в таблице 1.

Таблица 1 Производительность предложенного метода оценивается по широко используемым метрикам для различных распределений данных и вариаций в размере скрытого пространства.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *