Меню Закрыть

Силовой агрегат автомобиля это – Силовой агрегат — Энциклопедия журнала «За рулем»

Трансмиссия — Энциклопедия журнала «За рулем»

Трансмиссия автомобиля выполняет две функции: она передает крутящий момент от двигателя ведущим колесам автомобиля, а также изменяет его величину и направление. При передаче крутящего момента трансмиссия, кроме того, перераспределяет его между отдельными колесами.

Назначение трансмиссии

Двигатели внутреннего сгорания, являющиеся на сегодняшний день основным источником энергии для автомобилей, имеют максимальные значения крутящего момента и мощности при разных значениях частоты вращения коленчатого вала двигателя. Для того чтобы использовать соответствующие обороты двигателя при различных скоростях движения автомобиля, необходимо иметь возможность изменять передаточное число трансмиссии. Общее передаточное число трансмиссии в любой момент времени можно определить отношением частоты вращения коленчатого вала двигателя к частоте вращения ведущих колес.
Крутящий момент, передающийся на ведущее колесо, определяет тяговое усилие, действующее в контакте колеса с дорогой. Это усилие определяется делением величины крутящего момента на радиус колеса.

Для движения автомобиля необходимо, чтобы тяговое усилие было больше суммы сил сопротивления движению (силы сопротивления качению, силы сопротивления подъему, силы инерции, аэродинамического сопротивления). Сумма сил сопротивления движению изменяется в широких пределах в зависимости от условий движения, поэтому трансмиссия автомобиля должна обеспечивать возможность изменения тягового усилия путем изменения в широком диапазоне крутящего момента. Максимальное тяговое усилие ограничивается не возможностями двигателя и трансмиссии, а сцеплением колес с дорогой. Это усилие не должно превышать силу сцепления, иначе ведущие колеса будут проскальзывать и автомобиль не сможет двигаться.
Силу сцепления можно определить, умножив часть массы автомобиля, приходящегося на одно колесо, на коэффициент сцепления — ϕ
. Коэффициент сцепления зависит от состояния дорожного покрытия, качества и состояния шин и находится в пределах от 0,1 до 0,9.
Наибольшее суммарное тяговое усилие может быть реализовано, если все колеса автомобиля будут ведущими. Тем не менее для движения автомобиля по дорогам с твердым покрытием достаточно двух ведущих колес на одной оси. Увеличение числа ведущих колес приводит к усложнению трансмиссии и увеличению механических потерь, поэтому конструкторам автомобилей приходится применять компромиссные решения в зависимости от назначения автомобиля.

Механические трансмиссии

Выбор типа привода ведущих колес и компоновки автомобиля определяют возможность в наибольшей степени реализовать те или иные его свойства. Особенности привода оказывают влияние на топливную экономичность, безопасность, массу и компактность автомобиля, а также на показатели устойчивости, управляемости и тормозной динамики.

Схема трансмиссии автомобиля классической компоновки:
1 — двигатель;
2 — коробка передач;
3 — главная передача и дифференциал;
4 — карданная передача

У автомобилей классической компоновки с колесной формулой 4×2 крутящий момент от двигателя передается через сцепление к коробке передач. В коробке передач крутящий момент может ступенчато изменяться в соответствии с включенной передачей. Двигатель, сцепление и коробка передач обычно объединяются в один блок, образуя

силовой агрегат. От коробки передач крутящий момент передается через карданную передачу к главной передаче, где увеличивается, и далее через дифференциал и полуоси подводится к ведущим колесам. Главная передача, дифференциал и полуоси с колесами образуют ведущий мост.

Схема трансмиссии переднеприводного автомобиля:
1 — двигатель;
2 — главная передача и дифференциал;
3 — коробка передач

Если силовой агрегат располагается в непосредственной близости от ведущего моста (переднеприводные автомобили и автомобили заднемоторной компоновки с задними ведущими колесами), в трансмиссии можно обойтись без карданной передачи между коробкой передач и главной передачей. При такой компоновке главная передача и дифференциал обычно объединяются в один агрегат, а для привода ведущих колес используются полуоси с шарнирами.

Трансмиссии полноприводных автомобилей рассмотрены в отдельной главе.

wiki.zr.ru

Что такое трансмиссия автомобиля?

Трансмиссия является одной из автомобильных систем, имеющих в своём составе различные узлы и детали. Их основная задача — передавать усилие от мотора на ведущий мост. Однако это лишь поверхностное представление о трансмиссии современного автомобиля, на самом деле она требует более подробного изучения.

Внимание. Система трансмиссии не только передаёт крутящий момент (КМ) от двигателя к колёсам машины, но и влияет на направление вращения и частоту, контролирует распределение усилия между осями.

Типы трансмиссий

На сегодняшний день в автомобильной промышленности нашли применение 4 типа трансмиссий.

Механическая коробка передач

Самой известной и старейшей является МКПП или механическая коробка передач. В этой трансмиссии вращение передаётся посредством работы шестерёнок, управление над которыми водитель осуществляет вручную.

Сильные стороны МКПП — довольно высокий КПД, хорошая экономия горючего, простота конструкции и надёжность, недорогое обслуживание. Что касается недостатков, то это низкий комфорт управления — современному автолюбителю не по душе каждый раз «дёргать» за ручку. Сегодня это неудобно, учитывая степень загруженности городских дорог и большое количество светофоров.

Несмотря на техническую архаичность, МКПП пока остаётся лидером среди остальных типов трансмиссий, устанавливаемых на автомобили в наши дни. Эксперты объясняют такой расклад низким бюджетом производства механических коробок передач.

Принцип работы «механики» осуществляется в паре со сцеплением. Узел позволяет временно разъединять силовой агрегат от трансмиссии, что даёт возможность быстро переключать передачи без ущерба для коробки и двигателя. Регулируется сцепление водителем из салона, путём нажатия ногой на педаль.

МКПП состоит из шестерёнок и осей валов. Сегодня большей частью применяются шестерни с косым зубом. Они менее шумные и прочные, отличаются максимальным сроком службы. Отдельного внимания заслуживают синхронизаторы, позволяющие обходиться без двойного выжима.

Роботизированная трансмиссия

«Робот» или роботизированная трансмиссия отличается от «механики» способом управления — здесь контролирует электроника, а не водитель. Хотя «робот» способен работать и в режиме полуавтоматическом, когда автомобилист сам переключает ступени, используя селектор или рулевые лепестки.

Плюсом роботизированной коробки можно смело назвать комфортность управления — нет необходимости каждый раз тянуть за рычаг. Что касается минуса, то основным является задержка при переключении, наблюдаемая многими владельцами автомобиля. Известны и другие недостатки — отсутствие плавности хода и резкие рывки.

Интересно. Озабоченные большим количеством недостатков роботизированной коробки передач, современные инженеры придумали эффективный выход из ситуации. В наши дни «робот» синхронизируют с 2 сцеплениями, что позволяет быстрее переключать ступени. Такой вариант называется селективной КПП.

Автоматическая коробка передач

«Автомат» или автоматизированная коробка передач — по популярности на втором месте после МКПП. Является сложной трансмиссией, состоящей из множества элементов, включая датчики. АКПП работает не со сцеплением, а с гидротрансформатором.

Принцип работы «автомата» схож с «роботом» тем, что переключение ступеней возможно как вручную, так и без помощи водителя. Однако АКПП не имеет характерного недостатка роботизированной коробки передач — резких рывков при переключении скоростей.

Недостатком АКПП по праву названа дороговизна. Её однозначно нельзя назвать и экономичной для автовладельца — расходует много масла. Это наряду с тем, что ремонт «автомата» обходится в большую сумму.

Различают 2 типа АКПП: с гидравликой и электроникой.

  1. Гидроавтомат считается самой простой коробкой, работающей в паре с турбинами рабочей жидкости.
  2. Электронная АКПП — модернизированный вариант гидроавтомата, позволяющий выбирать режимы Sport, Econom и Winter.

Бесступенчатая трансмиссия

Вариатор — это коробка, не имеющая ступеней переключения. Она так и называется — бесступенчатая КПП. Передача КМ в такой трансмиссии осуществляется цепью или ремнём, а передаточное соотношение регулируется шкивом.

Основные достоинства вариатора: увеличение ресурса автомотора, плавность хода и полное отсутствие рывков при передвижении. Что касается недостатков, то это медленный разгон и дорогое обслуживание.

Агрегаты трансмиссии автомобиля

Трансмиссию иначе можно назвать совокупностью определённых механизмов и агрегатов. Помимо КПП, в их число входят: сцепление, главная передача, дифференциал и кардан.

Диск сцепления

Путём воздействия на сцепление при остановке машины водителю не приходится глушить двигатель — включается нейтральная скорость, и коробка отсоединяется от мотора. В процессе езды сцепление вновь совмещает вращающийся двигатель и коробку.

Основная задача сцепления — соединять и отсоединять КПП с двигателем, делая это как можно плавнее. Размещается узел между силовой установкой и коробкой передач.

В трансмиссии автомобиля сцепление играет роль проводника. Именно оно передаёт усиление с объекта на объект. Управляет механизмом водитель, сидящий за рулём машины. Посредством педали он воздействует на привод, соответственно, осуществляется передача усилия.

Различают 3 типа привода, хотя в автомобилестроении чаще применяются лишь два: механический и гидравлический. Электрогидравлический привод такое распространение не получил.

Сцепление состоит из ряда функциональных элементов:

  • дисков, тесно взаимосвязанных между собою;
  • маховика, соединённого с корзиной — относится к самым прочным элементам, выдерживающим большие нагрузки;
  • вилки выключения, разжимающей диски при нажатии педали;
  • первичного вала коробки, на который передаётся КМ.

Принято различать «сухое» и «мокрое» сцепление.

  1. Первый тип осуществляет передачу усилия напрямую между диском мотора и КПП, благодаря силам трения. Он часто устанавливается на внедорожники, оснащённые полным приводом.
  2. «Мокрое» сцепление — использует гидротрансформаторное масло. Жидкость находится между обоими дисками. Такой вариант более надёжен, но стоит дороже обычного сцепления.

Главная передача

Это устройство предназначается для передачи КМ непосредственно к ведущему мосту. Состоит узел из полуоси, ведомой и ведущей шестерней, полуосевых шестерней и шестерней-сателлитов.

Основная задача главной передачи — увеличивать КМ силового агрегата и уменьшать частоту вращения ведущих колёс. На переднеприводных автомобилях этот узел расположен в КПП рядом с дифференциалом, а на заднеприводных — в картере моста.

Принято различать одинарную передачу и двойную, часто встречающуюся на грузовиках с увеличенным передаточным числом.

Дифференциал

Предназначен для передачи, изменения и распределения КМ. Один из конструктивных элементов трансмиссии. В зависимости от привода автомобиля располагается:

  • в картере — задний привод;
  • в КПП — передний привод;
  • в раздатке — полный привод.

Конструктивная особенность дифференциала заключается в наличии планетарного редуктора. А в зависимости от зубчатой передачи, принято различать:

  • конический дифференциал, используемый в качестве межколёсного;
  • цилиндрический, который ставится между осями автомобилей с полным приводом;
  • червячный — универсальный вариант, используемый и между колёсами, и между осями.

Дифференциал состоит из:

  • корпуса или чашки, воспринимающей КМ от главной передачи;
  • ведомой шестерни, жёстко зафиксированной на корпусе;
  • осей с вращающимися сателлитами;
  • шестерёнок.

Карданная передача

Кардан состоит из валов, промежуточной опоры, шарниров и шлицов, муфты.

  1. Задний вал кардана наделён 2 шарнирами, позволяющими плавно передавать КМ от КПП к главной передаче при езде автомобиля по кочкам.
  2. Шарниры с крестовинами дают возможность передачи КМ под углом.
  3. Шлицы предназначены гасить колебания автомобильного кузова.

Кардан — это один из важнейших узлов. Если передача бывает неправильно отрегулирована, возникают сложности в работе трансмиссии: неприятный шум, вибрационные колебания и другие неисправности.

Назначение трансмиссии автомобиля

Тем самым, назначение трансмиссии — связывать двигатель с ведущим мостом автомобиля, передавать КМ и перераспределять его между колёсами, а также изменять и направлять вращение.

Внимание. Благодаря работе трансмиссии мощность ДВС трансформируется в полезный вращательный момент. Автомобиль легко стартует с места, и едет дальше с определённо заданной скоростью.

 

Основные симптомы неисправности трансмиссии:

  • западание или заедание педали муфты;
  • появление шума в области сцепления;
  • наличие рывков при старте;
  • пробуксовка автомобиля;
  • утечка трансмиссионной жидкости.

Чтобы трансмиссия максимально эффективно выполняла свои функции, рекомендуется регулярно её обслуживать, своевременно выявлять и устранять неисправности.

osnova35.ru

Силовой агрегат транспортного средства (варианты)

Изобретение относится к транспортным средствам с двигателем внутреннего сгорания (ДВС), например, автомобилей, и передачи движения от ДВС к ведущим колесам.

В большинстве автомобилей применяется ступенчатое регулирование трансмиссии, которое осуществляется коробкой передач с несколькими ступенями регулирования, например в легковом автомобиле число ступеней в коробке передач обычно составляет 4…6. Такое ступенчатое регулирование применяется практически во всех грузовых автомобилях и тракторах. В сельскохозяйственных тракторах, где технология производства работ выдвигает особые требования к регулированию скорости движения, применяют коробки передач с 10…18 ступенями. Ограниченное число ступеней в коробке скоростей приводит к тому, что двигатель работает во многих случаях на неоптимальном режиме, что увеличивает расход топлива. Поэтому в настоящее время наблюдается тенденция увеличения числа ступеней в коробке передач. Например, в большегрузных автомобилях применяют коробки с 12…16 ступенями. Переход с одной ступени на другую в ходе движения автомобиля в таких многоступенчатых коробках скоростей создает для водителя большие трудности, что приводит к необходимости применения мехатронных систем управления.

Автоматические коробки передач, которые применяются в легковых автомобилях, автоматизируют только процесс переключения скоростей в ступенчатой коробке; за эту автоматизацию потребитель платит повышенным на 12…15% расходом топлива и повышенной стоимостью машины.

Из технической литературы известно большое разнообразие механических, гидравлических и электрических бесступенчато регулируемых передач. Казалось бы, именно их и надо применить вместо ступенчатой коробки в автомобиле. Однако многие десятилетия работы передовых производителей автомобилей в этом направлении не принесли желаемого результата.

Сегодня такие фирмы как Дженерал Моторс, Ауди, Хонда и Ниссан разрабатывают и успешно применяют вариаторы CVT. Например, одна из последних моделей этого вариатора (Multitronic) применительно к автомобилю Ауди А6 с объемом двигателя 2,8 литра передает вращающий момент 280 Нм, при этом расход топлива составляет 9,7 литра на 100 км, что на 0,2 литра меньше, чем в машина с обычной коробкой передач. Недостатком трансмиссий автомобиля с клиноременным вариатором является то, что по диапазону регулирования и по силовым возможностям эти вариаторы применимы только в легковых автомобилях малой мощности.

В настоящее время такие крупнейшие производители тракторов, как Fendt, Ferguson и John Deere, вот уже несколько лет производят трактора с двигателем мощностью 250…425 л.с., снабженные бесступенчато регулируемой трансмиссией. В этих трансмиссиях применяется либо механический вариатор с раздвижными коническими дисками (Fendt Vario), либо систему с разветвлением мощности, в одной из ветвей которой используется аксиально-поршневой насос-мотор регулируемой производительности (Auto Power Shift). Таким образом, казалось бы, проблема бесступенчатой трансмиссии наконец-то получила удовлетворительное решение. В то же время обращает на себя внимание тот факт, что эти бесступенчатые трансмиссии применены только в весьма крупных тракторах. Мы не наблюдаем применение этих передач на тракторах меньшей мощности, на грузовых и легковых автомобилях.

В качестве прототипа принят силовой агрегат транспортного средства с бесступенчатой трансмиссией (пат. РФ №2108926, B60K 17/08, опубл. 20.04.1998), содержащий двигатель внутреннего сгорания, трансмиссию, имеющую вариатор с валом, механизм преобразования вращательного движения выходного вала двигателя в колебательное, реверсивный редуктор, выходной вал вариатора соединен с преобразователем колебательного движения в реверсивное вращательное, представляющим собой ведущий вал, на котором посредством муфт свободного хода установлены одни конические шестерни, связанные между собой другими коническими шестернями, и соединенными с ведомыми валами, связанными с выходным валом, соединенным через сцепную муфту с ведомым валом трансмиссии.

Трансмиссия снабжена упругой муфтой, расположенной перед преобразователем вращательного движения выходного вала двигателя в колебательное, или в связи последнего с вариатором.

Однако, несмотря на то, что создана компактная трансмиссия с широким диапазоном передаточных отношений, значительны потери на трение в элементах трансмиссии, что увеличивает тепловую напряженность, износ и расход топлива.

Эти недостатки устраняются предлагаемым решением.

Решается задача создания конструкции силового агрегата транспортного средства применительно к четырехтактному четырехцилиндровому двигателю.

Технический результат — повышение топливной экономичности, снижение тепловой напряженности, снижение потерь на трение.

Этот технический результат достигается тем, что в варианте 1 в силовом агрегате транспортного средства, содержащем двигатель внутреннего сгорания, трансмиссию, имеющую вариатор с валом, механизм преобразования вращательного движения выходного вала двигателя в колебательное, что установлен четырехтактный четырехцилиндровый двигатель внутреннего сгорания, в котором механизм преобразования вращательного движения выходного вала в колебательное выполнен в виде дезаксиального привода поршней, при однорядном расположении цилиндров двигателя вариатор делит ряд цилиндров на две равные части, расположенные по обе стороны корпуса вариатора, который выполнен импульсным и содержит два входных вала, расположенных на одной геометрической оси по разные стороны от корпуса вариатора, каждый из этих валов несет кривошип и коническое зубчатое колесо, оба конических колеса находятся в зацеплении с зубчатым колесом, ось вращения которого свободно установлена в корпусе вариатора, каждый кривошип соединен с двуплечим рычагом, ось качания которого закреплена в ползуне с возможностью перемещения для изменения отношения плеч в двуплечем рычаге, один конец которого соединен с кривошипом входного вала, другой конец каждого двуплечего рычага с помощью шатуна соединен с ведущим звеном обгонной муфты, сидящей на выходном валу вариатора; вариант 2 отличается от варианта 1 тем, что при двухрядном расположении цилиндров двигателя по обе стороны от геометрической оси входного вала вариатора шатуны двигателя, расположенные в одном ряду с одной стороны от корпуса вариатора, установлены на ось, которая вмонтирована в пластину, связывающую эту ось с входным валом вариатора.

Применена дезаксиальная схема механизма привода поршней двигателя, в результате чего примерно в пять раз снижается работа сил трения между поршнем и цилиндром; только от этого на 16,3% повышается топливная экономичность ДВС, уменьшаются тепловая напряженность работы ДВС и износ деталей поршневой группы.

В импульсном вариаторе имеется качающееся звено, амплитуда качания которого регулируется. Далее это качательное движение с помощью обгонной муфты преобразуется в однонаправленное вращение выходного вала вариатора. Особенность применения импульсного вариатора в приводе от ДВС состоит в том, что в ДВС относительно просто получить качающееся звено для импульсного вариатора. Для этого достаточно возвратно-поступательное движение поршня, которое имеет место в ДВС, превратить в качательное движение некоего коромысла. В обычном ДВС возвратно-поступательное движение поршня превращается во вращение кривошипа коленчатого вала.

Предлагаемая схема достаточно проста в исполнении и технологична в работе.

Предлагаемое решение схематично представлено на чертежах.

Фиг.1. Трансмиссия с четырехтактным четырехцилиндровым однорядным двигателем.

Фиг.2. Трансмиссия с четырехтактным четырехцилиндровым двухрядным двигателем.

Фиг.3. Импульсный вариатор.

Фиг.4. Механизм движения поршня.

Силовой агрегат транспортного средства включает ДВС, трансмиссию, имеющую вариатор с валом, механизм преобразования вращательного движения выходного вала двигателя в колебательное.

ДВС включает механизм привода поршня 1, который совершает возвратно-поступательное движение в цилиндре 2, шатун 3 передает это движение на коромысло 4, которое совершает качательное движение относительно точки О, смещенной относительно оси движения поршня 1. Такая схема привода поршня называется дезаксиальной (фиг.4).

В рассмотренном примере такого привода точка О смещена относительно оси движения поршня 1 на расстояние, равное 0,5 h, где h — ход поршня. Тогда точка О располагается на окружности радиуса OO1=0,5 h и амплитуда качания коромысла 4 будет равна +/-45 угловых градусов от линии OO1, а размер коромысла 4 r=0,707 h.

Следствием такой кинематики привода поршня угол β отклонения шатуна 3 от вертикали во всех положениях поршня будет меньше, чем это имеет место в обычном ДВС. От величины угла β зависит сила прижатия поршня к цилиндру и тем самым определяется работа силы трения поршня о цилиндр. Чем больше угол β, тем больше потери на трение в контакте поршня и цилиндра. Нами вычислены работа сил трения за цикл движения поршня в этом контакте. Полученный результат оказался в пять раз меньшим, чем та же работа силы трения в обычном ДВС при одинаковых ходах поршня. Это приводит к повышению механического КПД ДВС и, как следствие, к уменьшению расхода топлива на 16,3%, уменьшению тепловой напряженности работы ДВС и существенному уменьшению износа деталей поршневой группы.

В настоящей заявке представлено два варианта силового агрегата применительно к четырехтактному четырех цилиндровому ДВС: вариант 1 — силовой агрегат с однорядным расположением цилиндров ДВС и вариант 2 — расположение цилиндров ДВС в два ряда, по два цилиндра в ряду.

Рассмотрим силовой агрегат, выполненный по варианту 1.

Силовой агрегат транспортного средства (фиг.1), состоит из однорядного четырехтактного четырехцилиндрового ДВС и бесступенчатой трансмиссии, включающей импульсный вариатор 5, причем вариатор 5 встроен в ДВС таким образом, что делит однорядный двигатель на две части: по одну сторону от вариатора 5 находятся поршни 1(1) и 1(3) двигателя, а по другую сторону — поршни 1(2) и 1(4), двигатель содержит также привод маховика 6, привод газораспределительного механизма 7 (оба эти привода описаны ниже) и устройство для подачи топлива в двигатель (в описании не рассматривается, так как не отличается от таких устройств, применяемых в обычных ДВС). Вариатор 5 соединен с выходными валами 8 и 9 двигателя, которые являются входными для вариатора 5. Трансмиссия содержит также механизм конического реверса, карданную передачу на ведущий мост и ведущие колеса транспортного средства (на чертежах не показаны). Привод маховика 6 осуществляется коромыслом 10, установленным на валу 8. От коромысла 10 приводится кривошип 11, связанный с маховиком 12.Привод распределительного вала 13 газораспределительного механизма 7 осуществляется либо от вала 8, либо от вала 9. Для этого на валах 8 и 9 установлены обгонные муфты 14 и пары зубчатых колес 15.

Импульсный вариатор 5 (фиг.3) имеет два входных вала 8 и 9, которые являются выходными валами двигателя, расположенных на одной геометрической оси OO, по разные стороны корпуса 16 вариатора. 5. Каждый из этих валов несет кривошип 17 и коническое колесо 18, находящиеся в зацеплении с коническим колесом 19, ось 20 которого находится в корпусе 16 вариатора. Конические колеса 18 и 19 образуют механизм конического реверса. Таким образом, валы 8 и 9 связаны между собой механизмом конического реверса. Это значит, что, если один из входных валов вращается в направлении часовой стрелки, то другой входной вал вращается в направлении против часовой стрелки. Кривошипы 17 валов 8 и 9 соединены с двуплечими рычагами 21, которые имеют опоры 22. Опоры 22 расположены на одной геометрической оси O1O1 в ползуне 23, который с помощью регулирующего механизма может перемещаться в вертикальном направлении (на фиг.3 регулирующий механизм не показан). Привод регулирующего механизма осуществляет электродвигатель. Опоры 22 обеспечивают свободу рычагам 21 в колебательном и поступательном движениях.

Двуплечие рычаги 21 в точках А1 и А2 соединены с тягами 24, передающими движение на обгонные муфты 25, установленные на выходном валу 26 вариатора 5 и приводящие его во вращение только в одном направлении. Для простоты объяснения на фиг.3 представлен весьма примитивный обгонный механизм храпового типа. Известны также другие обгонные механизмы, которые удовлетворяют высоким требованиям по несущей способности и долговечности и которые могут использоваться вместо храпового механизма.

Рассмотрим силовой агрегат, выполненный по варианту 2 (фиг.2).

Этот вариант выполнения силового агрегата интересен тем, что в сравнении с ДВС с однорядным расположением цилиндров и в сравнении с силовым агрегатом, выполненным по варианту 1, длина силового агрегата по варианту 2 оказывается меньше. Это важно в ряде случаев встройки силового агрегата в автомобиль. Таким образом, отличие силовых агрегатов, выполненных по варианту 1 и 2, заключается только в различных устройствах их ДВС, где цилиндры расположены с одной стороны от корпуса вариатора.

Схема силового агрегата, выполненная по варианту 2, содержит расположенные в два ряда поршни ДВС 1(1) и 1(3), образующие один ряд, и поршни 1(2) и 1(4), образующие второй ряд. Шатуны 3 поршней 1 (1) и 1(3) установлены на оси 27, а шатуны поршней 1(2) и 1(4) на оси 28. Оси 27 и 28 расположены на расстоянии r, например, r=0,707 h, no разные стороны от оси вала 8. Оси движения поршней сдвинуты относительно вала 8 на расстояние r и таким образом механизм привода поршней имеет дезаксиал, аналогичный тому, который описан выше (фиг.4).

Вал 8 соединен с осями 27 и 28 с помощью пластин 29, связывающих ось с входным валом вариатора 5. ДВС силового агрегата содержит привод маховика 6, привод газораспределительного механизма 7, механизм подачи топлива (на фиг.2 не показан) и соединен с импульсным вариатором 5 с помощью вала 8, который является ведущим валом вариатора 5. Трансмиссия силового агрегата содержит карданный вал, приводимый от выходного вала 26 вариатора 5, ведущий мост и колеса транспортного средства (Эти узлы трансмиссии на фиг.2 не показаны.).

Устройство механизма привода маховика 6, газораспределительного механизма 7 и импульсного вариатора 5 такое же, как описаны в силовом агрегате, выполненном по варианту 1.

Вал 8 является ведущим валом импульсного вариатора 5, а вал 9 используется только для привода газораспределительного механизма 7.

Силовой агрегат по варианту 1 работает следующим образом.

Цилиндры ДВС с поршнями 1(1), 1(2), 1(3), 1(4) расположены в ряд и пронумерованы в соответствии с порядком их работы. Пусть рабочий такт совершается в данный момент времени в цилиндре 1(1). Тогда поршнем 1(2) совершается такт сжатия рабочей смеси, в цилиндре с поршнем 1(3) — такт всасывания, в цилиндре с поршнем 1(4) — такт выхлопа. Поскольку рабочий ход происходит в цилиндре с поршнем 1(1), то от поршня в этом цилиндре через шатун 3 и коромысло 4 движение передается на вал 8, который в данный момент времени является ведущим. Для того, чтобы совершались эти такты в ДВС, валы 8 и 9 должны вращаться в разные стороны и амплитуды их качания должны быть равны. Оба эти условия соблюдаются в импульсном вариаторе, поскольку в нем имеется механизм конического реверса. В тот момент времени, когда заканчивается рабочий такт в цилиндре с поршнем 1(1), заканчивается такт сжатия в цилиндре с поршнем 1(2) и начинается в нем рабочий такт. Это значит, что вал 9 становится ведущим, а вал 8 — становится ведомым и изменяет направление своего вращения; в цилиндрах с поршнями 1(1) и 1(3) будут происходить такты выхлопа и сжатия, соответственно, а в цилиндре с поршнем 1(4) — всасывание. Далее рабочий такт совершается последовательно в цилиндрах с поршнями 1(3) и 1(4). Все эти такты совершаются в соответствии с принципом работы четырехтактного четырехцилиндрового ДВС.

Механизм привода маховика приводит его во вращение от качающегося коромысла 10 на кривошип 11. Для осуществления этого привода назначено соответствующее передаточное отношение в механизме привода маховика 6. В тех случаях, когда двигателю требуется подпитка энергией маховика, это автоматически происходит приводом маховика 12, в котором в этом случае приводится коромысло 10 от вращающегося маховика 12.

Распределительный вал 13 газораспределительного механизма вращается только в одну сторону, поскольку он приводится от того вала и обгонных муфт 14, которые в данный момент времени являются ведущими, в результате в соответствии с принципом действия ДВС происходит открытие клапанов и зажигание горючей смеси.

Механизм подачи топлива (на рисунках не показан), например механизм поворота заслонки карбюратора в бензиновых двигателях, снабжен соответствующим приводом. В вариаторе происходит передача движения от ведущего вала, например, от вала 8 на двуплечий рычаг 21 и далее через тягу 24 на одну обгонную муфту 25. Эта обгонная муфта приводит выходной вал 26 вариатора 5 и далее через механизмы трансмиссии приводятся во вращение ведущие колеса транспортного средства. В то же время вал 9 является ведомым, он приводится в качательное движение от зубчатых колес конического реверса, поэтому он вращается в противоположную сторону и потому передача сил на вторую обгонную муфту не происходит. Когда же ведущим становится вал 9, то вращающий момент на выходной вал 26 вариатора 5 передает именно эта вторая обгонная муфта. Таким образом, вращающий момент на выходной вал 26 вариатора 5, и значит, на ведущие колеса транспортного средства передается непрерывно. Регулирование передаточного отношения в вариаторе осуществляется перемещением ползуна 23. При этом синхронно меняется отношение плеч двуплечих рычагов 21 и тем самым меняется амплитуда качания точек A1 и А2 двуплечих рычагов 21 и обгонных муфт 25, тем самым меняется скорость выходного вала 26 и, значит, скорость движения транспортного средства. В примере разработки предложенного силового агрегата показано, что удается реализовать в процессе регулирования в вариаторе совпадение центров опор 22 с точками A1 и А2, тем самым достигается в вариаторе передаточное отношение, равное бесконечности, то есть такое положение, когда ведущие валы привода движутся, а выходной вал вариатора неподвижен и неподвижно транспортное средство. Важно отметить, во-первых, что такая регулировка в трансмиссии производится без размыкания кинематической цепи привода и, во-вторых, достижение нулевой скорости транспортного средства при регулировании в описанном импульсном вариаторе позволяет исключить из трансмиссии муфту сцепления.

Силовой агрегат по варианту 2 работает следующим образом.

Пусть рабочий такт совершается в цилиндре с поршнем 1(1), тогда под действием сил в нем ось 27 повернется относительно вала 8 по часовой стрелке, как показано стрелкой I на фиг.4. В результате в цилиндре с поршнем 1(3) происходит такт всасывания, ось 28 повернется, как показано стрелкой II на фиг.2 и в цилиндрах с поршнями 1(2) и 1(4) происходят такты сжатия и выхлопа, соответственно.

Вал 8 вращается по часовой стрелке и приводит вариатор 5, его механизмы движутся, как описано выше, и одна из обгонных муфт передает вращающий момент на выходной вал 26 вариатора и далее на колеса транспортного средства.

Когда заканчивается рабочий такт в цилиндре с поршнем 1(1), также заканчивается такт сжатия в цилиндре с поршнем 1(2) начинается рабочий такт в цилиндре с поршнем 1(2), в цилиндре с поршнем 1(4) начинается такт всасывания, а в цилиндрах с поршнями 1(1) и 1(3) такты выхлопа и сжатия, соответственно, вал 8 меняет направление вращения, и вторая обгонная муфта передает вращение на выходной вал 26 вариатора 5 и далее на колеса транспортного средства. Далее процесс передачи сил продолжается в соответствии с принципом работы четырехтактного четырехцилиндрового ДС и описанного выше импульсного вариатора.

Предлагаемое решение соответствует критериям «новизна» «изобретательский уровень» и «промышленная применимость».





edrid.ru

Силовой агрегат

 

Использование: в транспортных средствах , в частности в автомобилях высокой проходимости . Сущность изобретения: предложен силовой агрегат, например для автомобилей высокой проходимости, с двигателем 1 и гидростатическо-механической коробкой передач 2 известной конструкции. К последней присоединена коробка передач 10, в которой при помощи двух переключаемых муфт включается одна из двух передач, причем одна из этих передач применяется для трогания или для движения с ползущей скоростью и достигает повышения коэффициента трансформации до 25, другая передача действует на участке нормального движения. 3 з.п. ф-лы, 2 ил.

СОЮЗ СОВЕТСКИХ

СОЦИАЛИСТИЧЕСКИХ

РЕСПУБЛИК (я)5 В 60 К 17/00

ГОСУДАРСТВЕННОЕ ПАТЕНТНОЕ

ВЕДОМСТВО СССР (ГОСПАТЕНТ СССР) ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К ПАТЕ НТУ

СО (гд

О

О (21) 4614623/11 (22) 26.07,89 (46) 23.07,93. Бюл. М 27 (31) P 3825409.3 (32) 27.07.88 (33) DE (71) Ман Нуцфарцойге АГ (DE) (72) Фауст Хагин и Ханс Древитц (DE) (56) Проспект фирмы «Фоат», 05.1988. (54) СИЛОВОЙ АГРЕГАТ (57) Использование: в транспортных средствах, в частности в автомобилях высокой проходимости. Сущность изобретения:

Изобретение касается силового агрегата, в частности для колесных автомобилей высокой проходимости, с признаками вида, указанными в ограничительной части первого пункта формулы изобретения.

Цель изобретения — повышение эффективности путем расширения силового диапазона.

На фиг. 1 представлена кинематическая схема силового агрегата; на фиг. 2 — вариант кинематической схемы силового агрегата.

У силового агрегата, который является, например, частью автомобиля высокой проходимости, на чертеже показаны: 1 — двигатель, например, дизельный; 2 гидростатическо-механическая коробка передач с разветвленным потоком мощности, 3 — дифференциал, 3.1, 3.2 — с двух сторон отходящие от дифференциала 3 и соединеные с передними или задними осями ведущие валы. Коробка передач 2 имеет по меньшей мере четырехвальный планетарный дифференциал 4 по меньшей мере два гидротрансформатора 5, 6. B последнем случае

„„ „„1830011 АЗ предложен силовой агрегат, например для автомобилей высокой проходимости, с двигателем 1 и гидростатическо-механической коробкой передач 2 известной конструкции.

К последней присоединена коробка передач

10, в которой при помощи двух переключаемых муфт включается одна из двух передач, причем одна из этих передач применяется для трогания или для движения с ползущей скоростью и достигает повышения коэффициента трансформации до 25, другая передача действует на участке нормального движения. 3 з.п, ф-лы, 2 ил. речь идет о регулируемых гидромашинах, которые могут работать в обоих направлениях соответственно как двигатель или как насос и которые соединены непоказанными трубопроводами. Цифрой 7 обозначен входной главный вал, а цифровой 8 — выходной главный вал коробки передач 2. Входной вал

7 сообщен с выходным валом 9 двигателя.

Выходной вал 8 продлен в область дополнительной коробки передач 10, которая является промежуточным звеном между выходом коробки передач и входом дифференциала 3, Планетарный дифференциал 4 содержит, в представленном варианте, жестко посаженную на входной вал 7 большую солнечную шестерню 11, малую солнечную шестерню 12, водило 13, несколько двойных сателлитов 14, 15, соответственно закрепленных на подшипниках на водиле 13, жестко посаженном на выходной вал 8, жестко связанный с водилом 13 зубчатый венец 16 с наружными зубьями. а также эпицикл 17.

Последний имеет внутренние зубья, которые входят в зацепление с зубьями сателли1830011 тов 14, Малая солнечная шестерня 12 жестко соединена без возможности вращения с полым валом 18, который надет с возможностью вращения на выходной вал 7 и несет жестко закрепленное зубчатое колесо 19. С эпициклом 17 без возможности вращения соединено зубчатое колесо 20, с которым входит в зацепление зубчатое колесо 21, жестко сидящее на валу 22, который является приводным звеном гидротрансформатора 5, Число оборотов выходного вала 8 складывается из числа оборотов большой солнечной шестерни 11 и числа оборотов эпицикла 17, которое определяется окружной скорос»ью сателлитов 14 или водила 13.

Гидротран форматор 5 своим числом оборотов и направлением вращения через зубчатые колеса 21, 20 задает направление и частоту вращения эпицикла 17. Сидящее на полом валу 18 зубчатое колесо 19 входит в зацепление с установленным на промежуточном валу 23 зубчатым колесом 24, вращающимся на подшипниках, без осевого перемещения. Смежно с зубчатым колесом

24 расположено зубчатое колесо 25, также закрепленное в осевом направлении и способное вращаться на промежуточном валу

23, которое входит в зацепление с зубчатым венцом 16, имеющимся на водиле 13. Зубчатое колесо 24 через муфту 25, а зубчатое колесо 26 через муфту 27 могут сцепляться с промежуточным валом 23, причем в представленном здесь случае в качестве общего сцепления органа для обеих муфт 25 и 27 служит сцепная муфта 28, которая закреплена без возможности вращения на промежуточном валу 23 и может перемещаться в осевом направлении из одного состояния зацепления в другое через нейтральное положение. Промежуточный вал 23 может не посредствен но образо вы вать меха н ическую связь между планетарным дифференциалом 4 и гидротрансформатором 6, в таком случае последний таким образом был бы связан своим валом непосредственно с промежуточным валом 23. Однако в представленном варианте исполнения имеется непрямая связь, при которой промежуточный вал 23 несет жестко закрепленное зубчатое колесо 29, которое как часть передачи к гидротрансформатору 6 входит в зацепление с зубчатым колесом 30, которое со своей стороны, жестко посажено на вал 31, осуществляющий.механическую связь с гидротрансформатором 6. Гидротрансформатор 6 через две различные передачи попеременно соединяется с выходным валом 8 или с малой солнечной шестерней 12. Первая из двух передач осуществляется при включенной муфте 27 и отключенной 25 от водила

13 и расположенного на нем зубчатого колеса 16 через зубчатое колесо 26, промежуточный вал 23 и зубчатые колеса 29, 30. Вторая осуществляется от малой солнечной шестерни 12 и полого вала 18 с зубчатым колесом 19 через зубчатое колесо 24 при включенной муфте 25 (одновременно выключена муфта 27) на промежуточный вал 23 и от него через зубчатое колесо 19.

Названная первой передача между выходным валом 8 коробки передач 2 и гидротрансформатором 6 эффективна на первом этапе работы автомобиля, при котором соотношение чисел оборотов между выходным валом 8 и входным валом 7 и выходной и входной лежит между 0 и и риблизительно 50 . При этом муфта 27 включена, муфта

25 выключена. При этом гидротрансформатор 6 через вал 31, зубчатые колеса 30, 29, промежуточный вал 23 и зубчатые колеса 26.

16 соединен с водилом 13 планетарного дифференциала 4, Гидротрансформатор 5 работает в этом случае при вращении эпицикла 17 в направлении, противоположном направлению вращения проводимой двигателем большой солнечной шестерни 11, в качестве насоса и подает перемещаемую ..ощность к гидротрансформатору 6, который работает как двигатель и вращает вал

31, таким образом, мощность по вышеназванному пути передается на выходной вал.

