Меню Закрыть

Принцип работы катализатора выхлопных газов: Каталитический нейтрализатор: устройство и принцип работы

Содержание

что это такое, признаки поломки, состав и принцип работы

Европейские нормы экологии заставляют принимать меры к тому, чтобы выхлопные газы автомобилей не наносили сильного ущерба окружающей среде.

И эта борьба за природу привела к тому, что автомобили стали оборудоваться специальными устройствами, которые назвали катализаторами.

Состав и принцип работы катализатора выхлопных газов

Из школьных уроков мы помним, что катализ – это что-то из области химической реакции, и поэтому термин «катализатор» подразумевает под собой какой-то прибор, необходимый для такого действия.

Мы не химики и оценить точность определения вряд ли сможем, но то, что автомобильный катализатор предназначен для очистки выхлопной смеси — факт, о котором сообщает сам производитель. А ему не принято не верить.

Несмотря на то, что европейские нормы выхлопов введены в России не так давно, первые катализаторы в автомобилях отпраздновали уже 40-летний юбилей. Упрощение до нынешнего названия произошло гораздо позже, а первое время именовалась эта штука конвертером, или каталитическим преобразователем. Сами понимаете, что не каждый работник автосервиса сможет сходу и без запинки выговорить такое.

Катализатор встраивается в выхлопную систему автомобиля, причём конкретное место установки выбирает сам производитель. Так, он может находиться и в коллекторе, и в основании выхлопной трубы, и в других её участках.

Есть два вида катализаторов: окислительный и восстанавливающий. Независимо от разделения, эти устройства, наверное, одни из самых дорогостоящих. Судите сами: основу их составляет структура из керамики, напоминающая пчелиные соты, покрытые металлами, которые простыми не назовёшь – платина, золото, палладий и иридий. Даже удивительно, куда смотрят жулики, оставляющие выхлопную систему автомашин, припаркованных во дворах, в покое?

Как бы то ни было, но подобное покрытие ячеек катализатора необходимо вовсе не для того, чтобы вытянуть деньги с автолюбителя. Дело в том, что драгоценные металлы эффективней очищают выхлопные газы, одновременно предоставляя большую площадь для очистки с минимальным ущербом для самого катализатора. Если исключить драгоценные металлы из сплава, то само устройство будет настолько недолговечным и подверженным негативному воздействию выхлопных газов, что менять его придётся несколько раз в течение одной небольшой поездки.

Опытным путем было установлено, что один катализатор вряд ли сможет работать эффективно, а потому на современных автомобилях их устанавливают в трех экземплярах. Они не дублируют друг друга, а делают узконаправленную работу, выполняя очистку от тех веществ, для которых предназначены.

Видео — что это такое автомобильный катализатор и как он работает:

Таким образом, выхлопные газы проходят вначале через восстановительный катализатор, внутри которого на молекулярном уровне идет расщепление поступающего вещества на кислород и азот. Этот процесс как раз и выполняют иридий и платина.

Когда работа проделана, в дело вступают окислительные катализаторы, производящие очистку поступивших веществ. Здесь уже совместно с платиной вступает в действие палладий, снижая количество окиси углерода и облегчая реакцию углекислого газа с кислородом.

Маленькие вспомогательные «хитрости»

Как бы ни эффективно очищался выхлоп двигателя, но в ручном режиме регулировать точность выброса в атмосферу было б не просто затруднительно, а в принципе невозможно. Тем более толку от такой системы было б совсем немного: только в рамках информации для общего развития. Дело в том, что вместе с катализаторами выхлопная система оснащена датчиками, входящими в систему управления автомобилем.

Имея связь с компьютером, эти устройства учитывают количество кислорода, поступающего вместе с выхлопом мотора. В том случае, если через катализатор будет проходить воздуха столько, что он не сможет его переработать, забор через воздушный фильтр двигателя уменьшается. Датчики устанавливаются ближе к мотору и замеряют газы непосредственно на выходе.

Недостатки тоже есть

Наличие драгоценных металлов в конструкции катализатора еще не означает того, что оно решает все проблемы. Необходимо еще соблюсти ряд условий для работы.

Опять же, благодаря курсу средней школы, мы все знаем, что любая химическая реакция (а именно на этом принципе основан катализатор) происходит тем быстрее, чем выше температура. Отсюда сами понимаете, что устройство не сможет эффективно функционировать, если температурный режим ниже необходимого. То есть налицо вывод о том, что в момент начала работы автомобильного двигателя катализатор фактически никак не реагирует на количество вредных веществ, выброшенных в атмосферу до тех пор, пока они же не нагреют трубопровод системы.

Видео — как извлечь каталитический нейтрализатор:

Самый простой способ такого нагрева – помещение устройства непосредственно к основанию газоотводной трубы возле стенки двигателя. Но при включении холодного двигателя при такой установке катализатор все равно первое время работать не будет, пока не согреется. Современный и эффективный способ, который заставит его действовать с самого начала – предпусковой подогреватель двигателя, расходующий часть энергии на утепление.

Несмотря на то, что в выхлопной системе дизельных двигателей тоже есть подобные каталитические преобразователи, действуют они не столь впечатляюще. Дело тут также в недостаточной температуре нагрева. Дизели не так зависимы от окружающей среды и имеют возможность работать в зоне таких низких температур, что катализаторы просто не успевают достичь нагрева до степени осуществления химической реакции.

Признаки забитого катализатора

Но эти недостатки – мелочь по сравнению с ситуацией, когда вы садитесь за руль, а машина либо не заводится, либо глохнет, едва только двигатель сделает один-другой поворот коленвала. Понятное дело: мысли в поисках причин такого поведения начинают роиться в голове, и только потом, когда проверено всё и вся, становится понятным, что неполадки как раз с катализатором.

Чтобы проверить правоту своих домыслов, выкрутите датчик, расположенный перед первым катализатором, и попробуйте запустить мотор. Если никаких проблем в работе двигателя нет, то причина как раз в устройстве, о котором мы здесь говорим. Теперь необходимо полным ходом отправляться в автосервис и менять катализатор. Самостоятельно сделать это вряд ли получится, так как необходимо вносить корректировки в бортовой компьютер, чтобы настроить датчик на правильную работу.

Видео — как проверить катализатор на машине:

Если вы знаете свой автомобиль как пять пальцев, то наверняка вас насторожат и такие признаки неисправности каталитического нейтрализатора, как плохой разгон, педаль акселератора, слабо реагирующая на нажатие, рост расхода топлива. Подобное поведение машины говорит о том, что катализатор скоро выработает свой срок.

Проверка катализатора манометром

Как только вы заметили явные изменения в поведении своего авто, примите меры к проверке каталитического нейтрализатора. Признаки, о которых говорилось выше, не всегда могут относиться к тем, что сигнализируют о неисправности именно этого устройства.

Осмотрите катализатор. Если на корпусе имеются сильные вмятины, либо разводы, похожие на круги от воздействия высокой температуры, наверняка причины неполадок кроются внутри. По возможности осмотрите внутренние соты. Если они разрушены, первый «звоночек» уже прозвенел.

Точнее можно проверить с помощью замера манометром. Правда, это не тот прибор, которым проверяют давление в шинах, поэтому лучше также доверить эту операцию специалистам. Сам алгоритм действия следующий: вместо первого кислородного датчика, используя переходник, устанавливается измерительный прибор. После заводится двигатель, обороты поднимаются до 3000 об/мин. Если стрелка на шкале преодолела отметку в 0,3 кгс/см2, то катализатор забит, и наступило время для его замены.

И самое главное – придирчиво относитесь к тому, чтобы топливо и масло всегда были надлежащего качества, иначе весь осадок от них будет накапливаться в катализаторе, что также будет способствовать его скорому выходу из строя.

Как выполняется полировка фар своими руками в домашних условиях узнаете из статьи.

В каких случаях может помочь сумка-холодильник для автомобиля.

Как выбрать автомобильный компрессор https://voditeliauto.ru/poleznaya-informaciya/aksessuary-i-gadzhety-dlya-avto/avtomobilnyj-kompressor.html для подкачки шин.

Видео — проблемы катализаторов на автомобилях ВАЗ:


Каталитические нейтрализаторы — Что такое Каталитические нейтрализаторы?

Каталитический нейтрализатор (обиходное название – катализатор) предназначен для снижения токсичности отработавших газов

Нейтрализатор — устройство в выхлопной системе, предназначенное для снижения токсичности отработавших газов посредством восстановления оксидов азота и использования полученного кислорода для дожига угарного газа и недогоревших углеводородов. 

Основным требованием к успешной работе катализатора является стехиометрическое соотношение топлива и кислорода.

Задачей автомобильного каталитического нейтрализатора является снижение количества вредных веществ в выхлопных газах.

Среди них:

  • окись углерода (СО) — ядовитый газ без цвета и запаха;

  • углеводороды (CH), также известные как летучие органические соединения — один из главных компонентов смога, образуется за счет неполного сгорания топлива;

  • оксиды азота (NO и NO2, которые часто объединяют под обозначением NOx) ­­­­­­- также являются компонентом смога, а также кислотных дождей, оказывают влияние на слизистую человека.

Принцип работы

Каталитический нейтрализатор расположен либо на приемной трубе, либо сразу после нее.

Внутри корпуса каталитического нейтрализатора находится керамическая сотовая конструкция.

Соты нужны, чтобы увеличить площадь контакта выхлопных газов с поверхностью, на которую нанесен тонкий слой платиноиридиевого сплава.

Недогоревшие остатки (CO, CH, NO) касаясь поверхности каталитического слоя, окисляются до конца кислородом, присутствующим также в выхлопных газах.

В результате реакции выделяется тепло, разогревающее катализатор и, тем самым, активизируется реакция окисления.

В конечном итоге на выходе из катализатора (исправного) выхлопные газы содержат в основном N

2 и СО2.

Катализаторы в дизельных двигателях

Каталитические преобразователи дизельных двигателей плохо справляются с сокращением выбросов NOx.

Одна из причин в том, что дизельные двигатели сами по себе функционируют в более низком температурном режиме, чем бензиновые, а преобразователи работают лучше при нагреве.

Некоторые ведущие эксперты в области «зеленого» автомобилестроения придумали новую выхлопную систему, которая помогает исправить этот недостаток.

Они впрыскивают водный раствор мочевины в выхлопную трубу до того, как газы достигнут преобразователя.

При этом возникает химическая реакция, которая уменьшает количество NOx.

Карбамид, также известный как мочевина — органическое соединение углерода, азота, кислорода и водорода.

Его можно обнаружить в моче млекопитающих и земноводных, что и объясняет такое название.

Мочевина реагирует с NOx с получением азота и водяного пара, снижая количество оксидов азота в выхлопных газах более чем на 90%.

Катализатор. Принцип работы, назначение. Удаление или чистка

На протяжении многих лет авто производители создают много усовершенствований в автомобильных двигателях и топливных системах, чтобы идти в ногу со временем и, безусловно, с законами, направленными на улучшение экологической ситуации на фоне выбросов автомобилей. Одно из кардинальных таких усовершенствований произошло в 1975 году с интересным устройством под названием катализатор. По сути работа катализатора заключается в преобразовании вредных веществ в менее вредные выбросы, прежде чем они покинут выхлопную систему автомобиля.

Устройство и принцип работы каталитического нейтрализатора

В составе выхлопных газов автомобиля содержится довольно много токсичных веществ. Для предотвращения их попадания в атмосферу используется специальное устройство, получившее название «каталитический нейтрализатор» (более известный как «катализатор»). Он устанавливается на автомобилях, оснащенных двигателями внутреннего сгорания, работающих как на бензине, так и на дизельном топливе. Зная принцип работы катализатора, вы сможете понять важность его работы и оценить последствия, которые может вызвать его удаление.

Конструкция и функции катализатора

Нейтрализатор является частью системы выхлопа. Он располагается сразу за выпускным коллектором двигателя. Катализатор состоит из:

  • Металлический корпус (монтажный мат), имеющий входной и выходной патрубки.
  • Керамический блок (монолит). Представляет собой пористую структуру с множеством ячеек, которые увеличивают площадь соприкосновения выхлопных газов с рабочей поверхностью.
  • Каталитический слой — специальное напыление на поверхностях ячеек керамического блока, состоящее из платины, палладия и родия. В последних моделях для напыления иногда используется золото — драгоценный металл, который имеет более низкую стоимость.
  • Металлический кожух. Выполняет функции теплоизоляции и защиты катализатора от механических повреждений.

