Меню Закрыть

Принцип работы системы охлаждения: Схема, устройство и принцип работы системы охлаждения двигателя

Содержание

Принцип работы системы охлаждения автомобиля

Система охлаждения (СО) автомашины – это комплекс узлов, для контроля и охлаждения силового агрегата. Система необходима для соблюдения температурного, рабочего режима, обеспечивающая наибольшую мощность, экономичность и долговечность двигателя.

Функция и принцип действия системы охлаждения

 

Принцип работы СО заключается в следующем: от цилиндров мотора избыточное тепло принимает на себя обладающая высокой теплоёмкостью охлаждающая жидкость (ОЖ), которая находится в водяной рубашке мотора. Циркуляция антифриза происходит за счёт перекачки помпой и естественной конвекции. От цилиндров антифриз поступает к радиатору, который обдувается вентилятором и встречным воздушным потоком. После прохождения радиатора охлаждённый антифриз возвращается к цилиндрам. Для уменьшения времени прогрева мотора при невысоких температурах, ОЖ циркулирует по «малому» кругу СО.

Когда рабочая температура достигает установленного предела — клапан термостата срабатывает, и ОЖ направляется в радиатор.

 

Составляющие системы охлаждения

  • Радиатор – состоит из двух емкостей, которые соединяют медные трубы. Для увеличения площади теплообмена радиаторные трубки включают в себя медные пластины (нередко из алюминия). Радиатор производит теплообмен между антифризоми и окружающей средой.
  • Рубашка двигателя – полости в блоке цилиндров и ГБЦ, по которым циркулирует охлаждающая жидкость, охватывая наружную часть цилиндров.
  • Помпа перекачки ОЖ – предназначена для принудительной циркуляции ОЖ в системе.
  • Термостат – установлен в системе, непосредственно перед радиатором. При достижении установленного предела температуры в термостате, когда нагреется церезин, установленный в металлическую оболочку, расширяясь он открывает клапан, пропуская ОЖ в радиатор.
  • Вентилятор – принудительно направляет воздушный поток к центру радиатора при работающем моторе без движения автомобиля, и ускоряет поток при движении. Вводится в работу приводом от коленчатого вала, или электромотором.
  • Расширительный бачок – компенсирует колебания объёма ОЖ при температурных изменениях, служит средством контролирования уровня жидкости.
  • Пробка заливной горловины оснащена паровым (для сброса чрезмерного давления) и воздушным (для впуска воздуха при недостаточном давлении) клапанами.
  • Сливные краны – служат для опустошения отдельно рубашки мотора и отдельно радиатора от ОЖ на время ремонта СО или для замены антифриза.
  • Температурный датчик – служит для сообщения блоку управления о текущей температуре для изменения скорости обдува вентилятором и скорости циркуляции жидкости в СО, оснащённых соответствующими устройствами.
     

Поломки системы охлаждения

 

К основным неисправностям относят перегрев, переохлаждение и утечку антифриза.

 

Причинами перегрева и переохлаждения являются: проблемы в работе вентилятора, поломка термостата и температурного датчика. Перегрев случается и при засоре каналов системы (в рубашке,радиаторе), разгерметизации и поломке привода насоса ОЖ, дефекте самого антифриза.

 

Утечка антифриз случается при нарушении герметичности патрубков, помпы, радиатора и наружных недостатках рубашки двигателя. В полость цилиндров двигателя антифриз попадает в случае нарушения герметизации внутренних каналов рубашки и прогорания прокладки ГБЦ между цилиндрами.

 

Важно знать, что в случае вскипания ОЖ нельзя нарушать герметизацию системы. Если при открытии пробки давление системы выровняется с атмосферным– возможен взрыв радиатора в следствие кавитации.

Система охлаждения двигателя описание,принцип работы,устройство,промывка,неисправности.

ИСТОРИЯ СИСТЕМЫ ОХЛАЖДЕНИЯ ДВИГАТЕЛЯ

Стоит признать, что система охлаждения двигателя всегда была в автомобилях, правда, её конструкция с годами кардинально менялась. Если смотреть исключительно в сегодняшний день, то в большинстве автомобилей установлен жидкостный тип. К его основным преимуществам можно причислить компактность и высокую производительность. Но так было далеко не всегда.

Первые системы охлаждения двигателей были крайне ненадёжными. Пожалуй, если вы напряжёте память, то вспомните фильмы, в которых события происходят в конце XIX и в начала XX века. В то время машина на обочине с дымящимся двигателем была обычным явлением.

Внимание!Изначально основной причиной перегрева двигателя н было использование в качестве охлаждающей жидкости воды.

Вы как автомобилист должны знать, что в современных автомобилях в качестве ресурса для системы охлаждения используется антифриз. Его аналог даже был в Советском Союзе, только назывался он тосолом.

В принципе, это одно и то же вещество. В его основе лежит спирт, но из-за дополнительных присадок эффективность антифриза кардинально выше. К примеру, тосол в системе охлаждения двигателя покрывает защитной плёнкой абсолютно всё, что крайне негативно сказывается на теплоотдаче. Из-за этого ресурс мотора сокращается.

Антифриз действует совершенно по-другому. Он покрывает защитной плёнкой только проблемные места. Также среди отличий можно вспомнить дополнительные присадки, которые есть в антифризе, разную температуру закипания и так далее. В любом случае наиболее показательным будет сравнение с водой.

Вода закипает при температуре в 100 градусов. Температура кипения антифриза составляет порядка 110—115 градусов. Естественно, благодаря этому случаи закипания двигателя практически исчезли.

Стоит признать, что конструкторами было проведено множество опытов, направленных на то, чтобы модернизировать систему охлаждения двигателя. Достаточно вспомнить исключительно воздушное охлаждение. Такие системы довольно активно применялись в 50—70 годах прошлого века. Но из-за низкой эффективности и громоздкости довольно быстро вышли из употребления.

В качестве успешных примеров автомобилей с воздушными системами охлаждения двигателей можно вспомнить:

  • Fiat 500,
  • Citroën 2CV,
  • Фольксваген Жук.

В Советском Союзе также были автомобили, работающие при помощи воздушной системы охлаждения двигателя. Пожалуй, каждый автомобилист, родившийся в СССР, помнит легендарных «запорожцев», у которых двигатель был установлен сзади.

Принцип работы системы охлаждения двигателя в действии

Налаженная работа охлаждения обусловлена наличием системы управления. В автомобилях с современными двигателями её действия основаны на математической модели, в которой учтены различные показатели параметров системы:

  • температура смазочного масла;
  • температура жидкости, используемой для охлаждения двигателя;
  • температура наружной среды;
  • другие важные показатели, влияющие на работу системы.

Система управления, оценивая различные параметры и их влияние на работу системы, компенсирует их влияние регулированием условий работы управляемых элементов.

С помощью центробежного насоса осуществляется принудительная циркуляция охлаждающей жидкости в системе. Проходя через рубашку охлаждения жидкость нагревается, а попав в радиатор — остывает. Нагревая жидкость, сами детали двигателя остывают. В рубашке охлаждения жидкость может циркулировать как в продольном (по линии цилиндров), так и в поперечном направлении (от одного коллектора к другому).

От температуры охлаждающей жидкости зависит круг ее циркуляции. Во время запуска двигателя он сам и охлаждающая жидкость холодные, и чтобы ускорить его нагрев жидкость направляется на малый круг циркуляции, минуя радиатор. В дальнейшем, при нагревании двигателя, термостат нагревается и меняет свое рабочее положение на полуоткрытое. Вследствие этого охлаждающая жидкость начинает течь через радиатор.

Если встречного потока воздуха радиатора недостаточно для понижения температуры жидкости до требуемого значения, включается вентилятор, образующий дополнительный поток воздуха. Охлажденная жидкость вновь попадает в рубашку охлаждения и цикл повторяется.

Если в автомобиле используется турбонаддув, то он может быть оснащен двухконтурной системой охлаждения. Первый её контур охлаждает сам двигатель, а второй — наддувочный поток воздуха.

Устройство системы охлаждения двигателя

При рассмотрении устройства системы охлаждения первое, что может броситься в глаза – так это то, что в системе охлаждения двигателя нет бака, где хранится жидкость. Он тут просто не нужен, так как вся жидкость находится в радиаторе или полостях и каналах двигателя. Имеющийся

расширительный бачок служит для залива жидкости в систему, а также обеспечения автоматического пополнения жидкости в системе при нарушении ее герметичности.

Типичное устройство системы охлаждения представлено ниже:

Изучение начнем с насоса (помпы). Название у него так и сохранилось с прошлых лет – водяной насос, и представляет собой внутри что-то вроде маленькой мельницы. Как и в системе смазки, он подает под давлением жидкость в каналы ДВС. Конечная цель ох­лаж­да­ю­щей жидкости – пройти через полости блока цилиндров. Именно в цилиндрах — самая высокая температура, передающаяся остальным деталям и узлам. В результате передачи тепла блок цилиндров охлаждается, а жидкость системы охлаждения двигателя автомобиля нагревается, то есть происходят обыкновенные физические процессы, направленные на уравнивание температуры. Дальше разогретая жидкость проходит через часть остальных узлов двигателя и подается в радиатор.

Радиатор представляет собой объемную решетку, образованную из многочисленных мелких вертикальных каналов с поперечными пластинами. По этим многочисленным каналам жидкость, стекая вниз, охлаждается и отдает все свое тепло в атмосферу. Затем через нижнюю емкость радиатора по патрубкам снова попадает в водяной насос. Эта самая решетка за счет большого числа каналов увеличивает общую площадь охлаждения рабочей жидкости, в результате чего она быстрее остывает. Кроме того, потоки встречного воздуха при движении автомобиля значительно увеличивают этот эффект. Поэтому радиатор всегда расположен, спереди автомобиля. Однако и этого бывает недостаточно, особенно когда автомобиль стоит на месте или сам ДВС предназначен для работы в стационарных условиях или закрытых помещениях. Для этого предусмотрен вентилятор, крепящийся между радиатором и дви­га­те­лем. Он помогает усиливать циркуляцию воздуха через щели радиатора.

Вот, вроде бы, с устройством системы охлаждения и все. Но есть еще и другая функция, противоречащая названию системы – прогрев двигателя. В условиях низких температур, характерных для зимнего времени и северных районов, запуск и прогрев ДВС сильно зат­руд­нен. Топливо плохо распыляется, воздух холодный и влажный, а для масла и охлаждающей жидкости характерна повышенная вязкость. И для того, чтобы обеспечить двигателю ав­то­мо­би­ля ( см. устройство двигателя автомобиля ) условия нормальной работы, его не нужно охлаждать, а совсем наоборот – как можно быстрее прогреть. Для этого в системе охлаждения двигателя автомобиля предусмотрен такой элемент как термостат. При запуске холодного двигателя, он не пускает охлаждающую жидкость в радиатор. То есть, она из блока цилиндров напрямую попадает опять в водяной насос. Таким образом, передавая тепло от цилиндров к другим узлам ДВС, она их нагревает. Как только температура двигателя автомобиля дос­ти­га­ет 70-80°C, термостат автоматически срабатывает и открывает пропуск охлаждающей жидкости в радиатор, а тот патрубок, что был открыт при разогреве — закрывается.

Аналогично охлаждающей жидкостью происходит прогрев кабины водителя. За счет маленького радиатора и вентилятора в кабине, тепло от жидкости распространяется по са­ло­ну.

Последний прибор в устройстве системы охлаждения двигателя, играющий тоже немаловажную роль – это датчик температуры, расположенный в кабине. Водитель, имея постоянную информацию о температуре ДВС, может своевременно принять меры по устранению неисправности системы охлаждения, в случае превышения рабочих параметров. Самая частая неисправность системы охлаждения двигателя — это нарушение ее гер­ме­тич­нос­ти. Жидкость вытекает, а ее количества не хватает для охлаждения блока цилиндров, в результате чего, температура резко поднимается вверх, что и покажет датчик.

ОСНОВНЫЕ НЕИСПРАВНОСТИ СИСТЕМЫ

Если обратиться к пункту 2.3.1 ПДД и к «Перечню неисправностей…», с которыми ограничивается движение транспортных средств, то в них можно обнаружить полное отсутствие упоминаний о проблемах, связанных с системой охлаждения двигателя. Это означает, что поломки системы не позиционируются в качестве неисправностей, с которыми запрещается движение. А, следовательно, система охлаждения и ее ремонт – это личное дело каждого водителя, степень его комфорта на дороге.

Каковы же основные «несерьезные» проблемы, которые может испытывать система охлаждения ДВС?

Во-первых, наиболее распространена негерметичность или течь охлаждающей жидкости. Причем, ее причины могут заключаться в смене уличной температуры (чаще – наступления сезона морозов). Среди популярных причин – и закоксованность патрубков и шлангов, которые под постоянным воздействием высокой температуры теряют эластичность. Протекание охлаждающей жидкости обуславливается и физическими повреждениями основного радиатора и радиатора «печки», полученными либо химическим путем (например, реактивами, входящими в состав тосола), либо посредством механического воздействия (например, удара).

Во-вторых, не менее популярная неисправность – выход из строя (или заклинивание) термостата. Клапан термостата (устройство, находящееся в постоянном контакте с жидкостью), постепенно коррозирует. В конечном счете, происходит его заклинивание, что исключает срабатывание в системе «открыто-закрыто». Результаты подобного состояния термостата двояки:

  1. при заклинивании в положении «открыто» охлаждающая жидкость двигается только по большому кругу (с постоянным использованием радиатора), что приводит к слабому и длительному прогреву двигателя и, соответственно, плохой обогреваемости салона автомобиля;
  2. при заклинивании в положении «закрыто» охлаждающая жидкость, напротив, двигается только по малому кругу (без использования радиатора), что обусловливает перегрев двигателя и может привести к необратимым изменениям в структуре металла, уменьшению ресурса силового агрегата и даже к его поломке.

В-третьих, серьезной неприятностью представляется поломка циркуляционного насоса (или «помпы»). Чаще всего эта неисправность связана с выходом из строя подшипника «помпы» — ее основной детали. Причины банальны – износ или некачественная запчасть. Спрогнозировать поломку затруднительно, но уловить начало нестандартной работы «помпы» более чем возможно – по характерному свистящему звуку подшипника. Он означает, что циркуляционный насос требует немедленной замены.

В-четвертых, при определенных условиях возможно засорение системы охлаждения двигателя. Причинами подобного состояния является, как правило, отложение солей в каналах системы охлаждения (радиатора, блока, головки блока). При этом нарушается циркуляция охлаждающей жидкости и отвод излишнего тепла от двигателя и его деталей ухудшается. В конечном счете, это приводит к перегреву двигателя со всеми вытекающими отсюда последствиями.

ПРОМЫВКА СИСТЕМЫ ОХЛАЖДЕНИЯ ДВИГАТЕЛЯ

Промывка системы охлаждения двигателя — процесс, которым очень многие водители нередко пренебрегают, что рано или поздно может вызвать фатальные последствия.

Производить подобные работы рекомендуется одновременно с заменой охлаждающей жидкости. Принимая во внимание модель автомобиля и его марку, делать это необходимо от 1-го раза в календарный год до одного раза в три года.

Признаки того, что систему охлаждения пора промывать

  1. Если стрелка указателя температуры находится не в середине, а стремится к красной зоне во время движения;
  2. В салоне холодно, печка отопления не дает достаточную температуру;
  3. Вентилятор радиатора включается слишком часто

Промыть систему охлаждения простой водой невозможно, поскольку в системе концентрируются загрязнения, которые не удаляются даже водой, нагретой до высоких температур.

Накипь удаляется с помощью кислоты, а жиры и органические соединения – исключительно щелочью, заливать же в радиатор одновременно оба состава нельзя, так как они согласно законам химии взаимонейтрализуются. Производители средств для промывки, пытаясь решить эту проблему, создали целый ряд средств, которые условно можно разделить на:

  • щелочные;
  • кислотные;
  • нейтральные;
  • двухкомпонентные.

Первые два слишком агрессивны и в чистом виде почти не используются, так как опасны для системы охлаждения и требуют нейтрализации после использования. Реже встречаются двухкомпонентные виды очистителей, содержащие оба раствора — щелочной и кислотный, которые заливаются в систему охлаждения поочередно.

Наибольшую востребованность имеют нейтральные очистители, не содержащие в своем составе сильных щелочей и кислот. Эти средства обладают разной степенью эффективности и могут использоваться как для профилактики, так и для капитальной промывки системы охлаждения от сильных загрязнений.

Промывка системы охлаждения:

  1. Сливается антифриз, тосол или вода. Перед этим необходимо на пару минут завести двигатель.
  2. Залить в систему воду и очиститель.
  3. Включить двигатель на 5-30 минут (зависит от марки очистителя) и включить обогрев салона.
  4. По истечении обозначенного в инструкции времени двигатель нужно заглушить.
  5. Слить отработанный очиститель из системы охлаждения.
  6. Произвести промывку водой либо специальным составом.
  7. Залить свежую охлаждающую жидкость.

Работы по промывке системы охлаждения просты и доступны: их могут выполнять даже неопытные автовладельцы. Эта операция существенно продлевает моторесурс двигателя и поддерживает его эксплуатационные характеристики на высоком уровне.

ПОХОЖИЕ СТАТЬИ:

  • Aуди рс7 технические характеристики,салон,цена,комплектация,фото,видео.
  • Бмв f30 обзор,технические характеристики,отзывы,фото,видео,салон.
  • Рейтинг 5 лучших автомобильных аккумуляторов
  • Бмв 3 GT описание,отзывы,характеристики,фото,видео,двигатели.
  • Какими должны быть зазоры в свечах зажигания.
  • Антипробуксовочная система: описание,преимущества,недостатки ,устройство
  • Секретки на колеса: виды, производители ,метод снятия, фото, видео, отзывы, описание
  • Каким был и каким стал автопарк полиции США
  • Четырехтактный двигатель: описание,фото.
  • Обзор 10 лучших автомобильных интерьеров 2020 года
  • Нужно ли менять пружины при замене амортизаторов?
  • 2011 Порше 911 2 DR Cpe GT2 RS характеристики комплектация

Интерактивная схема системы охлаждения двигателя

1 — Пробка расширительного бачка. 2 — Расширительный бачок. 3 — Подводящий шланг радиатора. 4 — Шланг от радиатора к расширительному бачку. 5 — Отводящий шланг радиатора. 6 — Левый бачок радиатора. 7 — Алюминиевые трубки радиатора. 8 — Датчик включения электровентилятора. 9 — Правый бачок радиатора. 10 — Сливная пробка. 11 — Сердцевина радиатора. 12 — Кожух электровентилятора. 13 — Крыльчатка электровентилятора. 14 — Электродвигатель. 15 — Зубчатый шкив насоса. 16 — Крыльчатка насоса. 17 — Зубчатый ремень привода распределительного вала. 18 — Отводящий патрубок радиатора отопителя. 19 — Подводящая трубка насоса. 20 — Шланг подвода жидкости к пусковому устройству карбюратора. 21 — Блок подогрева карбюратора. 22 — Выпускной патрубок. 23 — Подводящий патрубок отопителя. 24 — Шланг отвода жидкости от блока подогрева карбюратора. 25 — Термостат. 26 — Шланг от расширительного бачка к термостату.

Зачем нужна система охлаждения двигателя уже можно догадаться из названия – работая, двигатель нагревается и охлаждается через радиатор. Это вкратце. На самом деле, задача системы охлаждения двигателя поддерживать его температуру в определенном диапазоне (85-100 градусов), называемом рабочей температурой. При рабочей температуре мотор работает максимально эффективно и безопасно.

Большой и малый круг системы охлаждения двигателя

После запуска, двигатель должен как можно быстрее достичь рабочей температуры. Для этого система охлаждения поделена на две части – малый круг и большой круг обращения. По малому кругу охлаждающая жидкость циркулирует максимально близко к цилиндрам и, соответственно максимально быстро нагревается. Как только она прогревается до наивысшей рабочей температуры, открывается клапан и жидкость уходит на большой круг, где не дает двигателю перегреться. Задача малого круга сохранить рабочую температуру, а большого — отвести лишнее тепло.

Печка как часть системы охлаждения двигателя

Приятно, когда салон быстро прогревается, а ведь это происходит потому, что печка это часть малого круга обращения. Через шланги жидкость уходит на радиатор печки и возвращается обратно. Что это значит? Чтобы печка начала дуть теплый воздух быстрее, ее надо включать тогда, когда согреется двигатель.

Термостат и помпа

Помпа и термостат системы охлаждения

Итак, мы выяснили, что двигатель не перегревается благодаря циркуляции ОЖ. Но что заставляет жидкость двигаться? Ответ – помпа. Это такой специальный насос, который приводится в движение двигателем через ремень, но бывают помпы и с электромотором. Основные неисправности помпы связанные с течью сквозь дренажное отверстие и износом подшипника (сопровождается писком). Также бывают помпы с пластиковой крыльчаткой, которая разъедается от некачественного антифриза.

Термостат, этот самый клапан, который открывается при нагреве ОЖ и пускает ее по большому кругу. Состоит из цилиндра с веществом, которые расширяется при нагреве; достигнув определенной температуры, оно выдавливает шток и открывает клапан. Остыв, шток втягивается, а клапан закрывается.

Радиатор и расширительный бачок системы охлаждения двигателя

Радиатор является частью большого круга и устанавливается впереди автомобиля. В нем циркулирует жидкость, которая охлаждается встречным воздухом и вентилятором.

Вентилятор работает на всасывание, чтобы не препятствовать встречному потоку воздуха.

Крышка радиатора поддерживает давление в системе охлаждения. В ней есть клапан, который открывается, когда давление превышает рабочее, и стравливает лишнюю жидкость по шлангу в расширительный бачок.

Расширительный бачок нужен, чтобы сохранить жидкость, нужную для охлаждения. Когда антифриз в расширительном бачке охладится, он вернется по шлангу обратно в радиатор, исключая попадание воздуха. Есть совмещенные бачки с клапанной крышкой.

Вот как устроена система охлаждения двигателя. Среди основных проблем связанных с этой системой стоит выделить:

  • течь – может появиться везде, от каналов блока до расширительного бачка;

Основная причина – избыточное давление из-за неисправной крышки радиатора/расш. бачка

  • перегрев – возникает неожиданно, но паниковать не стоит. Лучше включить печку на полную, врубив высшую скорость, прекратить движение накатом и заглушить двигатель.

Не производить никаких действий пока система не остыла.

Основные причины – вытекла вся ОЖ в системе, отказал вентилятор, забит радиатор, вышел из строя термостат или помпа.

Основные причины – отсутствие антифриза, сломался термостат в открытом положении.

Спрашивайте в комментариях. Ответим обязательно!

Как работает система охлаждения в инжекторном ВАЗ 2110?

На чтение 5 мин. Просмотров 635

система охлаждения ваз 2110 инжектор — принцип работы и особенности эксплуатации. Кроме того в статье описаны характерные неисправности системы, способы их диагностики и устранения.

Двигатель автомобиля во время работы испытывает колоссальные нагрузки, и некоторые его элементы разогреваются до 600 и более градусов Цельсия. Естественно, такие экстремальные температуры не проходят бесследно и чтобы, как-то уменьшить нагрузку на двигатель инженеры придумали специальную систему, которая будет охлаждать все узлы и агрегаты ДВС во время движения. Принцип ее работы в зависимости от марки автомобиля может незначительно различаться. К примеру, система охлаждения ВАЗ 2110 инжектор работает на основе тосола, она полностью закрытого типа и работает по принципу постоянной принудительной циркуляции.

ВАЗ 2110

Конструктивные особенности

Вообще, работа стандартной системы основана на данных, которые дает датчик температуры. Схематически она состоит из следующих элементов:

  • Радиатор. Там содержится охлаждающая жидкость. В зимнее время радиатор работает еще и как отопительный прибор.
  • Множество шлангов отводящих и подводящих охлаждающую жидкость.
  • Датчик температуры, уровня жидкости вентилятора.
  • Расширительный и радиаторный бачки.
  • Кожух.
  • Ремень.
  • Жидкостная и пусковая камеры.

Также особо стоит отметить в системе охлаждения ВАЗ 2110 еще два шланга, один подходит к дроссельному патрубку, а другой служит для отвода жидкости.

В самом дроссельном патрубке к тому же имеется жидкостный датчик, который следит за температурой и уровнем тосола. Примечательно, что в самых последних моделях двигателя десятки датчик температуры помещен в специальный литой алюминиевый корпус, а емкость расширительного бачка значительно увеличена.

Принцип работы системы охлаждения

Теперь, когда с устройством системы все понятно можно поговорить и о том, как она работает на практике.

Материал в тему:

— Система охлаждения на ВАЗ 2110: принцип работы и характерные неисправности

Первое, что следует знать любому водителя — никаких настроек в работе системы не предусмотрено – циркуляция является принудительной и происходит безостановочно. Заливку охлаждающей жидкости следует производить в расширительный бачок и всегда следить за ее уровнем, в случае необходимости добавлять жидкость.

Вообще, в системах охлаждения российских автомобилей является тосол – это смесь воды с этиленгликолем или еще некоторыми присадками. Замерзает такая жидкость только при экстремально низких температурах и ей не страшны даже самые лютые сибирские морозы.

Чтобы полностью наполнить систему охлаждения десятки потребуется почти 8 литров тосола. В дальнейшем жидкость нужно будет только доливать и изредка не чаще чем каждые 75 тысяч километров пробега в профилактических целях производить ее полную замену.

Если же говорить именно о том, как работает система, то весь процесс можно для простоты восприятия поделить на несколько этапов:

  • Изначально движение жидкости по всей системе обеспечивается в результате работы центробежного насоса. Он расположен в блоке цилиндров и приходит в действие от ремня ГРМ.
  • Во время циркуляции по системе жидкость от соприкосновения с раскаленными узлами двигателя нагревается. Тут в работу и включается датчик температуры. До тех пор, пока температура жидкости приемлема она двигается по малому кругу. Когда тосол нагревается уже слишком сильно, циркуляция для обеспечения большего охлаждения переходит на большой круг. То есть фактически, когда открыть дорогу на большой круг решает именно датчик температуры, который путем открытия перепускного клапана может менять направление жидкости.

Обычно перепускной клапан открывается при температуре выше 85 градусов. В это момент из блока цилиндров жидкость попадает в радиатор и начинает обогревать салон машины. В этот момент жидкость еще циркулирует одновременно по малому и большому кругу.

А вот когда тосол разогревается до 102 градусов – жидкость переходит на циркуляцию только по большому кругу. Таким образом, поток воздуха извне и обеспечивает ее охлаждение.

Если же поток воздуха не справляется с охлаждением системы. Датчик температуры дает команду специальному охлаждающему вентилятору, и он тоже включается в работу. Однако если недостаточно даже этого и жидкость в результате сильно нагрева согласно всем законам физики начинает разогреваться – систему спасает расширительный бачок. Излишки жидкости возвращаются в него, а в случае необходимости через специальный клапан направляются обратно в систему. Кстати, именно в этом бачке и следует контролировать уровень жидкости в системе. В случае резкого уменьшения ее объем следует проверить радиатор и трубки на герметичность.

Основные неисправности системы охлаждения

Раз уж разговор зашел об уменьшении жидкости в системе имеет смысл упомянуть и о других неисправностях связанных с ее работой. Беспокоиться имеет смысл если вы заметите следующие признаки:

  • Жидкость повышается до очень высоких температур, вплоть до того, что радиатор может закипеть.
  • Наоборот, низкая температура тосола – в салоне в результате этого зимой будет очень холодно, система отопления в этом случае фактически будет бездействовать.
  • Насос, охлаждающий инжектор работает очень шумно.

Любая из этих проблем требует срочного вмешательства и устранения. Самостоятельно можно произвести следующие манипуляции. Первым делом проверьте уровень жидкости. Обычно корень всех вышеперечисленных проблем заключается в негерметичности системы, к примеру, это могут быть пробитые шланги или повреждение соединительных деталей, старые прокладки, ну и, наконец, протекающий сальник водяного насоса.

Проверять систему охлаждения имеет смысл на полностью остывшем двигателе. Желательно через несколько часов после полной остановки двигателя. Иначе диагностические мероприятия могут закончиться сильными ожогами. Для проверки потребуется заехать на яму, после чего вооружившись мощным фонариком или светильником можно начинать осмотр. Детали, на которых будут капли или подтеки жидкости, скорее всего, и дают течь. Однако очень важно, что осмотр производился на чистом двигателе, чтобы не спутать обычную дорожную грязь с неисправностями. Особое внимание, кстати, заслуживает датчик температуры – обязательно осмотрите его на наличие внешних повреждений, пусть даже и в профилактических целях.

Если вам удастся самостоятельно найти такие детали или поврежденный датчик – смело меняйте. После чего осмотрите вентилятор на наличие накипи и загрязнений, возможно, причина проблем в его некорректной работе.

Если же видимых повреждений нет, а проблема сохраняется не стоит самостоятельно разбирать систему охлаждения, лучше доверить ремонт квалифицированным автомеханикам, которые наверняка все сделают качественно.

для чего нужен, принцип работы, где находится и что в него заливают » АвтоНоватор

Система охлаждения современного автомобиля включает в себя несколько элементов, без которых её нормальное функционирование невозможно. К таковым относится и расширительный бачок, устанавливаемый в разных местах подкапотного пространства в зависимости от марки авто. Незамысловатый пластиковый резервуар с пробкой играет важную роль в работе охлаждающего контура двигателя и требует периодического контроля со стороны владельца машины.

Назначение расширительной ёмкости

В системах охлаждения различных автомобилей содержится от 5 до 20 и более литров незамерзающей жидкости — антифриза (тосола). В процессе эксплуатации двигатель, а вместе с ним и антифриз разогревается от низкой температуры зимой до высокой в летний период.

Перепад температур может достигать 100 °С и более. Например, при эксплуатации машины в северных регионах, где прогрев мотора начинается от минус 20 °С и заканчивается рабочей температурой 90 °С, эта разница составит 110 °С.

Во время работы двигателя в расширительном баке возникает давление около 1 Бар

Поскольку любая жидкость расширяется в объёме при нагревании, в охладительном контуре авто образуется излишек, который нужно куда-то направить. Антифриз является средой несжимаемой, поэтому при расширении он создаст в системе высокое давление, способное разорвать патрубки и соты радиаторов. И наоборот, при охлаждении жидкость уменьшится в объёме и создаст разрежение (вакуум), воздействующий с такой же силой.

Чтобы обеспечить нормальную работу системы охлаждения силового агрегата и избежать скачков давления, в неё интегрирован расширительный бачок. Его функции следующие:

  • воспринимать дополнительный объём антифриза, расширяющегося при нагреве;
  • сбрасывать излишки давления через пробку со встроенным предохранительным клапаном;
  • отдавать жидкость обратно в систему при остывании мотора, препятствуя возникновению воздушных пробок.

На грузовиках применяются расширительные баки больших размеров

Антифриз, являющийся смесью дистиллированной воды с этиленгликолем (иногда — пропиленгликолем), при нагревании от нуля до 100 °С прибавляет в объёме порядка 5%. В контуре, рассчитанном на 10 л тосола, после полного прогрева образуется целых 500 мл, которые уходят в расширительный бачок.

Видео: зачем нужен расширительный бачок

Конструкция и принцип действия

Современные расширительные ёмкости для автомобилей представляют собой резервуар, изготовленный из прочной толстостенной пластмассы с заливной горловиной и штуцерами для подключения к элементам охлаждающей системы. Форма резервуара не имеет значения в функциональном плане, так что производители подгоняют её под место установки резервуара.

Форма бачка зависит от места его установки и может быть разной — круглой, прямоугольной или плоской

Вместительность сосуда для расширяющегося тосола рассчитывается для каждой модели авто и зависит от полного объёма жидкости в патрубках и агрегатах. Причём в холодном состоянии бачок заполняется антифризом только наполовину, остальное пространство занимает воздух, способный сжиматься под давлением. Горловина резервуара закрыта пробкой со встроенным воздушным клапаном. Принцип работы ёмкости следующий:

  1. При «холодном» моторе бачок наполовину пуст — уровень антифриза находится между минимальной и максимальной отметкой на корпусе.
  2. После запуска двигателя тосол начинает расширяться и его уровень в сосуде повышается, а воздушная прослойка сжимается. Клапан крышки остаётся герметичным.
  3. При достижении жидкостью рабочей температуры 90—95 °С и максимального увеличения в объёме давление в баке достигает порога срабатывания воздушного клапана (1—1,2 Бар или 120 кПа). Он открывается и сбрасывает воздух в атмосферу.
  4. В процессе остывания мотора наблюдается обратная картина — клапан пропускает воздух в обратную сторону до тех пор, пока количество антифриза не перестанет уменьшаться. Это предотвращает появление воздушных пробок в шлангах и радиаторах.

Устройство ёмкости довольно простое — корпус бачка закрыт пробкой со встроенным клапаном

В аварийной ситуации, когда тосол или вода по разным причинам начинает кипеть, предохранительный клапан сбрасывает не только воздух, но и пар.

Встроенный датчик подаёт сигнал о недостаточном уровне жидкости на панель приборов

В некоторых моделях автомобилей, например, ВАЗ 2110—2115 ёмкость оснащена второй горловиной, куда вкручивается датчик уровня охлаждающей жидкости. Если в силу поломки либо протечки какого-то узла антифриз начнёт вытекать наружу и его уровень в ёмкости упадёт до минимума, датчик сработает и предупредит водителя сигналом соответствующей лампочки на панели приборов.

Существуют автомобили (как отечественного производства, так и импортного), в которых расширительный бачок закрывается простой пробкой, не оснащённой клапаном и сообщающейся с атмосферой. В подобных системах функцию сброса давления и обратного впуска воздуха выполняет крышка основного радиатора, а резервуар только компенсирует расширение жидкости.

Крышка радиатора снабжается перепускным клапаном, направляющим излишек тосола в расширительный бак

Место бачка в охладительной системе

Ёмкость для компенсации расширяющегося антифриза может устанавливаться в разных местах, расположение зависит от марки автомобиля. Резервуар крепится к деталям кузова — лонжеронам и салонной перегородке с помощью резинового хомута либо специального кронштейна. Как правило, бачок ставится с той стороны, где находится верхний патрубок радиатора для его подключения.

Обычно ёмкость устанавливается ближе к патрубку радиатора

Существуют ёмкости на 2 и 3 штуцера. Последние присоединяются тремя шлангами к следующим агрегатам:

  1. Толстый патрубок, подключённый к нижнему штуцеру сосуда, соединяет его с основной магистралью контура охлаждения — малым кругом циркуляции жидкости, который всегда открыт. Увеличивающийся в объёме тосол поступает в бак именно по этому шлангу.
  2. Тонкая трубка, идущая от радиатора к верхнему штуцеру. Предназначена для сброса жидкости и пара из радиатора напрямую.
  3. Второй тонкий патрубок, подсоединённый к среднему штуцеру, идёт от радиатора салонного отопителя. Его задача такая же — отвод излишков антифриза и пара в ёмкость.

В резервуар на 3 штуцера поступают излишки антифриза из трёх агрегатов

Бачки, оснащённые двумя штуцерами, присоединяются к малому контуру циркуляции и основному радиатору охлаждения, подключение к печке отсутствует.

Расширительный резервуар является самой высокой точкой системы охлаждения мотора. Это сделано для того, чтобы жидкость из бачка могла перетечь в контур по закону сообщающихся сосудов. Когда уровень антифриза в ёмкости находится на 3—4 см выше риски Min на корпусе, все патрубки и агрегаты заполнены тосолом. В том числе самый высокий из них — контур охлаждения дроссельной заслонки.

Остатки воздуха из системы удаляются через патрубки подогрева дросселя

При заливке жидкости в водяную рубашку силового агрегата через расширительный бачок рекомендуется снимать патрубок охлаждения дросселя. Это позволяет вытолкнуть из магистралей и радиатора печки воздушные пробки.

Жидкости для заливки в бак

Нынешние автомобили, строящиеся с широким применением новых технологий, весьма требовательны ко всем технологическим жидкостям, в том числе и охлаждающей. Перечень требований такой:

  • жидкость должна закипать при температуре не ниже 110 °С;
  • порог замерзания — от минус 20 до —60 °С в зависимости от условий окружающей среды;
  • отсутствие пенообразования при контакте с крыльчаткой насоса, минимальная вязкость;
  • в составе жидкости должны быть неагрессивные присадки, препятствующие появлению накипи на металлических частях;
  • химический состав не должен меняться в течение 3 лет или 60 тыс. км пробега.

Тосол — чисто отечественный продукт, синтезированный во времена СССР

Всем перечисленным требованиям соответствует антифриз или тосол, что суть одно и то же. Название антифриз пошло от английского слова antifreeze, что в переводе означает «незамерзающая». Тосол — вещество, созданное на той же основе из этиленгликоля в бывшем СССР. Слово состоит из аббревиатуры ТОС (технология органического синтеза) и окончания «ол», присущего названиям химических препаратов.

Основа антифриза и тосола одинакова — вода + этиленгликоль в различных соотношениях. Отличия изделий от разных производителей может заключаться в пакете ингибирующих присадок, поэтому путать жидкости нежелательно. Фатальных последствий не наступит, но одни вещества могут нейтрализовать действие других и свойства «незамерзайки» ухудшатся. При этом цвет жидкости не играет роли — это всего лишь краситель.

Для заливки в бачок можно использовать дистиллированную воду в следующих ситуациях:

  • для разбавки концентрата антифриза до нужной температуры замерзания;
  • при аварийной ситуации — полной либо частичной потере охлаждающей жидкости в пути;
  • с целью промывки.

Окраска антифриза не влияет на его свойства, важен пакет присадок

Дистиллированная (обессоленная) вода не отвечает указанным выше требованиям: она замерзает при нулевой температуре и кипит при 100 °С. Поэтому она заливается временно либо в качестве растворителя для антифриза.

Воду из-под крана, насыщенную солями, заливать в расширительный бачок недопустимо. Исключение — поломка и потеря тосола в пути и отсутствие поблизости автомагазина. Устраните течь, заполните охлаждающую систему водопроводной водой и доберитесь до гаража или СТО, после чего её немедленно слейте. Иначе на внутренних стенках водяной рубашки двигателя и других агрегатов образуются отложения, ухудшающие теплообмен.

Видео: жидкости для заливки в контур охлаждения автомобиля

О неисправностях и ремонте ёмкости

Во время эксплуатации машины могут возникнуть следующие поломки расширительного бачка;

  • загрязнение или выход из строя перепускного клапана пробки;
  • разрыв корпуса бачка;

    Стенка бачка разрывается при слишком высоком давлении изнутри

  • подтекание тосола из-под крышки.

    Неплотность крышки характеризуется появлением разноцветных потёков на корпусе

Большинство автолюбителей при поломке клапана или корпуса попросту меняют деталь на новую. Это оправдано отсутствием времени на ремонт и дешевизной данных запчастей. Хотя при желании лопнувший пластик резервуара можно запаять, а крышку — разобрать и прочистить.

Потёки из-под пробки возникают при неплотном прилегании либо из-за конструктивных особенностей ёмкости. К примеру, на автомобилях ВАЗ 2110 струя из верхнего малого штуцера, подключённого к радиатору, бьёт прямо в горловину, отчего возникает протечка. Способ устранения — установка более совершенного бачка от «Приоры».

Видео: ремонт корпуса бачка

Расширительный бачок автомобиля считается одной из самых надёжных деталей. Нередко они служат весь срок эксплуатации машины, особенно на иномарках. Чтобы не пришлось менять ёмкость раньше времени, рекомендуется периодически проверять состояние клапана в крышке. Если он в порядке, то и пластик сосуда не лопнет от высокого давления.

Оцените статью: Поделитесь с друзьями!

где находится, а также принцип работы крышки

Автомобильный двигатель внутреннего сгорания в процессе эксплуатации выделяет огромные объемы тепловой энергии. Для эффективного функционирования мотора, данное тепло нужно отводить, в противном случае перегрев приведет к уменьшению ресурса, проблемам со сгоранием топливной смеси, увеличению токсичности выхлопных газов.

Поддержание оптимальной температуры обеспечивается корректной работой комбинированной системы охлаждения, которая использует для отвода избытков тепла воздух и технические жидкости.

Расширительный бачок системы охлаждения двигателя – один из основных ее элементов. Какие же функции он выполняет? Где его найти? Как он устроен? Разберемся в статье.

Конструктивные особенности

Чтобы увидеть бачок, достаточно просто поднять крышку капота транспортного средства. Конструкция его очень проста. Сам резервуар выполнен на основе пластика с толстыми стенками, прочного и эластичного, устойчивого к ударным нагрузкам, экстремальным холодам, температурным перепадам и контактам с агрессивной химией.

Для удобства заливки охлаждающей жидкости на баке предусмотрена широкая горловина, для соединения с другими элементами системы – специальные штуцеры.

Если говорить о конфигурации бачка, то каких-то строгих нормативов нет, форма зависит от конкретного производителя и оптимизируется для того, чтобы элемент занимал минимум места в подкапотном пространстве.

Аналогично, нет строгих требований и к вместительности. Емкость бачка вариативна, подбирается в соответствии с моделью автомобиля, объемами тепла, выделяемыми его мотором, и прочими техническими нюансами.

В некоторых случаях на бачках можно увидеть и дополнительную горловину, где установлен датчик уровня жидкости.

Если этот показатель отклоняется от нормы, водитель получает соответствующее предупреждение.

Различается по конструкции и пробка, закрывающая горловину. Иногда устройство крышки расширительного бачка подразумевает наличие клапана, сбрасывающего пар и воздух при критическом увеличении давления.

Если же клапана нет, данную функцию выполняет крышка, расположенная на радиаторе.

Особенности расположения бачка и принципы соединения с другими элементами системы охлаждения

Где находится расширительный бачок? Точное местоположение компенсационной емкости зависит от модели машины. Она фиксируется на кузовных элементах, лонжеронах и перегородках, отделяющих пространство капота от салона.

Для крепления используются кронштейны или хомуты. В большинстве случае, бачок находится на стороне, где располагается верхний патрубок радиатора.

В зависимости от типа, бак оснащен 2 или 3 штуцерами. Конструкция второго типа подразумевает соединение 3 шлангами со следующими деталями:

  1. Самый толстый патрубок, зафиксированный на штуцере, расположенном в нижней части, соединяет бачок с малым кругом циркуляции жидкости. Когда антифриз начинает нагреваться и расширяться, именно по этой магистрали он и поступает внутрь бачка.
  2. Трубка небольшого диаметра, проходящая между радиатором и штуцером, расположенным в верхней части, позволяет осуществлять сброс пара непосредственно из радиатора.
  3. Вторая трубка небольшого диаметра, закрепленная на другом верхнем штуцере, крепится на радиаторе печки салона. Основная задача аналогична предыдущей детали, по ней излишнее количества пара и тосола попадают в расширительный бачок.

Если на компенсационной емкости предусмотрено только 2 штуцера, то подключение к салонной печке не выполняется.

Вне зависимости от модели транспортного средства, расширительный бак является наивысшей точкой системы охлаждения двигателя. Только в таком случае полностью сохраняется принцип совмещающихся емкостей.

Чтобы гарантировать полное заполнение тосолом всех элементов системы, его уровень должен быть на несколько сантиметров выше минимальной отметки, указанной на баке.

Зачем он нужен?

Система охлаждения современного авто содержит несколько литров тосола. В процессе работы мотора происходит его нагрев и, как следствие, увеличение объема. Данное увеличение нужно компенсировать, чтобы исключить разрыв охлаждающего контура, повреждение патрубков и элементов радиатора.

Аналогично, компенсировать нужно и охлаждение, которое может иметь место в зимний период. Охлаждение и уменьшение объема провоцирует образование вакуума, сила которого столь же разрушительна, как у повышенного давления.

Все эти колебания и призван компенсировать расширительный бачок.

Если сформировать список его функций, то выглядят они следующим образом:

  • принятие увеличенных объемов антифриза, образующихся при его тепловом расширении;
  • сброс излишков давления при помощи специальной пробки, оборудованной предохранительным клапаном;
  • сброс жидкости в систему охлаждения, когда мотор начинает остывать, с целью исключения формирования опасных воздушных пробок.

Видео по теме, нужен ли ВАЗ расширительный бачок:

Рабочий принцип

Рассмотрим принцип работы данного устройства. Итак, в исходном состоянии половина объема бачка занята тосолом, вторая половина пуста. Вернее, в ней воздух, сжимающийся при повышении давления.

На горловине расположена крышка с клапаном экстренного сброса воздуха.

Устройство крышки

Функционирует система по следующей схеме:

  1. Запуск двигателя внутреннего сгорания приводит к постепенному увеличению температуры, жидкость расширяется, ее уровень повышается. Клапан сохраняет изначальную герметичность.
  2. Когда тосол нагревается примерно до 95 градусов, он достигает максимального объема, клапан срабатывает и начинает сбрасывать лишний воздух. Уровень давления в системе при этом составляет около 1.2 Бар. Если происходит дальнейшее повышение температуры, вплоть до кипения антифриза, то клапан осуществляет сброс воздуха вместе с паром.
  3. Когда силовая установка охлаждается, клапан работает в обратную сторону, то есть запускает воздух внутрь бачка, компенсируя сжатие антифриза. Такая схема не дает сформироваться в шлангах, патрубках и радиаторе воздушным пробкам.

Для корректной работы всей системы нужно точно знать, сколько антифриза должно быть в расширительном бачке. Точное значение зависит от конкретной модификации авто, но оптимальная отметка – это половина от полного объема.

Посмотрите полезное видео, где рассказывается про рубашку охлаждения, помпу, радиатор, расширительный бачок, термостат, радиатор отопителя, датчик температуры охлаждающей жидкости:

Коротко о поломках

Для расширительного бачка характерны некоторые неисправности, способные помешать его корректной работе. За ними необходимо тщательно следить, чтобы исключить опасность перегрева или попадания воздуха в систему. Как правило, дефекты касаются крышки, как наиболее сложной детали.

Непосредственно корпус бачка ломается крайне редко, лишь в некоторых случаях он трескается сам по себе, вследствие температурного перепада.

Посмотрите интересное видео, почему лопаются расширительные бачки системы охлаждения:

Самая частая поломка связана с клапаном, интегрированным в пробку. Он подвижен, а потому имеет определенный ресурс, после чего теряет работоспособность, не выполняет своих функций. Иногда потеря подвижности спровоцирована засорением, но чистка помогает не всегда.

Нередко деформируется уплотнительное кольцо на крышке. Следствие всех этих неисправностей – потеря герметичности, попадание в систему воздуха. Эксплуатировать машину со сломанным бачком опасно, существенно возрастает нагрузка на двигатель, радиатор и другие агрегаты, восстановление которых – процесс сложный и затратный.

Оптимальное решение в случае обнаружения дефекта – покупка нового изделия, благо, стоимость его невысока, а процесс замены не представляет никаких сложностей.

Если говорить о том, можно ли ездить без крышки расширительного бачка, если она сломалась, то ответ – нет.

Да, непродолжительная поездка никакой угрозы для работоспособности транспортного средства не представляет. Но постоянная эксплуатация приведет к тому, что внутрь бачка могут попасть посторонние включения. В тосоле сформируются пузырьки воздуха, давление в системе окажется нестабильным, а все это негативно скажется на состоянии деталей.

Поучительное видео, принцип работы крышки расширительного бачка:

Подведем итоги

Несмотря на свою конструктивную простоту, расширительный бачок – один из главных элементов всей системы охлаждения двигателя автомобиля.

Следите за его целостностью, работоспособностью клапана крышки, уровнем охлаждающей жидкости и ее качеством. Такой внимательный подход обеспечит, что детали системы проработают максимально долгий срок, эксплуатационный ресурс силовой установки увеличится.

Загрузка…

Конструкция, Воздушная пробка, как выгнать?

Вступление

Во время работы двигатель автомобиля испытывает большие нагрузки, связанные с большими тепловыми нагрузками вследствие трения цилиндропоршневой группы. Для снижения температурных нагрузок в Приоре применена своя система охлаждения двигателя (СОД). В нее входят различные детали, участвующие в охлаждении двигателя и обогреве салона в холода.

В данной статье речь пойдет о системе охлаждения двигателя на автомобиле Лада Приора. Подробно рассказывается о деталях СОД, об их назначении и признаках неисправности.

Система охлаждения Приоры

1 — Радиатор печки; 2,3,4,5,6,10,11,12,13,19 — Патрубки системы охлаждения; 7 — Крышка расширителя; 8 — Расширитель; 9 — Термостат; 14 — Радиатор охлаждения; 15 — Пробка слива ОЖ; 16 — Вентилятор; 17 — Помпа; 18 — Трубка подводящая;

Принцип работы

Охлаждающая жидкость заливается в расширительный бачок (8) затем начинает циркулировать по малому кругу через блок двигателя и радиатор печки (1) под действием центробежного водяного насоса (17). Циркуляция жидкости по малому кругу происходит до 85⁰С, на этой температуре термостат (9) начинает открываться и циркуляция жидкости протекает по большому кругу через радиатор охлаждения (14).

Воздушная пробка

Воздушная пробка в СОД — это образования воздуха в системе, которая не позволяет ей правильно функционировать. Пробка представляет собой полость из воздуха, которая образуется в радиаторе печки и чаще всего негативно сказывается на работе отопителя салона.

Как выгнать пробку?

Устройство СОД в Приоре не подразумевает воздушных пробок, в процессе работы они самостоятельно удаляются системой без каких-либо вмешательств. Достаточно лишь поработать автомобилю несколько десятков минут и пробка удалиться.

Так же есть способ позволяющий удалить пробку намного быстрее. Необходимо заехать на автомобиле на горку так чтобы передняя часть авто была немного выше задней, открыть крышку расширительного бачка и подержать обороты двигателя в районе 2000-2500 об/мин. Воздушная пробка выйдет.

Комплектующие СОД

В систему охлаждения входит множество различных деталей отвечающих за правильную работу системы. Чтобы понять назначение данных деталей необходимо ознакомиться с ними поближе.

Радиатор охлаждения

Данная деталь предназначена для охлаждения антифриза во время движения автомобиля. Когда охлаждающая жидкость циркулирует через радиатор она охлаждается и, следовательно, охлаждает блок двигателя. Внутри радиатор представляет собой много трубок связных между собой змейкой.

Возможные поломки:

  • Течь антифриза из стыков радиатора;
  • Засор радиатора продуктами окисления;

Водяной насос (Помпа)

Помпа является насосом обеспечивающим циркуляцию жидкости по системе охлаждения. Циркуляция обеспечивается крыльчаткой помпы по принципу центробежной силы. Вращения насоса происходит с помощью коленчатого вала через ремень газораспределительного механизма.

Возможные поломки:

  • Течь ОЖ через сальник;
  • Износ шариковых подшипников;
  • Поломка крыльчатки;

Термостат

Термостат является одним из главных элементов системы охлаждения двигателя Приоры. Внутри корпуса термостата помещен клапан с термоэлементом, который отвечает за открытие и закрытие большого круга. При нагреве ОЖ до температуры равной 85⁰С, клапан термостата открывается и жидкость начинает проходить через радиатор охлаждения тем самым остывая и не позволяя двигателю перегреться.

Возможные поломки:

  • Заклинивание клапана в одном из положений;

Расширительный бачок

Бачок расширителя предназначен для компенсации расширения жидкости во время ее нагрева, а так же сужения во время остывания. Именно из этих соображений количество жидкости в бачке находится на среднем уровне.

Возможные поломки:

  • Разрыв бачка из-за пробоя прокладки ГБЦ;
  • Трещины в бачке из-за старости;

Крышка расширительного бачка

Основной задачей крышки бачка является не только закрытие отверстия бачка для залива ОЖ, но и сброс избыточного давления в системе. Именно в крышке установлен клапан, работающий на два положения сброс давление и сброс разряжения (вакуума). Если бы клапана не было, давление в системе раздувало бы шланги и рвало бачки расширителя.

Возможные поломки:

  • Заклинивание клапана;
  • Потеря герметичности;

Вентилятор охлаждения

Предназначен для охлаждения двигателя в пробке или если автомобиль стоит на месте. Как известно радиатор эффективно охлаждает машину, когда есть встречный ветер, то есть при движении. Стоя в пробке охлаждение автомобиля сводится к нулю, поэтому в качестве искусственного ветра применяется вентилятор, который включается при определенной температуре и охлаждает жидкость.

Возможные поломки:

  • Неисправность электродвигателя вентилятора;

Радиатор печки

Радиатор отопителя, как и радиатор охлаждения имеют схожую конструкцию, но отличаются размерами и назначением. Назначением радиатора отопителя является обогрев салона автомобиля. Устанавливается он в корпусе печки в подкапотном пространстве и имеет два штуцера ввод и вывод.

Возможные поломки:

  • Течь на стыках;
  • Засор;

Патрубки

Патрубки отвечают за циркуляцию жидкости от одной детали к другой по системе. Выполняются из резины устойчивой к температурным нагрузкам, внутри каждого патрубка имеется армированная нить, которая не позволяет раздуваться патрубку из-за давления в системе.

Возможные поломки:

  • Трещины;
  • Высыхание резины от времени;

Надеемся, наша статья была Вам полезна.

← Система охлаждения Калина Стартер ВАЗ 2110 →

Принципы испарительной системы охлаждения


Принципы испарительной системы охлаждения

А. Бхатия, Б.


Краткое содержание курса

Испарительное воздушное охлаждение это экологически чистый и энергоэффективный способ охлаждения воздуха с использованием вода в качестве охлаждающей среды. В то время как система испарительного охлаждения может эффективно отвечают целям комфортного охлаждения, обычно это не исключает необходимости для кондиционирования воздуха, за исключением некоторых засушливых и сухих климатов.Прежде чем ты сможешь решить, подойдет ли испарительное охлаждение в вашей ситуации, вы должны понимать как именно это работает.

В этом 4-часовом курсе обсуждаются некоторые из основных факторов, которые вы должны учитывать при выбор системы испарительного охлаждения.

Курс включает глоссарий и тест с несколькими вариантами ответов в конце, которые предназначены для улучшения понимание материалов курса.
Обучение Цель

в В заключение этого курса читатель получит:

  • Понять, что такое испарительное охлаждение и где его следует использовать;
  • Понять принципы испарительного охлаждения;
  • Применить основы психрометрии при оценке требований к испарительному охлаждению;
  • Узнай географию места, которые выиграют от испарительного охлаждения;
  • Понять комплектующие и типы испарительных охладителей;
  • Узнайте, как рассчитать температуру охлаждения при прямом и косвенном испарительном охлаждении параметры;
  • Узнайте, как размер испарительных охладителей с использованием явного тепла и методов воздухообмена;
  • Понять факторы, влияющие на применение испарительного охлаждения;
  • Узнать о типовая информация о конструкции, спецификации и ключевые формулы для выбора соответствующее оборудование;
  • Понять Терминология HVAC применительно к системам испарительного охлаждения;
  • Учиться на примерах методы расчета скорости испарения и восполнения потребности в воде; и
  • Будьте в курсе часто задаваемые вопросы.


Предполагается Аудитория

Этот курс нацелен на студентов, инженеров HVAC, дизайнеров, архитекторов, руководителей объектов, Специалисты по ОТОСБ, экологи, энергоаудиторы, технические и торговые представители и всем, кто хочет получить базовое представление о климат-контроле.


Введение в курс

Когда проходит теплый воздух над более холодной водой тепло переходит от воздуха к воде, вызывая испарение воды и воздух охлаждается.Испарительные охладители используют этот принцип для «извлечения» тепло от более теплого наружного воздуха, пропуская этот воздух через влажную среду, таким образом вызывая охлаждение воздуха. Этот процесс увеличивает влажность розетки. поток воздуха, потому что в воздух добавляется влага. В испарительных охладителях используется натуральный взаимосвязь между относительной влажностью, температурой воды и воздуха.

Обзоры этого курса подробно изложенные выше критерии.

Содержание курса

г. содержание курса находится в файле PDF Принципы испарительной системы охлаждения .Вам нужно открыть или скачать этот документ изучить этот курс.

Краткое содержание курса

Испарение, природное кондиционер, это самый экономичный способ охлаждения воздуха. Испарительный охлаждение происходит при добавлении влаги в воздух с относительной влажностью менее 100 процентов. Однако его эффективность снижается по мере повышения уровня влажности. поднимаются, и, в конце концов, когда воздух полностью насыщается, охлаждающий эффект прекращается. все вместе. К счастью, с повышением температуры влажность падает.Так что на в самое жаркое время суток испарительное охлаждение наиболее эффективно.

Эта технология является универсальной и энергоэффективной альтернативой или дополнением к компрессорное охлаждение. В благоприятном климате (большая часть западных штатов США) Штаты и другие регионы с сухим климатом по всему миру), испарительное охлаждение может полностью удовлетворяют охлаждающую нагрузку здания, используя на четверть меньше энергии, чем у обычного оборудования. Его также можно экономично применять при интеграции с обычным чиллером. системы.Испарительное охлаждение особенно подходит для помещений с высокой требования к вентиляции наружного воздуха, такие как мастерские, раздевалки, кухни, или магазины. Компрессорное охлаждение часто слишком дорого обходится для этих приложений.

Испарительное охлаждение имеет следующие преимущества перед методами охлаждения на основе сжатия:

1) Испарительный воздушное охлаждение обеспечивает превосходное качество воздуха в помещении по сравнению с парокомпрессионными системами поскольку используется 100% наружный воздух.
2) Использование испарительного охлаждения вместо парокомпрессионных систем также помогает снизить глобальные выбросы CO2, CFC и других парниковых газов.
3) Стоимость питания вентилятора испарительного охладителя и небольшого водяного насоса составляет намного меньше, чем работающий кондиционер.
4) Воздух, охлажденный испарением, воспринимается более комфортно, чем высушенный, кондиционер.
5) По сравнению с другими методами охлаждения испарительное охлаждение очень простое, очень эффективный и недорогой в приобретении и эксплуатации.

Испарительный кулеры имеют некоторые ограничения и недостатки:

1) Испарительный охладители неэффективны во влажных регионах.
2) По сравнению с системами сжатия пара испарительные охладители требуют повышенного расход воздуха для компенсации более высоких температур приточного воздуха.

Выбор подходящего система комфорта лежит на человеке, и рекомендуется изучить все альтернативы и принять решение, исходя из своего образа жизни, потребностей и предпочтения.

Тест

Однажды вы закончили изучение выше содержания курса, тебе следует пройти тест для получения кредитов PDH .


ОТКАЗ ОТ ОТВЕТСТВЕННОСТИ: Материалы содержащиеся в онлайн-курсе не являются заявлением или гарантией со стороны Центра PDH или любого другого лица / организации, упомянутых здесь. Материалы предназначены только для общей информации. Они не заменяют грамотного профессионала. совет. Применение этой информации к конкретному проекту должно быть пересмотрено. зарегистрированным архитектором и / или профессиональным инженером / геодезистом. Кто-нибудь делает использование информации, изложенной в настоящем документе, делает это на свой страх и риск и предполагает любую вытекающую из этого ответственность.


Что такое испарительное охлаждение | Baltimore Aircoil

Что такое испарительное охлаждение?

Охлаждение за счет испарения — естественное явление. Самый распространенный пример, с которым мы все сталкиваемся, — это пот или пот. Когда пот испаряется, он поглощает тепло, чтобы охладить ваше тело.

Принцип, лежащий в основе испарительного охлаждения, заключается в том, что вода должна иметь тепло, чтобы превратиться из жидкости в пар. Когда происходит испарение, это тепло отбирается у воды, которая остается в жидком состоянии, в результате чего жидкость становится более холодной.

Испарительные системы охлаждения используют тот же принцип, что и пот, для охлаждения машин и зданий. Градирня — это устройство для отвода тепла, которое выбрасывает теплый воздух из градирни в атмосферу за счет охлаждения воды. В индустрии HVAC термин «градирня» используется для описания оборудования для отвода тепла как с открытым, так и с закрытым контуром.

В системе HVAC тепло выделяется солнцем, освещающим здание, компьютеры и людей.Тепло улавливается воздухообрабатывающими устройствами, которые косвенно связаны с хладагентом через несколько теплообменников. Тепло превращает хладагент из жидкости в пар. Вода из градирни циркулирует через теплообменник, в котором пар хладагента конденсируется, а тепло передается воде. Градирни предназначены для охлаждения теплой воды, возвращающейся из теплообменника, чтобы ее можно было использовать повторно. В открытой градирне теплая возвратная вода из теплообменника разбрызгивается на «заливку».Наполнитель обеспечивает площадь поверхности для улучшения теплообмена между водой и воздухом, в результате чего часть воды испаряется. Затем эта холодная вода возвращается в начало процесса, чтобы поглотить больше тепла от теплообменника.

В градирне с замкнутым контуром для охлаждения используется холодная вода или раствор этилен- или пропиленгликоля. В отличие от открытой градирни, жидкость, используемая для охлаждения, заключена в змеевик и не подвергается прямому воздействию воздуха.Холодная вода рециркулирует по внешней стороне змеевика, который содержит жидкость, нагретую в процессе. Во время работы тепло передается от жидкости через змеевик к распыляемой воде, а затем в атмосферу по мере испарения части воды. Затем холодная жидкость в змеевике возвращается в начало процесса для повторного использования в процессе.

Тонна кондиционирования воздуха — это отказ от 12 000 BTUH. Тонна градирни фактически отбрасывает около 15 000 BTUH из-за теплового эквивалента энергии, необходимой для приведения в действие компрессора чиллера.Тонна градирни определяется как отвод тепла при охлаждении 3 галлонов в минуту воды, поступающей при 95 ° F и выходящей из градирни при 85 ° F, с температурой на входе по влажному термометру 78 ° F, что составляет 15000 BTUH. ниже показано соотношение между водой и воздухом при их прохождении через градирню. Кривая показывает падение температуры воды (от точки A до B) и повышение температуры воздуха по влажному термометру (от точки C до D) в их соответствующих проходах через градирню.

С точки зрения теплопередачи, производительность градирни при охлаждении заданного количества воды зависит только от температуры входящего воздуха по влажному термометру.На это ясно указывает психрометрический анализ воздушного пути в градирне, как показано ниже. Истинный путь аппроксимируется пунктирной кривой линией от точки A до точки C. Чтобы упростить воздушный путь в целях объяснения, он разбит на линии AB и BC. При анализе воздух входит в башню в ненасыщенном состоянии (точка A). Прежде чем достичь наполнителя, он адиабатически насыщается по мере продвижения к точке B. Проходя через наполнитель, он поглощает тепло от падающей воды, тем самым увеличивая общее теплосодержание воздуха.Поскольку воздух постоянно промывается падающей водой, процесс следует по линии насыщения до конечной температуры воздуха, выходящего из градирни, точки C.

Каковы принципы геотермального охлаждения?

Охлаждение дома с помощью геотермального теплового насоса — один из самых надежных и энергосберегающих методов кондиционирования воздуха. По оценкам Министерства энергетики США, геотермальные тепловые насосы работают в три-четыре раза эффективнее, чем стандартные воздушные тепловые насосы.Они также обладают необычайной долговечностью: компоненты внутреннего теплового насоса могут прослужить 20 лет, а змеевики в земле — более 50. Геотермальная энергия также производит мало выбросов, что также делает ее хорошей идеей для окружающей среды.

Но как геотермальная энергия охлаждает дом? Мы объясним удивительно простой способ, которым геотермальный тепловой насос обеспечивает такое же мощное охлаждение, как и любой стандартный кондиционер.

Если вы хотите начать работу с геотермальным охлаждением в Нью-Хейвене, штат Коннектикут, свяжитесь с нашими техническими специалистами Celco Heating and Air Conditioning.Мы помогаем клиентам круглый год с 1976 года.

Как работает геотермальное охлаждение

Основным принципом геотермального охлаждения является теплообмен , который также используется в кондиционерах и тепловых насосах с воздушным источником тепла. Геотермальные системы домашнего комфорта — это разновидности тепловых насосов: они перемещают тепло из одного места и передают его в другое. Однако стандартный тепловой насос использует воздух в качестве среды для теплообмена. В жаркую погоду тепловой насос отводит тепло из воздуха в помещении и направляет его в наружный воздух, снижая температуру в помещении.В холодную погоду происходит обратный процесс.

Геотермальный тепловой насос, однако, является тепловым насосом , работающим на земле, : он использует тепло земли для половины процесса теплообмена. Летом внутренний блок поглощает тепло за счет испарения, как и кондиционер. Но он перемещает тепло через заполненные водой змеевики вниз в землю и откладывает его там. Катушки заземления зарыты на 10 футов или глубже под поверхностью, где температура стабилизируется на отметке 55 ° F.Благодаря стабильной температуре геотермальные тепловые насосы достигают высокого КПД; им не нужно беспокоиться о колебаниях температуры в воздухе, которые могут затруднить теплообмен. Это особенно важно зимой, когда тепловой насос переключается из режима охлаждения в режим нагрева; низкие температуры зимы в Коннектикуте не влияют на тепловой насос, работающий от источника тепла, потому что температура под землей остается прежней.

Профессиональная геотермальная установка

Работа, необходимая для установки геотермального теплового насоса, является интенсивной и требует много времени.Доверьте это только опытным установщикам, которые сделают работу максимально гладкой и быстрой. По вопросам качественной установки геотермального охлаждения в Нью-Хейвене, штат Коннектикут, свяжитесь с Celco Heating and Air Conditioning прямо сейчас. Мы также ремонтируем и обслуживаем геотермальные тепловые насосы, поэтому вы можете рассчитывать на то, что мы позаботимся о вашей системе на долгие годы.

Теги: Геотермальное охлаждение, Нью-Хейвен
Пятница, 16 мая 2014 г., 12:36 | Категории: Кондиционер |

В чем проблема с использованием воды в вашей системе охлаждения?

Когда вода является жидкостью, а не паром, она обладает превосходными характеристиками теплопередачи и перекачивания, лучше, чем любая другая жидкость, так почему же она вызывает столько проблем в «реальных» приложениях?

Конструкторы двигателя и системы охлаждения постарались учесть многие физические ограничения, которым подвержена вода.Однако успех был постепенным; Безводные охлаждающие жидкости представляют собой будущее двигателей с жидкостным охлаждением.

Пар-пар и перегрев: безводная охлаждающая жидкость для двигателей Evans была в первую очередь разработана для устранения проблем с перегревом. Вода и антифриз на водной основе создают относительно высокое давление пара, поскольку тепловая энергия передается жидкости и образуется пар. В атмосферных условиях это давление пара постоянно увеличивается до тех пор, пока между 212-219 ° F не установится равновесие давления между антифризом и атмосферой (1.013 бар), и жидкость закипит. Теоретически установка подпружиненной крышки обеспечивает дополнительное давление в системе примерно на 1 бар (в зависимости от пружины), что должно поднять точку кипения до 248–255 ° F. Однако антифриз на водной основе находится в динамической среде и не всегда ведет себя одинаково, особенно когда он уже нагрет до высокой температуры. Давление в системе, равное 1 бар манометра, неравномерно распределяется по всей системе охлаждения. Когда очень горячий антифриз с высоким давлением пара соединяется с высокотемпературным металлом в двигателе, он испаряется; это кипение чаще всего происходит в головке блока цилиндров.Области пониженного давления, например, на стороне низкого давления насоса или вдоль стенок цилиндра, которые вибрируют, подвержены кавитации (парообразованию). После образования пузырька пара гликоль в охлаждающей жидкости относительно легко конденсируется, оставляя чистый водяной пар (пар). Этот водяной пар не будет конденсироваться до тех пор, пока не достигнет места, которое находится ниже точки кипения чистой воды. Пока двигатель остается под нагрузкой, этот пар отталкивает жидкую охлаждающую жидкость от металлических поверхностей, что приводит к резкому скачку температуры металла на них.Эти горячие точки вызывают снижение эффективности двигателя, детонацию и приводят к полномасштабному перегреву.

Кавитация и эрозия: Принцип образования пузырьков пара также известен как кавитация. Кавитация обычно возникает при падении давления и может привести к перегреву, прерыванию потока насоса и кавитационно-эрозионным повреждениям. Кавитационная эрозия может разъедать гильзы цилиндров и рабочие колеса насосов.

Нарушение сгорания: Когда двигатели страдают от перегрева горячих точек вокруг зоны сгорания, эффективное сгорание оказывается под угрозой.В частности, топливно-воздушная смесь воспламенится или взорвется. Эта детонация снижает выходную мощность, поскольку заряд воспламеняется, пока поршень все еще поднимается в цилиндре. Двигатели с «датчиком детонации» обогатят топливную смесь; испарение топлива охлаждает камеру сгорания и помогает противостоять детонации, но потеря мощности является прямым результатом. В этой ситуации также теряется экономия топлива, поскольку двигатель теперь использует топливо в качестве охлаждающей жидкости. В двигателях с картированием топлива, управляемым датчиком детонации, будет наблюдаться повышение экономии топлива при переходе на охлаждающую жидкость Эванса.

Напряжение давления: антифриз на водной основе создает высокое давление пара, и часто компоненты коммерческих систем охлаждения испытывают внутреннее давление, значительно превышающее 2 бар манометрического давления. Когда вода превращается в пар, она расширяется более чем в 1200 раз, это сила расширения, которая приводит в движение паровой двигатель. Вентиляционное отверстие для сброса давления на крышке радиатора слишком мало, чтобы выпустить достаточное давление пара при максимальном перегреве двигателя; давление в системе может значительно превысить допустимый предел.Эти скачки давления в сочетании с коррозией со временем ослабляют металлические компоненты и поверхности прокладок, вызывая утечки и выход из строя радиатора или охладителя системы рециркуляции ОГ. Хотя эти проблемы не проявляются на раннем этапе, со временем может быть потеряно значительное количество охлаждающей жидкости, и потребуется регулярная дозаправка. Дороже, чем стоимость замены радиатора, охладителя системы рециркуляции ОГ, шланга и насоса охлаждающей жидкости, просто время технического обслуживания необходимого оборудования.

Внутренняя коррозия: Две другие естественные характеристики охлаждающих жидкостей на водной основе присущи процессу коррозии;

Вода вытесняет растворенный кислород при нагревании и повторно поглощает кислород при охлаждении.Хотя этот процесс кислородного обмена минимизирован внутри замкнутой системы охлаждения, со временем ингибиторы коррозии охлаждающей жидкости постепенно истощаются, и может возникнуть коррозия.

Вода может проводить небольшой электрический ток в присутствии разнородных металлов, что приводит к гальванической коррозии (электролизу). Металлы высокого благородства (например, медь) приносят себя в жертву металлам низкого благородства (например, чугуну). Ингибиторы коррозии, содержащиеся в современных антифризах, разработаны для снижения этой активности, но по-прежнему существует потребность в регулярном пополнении или замене.

Как окислительные, так и электролитические свойства воды можно избежать на неопределенный срок с помощью безводной охлаждающей жидкости Evans.


Комментарии:

Принципиальная схема резервной системы охлаждения HTTMS: …

Контекст 1

… конфигурация с четырьмя функциями Концепция VCHP описана ниже на основе схемы, представленной на рисунке 2:  Рисунок 2a показывает Преобразователь Стирлинга остановился (во время перехода к Венере) во время работы ВЧП.Резервуар является холодным, что позволяет фронту неконденсируемого пара выходить за пределы второго конденсатора, так что тепло GPHS отводится от радиатора к фланцу адаптера холодной стороны и далее в окружающую среду. …

Контекст 2

… конфигурация с четырьмя функциями Концепция VCHP описана ниже на основе схемы, представленной на рисунке 2:  На рисунке 2a показан остановленный преобразователь Стирлинга (во время перехода к Венере), в то время как VCHP находится в работающий. Резервуар является холодным, что позволяет фронту неконденсируемого пара выходить за пределы второго конденсатора, так что тепло GPHS отводится от радиатора к фланцу адаптера холодной стороны и далее в окружающую среду….

Контекст 3

… температура пара в этом случае значительно ниже номинальной рабочей температуры на Венере, что экономит срок службы головки нагревателя.  На рисунке 2b показан преобразователь, работающий при более низкой уставке температуры для предварительного охлаждения модулей GPHS (и всех других компонентов) перед повторным входом в атмосферу Венеры. VCHP выключен, поэтому в этом случае передняя часть находится где-то между первым конденсатором (головкой нагревателя) и вторым конденсатором, несмотря на холодный резервуар (открытый в глубокий космос)….

Контекст 4

… он действительно требует, чтобы Стирлинг работал.  На Рисунке 2c показан преобразователь в нормальном режиме работы (на Венере), когда VCHP выключен с горячим резервуаром. В этом случае передняя часть находится где-то между первым конденсатором (головкой нагревателя) и вторым конденсатором. …

Контекст 5

… температура пара в данном случае является номинальной рабочей температурой на Венере (1100-1200 ° C).  На рисунке 2d показан остановленный преобразователь Стирлинга (на Венере) во время работы VCHP.В этом случае головка нагревателя не принимает тепло, что увеличивает температуру и давление пара, выталкивая фронт газа за радиатор, несмотря на горячий резервуар. …

Контекст 6

… резкое давление паров натрия в этом диапазоне температур создает идеальные условия для этой функции, потому что необходимое повышение температуры для отключения Стирлинга очень мало (несколько градусов), что составляет очень желательно. Как видно на рисунке 2, модули GPHS термически связаны с головкой нагревателя только одним паровым пространством (тепловой трубой) и прилегающей к нему стенкой, при этом никакой другой интерфейс не используется.Следовательно, перепад температуры между модулями GPHS и головкой нагревателя будет минимальным из-за низкого теплового сопротивления, которое допускает эта конфигурация. …

Контекст 7

… конфигурация 22 VCHP HTTMS, каждый VCHP должен будет передавать и отклонять ~ 12 кВт. На рис. 12 показано несколько ограничений производительности тепловой трубы в зависимости от внутреннего диаметра. Эти расчеты были выполнены для тепловой трубы длиной 63,5 см (25 дюймов) с натрием в качестве рабочего тела….

Контекст 8

… общая геометрическая конфигурация этой трубы соответствует расчетной для случая использования только Pu-238 (конфигурация 22 ВЧП). На рисунке 12 видно, что предел капиллярности является самым низким в пространстве, когда отклоненная мощность является максимальной (BOM). Таким образом, в течение 1,5-летней миссии 12 кВт начальной мощности можно было передать и отклонить внутренним диаметром 3,81 см (1,5 дюйма). ВЧП. …

Контекст 9

… 2, предварительное охлаждение, не был включен в это аналитическое представление, так как он может не подходить из-за более высокой выработки энергии во время повторного входа. Однако концепция, представленная на рисунке 2, включает эту функцию для полноты картины. На Рисунке 13 показана мощность, отдаваемая одним ВТЭЦ, по мере того, как она снижается в течение всей миссии, рассчитанной на 18 месяцев. …

Принцип работы системы водяного охлаждения станков лазерной резки

Принцип работы системы охлаждения с циркуляцией хладагента: жидкий хладагент поступает в испаритель за счет капиллярного дросселирования и снижения давления; он испаряется в испарителе, поглощает тепло охлажденной воды во внешней циркуляционной системе охлаждения водяного контура и становится высокотемпературным закладывающим паром хладагента, а затем всасывается в компрессор; компрессор сжимается до высокотемпературного пара высокого давления и сбрасывается в конденсатор.

В конденсаторе хладагент отдает тепло охлаждающей среде — воздуху и впрыскивается в капиллярную трубку в виде низкотемпературной жидкости высокого давления после конденсации. Капиллярная трубка снова входит в испаритель для поглощения тепла и испарения для достижения цели циркуляционного охлаждения.

Принцип работы системы охлаждения с внешней циркуляцией водяного контура: вода обменивается энергией в водяном баке с хладагентом в испарителе; после охлаждения он проходит через резервуар для воды, фильтр и водяной насос в теплообменник в системе охлаждения с внутренней циркуляцией водяного контура.Среда обменивается энергией с внутренней циркулирующей водой, поглощает ее тепло и возвращается в резервуар для воды, чтобы поддерживать внутреннюю циркулирующую воду в определенном диапазоне температур.

Принцип работы внутренней циркуляционной системы охлаждения водяного контура: внутренняя циркуляционная вода и внешняя циркуляционная вода обмениваются энергией в теплообменнике и возвращаются в резервуар для воды после охлаждения, а затем протекают через полость лазера через фильтр и водяной насос для отвода тепла из лазерного резонатора.Лазер охлаждается, температура повышается, а затем возвращается в теплообменник для обмена энергией с внешней циркулирующей водой.

Системы охлаждения электромобилей

В этом руководстве представлен обзор способов охлаждения литий-ионных аккумуляторных батарей и оценка того, какая система охлаждения аккумулятора является наиболее эффективной на рынке.

Обсуждает:

  • Важность управления температурным режимом аккумуляторной батареи
  • Четыре разные системы охлаждения:
    • Материал фазового перехода (PCM)
    • Ребристое охлаждение
    • Воздушное охлаждение
    • Жидкостное охлаждение (прямое и косвенное)
  • Оценка того, какая система охлаждения наиболее эффективна
  • Требования к жидким теплоносителям в различных системах

СКАЧАТЬ БЕСПЛАТНО

5 РАЗЛИЧИЙ МЕЖДУ ДВИГАТЕЛЯМИ EV И ДВИГАТЕЛЯМИ ВНУТРЕННЕГО СГОРАНИЯ

Система управления температурным режимом электромобиля

Важность системы охлаждения

Несмотря на то, что в аккумуляторных батареях для электромобилей были сделаны усовершенствования, которые позволяют им обеспечивать большую мощность и требовать менее частой зарядки, одной из самых больших проблем, которые остаются для безопасности аккумуляторов, является возможность разработать эффективную систему охлаждения.

В электромобилях при разрядке аккумулятора выделяется тепло; чем быстрее вы разряжаете аккумулятор, тем больше тепла он выделяет.
Батареи

работают по принципу разности напряжений, и при высоких температурах электроны внутри становятся возбужденными, что уменьшает разницу в напряжении между двумя сторонами батареи. Поскольку батареи производятся только для работы между определенными крайними температурами, они перестанут работать, если нет системы охлаждения, поддерживающей их в рабочем диапазоне.Системы охлаждения должны поддерживать температуру аккумуляторной батареи в диапазоне примерно 20-40 градусов Цельсия, а также поддерживать минимальную разницу температур внутри аккумуляторной батареи (не более 5 градусов Цельсия).

Если существует большая внутренняя разница температур, это может привести к разной скорости заряда и разряда для каждой ячейки и ухудшить характеристики аккумуляторной батареи.

Потенциальные проблемы термической стабильности, такие как снижение емкости, тепловой разгон и пожар, могут возникнуть, если аккумулятор перегревается или если в аккумуляторном блоке наблюдается неравномерное распределение температуры.Перед лицом опасных для жизни проблем с безопасностью в отрасли электромобилей постоянно появляются инновации, направленные на улучшение системы охлаждения аккумуляторных батарей.