При этом с возрастанием отношения чисел оборотов угол скольжения гидротрансформатора 5 возрастает от нуля до максимума, угол скольжения гидротрансформатора 6 от максимума возвращается к нулю, В конце этого первого этапа работы число оборотов гидротрансформатора 5 в известной мере настолько уменьшается, что он полностью или почти останавливается. В этом случае практически вся мощность двигателя передается от планетарного дифференциала 4 на выходной вал 8 коробки передач 2 только механически. В этой ситуации, если автомобиль должен продолжать ускоряться, происходит переход ко второму этапу работы, при котором соотношение чисел оборотов между выходным валом 8 и входным валом 7 п х:п х лежит между приблизительно 50 и приблизительно 100 . Этот переход от одного этапа работы к другому происходит по схеме выключением муфты 27 и включением муфты 25, так что в таком случае станет действовать вторая из двух возможных зубчатых передач, а именно-между гидротрансформатором 6 и малой солнечной шестерней 12. Приводная мощность для гидротрансформатора 6, работающего теперь как насос, передается при этом от ма1830011 лой солнечной шестерни 12 через полый вал

8, зубчатые колеса 19, 24, промежуточный вал 23, зубчатые колеса 29, 30 и вал 31. На этом втором этапе работы гидротрансформатор 5 при одинаковом вращении эпицикла 17 и большой солнечной шестерни 11 работает, таким образом, в качестве двигателя, который получает приводную мощность от гидротрансформатора 6, работающего как насос. через трубопроводы, которые не показаны.

Таким образом, на первом этапе работы между двигателем 1 и выходным валом 8 коробки передач 2 достигается увеличение момента с коэффициентом около 6. Зато на втором этапе работы этот момент с возрастанием отношения чисел оборотов (ns x .пей 50 ) снова понижается почти до 1.

Согласно изобретению, к коробке передач 2 с разветвленным потоком мощности, функционирующей как было описано выше, т.е. подводящей мощности от двигателя 1 к выходному валу 8, присоединена дополнительная коробка передач 10, описанная далее во всех деталях. Эта дополнительная коробка передач 10 содержит две различные передачи (кинематические цепи), включаемые одной из двух муфт 32 или 33, которые по выбору действуют между выходным валом 8 коробки передач 2 и входным валом дифференциала 3, не показанного в деталях.

В частности для этого случая на фиг. 1 представлены следующие органы передачи, а именно: — зубчатое колесо 34, жестко закрепленное на соответственно удлиненном выходном валу 8 коробки передач 2, — входящее в зацепление с зубчатым колесом 34 и жестко соединенное с валом муфты 35 зубчатое колесо 36, — промежуточное зубчатое колесо 37, соединяемое или разъединяемое с помощью муфты 32 с валом муфты 35, — входящее в зацепление с промежуточным зубчатым колесом 37 зубчатое колесо

38, соединяемое или разъединяемое при помощи муфты 33 с выходным валом 8 коробки передач 2, — соединенное с входным валом дифференциала 3 зубчатое колесо 39, входящее также в зацепление с промежуточным зубчатым колесом 37.

При этом зубчатые колеса 34 и 37 имеют соответственно равный диаметр, в сравнении с которым зубчатые колеса 36, 38 и 39 имеют больший, соответственно равный диаметр, который равняется примерно четырем диаметрам колес 34, 37, 5

При этом в дополнительной коробке передач 10 во включенном состоянии муфт, а именно при включенной муфте 33 и одновременно выключенной 32, передаточное отношение составляет 1. Зато в другом возможном состоянии включения, а именно при выключенной муфте 33 и включенной

32, напротив, передаточное отношение внутри дополнительной коробки передач 10 от зубчатого колеса 34 к зубчатому колесу 39 составляет, например, 1:4.

При варианте исполнения согласно фиг.

2 соответственно изобретению дополнительная коробка передач 10 состоит из следующих компонентов, а именно: — планетарного дифференциала 40, солнечная шестерня 41 которого жестко закреплена на соответственно удлиненном выходном валу 8 коробки передает 2 и входит в зацепление с сателлитами 42, 43, которые расположены на соединяемом или разъединяемом, при помощи муфты 33, с валом 8 водиле 44 и, кроме того, вход в зацепление с внутренним венцом эпицикла

45, эпицикл 45 несет многодисковую полумуфту 46 и может тормозиться или растормаживаться при помощи соответствующей, закрепленной без вращения, однако имеющей осевую подвижность многодисковой полумуфты 47, которая образует переключающий орган муфты 32; — зубчатое колесо 48, которое жестко закреплено без вращения на валу 49 водила 44; — промежуточного зубчатого колеса 50, которое входит в зацепление с зубчатым колесом 48 и образует связь между последним и зубчатым колесом 51, которое соединено с входным валом дифференциала 3.

Зубчатые колеса 48, 50, 51 все имеют одинаковый диаметр. В противоположность этому состоящие в зацеплении друг с другом зубчатые венцы колес 41, 42, 43 и 45 планетарного дифференциала подобраны так, что тогда, когда муфта 32 включена, а муфта 33 выключена, передаточное отношение составляет 1:4, напротив, когда муфта

33 включена, а муфта 32 выключена, передаточное отношение внутри дополнительной коробки передач между главным валом 8 и входным валом дифференциала 3 составляет 1. Однако вместо этих двух фиксированных передач могут быть выбраны также кинематические цепи с другими передаточными отношениями, при этом в каждом случае большее нужно задавать так, чтобы при умножении этого передаточного отношения на передаточное отношение коробки передач 2 общая степень трансформации между

1830011 двигателем 1 и входом дифференциала 3 получалась порядка от 24 до 25.

Для осуществления процесса управления предусмотрено управляющее устройство 52, которое получает от датчиков чисел оборотов данные о числе оборотов входного вала 7 (и входной) и выходного вала 8 (n выходной) коробки передачи 2, Кроме того, к управляющему устройству 52 подключены регулирующие устройства трансформаторов 5, 6, а также устройства воздействия на муфты 25, 27, 32, 33. Управляющее устройство 52 вызывает при этом, на основании полученных сигналов о числе оборотов, соответствун-щее регулирование угла проскальзывания гидротрансформаторов 5 и 6, а также включение той или другой передачи внутри коробки передач 2 через соответствующее воздействие на сцепные муфты 25 и 27, причем относящаяся к этому активизация управляющего устройства 52 вызывается поступающим извне сигналом 53, который основан на соответствующем требовании водителя, например, соответствующее воздействие педали акселератора, Независимо от воздействия на коробку передач 2 возможно воздействие управляющего устройства 52 также на дополнительную коробку передач 10 через подачу соответствующих команд переключения на муфты 32 и 33. Когда управляющее устройство 52 включает муфту 33 и одновременно выключает муфту 32, то это значит, что в описываемом случае внутри дополнительной коробки передач 10 действует передаточное отношение 1:1, и, таким образом, на вход дифференциала 3 действует непосредственно такое передаточное отношение, какое возникает на выходном валу 8 коробки передач 2.

Управляющее устройство 52, однако, может учитывать на основании полученного им дальнейшего сигнала 54, который вызывается водителем, соответствующее этому желание значительно снизить скорость при переходе от нормальной езды к езде с «ползущей» скоростью или начать движение в усложненных условиях (при сложном рельефе), благодаря тому, что управляющее устройство 52 на основании соответствующих расчетов возможности или программирования включает муфту 32, одновременно выключает муфту 33, одновременно и скачкообразно угол проскальзывания гидротрансформатора 6 устанавливает на

«ноль» и одновременно и также скачкообразно угол проскальзывания гидротрансформатора 5 устанавливает на максимум.

При этом можно считать достижение максимального рабочего расчета давления в гид5

55 равлической системе при решении о переключении дополнительной информацией включения замедления. То есть, управляющее устройство 52 вызывает в обоих гидротрансформаторах 5, 6 установку угла проскальзывания и состояния подачи, какие были бы иначе только в конце первого этапа работы при и выходной; и входной = около

50 . Если это характерное для соответствующего изобретения переключение происходит во время езды на этом этапе работы, то из-за действующего внутри дополнительной коробки передач 10 передаточного отношения, например 1;4, получается соответственно умножение его на передаточное отношение, имеющееся внутри коробки передачи 2, и соответственное умножение уровня трансформации. Получаемый при этом высокий общий уровень трансформации снижается при отклонении от этой величины (и выходной: и входной =

50 ) вверху и внизу соответственно на низкий уровень, Если нужно закончить езду с «ползущей» скоростью и перейти к нормальному движению, что можно сообщить управляющему устройству 52 через сигнал 53, то тогда управляющее устройство 52 вызывает включ»,.ние муфты 33 и одновременно выключает муфту 32, снова совместно с одновременной скачкообразной установкой угла проскальзывания гидротрансформатора 5 на максимум и одновременным возвращением угла проскальзывания гидротрансформатора 6 на «ноль», Благодаря этому передаточное отношение дополнительной коробки передач вновь становится 1;1, но так как при названном процессе переключения число оборотов выходного вала коробки передач (и выходной) сильно падает, отмечается проходящее постоянство чисел оборотов двигателя 1 или только пренебрежимо малое снижение числа оборотов, Благодаря предусмотренной соответствующей изобретению дополнительной коробке передач 10 с ее двумя различными кинематическими цепями, а также с муфтами 32 и 33 и указанными воздействиями на эти муфты и угол проскальзывания обоих гидротрансформаторов 5, 6 становится возможным, когда возникает необходимость подать к ведущим полуосям сравнительно высокий крутящий момент, притом с высоким комфортом переключения во время езды.

Остается отметить, что схемное воздействие на муфты 32, 33 производится независимо от воздействия на сцепные муфты 25 и

27, однако, в зависимости от каждый раз имеющегося состояния схемы в общей ком10

1830011

50

55 бинации коробок передач появляется соответствующее передаточное отношение привода.

Формула изобретения

1. Силовой агрегат, преимущественно для колесных автомобилей высокой проходимости, имеющих двигатель и гидростатическо-механическую коробку передач с разветвленным потоком мощностей, включающую по меньшей мере четырехвальный планетарный дифференциал с по меньшей мере двумя рядами сателлитов, двумя солнечными шестернями, водилом, колесом с внутренними зубьями, а также с двумя главными валами, образующими соответственно вход и выход с возможностью подключения к различным валам планетарного дифференциала, и две гидромашины, выполненные с возможностью соединения с одним из соответствующих валов планетарного дифференциала и работающие попеременно как насос или мотор, причем одна из гидромашин при по меньшей мере почти оставленной другой гидромашине выполнена с возможностью сообщения с выходным валом или с малой солнечной шестерней посредством включенной первой муфты или соответственно посредством включенной второй муфты, о т л и ч а юшийся тем, что, с целью повышения эффективности путем расширения силового диапазона, он снабжен дополнительной коробкой передач с двумя передачами, имеющей две муфты переключения, выполненные с возможностью включения первой передачи для трогания или для движения с «ползучей» скоростью с необходимым повышением уровня трансформации и включения второй передачи для нормального движения, а также предусмотрено управляющее устройство, выполненное с возможностью попеременного включения муфт переключения при одновременном скачкообразном уменьшении подачи одной гидромашины и увеличении подачи другой, 2. Агрегат по и. 1, отличающийся тем, что дополнительная коробка передач

45 включает жестко посаженное на соответственно удлиненный выходной вал коробки передач первое зубчатое колесо, второе зубчатое колесо, установленное с возможностью сцепления посредством первой муфты дополнительной коробки передач с выходным валом коробки передач, укрепленное на валу первой муфты третье зубчатое колесо, находящееся в зацеплении с первым зубчатым колесом, четвертое зубчатое колесо, установленное с возможностью сцепления с валом первой муфты посредством второй муфты дополнительной коробки передач и соединенное с выходным валом дифференциала четвертое зубчатое колесо, 3, Агрегат по п.2, отл и ч а ю щи и с я тем, что зубчатые колеса имеют одинаково больший диаметр, чем оба колеса одного размера.

4. Агрегат по и. 1, отличающийся тем, что дополнительная коробка включает планетарный дифференциал, солнечная шестерня которого расположена на соответственно удлиненном выходном валу коробки передач и находится в зацеплении с сателлитами, которые установлены на водиле, выполненном с возможностью зацепления с главным валом, посредством первой муфты. и, кроме того, входят в зацепление с эпициклом, который выполнен с возможностью вращения или фиксации с помощью первой многодисковой муфты, первое зубчатое колесо, соединенное с водилам или его валом, входящее в зацепление с зубчатым колесом второе зубчатое колесо равного диаметра и третье зубчатое колесо, входящее в зацепление с вторым зубчатым колесом, имеющее с ним равный диаметр и соединенное с входным валом дифференциала, причем при включенной второй муфте и отключенной первой муфте передаточное отношение 1:1, при отключенной второй муфте и включенной первой муфте, передаточное отношение между главным валом и входным валом дифференциала более 2.

1830011

Яу/

Составитель А. Барыков

Техред M.Ìîðãåíòàë Корректор Н, Гунько

Редактор С. Кулакова

Заказ 2487 Тираж Подписное

ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР

113035, Москва, Ж-35, Раушская наб., 4/5

Производственно-издательский комбинат «Патент», г. Ужгород, ул.Гагарина, 101

      

findpatent.ru

Силовой агрегат транспортного средства (варианты)

Изобретение относится к транспортным средствам с двигателем внутреннего сгорания (ДВС). Предложены два варианта силового агрегата. Первый вариант — для однорядного расположения цилиндров ДВС, когда вариатор делит ряд цилиндров на две равные части, расположенные по обе стороны корпуса вариатора на одной геометрической оси. Второй вариант — для двухрядного расположения цилиндров двигателя по обе стороны от геометрической оси входного вала вариатора, когда шатуны двигателя, расположенные в одном ряду с одной стороны от корпуса вариатора, установлены на ось, которая вмонтирована в пластину, связывающую эту ось с входным валом вариатора. Установлен четырехтактный ДВС, импульсный вариатор и применена дезаксиальная схема механизма привода поршней. Достигается повышение топливной экономичности, снижение тепловой напряженности, снижение потерь на трение. 2 н.п. ф-лы, 4 ил.

Изобретение относится к транспортным средствам с двигателем внутреннего сгорания (ДВС), например, автомобилей, и передачи движения от ДВС к ведущим колесам.

В большинстве автомобилей применяется ступенчатое регулирование трансмиссии, которое осуществляется коробкой передач с несколькими ступенями регулирования, например в легковом автомобиле число ступеней в коробке передач обычно составляет 4…6. Такое ступенчатое регулирование применяется практически во всех грузовых автомобилях и тракторах. В сельскохозяйственных тракторах, где технология производства работ выдвигает особые требования к регулированию скорости движения, применяют коробки передач с 10…18 ступенями. Ограниченное число ступеней в коробке скоростей приводит к тому, что двигатель работает во многих случаях на неоптимальном режиме, что увеличивает расход топлива. Поэтому в настоящее время наблюдается тенденция увеличения числа ступеней в коробке передач. Например, в большегрузных автомобилях применяют коробки с 12…16 ступенями. Переход с одной ступени на другую в ходе движения автомобиля в таких многоступенчатых коробках скоростей создает для водителя большие трудности, что приводит к необходимости применения мехатронных систем управления.

Автоматические коробки передач, которые применяются в легковых автомобилях, автоматизируют только процесс переключения скоростей в ступенчатой коробке; за эту автоматизацию потребитель платит повышенным на 12…15% расходом топлива и повышенной стоимостью машины.

Из технической литературы известно большое разнообразие механических, гидравлических и электрических бесступенчато регулируемых передач. Казалось бы, именно их и надо применить вместо ступенчатой коробки в автомобиле. Однако многие десятилетия работы передовых производителей автомобилей в этом направлении не принесли желаемого результата.

Сегодня такие фирмы как Дженерал Моторс, Ауди, Хонда и Ниссан разрабатывают и успешно применяют вариаторы CVT. Например, одна из последних моделей этого вариатора (Multitronic) применительно к автомобилю Ауди А6 с объемом двигателя 2,8 литра передает вращающий момент 280 Нм, при этом расход топлива составляет 9,7 литра на 100 км, что на 0,2 литра меньше, чем в машина с обычной коробкой передач. Недостатком трансмиссий автомобиля с клиноременным вариатором является то, что по диапазону регулирования и по силовым возможностям эти вариаторы применимы только в легковых автомобилях малой мощности.

В настоящее время такие крупнейшие производители тракторов, как Fendt, Ferguson и John Deere, вот уже несколько лет производят трактора с двигателем мощностью 250…425 л.с., снабженные бесступенчато регулируемой трансмиссией. В этих трансмиссиях применяется либо механический вариатор с раздвижными коническими дисками (Fendt Vario), либо систему с разветвлением мощности, в одной из ветвей которой используется аксиально-поршневой насос-мотор регулируемой производительности (Auto Power Shift). Таким образом, казалось бы, проблема бесступенчатой трансмиссии наконец-то получила удовлетворительное решение. В то же время обращает на себя внимание тот факт, что эти бесступенчатые трансмиссии применены только в весьма крупных тракторах. Мы не наблюдаем применение этих передач на тракторах меньшей мощности, на грузовых и легковых автомобилях.

В качестве прототипа принят силовой агрегат транспортного средства с бесступенчатой трансмиссией (пат. РФ №2108926, B60K 17/08, опубл. 20.04.1998), содержащий двигатель внутреннего сгорания, трансмиссию, имеющую вариатор с валом, механизм преобразования вращательного движения выходного вала двигателя в колебательное, реверсивный редуктор, выходной вал вариатора соединен с преобразователем колебательного движения в реверсивное вращательное, представляющим собой ведущий вал, на котором посредством муфт свободного хода установлены одни конические шестерни, связанные между собой другими коническими шестернями, и соединенными с ведомыми валами, связанными с выходным валом, соединенным через сцепную муфту с ведомым валом трансмиссии.

Трансмиссия снабжена упругой муфтой, расположенной перед преобразователем вращательного движения выходного вала двигателя в колебательное, или в связи последнего с вариатором.

Однако, несмотря на то, что создана компактная трансмиссия с широким диапазоном передаточных отношений, значительны потери на трение в элементах трансмиссии, что увеличивает тепловую напряженность, износ и расход топлива.

Эти недостатки устраняются предлагаемым решением.

Решается задача создания конструкции силового агрегата транспортного средства применительно к четырехтактному четырехцилиндровому двигателю.

Технический результат — повышение топливной экономичности, снижение тепловой напряженности, снижение потерь на трение.

Этот технический результат достигается тем, что в варианте 1 в силовом агрегате транспортного средства, содержащем двигатель внутреннего сгорания, трансмиссию, имеющую вариатор с валом, механизм преобразования вращательного движения выходного вала двигателя в колебательное, что установлен четырехтактный четырехцилиндровый двигатель внутреннего сгорания, в котором механизм преобразования вращательного движения выходного вала в колебательное выполнен в виде дезаксиального привода поршней, при однорядном расположении цилиндров двигателя вариатор делит ряд цилиндров на две равные части, расположенные по обе стороны корпуса вариатора, который выполнен импульсным и содержит два входных вала, расположенных на одной геометрической оси по разные стороны от корпуса вариатора, каждый из этих валов несет кривошип и коническое зубчатое колесо, оба конических колеса находятся в зацеплении с зубчатым колесом, ось вращения которого свободно установлена в корпусе вариатора, каждый кривошип соединен с двуплечим рычагом, ось качания которого закреплена в ползуне с возможностью перемещения для изменения отношения плеч в двуплечем рычаге, один конец которого соединен с кривошипом входного вала, другой конец каждого двуплечего рычага с помощью шатуна соединен с ведущим звеном обгонной муфты, сидящей на выходном валу вариатора; вариант 2 отличается от варианта 1 тем, что при двухрядном расположении цилиндров двигателя по обе стороны от геометрической оси входного вала вариатора шатуны двигателя, расположенные в одном ряду с одной стороны от корпуса вариатора, установлены на ось, которая вмонтирована в пластину, связывающую эту ось с входным валом вариатора.

Применена дезаксиальная схема механизма привода поршней двигателя, в результате чего примерно в пять раз снижается работа сил трения между поршнем и цилиндром; только от этого на 16,3% повышается топливная экономичность ДВС, уменьшаются тепловая напряженность работы ДВС и износ деталей поршневой группы.

В импульсном вариаторе имеется качающееся звено, амплитуда качания которого регулируется. Далее это качательное движение с помощью обгонной муфты преобразуется в однонаправленное вращение выходного вала вариатора. Особенность применения импульсного вариатора в приводе от ДВС состоит в том, что в ДВС относительно просто получить качающееся звено для импульсного вариатора. Для этого достаточно возвратно-поступательное движение поршня, которое имеет место в ДВС, превратить в качательное движение некоего коромысла. В обычном ДВС возвратно-поступательное движение поршня превращается во вращение кривошипа коленчатого вала.

Предлагаемая схема достаточно проста в исполнении и технологична в работе.

Предлагаемое решение схематично представлено на чертежах.

Фиг.1. Трансмиссия с четырехтактным четырехцилиндровым однорядным двигателем.

Фиг.2. Трансмиссия с четырехтактным четырехцилиндровым двухрядным двигателем.

Фиг.3. Импульсный вариатор.

Фиг.4. Механизм движения поршня.

Силовой агрегат транспортного средства включает ДВС, трансмиссию, имеющую вариатор с валом, механизм преобразования вращательного движения выходного вала двигателя в колебательное.

ДВС включает механизм привода поршня 1, который совершает возвратно-поступательное движение в цилиндре 2, шатун 3 передает это движение на коромысло 4, которое совершает качательное движение относительно точки О, смещенной относительно оси движения поршня 1. Такая схема привода поршня называется дезаксиальной (фиг.4).

В рассмотренном примере такого привода точка О смещена относительно оси движения поршня 1 на расстояние, равное 0,5 h, где h — ход поршня. Тогда точка О располагается на окружности радиуса OO1=0,5 h и амплитуда качания коромысла 4 будет равна +/-45 угловых градусов от линии OO1, а размер коромысла 4 r=0,707 h.

Следствием такой кинематики привода поршня угол β отклонения шатуна 3 от вертикали во всех положениях поршня будет меньше, чем это имеет место в обычном ДВС. От величины угла β зависит сила прижатия поршня к цилиндру и тем самым определяется работа силы трения поршня о цилиндр. Чем больше угол β, тем больше потери на трение в контакте поршня и цилиндра. Нами вычислены работа сил трения за цикл движения поршня в этом контакте. Полученный результат оказался в пять раз меньшим, чем та же работа силы трения в обычном ДВС при одинаковых ходах поршня. Это приводит к повышению механического КПД ДВС и, как следствие, к уменьшению расхода топлива на 16,3%, уменьшению тепловой напряженности работы ДВС и существенному уменьшению износа деталей поршневой группы.

В настоящей заявке представлено два варианта силового агрегата применительно к четырехтактному четырех цилиндровому ДВС: вариант 1 — силовой агрегат с однорядным расположением цилиндров ДВС и вариант 2 — расположение цилиндров ДВС в два ряда, по два цилиндра в ряду.

Рассмотрим силовой агрегат, выполненный по варианту 1.

Силовой агрегат транспортного средства (фиг.1), состоит из однорядного четырехтактного четырехцилиндрового ДВС и бесступенчатой трансмиссии, включающей импульсный вариатор 5, причем вариатор 5 встроен в ДВС таким образом, что делит однорядный двигатель на две части: по одну сторону от вариатора 5 находятся поршни 1(1) и 1(3) двигателя, а по другую сторону — поршни 1(2) и 1(4), двигатель содержит также привод маховика 6, привод газораспределительного механизма 7 (оба эти привода описаны ниже) и устройство для подачи топлива в двигатель (в описании не рассматривается, так как не отличается от таких устройств, применяемых в обычных ДВС). Вариатор 5 соединен с выходными валами 8 и 9 двигателя, которые являются входными для вариатора 5. Трансмиссия содержит также механизм конического реверса, карданную передачу на ведущий мост и ведущие колеса транспортного средства (на чертежах не показаны). Привод маховика 6 осуществляется коромыслом 10, установленным на валу 8. От коромысла 10 приводится кривошип 11, связанный с маховиком 12.Привод распределительного вала 13 газораспределительного механизма 7 осуществляется либо от вала 8, либо от вала 9. Для этого на валах 8 и 9 установлены обгонные муфты 14 и пары зубчатых колес 15.

Импульсный вариатор 5 (фиг.3) имеет два входных вала 8 и 9, которые являются выходными валами двигателя, расположенных на одной геометрической оси OO, по разные стороны корпуса 16 вариатора. 5. Каждый из этих валов несет кривошип 17 и коническое колесо 18, находящиеся в зацеплении с коническим колесом 19, ось 20 которого находится в корпусе 16 вариатора. Конические колеса 18 и 19 образуют механизм конического реверса. Таким образом, валы 8 и 9 связаны между собой механизмом конического реверса. Это значит, что, если один из входных валов вращается в направлении часовой стрелки, то другой входной вал вращается в направлении против часовой стрелки. Кривошипы 17 валов 8 и 9 соединены с двуплечими рычагами 21, которые имеют опоры 22. Опоры 22 расположены на одной геометрической оси O1O1 в ползуне 23, который с помощью регулирующего механизма может перемещаться в вертикальном направлении (на фиг.3 регулирующий механизм не показан). Привод регулирующего механизма осуществляет электродвигатель. Опоры 22 обеспечивают свободу рычагам 21 в колебательном и поступательном движениях.

Двуплечие рычаги 21 в точках А1 и А2 соединены с тягами 24, передающими движение на обгонные муфты 25, установленные на выходном валу 26 вариатора 5 и приводящие его во вращение только в одном направлении. Для простоты объяснения на фиг.3 представлен весьма примитивный обгонный механизм храпового типа. Известны также другие обгонные механизмы, которые удовлетворяют высоким требованиям по несущей способности и долговечности и которые могут использоваться вместо храпового механизма.

Рассмотрим силовой агрегат, выполненный по варианту 2 (фиг.2).

Этот вариант выполнения силового агрегата интересен тем, что в сравнении с ДВС с однорядным расположением цилиндров и в сравнении с силовым агрегатом, выполненным по варианту 1, длина силового агрегата по варианту 2 оказывается меньше. Это важно в ряде случаев встройки силового агрегата в автомобиль. Таким образом, отличие силовых агрегатов, выполненных по варианту 1 и 2, заключается только в различных устройствах их ДВС, где цилиндры расположены с одной стороны от корпуса вариатора.

Схема силового агрегата, выполненная по варианту 2, содержит расположенные в два ряда поршни ДВС 1(1) и 1(3), образующие один ряд, и поршни 1(2) и 1(4), образующие второй ряд. Шатуны 3 поршней 1 (1) и 1(3) установлены на оси 27, а шатуны поршней 1(2) и 1(4) на оси 28. Оси 27 и 28 расположены на расстоянии r, например, r=0,707 h, no разные стороны от оси вала 8. Оси движения поршней сдвинуты относительно вала 8 на расстояние r и таким образом механизм привода поршней имеет дезаксиал, аналогичный тому, который описан выше (фиг.4).

Вал 8 соединен с осями 27 и 28 с помощью пластин 29, связывающих ось с входным валом вариатора 5. ДВС силового агрегата содержит привод маховика 6, привод газораспределительного механизма 7, механизм подачи топлива (на фиг.2 не показан) и соединен с импульсным вариатором 5 с помощью вала 8, который является ведущим валом вариатора 5. Трансмиссия силового агрегата содержит карданный вал, приводимый от выходного вала 26 вариатора 5, ведущий мост и колеса транспортного средства (Эти узлы трансмиссии на фиг.2 не показаны.).

Устройство механизма привода маховика 6, газораспределительного механизма 7 и импульсного вариатора 5 такое же, как описаны в силовом агрегате, выполненном по варианту 1.

Вал 8 является ведущим валом импульсного вариатора 5, а вал 9 используется только для привода газораспределительного механизма 7.

Силовой агрегат по варианту 1 работает следующим образом.

Цилиндры ДВС с поршнями 1(1), 1(2), 1(3), 1(4) расположены в ряд и пронумерованы в соответствии с порядком их работы. Пусть рабочий такт совершается в данный момент времени в цилиндре 1(1). Тогда поршнем 1(2) совершается такт сжатия рабочей смеси, в цилиндре с поршнем 1(3) — такт всасывания, в цилиндре с поршнем 1(4) — такт выхлопа. Поскольку рабочий ход происходит в цилиндре с поршнем 1(1), то от поршня в этом цилиндре через шатун 3 и коромысло 4 движение передается на вал 8, который в данный момент времени является ведущим. Для того, чтобы совершались эти такты в ДВС, валы 8 и 9 должны вращаться в разные стороны и амплитуды их качания должны быть равны. Оба эти условия соблюдаются в импульсном вариаторе, поскольку в нем имеется механизм конического реверса. В тот момент времени, когда заканчивается рабочий такт в цилиндре с поршнем 1(1), заканчивается такт сжатия в цилиндре с поршнем 1(2) и начинается в нем рабочий такт. Это значит, что вал 9 становится ведущим, а вал 8 — становится ведомым и изменяет направление своего вращения; в цилиндрах с поршнями 1(1) и 1(3) будут происходить такты выхлопа и сжатия, соответственно, а в цилиндре с поршнем 1(4) — всасывание. Далее рабочий такт совершается последовательно в цилиндрах с поршнями 1(3) и 1(4). Все эти такты совершаются в соответствии с принципом работы четырехтактного четырехцилиндрового ДВС.

Механизм привода маховика приводит его во вращение от качающегося коромысла 10 на кривошип 11. Для осуществления этого привода назначено соответствующее передаточное отношение в механизме привода маховика 6. В тех случаях, когда двигателю требуется подпитка энергией маховика, это автоматически происходит приводом маховика 12, в котором в этом случае приводится коромысло 10 от вращающегося маховика 12.

Распределительный вал 13 газораспределительного механизма вращается только в одну сторону, поскольку он приводится от того вала и обгонных муфт 14, которые в данный момент времени являются ведущими, в результате в соответствии с принципом действия ДВС происходит открытие клапанов и зажигание горючей смеси.

Механизм подачи топлива (на рисунках не показан), например механизм поворота заслонки карбюратора в бензиновых двигателях, снабжен соответствующим приводом. В вариаторе происходит передача движения от ведущего вала, например, от вала 8 на двуплечий рычаг 21 и далее через тягу 24 на одну обгонную муфту 25. Эта обгонная муфта приводит выходной вал 26 вариатора 5 и далее через механизмы трансмиссии приводятся во вращение ведущие колеса транспортного средства. В то же время вал 9 является ведомым, он приводится в качательное движение от зубчатых колес конического реверса, поэтому он вращается в противоположную сторону и потому передача сил на вторую обгонную муфту не происходит. Когда же ведущим становится вал 9, то вращающий момент на выходной вал 26 вариатора 5 передает именно эта вторая обгонная муфта. Таким образом, вращающий момент на выходной вал 26 вариатора 5, и значит, на ведущие колеса транспортного средства передается непрерывно. Регулирование передаточного отношения в вариаторе осуществляется перемещением ползуна 23. При этом синхронно меняется отношение плеч двуплечих рычагов 21 и тем самым меняется амплитуда качания точек A1 и А2 двуплечих рычагов 21 и обгонных муфт 25, тем самым меняется скорость выходного вала 26 и, значит, скорость движения транспортного средства. В примере разработки предложенного силового агрегата показано, что удается реализовать в процессе регулирования в вариаторе совпадение центров опор 22 с точками A1 и А2, тем самым достигается в вариаторе передаточное отношение, равное бесконечности, то есть такое положение, когда ведущие валы привода движутся, а выходной вал вариатора неподвижен и неподвижно транспортное средство. Важно отметить, во-первых, что такая регулировка в трансмиссии производится без размыкания кинематической цепи привода и, во-вторых, достижение нулевой скорости транспортного средства при регулировании в описанном импульсном вариаторе позволяет исключить из трансмиссии муфту сцепления.

Силовой агрегат по варианту 2 работает следующим образом.

Пусть рабочий такт совершается в цилиндре с поршнем 1(1), тогда под действием сил в нем ось 27 повернется относительно вала 8 по часовой стрелке, как показано стрелкой I на фиг.4. В результате в цилиндре с поршнем 1(3) происходит такт всасывания, ось 28 повернется, как показано стрелкой II на фиг.2 и в цилиндрах с поршнями 1(2) и 1(4) происходят такты сжатия и выхлопа, соответственно.

Вал 8 вращается по часовой стрелке и приводит вариатор 5, его механизмы движутся, как описано выше, и одна из обгонных муфт передает вращающий момент на выходной вал 26 вариатора и далее на колеса транспортного средства.

Когда заканчивается рабочий такт в цилиндре с поршнем 1(1), также заканчивается такт сжатия в цилиндре с поршнем 1(2) начинается рабочий такт в цилиндре с поршнем 1(2), в цилиндре с поршнем 1(4) начинается такт всасывания, а в цилиндрах с поршнями 1(1) и 1(3) такты выхлопа и сжатия, соответственно, вал 8 меняет направление вращения, и вторая обгонная муфта передает вращение на выходной вал 26 вариатора 5 и далее на колеса транспортного средства. Далее процесс передачи сил продолжается в соответствии с принципом работы четырехтактного четырехцилиндрового ДС и описанного выше импульсного вариатора.

Предлагаемое решение соответствует критериям «новизна» «изобретательский уровень» и «промышленная применимость».

Формула изобретения

1. Силовой агрегат транспортного средства, содержащий двигатель внутреннего сгорания, трансмиссию, имеющую вариатор с валом, механизм преобразования вращательного движения выходного вала двигателя в колебательное, отличающийся тем, что установлен четырехтактный четырехцилиндровый двигатель внутреннего сгорания, в котором механизм преобразования вращательного движения выходного вала в колебательное выполнен в виде дезаксиального привода поршней, при однорядном расположении цилиндров двигателя вариатор делит ряд цилиндров на две равные части, расположенные по обе стороны корпуса вариатора, который выполнен импульсным и содержит два входных вала, расположенных на одной геометрической оси по разные стороны от корпуса вариатора, каждый из этих валов несет кривошип и коническое зубчатое колесо, оба конических колеса находятся в зацеплении с зубчатым колесом, ось вращения которого свободно установлена в корпусе вариатора, каждый кривошип соединен с двуплечим рычагом, ось качания которого закреплена в ползуне с возможностью перемещения для изменения отношения плеч в двуплечем рычаге, один конец которого соединен с кривошипом входного вала, а другой конец каждого двуплечего рычага с помощью шатуна соединен с ведущим звеном обгонной муфты, сидящей на выходном валу вариатора.

2. Силовой агрегат транспортного средства, содержащий двигатель внутреннего сгорания, трансмиссию, имеющую вариатор с валом, механизм преобразования вращательного движения выходного вала двигателя в колебательное, отличающийся тем, что установлен четырехтактный четырехцилиндровый двигатель внутреннего сгорания, в котором механизм преобразования вращательного движения выходного вала в колебательное выполнен в виде дезаксиального привода поршней, при двухрядном расположении цилиндров двигателя по обе стороны от геометрической оси входного вала вариатора шатуны двигателя, расположенные в одном ряду с одной стороны от корпуса вариатора, установлены на оси, которая вмонтирована в пластину, связывающую эту ось с входным валом вариатора, который выполнен импульсным и содержит два входных вала, расположенных на одной геометрической оси по разные стороны от корпуса вариатора, каждый из этих валов несет кривошип и коническое зубчатое колесо, оба конических колеса находятся в зацеплении с зубчатым колесом, ось вращения которого свободно установлена в корпусе вариатора, каждый кривошип соединен с двуплечим рычагом, ось качания которого закреплена в ползуне с возможностью перемещения для изменения отношения плеч в двуплечем рычаге, один конец которого соединен с кривошипом входного вала, а другой конец каждого двуплечего рычага с помощью шатуна соединен с ведущим звеном обгонной муфты, сидящей на выходном валу вариатора.

bankpatentov.ru

силовой агрегат транспортного средства (варианты) — патент РФ 2499170

Изобретение относится к транспортным средствам с двигателем внутреннего сгорания (ДВС). Предложены два варианта силового агрегата. Первый вариант — для однорядного расположения цилиндров ДВС, когда вариатор делит ряд цилиндров на две равные части, расположенные по обе стороны корпуса вариатора на одной геометрической оси. Второй вариант — для двухрядного расположения цилиндров двигателя по обе стороны от геометрической оси входного вала вариатора, когда шатуны двигателя, расположенные в одном ряду с одной стороны от корпуса вариатора, установлены на ось, которая вмонтирована в пластину, связывающую эту ось с входным валом вариатора. Установлен четырехтактный ДВС, импульсный вариатор и применена дезаксиальная схема механизма привода поршней. Достигается повышение топливной экономичности, снижение тепловой напряженности, снижение потерь на трение. 2 н.п. ф-лы, 4 ил.

Рисунки к патенту РФ 2499170

Изобретение относится к транспортным средствам с двигателем внутреннего сгорания (ДВС), например, автомобилей, и передачи движения от ДВС к ведущим колесам.

В большинстве автомобилей применяется ступенчатое регулирование трансмиссии, которое осуществляется коробкой передач с несколькими ступенями регулирования, например в легковом автомобиле число ступеней в коробке передач обычно составляет 4 6. Такое ступенчатое регулирование применяется практически во всех грузовых автомобилях и тракторах. В сельскохозяйственных тракторах, где технология производства работ выдвигает особые требования к регулированию скорости движения, применяют коробки передач с 10 18 ступенями. Ограниченное число ступеней в коробке скоростей приводит к тому, что двигатель работает во многих случаях на неоптимальном режиме, что увеличивает расход топлива. Поэтому в настоящее время наблюдается тенденция увеличения числа ступеней в коробке передач. Например, в большегрузных автомобилях применяют коробки с 12 16 ступенями. Переход с одной ступени на другую в ходе движения автомобиля в таких многоступенчатых коробках скоростей создает для водителя большие трудности, что приводит к необходимости применения мехатронных систем управления.

Автоматические коробки передач, которые применяются в легковых автомобилях, автоматизируют только процесс переключения скоростей в ступенчатой коробке; за эту автоматизацию потребитель платит повышенным на 12 15% расходом топлива и повышенной стоимостью машины.

Из технической литературы известно большое разнообразие механических, гидравлических и электрических бесступенчато регулируемых передач. Казалось бы, именно их и надо применить вместо ступенчатой коробки в автомобиле. Однако многие десятилетия работы передовых производителей автомобилей в этом направлении не принесли желаемого результата.

Сегодня такие фирмы как Дженерал Моторс, Ауди, Хонда и Ниссан разрабатывают и успешно применяют вариаторы CVT. Например, одна из последних моделей этого вариатора (Multitronic) применительно к автомобилю Ауди А6 с объемом двигателя 2,8 литра передает вращающий момент 280 Нм, при этом расход топлива составляет 9,7 литра на 100 км, что на 0,2 литра меньше, чем в машина с обычной коробкой передач. Недостатком трансмиссий автомобиля с клиноременным вариатором является то, что по диапазону регулирования и по силовым возможностям эти вариаторы применимы только в легковых автомобилях малой мощности.

В настоящее время такие крупнейшие производители тракторов, как Fendt, Ferguson и John Deere, вот уже несколько лет производят трактора с двигателем мощностью 250 425 л.с., снабженные бесступенчато регулируемой трансмиссией. В этих трансмиссиях применяется либо механический вариатор с раздвижными коническими дисками (Fendt Vario), либо систему с разветвлением мощности, в одной из ветвей которой используется аксиально-поршневой насос-мотор регулируемой производительности (Auto Power Shift). Таким образом, казалось бы, проблема бесступенчатой трансмиссии наконец-то получила удовлетворительное решение. В то же время обращает на себя внимание тот факт, что эти бесступенчатые трансмиссии применены только в весьма крупных тракторах. Мы не наблюдаем применение этих передач на тракторах меньшей мощности, на грузовых и легковых автомобилях.

В качестве прототипа принят силовой агрегат транспортного средства с бесступенчатой трансмиссией (пат. РФ № 2108926, B60K 17/08, опубл. 20.04.1998), содержащий двигатель внутреннего сгорания, трансмиссию, имеющую вариатор с валом, механизм преобразования вращательного движения выходного вала двигателя в колебательное, реверсивный редуктор, выходной вал вариатора соединен с преобразователем колебательного движения в реверсивное вращательное, представляющим собой ведущий вал, на котором посредством муфт свободного хода установлены одни конические шестерни, связанные между собой другими коническими шестернями, и соединенными с ведомыми валами, связанными с выходным валом, соединенным через сцепную муфту с ведомым валом трансмиссии.

Трансмиссия снабжена упругой муфтой, расположенной перед преобразователем вращательного движения выходного вала двигателя в колебательное, или в связи последнего с вариатором.

Однако, несмотря на то, что создана компактная трансмиссия с широким диапазоном передаточных отношений, значительны потери на трение в элементах трансмиссии, что увеличивает тепловую напряженность, износ и расход топлива.

Эти недостатки устраняются предлагаемым решением.

Решается задача создания конструкции силового агрегата транспортного средства применительно к четырехтактному четырехцилиндровому двигателю.

Технический результат — повышение топливной экономичности, снижение тепловой напряженности, снижение потерь на трение.

Этот технический результат достигается тем, что в варианте 1 в силовом агрегате транспортного средства, содержащем двигатель внутреннего сгорания, трансмиссию, имеющую вариатор с валом, механизм преобразования вращательного движения выходного вала двигателя в колебательное, что установлен четырехтактный четырехцилиндровый двигатель внутреннего сгорания, в котором механизм преобразования вращательного движения выходного вала в колебательное выполнен в виде дезаксиального привода поршней, при однорядном расположении цилиндров двигателя вариатор делит ряд цилиндров на две равные части, расположенные по обе стороны корпуса вариатора, который выполнен импульсным и содержит два входных вала, расположенных на одной геометрической оси по разные стороны от корпуса вариатора, каждый из этих валов несет кривошип и коническое зубчатое колесо, оба конических колеса находятся в зацеплении с зубчатым колесом, ось вращения которого свободно установлена в корпусе вариатора, каждый кривошип соединен с двуплечим рычагом, ось качания которого закреплена в ползуне с возможностью перемещения для изменения отношения плеч в двуплечем рычаге, один конец которого соединен с кривошипом входного вала, другой конец каждого двуплечего рычага с помощью шатуна соединен с ведущим звеном обгонной муфты, сидящей на выходном валу вариатора; вариант 2 отличается от варианта 1 тем, что при двухрядном расположении цилиндров двигателя по обе стороны от геометрической оси входного вала вариатора шатуны двигателя, расположенные в одном ряду с одной стороны от корпуса вариатора, установлены на ось, которая вмонтирована в пластину, связывающую эту ось с входным валом вариатора.

Применена дезаксиальная схема механизма привода поршней двигателя, в результате чего примерно в пять раз снижается работа сил трения между поршнем и цилиндром; только от этого на 16,3% повышается топливная экономичность ДВС, уменьшаются тепловая напряженность работы ДВС и износ деталей поршневой группы.

В импульсном вариаторе имеется качающееся звено, амплитуда качания которого регулируется. Далее это качательное движение с помощью обгонной муфты преобразуется в однонаправленное вращение выходного вала вариатора. Особенность применения импульсного вариатора в приводе от ДВС состоит в том, что в ДВС относительно просто получить качающееся звено для импульсного вариатора. Для этого достаточно возвратно-поступательное движение поршня, которое имеет место в ДВС, превратить в качательное движение некоего коромысла. В обычном ДВС возвратно-поступательное движение поршня превращается во вращение кривошипа коленчатого вала.

Предлагаемая схема достаточно проста в исполнении и технологична в работе.

Предлагаемое решение схематично представлено на чертежах.

Фиг.1. Трансмиссия с четырехтактным четырехцилиндровым однорядным двигателем.

Фиг.2. Трансмиссия с четырехтактным четырехцилиндровым двухрядным двигателем.

Фиг.3. Импульсный вариатор.

Фиг.4. Механизм движения поршня.

Силовой агрегат транспортного средства включает ДВС, трансмиссию, имеющую вариатор с валом, механизм преобразования вращательного движения выходного вала двигателя в колебательное.

ДВС включает механизм привода поршня 1, который совершает возвратно-поступательное движение в цилиндре 2, шатун 3 передает это движение на коромысло 4, которое совершает качательное движение относительно точки О, смещенной относительно оси движения поршня 1. Такая схема привода поршня называется дезаксиальной (фиг.4).

В рассмотренном примере такого привода точка О смещена относительно оси движения поршня 1 на расстояние, равное 0,5 h, где h — ход поршня. Тогда точка О располагается на окружности радиуса OO 1=0,5 h и амплитуда качания коромысла 4 будет равна +/-45 угловых градусов от линии OO1, а размер коромысла 4 r=0,707 h.

Следствием такой кинематики привода поршня угол отклонения шатуна 3 от вертикали во всех положениях поршня будет меньше, чем это имеет место в обычном ДВС. От величины угла зависит сила прижатия поршня к цилиндру и тем самым определяется работа силы трения поршня о цилиндр. Чем больше угол , тем больше потери на трение в контакте поршня и цилиндра. Нами вычислены работа сил трения за цикл движения поршня в этом контакте. Полученный результат оказался в пять раз меньшим, чем та же работа силы трения в обычном ДВС при одинаковых ходах поршня. Это приводит к повышению механического КПД ДВС и, как следствие, к уменьшению расхода топлива на 16,3%, уменьшению тепловой напряженности работы ДВС и существенному уменьшению износа деталей поршневой группы.

В настоящей заявке представлено два варианта силового агрегата применительно к четырехтактному четырех цилиндровому ДВС: вариант 1 — силовой агрегат с однорядным расположением цилиндров ДВС и вариант 2 — расположение цилиндров ДВС в два ряда, по два цилиндра в ряду.

Рассмотрим силовой агрегат, выполненный по варианту 1.

Силовой агрегат транспортного средства (фиг.1), состоит из однорядного четырехтактного четырехцилиндрового ДВС и бесступенчатой трансмиссии, включающей импульсный вариатор 5, причем вариатор 5 встроен в ДВС таким образом, что делит однорядный двигатель на две части: по одну сторону от вариатора 5 находятся поршни 1(1) и 1(3) двигателя, а по другую сторону — поршни 1(2) и 1(4), двигатель содержит также привод маховика 6, привод газораспределительного механизма 7 (оба эти привода описаны ниже) и устройство для подачи топлива в двигатель (в описании не рассматривается, так как не отличается от таких устройств, применяемых в обычных ДВС). Вариатор 5 соединен с выходными валами 8 и 9 двигателя, которые являются входными для вариатора 5. Трансмиссия содержит также механизм конического реверса, карданную передачу на ведущий мост и ведущие колеса транспортного средства (на чертежах не показаны). Привод маховика 6 осуществляется коромыслом 10, установленным на валу 8. От коромысла 10 приводится кривошип 11, связанный с маховиком 12.Привод распределительного вала 13 газораспределительного механизма 7 осуществляется либо от вала 8, либо от вала 9. Для этого на валах 8 и 9 установлены обгонные муфты 14 и пары зубчатых колес 15.

Импульсный вариатор 5 (фиг.3) имеет два входных вала 8 и 9, которые являются выходными валами двигателя, расположенных на одной геометрической оси OO, по разные стороны корпуса 16 вариатора. 5. Каждый из этих валов несет кривошип 17 и коническое колесо 18, находящиеся в зацеплении с коническим колесом 19, ось 20 которого находится в корпусе 16 вариатора. Конические колеса 18 и 19 образуют механизм конического реверса. Таким образом, валы 8 и 9 связаны между собой механизмом конического реверса. Это значит, что, если один из входных валов вращается в направлении часовой стрелки, то другой входной вал вращается в направлении против часовой стрелки. Кривошипы 17 валов 8 и 9 соединены с двуплечими рычагами 21, которые имеют опоры 22. Опоры 22 расположены на одной геометрической оси O1O1 в ползуне 23, который с помощью регулирующего механизма может перемещаться в вертикальном направлении (на фиг.3 регулирующий механизм не показан). Привод регулирующего механизма осуществляет электродвигатель. Опоры 22 обеспечивают свободу рычагам 21 в колебательном и поступательном движениях.

Двуплечие рычаги 21 в точках А 1 и А2 соединены с тягами 24, передающими движение на обгонные муфты 25, установленные на выходном валу 26 вариатора 5 и приводящие его во вращение только в одном направлении. Для простоты объяснения на фиг.3 представлен весьма примитивный обгонный механизм храпового типа. Известны также другие обгонные механизмы, которые удовлетворяют высоким требованиям по несущей способности и долговечности и которые могут использоваться вместо храпового механизма.

Рассмотрим силовой агрегат, выполненный по варианту 2 (фиг.2).

Этот вариант выполнения силового агрегата интересен тем, что в сравнении с ДВС с однорядным расположением цилиндров и в сравнении с силовым агрегатом, выполненным по варианту 1, длина силового агрегата по варианту 2 оказывается меньше. Это важно в ряде случаев встройки силового агрегата в автомобиль. Таким образом, отличие силовых агрегатов, выполненных по варианту 1 и 2, заключается только в различных устройствах их ДВС, где цилиндры расположены с одной стороны от корпуса вариатора.

Схема силового агрегата, выполненная по варианту 2, содержит расположенные в два ряда поршни ДВС 1(1) и 1(3), образующие один ряд, и поршни 1(2) и 1(4), образующие второй ряд. Шатуны 3 поршней 1 (1) и 1(3) установлены на оси 27, а шатуны поршней 1(2) и 1(4) на оси 28. Оси 27 и 28 расположены на расстоянии r, например, r=0,707 h, no разные стороны от оси вала 8. Оси движения поршней сдвинуты относительно вала 8 на расстояние r и таким образом механизм привода поршней имеет дезаксиал, аналогичный тому, который описан выше (фиг.4).

Вал 8 соединен с осями 27 и 28 с помощью пластин 29, связывающих ось с входным валом вариатора 5. ДВС силового агрегата содержит привод маховика 6, привод газораспределительного механизма 7, механизм подачи топлива (на фиг.2 не показан) и соединен с импульсным вариатором 5 с помощью вала 8, который является ведущим валом вариатора 5. Трансмиссия силового агрегата содержит карданный вал, приводимый от выходного вала 26 вариатора 5, ведущий мост и колеса транспортного средства (Эти узлы трансмиссии на фиг.2 не показаны.).

Устройство механизма привода маховика 6, газораспределительного механизма 7 и импульсного вариатора 5 такое же, как описаны в силовом агрегате, выполненном по варианту 1.

Вал 8 является ведущим валом импульсного вариатора 5, а вал 9 используется только для привода газораспределительного механизма 7.

Силовой агрегат по варианту 1 работает следующим образом.

Цилиндры ДВС с поршнями 1(1), 1(2), 1(3), 1(4) расположены в ряд и пронумерованы в соответствии с порядком их работы. Пусть рабочий такт совершается в данный момент времени в цилиндре 1(1). Тогда поршнем 1(2) совершается такт сжатия рабочей смеси, в цилиндре с поршнем 1(3) — такт всасывания, в цилиндре с поршнем 1(4) — такт выхлопа. Поскольку рабочий ход происходит в цилиндре с поршнем 1(1), то от поршня в этом цилиндре через шатун 3 и коромысло 4 движение передается на вал 8, который в данный момент времени является ведущим. Для того, чтобы совершались эти такты в ДВС, валы 8 и 9 должны вращаться в разные стороны и амплитуды их качания должны быть равны. Оба эти условия соблюдаются в импульсном вариаторе, поскольку в нем имеется механизм конического реверса. В тот момент времени, когда заканчивается рабочий такт в цилиндре с поршнем 1(1), заканчивается такт сжатия в цилиндре с поршнем 1(2) и начинается в нем рабочий такт. Это значит, что вал 9 становится ведущим, а вал 8 — становится ведомым и изменяет направление своего вращения; в цилиндрах с поршнями 1(1) и 1(3) будут происходить такты выхлопа и сжатия, соответственно, а в цилиндре с поршнем 1(4) — всасывание. Далее рабочий такт совершается последовательно в цилиндрах с поршнями 1(3) и 1(4). Все эти такты совершаются в соответствии с принципом работы четырехтактного четырехцилиндрового ДВС.

Механизм привода маховика приводит его во вращение от качающегося коромысла 10 на кривошип 11. Для осуществления этого привода назначено соответствующее передаточное отношение в механизме привода маховика 6. В тех случаях, когда двигателю требуется подпитка энергией маховика, это автоматически происходит приводом маховика 12, в котором в этом случае приводится коромысло 10 от вращающегося маховика 12.

Распределительный вал 13 газораспределительного механизма вращается только в одну сторону, поскольку он приводится от того вала и обгонных муфт 14, которые в данный момент времени являются ведущими, в результате в соответствии с принципом действия ДВС происходит открытие клапанов и зажигание горючей смеси.

Механизм подачи топлива (на рисунках не показан), например механизм поворота заслонки карбюратора в бензиновых двигателях, снабжен соответствующим приводом. В вариаторе происходит передача движения от ведущего вала, например, от вала 8 на двуплечий рычаг 21 и далее через тягу 24 на одну обгонную муфту 25. Эта обгонная муфта приводит выходной вал 26 вариатора 5 и далее через механизмы трансмиссии приводятся во вращение ведущие колеса транспортного средства. В то же время вал 9 является ведомым, он приводится в качательное движение от зубчатых колес конического реверса, поэтому он вращается в противоположную сторону и потому передача сил на вторую обгонную муфту не происходит. Когда же ведущим становится вал 9, то вращающий момент на выходной вал 26 вариатора 5 передает именно эта вторая обгонная муфта. Таким образом, вращающий момент на выходной вал 26 вариатора 5, и значит, на ведущие колеса транспортного средства передается непрерывно. Регулирование передаточного отношения в вариаторе осуществляется перемещением ползуна 23. При этом синхронно меняется отношение плеч двуплечих рычагов 21 и тем самым меняется амплитуда качания точек A1 и А 2 двуплечих рычагов 21 и обгонных муфт 25, тем самым меняется скорость выходного вала 26 и, значит, скорость движения транспортного средства. В примере разработки предложенного силового агрегата показано, что удается реализовать в процессе регулирования в вариаторе совпадение центров опор 22 с точками A1 и А2, тем самым достигается в вариаторе передаточное отношение, равное бесконечности, то есть такое положение, когда ведущие валы привода движутся, а выходной вал вариатора неподвижен и неподвижно транспортное средство. Важно отметить, во-первых, что такая регулировка в трансмиссии производится без размыкания кинематической цепи привода и, во-вторых, достижение нулевой скорости транспортного средства при регулировании в описанном импульсном вариаторе позволяет исключить из трансмиссии муфту сцепления.