Главная функция каталитического нейтрализатора — это нейтрализация трех основных токсических компонентов отработавших газов, поэтому он получил свое название — трехкомпонентный. Вот эти нейтрализуемые компоненты:

  • Окислы азота NOx – компонент смога, причина кислотных дождей, ядовиты для человека.
  • Угарный газ СО – смертельно опасен для человека при концентрации в воздухе от 0,1%.
  • Углеводороды CH – компонент смога, отдельные соединения канцерогены.

Принцип действия катализатора

На практике трехкомпонентный каталитический нейтрализатор имеет следующий принцип действия:

Выхлопные газы из двигателя попадают внутрь керамических блоков, где проникают в ячейки, полностью заполняя их.

Металлы-катализаторы палладий и платина провоцируют реакцию окисления, в результате которой несгоревшие углеводороды СН преобразуются в водяной пар, а угарный газ СО в углекислый.

Восстановительный металл-катализатор родий преобразует NOx (оксид азота) в обычный безвредный азот. В атмосферу выпускаются очищенные отработавшие газы. 

Если в автомобиле установлен дизельный двигатель, то возле катализатора всегда находится сажевый фильтр. Иногда эти два элемента могут быть совмещены в единую конструкцию. Рабочая температура катализатора играет решающую роль в эффективности процесса нейтрализации токсичных компонентов. Реальное преобразование начинается только после достижения 300°С. Идеальной, с точки зрения эффективности и срока службы, считается температура от 400 до 800°С. В диапазоне температур от 800 до 1000°С наблюдается ускоренное старение нейтрализатора. Длительная работа при температуре свыше 1000°С оказывает губительное воздействие на катализатор. Альтернативой керамике, выдерживающей высокие температуры, является металлическая матрица из гофрированной фольги. Катализаторами в такой конструкции выступают платина и палладий. 

Что ценного в катализаторах

К сожалению, ценного там оказалось много. В роли катализаторов пришлось применить благородные металлы, наиболее подходящие для этой цели.

Дошло до того, что самым дешёвым из них оказалось золото, но чаще приходится использовать платину, палладий и родий. Многим известно, что эти элементы существенно дороже всем понятного золота.

Одновременно с применением столь недешёвых компонент потребовалось создать геометрически непростую структуру, обеспечивающую контактирование каталитического вещества со всем объёмом выпускаемого цилиндрами газа. Это мельчайшие керамические или металлические соты, сквозь которые и продувается весь поток выхлопа.

В результате автомобиль приобрёл сложное, массивное и дорогое устройство в виде металлического корпуса, высокотехнологичной начинки, да ещё и обрамлённое контрольными датчиками с двух сторон, непрерывно следящими за его сохранностью и правильной работой.

Экологичность даром не даётся. Да и на этом прогресс не остановился, дальнейшее ужесточение требований законодателей продолжает влиять на появление дополнительных систем очистки выхлопа.

В дизеле

Катализаторы в дизельном двигателе работают гораздо хуже в сокращении выбросов NOx. Одной из причин этого является то, что дизельные двигатели имеют более низкую рабочую температуру, чем бензиновые двигатели, и катализатор в целом в дизельном двигателе работает хуже, поскольку он меньше нагревается. Некоторые из ведущих экспертов экологических авто придумали новую систему, которая помогает бороться с этим. Они используют мочевину в решении этой проблемы: прежде чем оксиды азота уходят в катализатор, их принудительно испаряют и смешивают с выхлопом и затем создают химическую реакцию, которая приведёт к сокращению выбросов NOx. Мочевина, также известная как карбамид, представляет собой органическое соединение, изготовленное ​​из углерода, азота, кислорода и водорода. Мочевина содержится в моче млекопитающих и земноводных. Мочевина реагирует с NOx, производя в результате реакции азот и водяной пар и утилизируя более 90 процентов оксидов азота в выхлопных газах.

Виды катализаторов

По своему назначению нейтрализатор может быть двух- или трехкомпонентным.

  1. В первом случае он выполняет относительно простые функции окисления (дожигания) угарного газа и углеводородов до образования воды и двуокиси углерода.
  2. Во втором – добавляется сложная способность устройства работать с окислами азота. Особенно много их образуется в современных дизельных и бензиновых моторах, в силу повышения экономичности, которых конструкторам приходится использовать обеднённые и бедные смеси на впуске.