Системы охлаждения электромобилей

Какая система охлаждения лучше всего работает в электромобилях?

Системы терморегулирования аккумуляторных батарей по-прежнему являются предметом тщательных исследований, и то, что мы о них знаем, будет изменяться и развиваться в ближайшие годы, поскольку инженеры продолжают переосмысливать принцип работы наших автомобильных двигателей.

Есть несколько вариантов охлаждения аккумулятора электромобиля — с помощью материала с фазовым переходом, ребер, воздуха или жидкого хладагента.
  1. Материал с фазовым переходом поглощает тепловую энергию, изменяя свое состояние с твердого на жидкое. При изменении фазы материал может поглощать большое количество тепла с небольшим изменением температуры. Системы охлаждения материала с фазовым переходом могут удовлетворить требования к охлаждению аккумуляторной батареи, однако изменение объема, которое происходит во время фазового перехода, ограничивает ее применение.Кроме того, материал с фазовым переходом может только поглощать выделяемое тепло, но не отводить его, а это означает, что он не сможет снизить общую температуру, как и другие системы. Несмотря на то, что они не подходят для использования в транспортных средствах, материалы с фазовым переходом могут быть полезны для улучшения тепловых характеристик в зданиях за счет уменьшения колебаний внутренней температуры и снижения пиковых охлаждающих нагрузок.

  2. Ребра охлаждения увеличивают площадь поверхности для увеличения скорости теплопередачи. Тепло передается от аккумуляторной батареи к ребру посредством теплопроводности и от ребра к воздуху посредством конвекции.Ребра обладают высокой теплопроводностью и могут обеспечивать охлаждение, но при этом добавляют большой дополнительный вес рюкзаку. Использование ребер нашло большой успех в электронике, и традиционно они использовались в качестве дополнительной системы охлаждения на транспортных средствах с двигателями внутреннего сгорания. Использование ребер для охлаждения аккумулятора электромобиля вышло из употребления, поскольку дополнительный вес ребер перевешивает преимущества охлаждения.

  3. Воздушное охлаждение использует принцип конвекции для отвода тепла от аккумуляторной батареи.Когда воздух проходит по поверхности, он уносит тепло, излучаемое упаковкой. Воздушное охлаждение простое и легкое, но не очень эффективное и относительно грубое по сравнению с жидкостным охлаждением. Воздушное охлаждение используется в более ранних версиях электромобилей, таких как Nissan Leaf. Поскольку электромобили в настоящее время используются все чаще, возникают проблемы с безопасностью, связанные с аккумуляторными блоками с чисто воздушным охлаждением, особенно в жарком климате. Другие производители автомобилей, такие как Tesla, настаивают на том, что жидкостное охлаждение — самый безопасный метод.

  4. Жидкие охлаждающие жидкости имеют более высокую теплопроводность и теплоемкость (способность удерживать тепло в форме энергии в своих связях), чем воздух, и поэтому работают очень эффективно и обладают такими преимуществами, как компактная структура и простота размещения. Из этих вариантов жидкие охлаждающие жидкости обеспечивают наилучшую производительность для поддержания аккумуляторной батареи в правильном температурном диапазоне и однородности. Системы жидкостного охлаждения имеют свою долю проблем безопасности, связанных с утечкой и утилизацией, поскольку гликоль может быть опасен для окружающей среды при неправильном обращении.Эти системы в настоящее время используются Tesla, Jaguar и BMW, и это лишь некоторые из них.

Исследовательская группа из Национальной лаборатории возобновляемых источников энергии (США) и Национального исследовательского центра сетевых технологий распределения (Китай) сравнила четыре различных метода охлаждения пакетных литий-ионных ячеек: воздушное, непрямое жидкостное, прямое жидкостное и системы охлаждения ребер. . Результаты показывают, что система воздушного охлаждения требует в 2–3 раза больше энергии, чем другие методы, для поддержания той же средней температуры; система непрямого жидкостного охлаждения имеет самый низкий максимальный рост температуры; и ребристая система охлаждения добавляет около 40% дополнительного веса элемента, что имеет наибольший вес, когда четыре метода охлаждения имеют одинаковый объем.Непрямое жидкостное охлаждение является более практичной формой, чем прямое жидкостное охлаждение, хотя оно имеет несколько более низкую охлаждающую способность. ( Сравнение различных методов охлаждения литий-ионных аккумуляторных элементов )

Определяющими характеристиками системы охлаждения аккумуляторной батареи электромобиля являются температурный диапазон и однородность, энергоэффективность, размер, вес и простота использования (т. Е. Реализации, обслуживания).

Каждая из этих предлагаемых систем может быть спроектирована для достижения правильного температурного диапазона и однородности.Энергоэффективности добиться труднее, поскольку охлаждающий эффект должен быть больше, чем тепло, выделяемое при питании системы охлаждения. Кроме того, система со слишком большим дополнительным весом будет истощать энергию автомобиля, поскольку она выводит мощность.

Материал с фазовым переходом, вентиляторное охлаждение и воздушное охлаждение — все это не соответствует требованиям к энергоэффективности, размеру и весу, хотя они могут быть так же просты в реализации и обслуживании, как и жидкостное охлаждение. Жидкостное охлаждение — единственный оставшийся вариант, который не потребляет слишком много паразитной энергии, обеспечивает требования к охлаждению и компактно и легко помещается в аккумуляторную батарею.В литий-ионных батареях Tesla, BMW i-3 и i-8, Chevy Volt, Ford Focus, Jaguar i-Pace и LG Chem в той или иной форме используется система жидкостного охлаждения. Поскольку электромобили все еще являются относительно новой технологией, возникали проблемы с поддержанием диапазона температур и однородности при экстремальных температурах даже при использовании системы жидкостного охлаждения. Вероятно, это связано с производственными проблемами, и по мере того, как компании приобретают опыт разработки этих систем, необходимо решать проблемы управления температурным режимом.

В системах жидкостного охлаждения существует еще одно разделение на прямое и косвенное охлаждение — независимо от того, погружены ли элементы в жидкость или если жидкость перекачивается по трубам.
  1. В системах прямого охлаждения элементы аккумуляторной батареи находятся в непосредственном контакте с охлаждающей жидкостью. Эти схемы терморегулирования в настоящее время находятся на стадии исследований и разработок, и на рынке нет автомобилей, использующих эту систему. Прямого охлаждения добиться труднее из-за того, что требуется новый тип охлаждающей жидкости. Поскольку аккумулятор находится в контакте с жидкостью, охлаждающая жидкость должна иметь низкую проводимость или ее отсутствие.

  2. Системы непрямого охлаждения похожи на системы охлаждения ДВС, в которых жидкий хладагент циркулирует по металлическим трубам.Однако конструкция системы охлаждения электромобилей будет выглядеть иначе. Структура системы охлаждения, которая обеспечивает максимальную однородность температуры, зависит от формы аккумуляторной батареи и будет выглядеть по-разному для каждого производителя автомобиля.

Требования к жидким хладагентам

Обеспечение безопасности и эффективности охлаждающих жидкостей

Учитывая, что жидкостное охлаждение является наиболее эффективным и практичным методом охлаждения аккумуляторных блоков и в настоящее время наиболее широко используемым, необходимо уделить внимание типу охлаждающей жидкости, используемой в этих системах.

Непрямое жидкостное охлаждение

Системы непрямого жидкостного охлаждения для электромобилей и обычные системы охлаждения двигателя внутреннего сгорания (ДВС) очень похожи: в обеих системах охлаждающая жидкость циркулирует по металлическим трубам для отвода тепла от аккумуляторной батареи или двигателя. Следовательно, требования к охлаждающей жидкости для систем непрямого жидкостного охлаждения будут очень похожи на традиционные охлаждающие жидкости ДВС.

99% охлаждающей жидкости — это товар, такой как гликоль или полигликоль, но 1% -ный пакет присадок — это то, что отличает хорошую защиту двигателя от отличной защиты и производительности.При циркуляции жидкого хладагента по металлическим трубам важно защитить его от коррозии для обеспечения безопасности и производительности автомобиля.

Металл очень нестабилен, поэтому он, естественно, хочет реагировать с другими элементами, теряя электроны, чтобы перейти в более стабильное состояние. Коррозия возникает из-за того, что примеси в охлаждающей жидкости имеют на себе положительный заряд, поэтому они взаимодействуют с металлическими трубами и сдирают часть поверхности. Пакеты присадок можно смешивать с антифризом для образования охлаждающей жидкости, защищающей от ржавчины, накипи и коррозии.Пакеты присадок, используемые в транспортных средствах с ДВС, содержат ингибиторы коррозии для защиты многих типов металлов, содержащихся в системах охлаждения, таких как трубы, прокладки, соединения, радиатор и т. Д. Американское общество испытаний и материалов поддерживает стандарты, которым должны соответствовать охлаждающие жидкости для защиты от коррозия различных типов металлов. То, что в настоящее время известно о предотвращении коррозии в системах охлаждения двигателей внутреннего сгорания, можно легко применить к системе непрямого жидкостного охлаждения в электромобилях.

Прямое жидкостное охлаждение

Существуют различные требования к охлаждающей жидкости для систем прямого жидкостного охлаждения. В системах, где аккумулятор будет напрямую контактировать с охлаждающей жидкостью, например, в транспортных средствах на топливных элементах или в системах с прямым жидкостным охлаждением, охлаждающая жидкость должна быть жидкостью с низкой проводимостью или без нее. Это будет сильно отличаться от обычных охлаждающих жидкостей ДВС, которые имеют высокую проводимость. Причина, по которой требуется низкая проводимость / отсутствие проводимости, связана с безопасностью: электроны проходят через батарею, и если они подвергаются воздействию жидкости с высокой проводимостью, это приведет к отказу и взрыву.Некоторыми примерами способов поддержания низкой проводимости хладагента являются использование деионизированной воды в качестве среды для текучей среды или наличие текучей среды на несолевой основе. Эти охлаждающие жидкости с низкой и непроводимостью находятся на ранних стадиях исследований и разработок.

Будущее систем охлаждения для электромобилей

Исследования и разработки в области охлаждения

Поскольку электромобили стали широко использоваться, существует большая потребность в увеличении срока службы батарей и более высокой выходной мощности.Чтобы достичь этого, системы терморегулирования аккумуляторной батареи должны иметь возможность отводить тепло от аккумуляторной батареи, поскольку они заряжаются и разряжаются с большей скоростью. Тепло, выделяемое при использовании аккумулятора, может представлять угрозу безопасности пассажиров. Из-за высоких нагрузок и температур, создаваемых аккумуляторами, еще более важным является наличие правильного пакета охлаждающей жидкости и присадок. В то время как такие компании, как Tesla, BMW и LG Chem, могут использовать традиционный жидкий хладагент для своих систем непрямого охлаждения, для повышения безопасности электромобилей необходимо будет продолжать исследования и разработки в отношении аккумуляторных блоков и охлаждающих жидкостей.

ГОТОВЫ РАЗРАБОТАТЬ ЖИДКИЙ ОХЛАЖДАЮЩИЙ ЖИДКОСТЬ?

Если вы заинтересованы в разработке жидкой охлаждающей жидкости, обратитесь к ведущему поставщику антикоррозионных присадок, например, Dober.

.

Добавить комментарий

Ваш адрес email не будет опубликован.