Силовой агрегат по варианту 2 работает следующим образом.

Пусть рабочий такт совершается в цилиндре с поршнем 1(1), тогда под действием сил в нем ось 27 повернется относительно вала 8 по часовой стрелке, как показано стрелкой I на фиг.4. В результате в цилиндре с поршнем 1(3) происходит такт всасывания, ось 28 повернется, как показано стрелкой II на фиг.2 и в цилиндрах с поршнями 1(2) и 1(4) происходят такты сжатия и выхлопа, соответственно.

Вал 8 вращается по часовой стрелке и приводит вариатор 5, его механизмы движутся, как описано выше, и одна из обгонных муфт передает вращающий момент на выходной вал 26 вариатора и далее на колеса транспортного средства.

Когда заканчивается рабочий такт в цилиндре с поршнем 1(1), также заканчивается такт сжатия в цилиндре с поршнем 1(2) начинается рабочий такт в цилиндре с поршнем 1(2), в цилиндре с поршнем 1(4) начинается такт всасывания, а в цилиндрах с поршнями 1(1) и 1(3) такты выхлопа и сжатия, соответственно, вал 8 меняет направление вращения, и вторая обгонная муфта передает вращение на выходной вал 26 вариатора 5 и далее на колеса транспортного средства. Далее процесс передачи сил продолжается в соответствии с принципом работы четырехтактного четырехцилиндрового ДС и описанного выше импульсного вариатора.

Предлагаемое решение соответствует критериям «новизна» «изобретательский уровень» и «промышленная применимость».

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Силовой агрегат транспортного средства, содержащий двигатель внутреннего сгорания, трансмиссию, имеющую вариатор с валом, механизм преобразования вращательного движения выходного вала двигателя в колебательное, отличающийся тем, что установлен четырехтактный четырехцилиндровый двигатель внутреннего сгорания, в котором механизм преобразования вращательного движения выходного вала в колебательное выполнен в виде дезаксиального привода поршней, при однорядном расположении цилиндров двигателя вариатор делит ряд цилиндров на две равные части, расположенные по обе стороны корпуса вариатора, который выполнен импульсным и содержит два входных вала, расположенных на одной геометрической оси по разные стороны от корпуса вариатора, каждый из этих валов несет кривошип и коническое зубчатое колесо, оба конических колеса находятся в зацеплении с зубчатым колесом, ось вращения которого свободно установлена в корпусе вариатора, каждый кривошип соединен с двуплечим рычагом, ось качания которого закреплена в ползуне с возможностью перемещения для изменения отношения плеч в двуплечем рычаге, один конец которого соединен с кривошипом входного вала, а другой конец каждого двуплечего рычага с помощью шатуна соединен с ведущим звеном обгонной муфты, сидящей на выходном валу вариатора.

2. Силовой агрегат транспортного средства, содержащий двигатель внутреннего сгорания, трансмиссию, имеющую вариатор с валом, механизм преобразования вращательного движения выходного вала двигателя в колебательное, отличающийся тем, что установлен четырехтактный четырехцилиндровый двигатель внутреннего сгорания, в котором механизм преобразования вращательного движения выходного вала в колебательное выполнен в виде дезаксиального привода поршней, при двухрядном расположении цилиндров двигателя по обе стороны от геометрической оси входного вала вариатора шатуны двигателя, расположенные в одном ряду с одной стороны от корпуса вариатора, установлены на оси, которая вмонтирована в пластину, связывающую эту ось с входным валом вариатора, который выполнен импульсным и содержит два входных вала, расположенных на одной геометрической оси по разные стороны от корпуса вариатора, каждый из этих валов несет кривошип и коническое зубчатое колесо, оба конических колеса находятся в зацеплении с зубчатым колесом, ось вращения которого свободно установлена в корпусе вариатора, каждый кривошип соединен с двуплечим рычагом, ось качания которого закреплена в ползуне с возможностью перемещения для изменения отношения плеч в двуплечем рычаге, один конец которого соединен с кривошипом входного вала, а другой конец каждого двуплечего рычага с помощью шатуна соединен с ведущим звеном обгонной муфты, сидящей на выходном валу вариатора.

www.freepatent.ru

Силовой агрегат полноприводного автомобиля | Банк патентов

Изобретение относится к транспортному машиностроению и может быть использовано в трансмиссиях полноприводных автомобилей.

Известен силовой агрегат полноприводного автомобиля (см. книгу В.К.Вахламов “Автомобиль “НИВА” ВАЗ-2121”. — М.: издательство “Транспорт”, 1986 г., стр. 42, рис. 33; стр. 52-59, рис. 40), содержащий двигатель, сцепление, коробку передач жестко соединенные между собой, и раздаточную коробку с межосевым дифференциалом, входной вал которой соединен с выходным валом коробки передач через демпферную муфту и карданную передачу.

Недостатки данного силового агрегата заключаются в следующем:

1. В схеме соединения коробки передач и раздаточной коробки, при которой блок-двигатель, сцепление, коробка передач и раздаточная коробка закреплены на автомобиле отдельно друг от друга, при этом добиться соосности между узлами очень сложно, поэтому валы коробки передач и раздаточной коробки соединены карданным валом. Применение карданного соединения допускает несоосность в соединяющихся валах. Но при использовании карданного вала возникает дополнительная вибрация, переходящая на кузов, что снижает комфортабельность полноприводного автомобиля. Замена карданного вала на шарнир равных угловых скоростей незначительно уменьшает вибрацию, но увеличивает стоимость автомобиля.

2. В схеме выполнения раздаточной коробки: взаимного расположения входного вала и выходного вала привода заднего ведущего моста (см. классификацию раздаточных коробок в книге И.С.Цитович и др., “Трансмиссии автомобилей”, Минск, “Наука и техника”, 1979 г., стр.59-68). Данная раздаточная коробка выполнена по схеме “без прямой передачи”, т.е. входной вал и выходной вал привода заднего ведущего моста выполнены не соосно, при этом крутящий момент с входного вала передается на оба выходных вала привода переднего и заднего ведущих мостов через зубчатые зацепления, в которых происходят потери мощности при движении полноприводного автомобиля, а следовательно понижается КПД.

Известно также техническое решение силового агрегата полноприводного автомобиля (см. свидетельство на полезную модель №18987, МПК В 60 К 17/02 от 02.04.2001 г.), содержащего двигатель, сцепление, коробку передач, жестко соединенные между собой, раздаточную коробку, жестко связанную с коробкой передач проставкой, обеспечивающей их соосное соединение.

Применяемая в этом техническом решении раздаточная коробка выполнена по схеме “с прямой передачей”, т.е. входной вал и выходной вал привода заднего ведущего моста выполнены соосно, при этом крутящий момент с входного вала на выходной вал привода заднего ведущего моста передается напрямую, т.е. без потерь. Данная схема выполнения раздаточной коробки обеспечивает более высокий КПД по сравнению со схемой “без прямой передачи”.

Раздаточная коробка, применяемая в этом силовом агрегате в зависимости от класса и комфортабельности автомобиля может быть исполнена как с межосевым дифференциалом, так и без него. (Выполнение раздаточной коробки “с прямой передачей” и с межосевым дифференциалом см., например, патент РФ №2160192, МПК 7 В 60 К 17/346, от 11.10.1999 г.)

Данное техническое решение принято за ближайший аналог (прототип).

Основным недостатком известного технического решения является расположение межосевого дифференциала внутри раздаточной коробки, что является конструктивно сложно для всего силового агрегата, т.к. необходим входной вал с подшипником, через который он установлен в картере раздаточной коробки. Этот вал жестко соединен с картером межосевого дифференциала.

Предложенное техническое решение направлено на упрощение конструкции силового агрегата полноприводного автомобиля.

Указанный технический результат при осуществлении заявляемого изобретения достигается тем, что известный силовой агрегат полноприводного автомобиля содержит двигатель, сцепление, коробку передач с выходным валом, раздаточную коробку с внутренней полостью и выходными валами приводов переднего и заднего ведущих мостов, проставку с внутренней полостью, жестко связанную и центрированную с коробкой передач и раздаточной коробкой, межосевой дифференциал.

Отличительными признаками заявляемого изобретения является то, что межосевой дифференциал жестко установлен на выходном валу коробки передач во внутренней полости проставки.

Межосевой дифференциал выполнен герметично закрытым с образованием внутренней полости, которая связана с внутренней полостью раздаточной коробки, образуя при этом общую масляную ванну.

Внутренняя полость проставки выполнена герметичной и соединена с внутренней полостью раздаточной коробки, образуя при этом общую масляную ванну, обеспечивающую смазку межосевого дифференциала, выполненного без герметизации.

При исследовании отличительных признаков заявляемого изобретения не выявлено каких-либо известных аналогичных решений.

Проведенный заявителем анализ уровня техники, включающий поиск по патентным и научно-техническим источникам информации, имеющейся в распоряжении заявителя, выявления источников, содержащих сведения об аналогах заявленного изобретения, позволил установить, что заявитель не обнаружил аналог, характеризующийся признаками, тождественными всем существенным признакам заявленного изобретения. Определение из перечня выявленных аналогов прототипа, как наиболее близкого по совокупности существенных признаков аналога, позволил выявить совокупность существенных признаков по отношению к усматриваемому заявителем техническому результату отличительных признаков в заявленном устройстве, изложенных в формуле изобретения.

Следовательно, заявляемое изобретение соответствует критерию “НОВИЗНА”.

Для проверки соответствия заявляемого изобретения критерию “ИЗОБРЕТАТЕЛЬСКИЙ УРОВЕНЬ” заявитель провел поиск известных решений, для выявления признаков, совпадающих с отличительными от прототипа признаками заявляемого устройства. Результаты поиска показали, что заявляемое изобретение не вытекает для специалиста явным образом из известного уровня техники, поскольку из уровня техники, определенного заявителем, не выявлено влияние предусматриваемых существенными признаками заявленного изобретения преобразований на достижение технического результата.

Следовательно, заявляемое изобретение соответствует критерию “ИЗОБРЕТАТЕЛЬСКИЙ УРОВЕНЬ”.

Сущность изобретения поясняется чертежом, где на фиг.1 изображена принципиальная схема силового агрегата полноприводного автомобиля.

Силовой агрегат полноприводного автомобиля содержит двигатель 1, сцепление 2, коробку передач 3 с выходным валом 4, раздаточную коробку 5 с внутренней полостью 6 и с выходными валами 7 и 8 приводов переднего и заднего ведущих мостов, проставку 9 с внутренней полостью 10, жестко связанную и центрированную с коробкой передач 3 и раздаточной коробкой 5, межосевой дифференциал 11.

Межосевой дифференциал 11 жестко установлен на выходном валу 4 коробки передач 3 во внутренней полости 10 проставки 9. Он может быть выполнен герметично закрытым, при этом образовавшаяся его внутренняя полость 12 связана с внутренней полостью 6 раздаточной коробки 5, образуя общую масляную ванну.

Также внутренняя полость 10 проставки 9 может быть выполнена герметичной и соединена с внутренней полостью 6 раздаточной коробки 5, образуя при этом общую масляную ванну, обеспечивающую смазку межосевого дифференциала 11, который в этом случае выполнен без герметизации.

Т.к. межосевой дифференциал 11 вынесен за пределы раздаточной коробки 5 и является узлом силового агрегата, то раздаточная коробка 5 будет всегда бездифференциальной, независимо от количества в ней ступеней (одной или нескольких).

Межосевой дифференциал 5 может быть как с малым внутренним трением, с возможностью принудительной блокировки с места водителя полноприводного автомобиля, так и с повышенным внутренним трением, обеспечивающим автоматическую блокировку. Такой межосевой дифференциал может быть симметричного и несимметричного исполнения.

А для обеспечения автоматической блокировки межосевого дифференциала малого внутреннего трения симметричного и несимметричного исполнения может быть применена муфта вязкостного трения, установленная параллельно этому дифференциалу.

Выполнение силового агрегата по предлагаемому техническому решению обеспечивает упрощение конструкции по сравнению с прототипом, т.к. ликвидирует входной вал с подшипником, через который он установлен в картере раздаточной коробки. Этот вал в прототипе жестко соединен с корпусом дифференциала. В предлагаемом решении входным валом, на котором жестко установлен межосевой дифференциал, является выходной вал коробки передач с уже существующими подшипниками, через которые он установлен в картере коробки передач. Следствием вышеуказанных изменений является уменьшение габарита, веса и себестоимости всего силового агрегата.

Исходя из вышеизложенного, заявляемое изобретение соответствует критерию “ПРОМЫШЛЕННАЯ ПРИМЕНИМОСТЬ”.


bankpatentov.ru

Добавить комментарий

Ваш адрес email не будет опубликован.