Трёхкомпонентые катализаторы, а именно такие чаще всего применяются, в свою очередь, могут отличаться по конструктивному признаку, изготавливаясь на базе керамических или металлических сотовых изделий.

Керамические относительно дешевле, но не обладают высокой механической прочностью и долговечностью, склонны к растрескиванию и разрушению, не терпят ударов при наезде на препятствия.

Металлические конструктивы обладают достаточной упругостью, поэтому лучше держат внешние и внутренние удары. Внутренние могут возникать при аномальных процессах горения и разрушительно воздействовать на тонкую сотовую начинку, где, как уже упоминалось, обычно нанесены такие непростые вещества, как платина, палладий и родий.

Но даже металл не спасает от предательского попадания на тонкие соты посторонних веществ из двигателя в виде компонент контрафактных рабочих жидкостей, слишком богатой смеси или всевозможных соединений кремния.

Катализаторы отличаются и по способу их установки. Раньше они располагались в виде врезок выхлопной трубы, подобно глушителям и резонаторам. Но оказалось, что так их очень трудно и затратно прогревать до рабочей температуры, при которой начинаются каталитические реакции.

Поэтому сейчас нейтрализаторы ставят непосредственно за выпускным коллектором, максимально близко к точке выхода раскалённых выхлопных газов. Уже не надо долго ждать выхода прибора на режим, меньше загрязняются кислородные датчики и сокращаются расходы топлива на поддержание температуры.

 

Срок службы катализатора

Средний ресурс катализатора составляет 100 тыс. километров пробега, но при правильной эксплуатации он может исправно функционировать и до 200 тыс. километров. Основные причины раннего износа — неисправность двигателя и качество топлива (топливовоздушной смеси). При наличии обедненной смеси происходит перегрев, а при слишком богатой возникает засорение пористого блока остатками несгоревшего топлива, что препятствует протеканию необходимых химических процессов. Это приводит к тому, что срок службы каталитического нейтрализатора существенно снижается. Еще одной распространенной причиной неисправности керамического катализатора являются механические повреждения (трещины), возникающие при механических воздействиях. Они провоцируют быстрое разрушение блоков. При возникновении неисправностей работа каталитического нейтрализатора ухудшается, что фиксируется при помощи второго лямбда-зонда. В этом случае электронный блок управления сообщит о неисправности, выдав на приборной панели ошибку «CHECK ENGINE». Также признаками выхода из строя являются дребезжание, увеличение расхода топлива и ухудшение динамики. В этом случае его меняют на новый (оригинального производства или универсальный). Почистить или восстановить катализаторы невозможно, а поскольку это устройство имеет высокую цену, многие автомобилисты предпочитают просто удалить его.

Можно ли удалить катализатор? 

При удалении катализатора его очень часто заменяют на пламегаситель. Последний выравнивает поток выхлопных газов. Его установка рекомендуется для устранения неприятных шумов, которые возникают при удалении катализатора. При этом, если вы выбрали именно удаление, лучше полностью снять устройство и не прибегать к рекомендациям некоторых автомобилистов пробить в нем отверстие. Подобная процедура улучшит ситуацию только на время. В автомобилях, соответствующих экологическим стандартам Евро-3, помимо удаления катализатора необходима перепрошивка электронного блока управления. Ее обновляют до версии, в которой отсутствует каталитический нейтрализатор. Также можно установить эмулятор сигнала кислородного датчика, который избавит от необходимости перепрошивать ЭБУ.

Как почистить

В тех случаях, когда соты ещё не повреждены, но пропускная способность нейтрализатора уже снижена смолянистыми отложениями, его можно промыть.

Для этого лучше всего использовать жидкость, обычно применяемую для очистки карбюраторов или топливных форсунок. Только потребуется её значительно больше.

Катализатор заливается промывочной жидкостью, после чего ей предоставляется время на растворение загрязнений, затем её сливают, внутренности детали промываются горячей водой и просушиваются (продуваются).

Обычно процедура требует неоднократного повторения. Существуют также специально предназначенные для подобных промывок составы.

Источники: techautoport.ru, autovogdenie.ru, drive2.ru.

Катализатор (каталитический конвертор)

Расшифровка чисто химического термина «катализатор» – вещество, не участвующее в реакции непосредственно, в присутствии которого происходит ускорение химической реакции или же вещество, делающее данную реакцию вообще возможной.  Автомобильный каталити́ческий конвертер (в просторечии катализатор) — устройство в выхлопной системе, предназначенное для снижения токсичности отработавших газов посредством восстановления оксидов азота и использования полученного кислорода для дожига угарного газа и недогоревших углеводородов. 

Основным требованием для успешной работы катализатора является стехиометрическое соотношение топлива и воздуха, действующее вещество – благородные металлы: платина, палладий или родий.


В каталитических конверторах используют два различных типа катализаторов:

— восстанавливающий катализатор и — окислительный катализатор. 

Оба типа состоят из керамической структуры (реже – металлический гофрированный лист), покрытой веществом — катализатором.

Идея заключается в том, чтобы увеличить площадь катализатора и свести к минимуму задействованное при этом количество самого катализатора, так как используемые материалы весьма дороги. Восстанавливающий катализатор — первый этап каталитического преобразователя. Он использует платину и родий чтобы уменьшить выбросы NOx. Когда молекула NO или NO₂ встречается с молекулами катализатора, от нее отделяется атом азота, высвобождая кислород — O₂. Окислительный катализатор — второй этап каталитического преобразователя. Он снижает количество несгоревшего топлива и окиси углерода в результате их взаимодействия со свободным кислородом на поверхности той же платины и палладия. На выходе, вместо страшной смеси окислов углерода, азота и несгоревших углеводородов имеем воду, углекислый газ и чистый азот. Но это в идеале.


Каталитические конверторы являются достаточно чувствительными реакторами. На их работоспособность влияет температура, состав топлива и отработанных газов, расход масла двигателем, сорт масла, режим работы двигателя.


Широкое использование каталитических преобразователей началось в 1975 году. Но создали их намного раньше, в 1953 году в Америке, когда инженер Юджин Хоудри, ознакомившись со сводками по увеличению быстрыми темпами смога в различных городах, был просто шокирован данными. После чего он и решил разработать прибор, который смог бы защитить окружающую среду от влияния на нее человеческого фактора. Но созданное устройство оказалось малоэффективным, так как необходимая очистка не получалась из-за содержания в бензине большого процента тэтраэтилсвинца (присадка для повышения октанового числа), и этот химический элемент не был запрещен к использованию в бензине почти до конца 20 века. Промышленный выпуск автокатализаторов был бессмысленным до тех пор, пока не внесли поправки в закон «Чистый воздух», запрещающие использование свинца.

Наличие соединений свинца в выхлопных газах приводило к оплавлению керамических сот каталитического конвертора и выхлопному газу становилось просто некуда выходить.


С запретом этилированного бензина, жизнь автомобильного катализатора не стала безоблачной.  

— Во-первых, со временем расходуются материалы катализатора, благородные металлы и ресурс катализатора при условии исправных систем двигателя составляет в среднем 80-150 тыс. км. пробега. Эффективность работы катализатора с пробегом ухудшается и растет шанс его загрязнения смолами и нагарами. Особенно увеличивает риск загрязнения повышенный расход масла двигателем. Не сгоревшие остатки масла и топлива уже не полностью окисляются и остаются на сотах в виде нагара, постепенно уменьшая проходное сечение для газов, как результат, мощность двигателя уменьшается. Если ситуация не приобрела необратимый характер, то катализатор можно очистить при помощи щелочных промывок или топливных присадок, которые способствуют выведению загрязнений. Классическое решение – использование присадки Liqui Moly Catalytic-System Clean 1 раз в 2 000 км при заправке топливом.


— Во-вторых, эффективность катализатора падает при больших пробегах из-за постепенного разрушения керамических сот. Процесс совсем не безболезненный для двигателя, так как система продувки очень многих современных двигателей предусматривает частичный подсос топливной смеси из выхлопного тракта обратно в камеры сгорания. В результате керамическая пыль попадает в цилиндры и вызывает абразивный износ. После диагностики такой проблемы необходимо полностью заменить катализатор. 

— В-третьих, наличие избытка железосодержащих  присадок в топливе, так же, как в случае с тетраэтилсвинцом, вызывает оплавление сот катализатора, процесс может дойти до того, что двигатель с оплавленным катализатором просто не заводится, так как отработавшим газам просто нет прохода. Выход – замена катализатора.


Как проверить катализатор на исправность?

Самый простой способ – на просвет. Через керамические каналы исправного катализатора свет проходит беспрепятственно. В случае затруднений со съемом этого агрегата, можно проверить противодавление, создаваемое катализатором при проходе газов и при высоких показателях признать агрегат неисправным. 

Можно ли безболезненно для автомобиля удалить катализатор вовсе?

На автомобилях ЕВРО2 можно, для более экологичных конструкций, как минимум, придется перешивать блок управления двигателем. Но следует помнить о своем долге перед потомками, об экологии. На некоторых современных автомобилях удаление катализатора невозможно вообще.

Как избежать проблем с катализатором и продлить его ресурс? Заправляться в проверенных местах, регулярно, раз в 2000 км, использовать очищающую присадку Catalytic-System Clean и проводить диагностику при каждом техническом обслуживании.

Не эксплуатировать автомобиль с неисправными свечами, высоковольтными проводами и ка тушкой.

Несгоревший бензин в катализаторе не только сокращает его ресурс, но и может привести к пожару из-за перегрева самого катализатора. Если возникнут проблемы – не тянуть с ремонтом. Помните, от исправности катализатора зависит ресурс двигателя!


Принцип работы и устройство автомобильного катализатора

Требования к экологической чистоте транспорта становятся все жестче, поэтому инженеры автопроизводителей работают над улучшением устройств, отвечающих за очистку выхлопных газов. Одним из них стал катализатор, устройство и принцип работы которого будет рассматриваться далее. Это ответ на все рассуждения по поводу того, что можно оптимизировать качество моторного масла, топлива, рассчитывать оптимальную смесь, при которой происходит лучшее сгорание, но для этих улучшений в какой-то момент приходит предел.

Устройство катализатора

Особенности конструкции

Принцип работы

Классификация

Срок службы катализатора

Удалить катализатор: можно или нет

Самостоятельная диагностика работы катализатора

Ужесточение требований к составу выхлопных газов, образующихся при полноценной работе двигателя внутреннего сгорания, приводит к необходимости использовать более прогрессивные решения для очистки. В состав современной выхлопной системы обязательно входят элементы системы дополнительной очистки: сажевый фильтр, нейтрализатор, система дожига топлива. Их задача состоит в минимизации вредных соединений, которые выбрасываются ТС в атмосферу во время движения.

Устройство катализатора

Катализатор представляет собой компонент, необходимый для нейтрализации вредных соединений, являющихся составными частями выхлопов. При сгорании топлива формируются углеводороды, окрашивающие выходящие газы в темный цвет, оксидов азота и углерода. Эти соединения и вызывают у экологов негативные реакции.

Работа нейтрализатора, изначально присутствующего в выхлопной системе, направлена на окислительно-восстановительные химические реакции, приводящие к образованию безвредных веществ: воды, углекислого газа и азота. Это треступенчатые нейтрализаторы, которые и используются в большинстве автомобилей последних моделей. Принцип работы автомобильного катализатора обеспечивает превращение опасных для экологии газов в безопасные соединения, выходящие в атмосферу.

Работа нейтрализатора не требует каких-то вспомогательных источников энергии, так как активное покрытие обеспечивает протекание любых реакций. Рабочая температура элемента достаточно высокая, поэтому он находится за выпускным коллектором, но не слишком близко к мотору, чтобы не перегреваться. Такое расположение обеспечивает выход на рабочий режим за счет разогрева раскаленными выхлопными газами.

Принцип работы катализатора обеспечивает его полноценное функционирование после полного прогревания. Контролировать его работу должны лямбда-зонды – датчики кислорода, установленные перед входом в катализатор и после выхода из него. Для электронного блока управления важной является информация по количеству остаточного кислорода в выхлопе, по которому делаются выводы о функционировании мотора. Если требуется коррекция, то ЭБУ передает сигнал на увеличение или уменьшение воздушной и топливной подачи в систему камер сгорания.

Особенности конструкции

Если принцип работы катализатора выхлопных газов понятен, то можно сказать несколько слов об его устройстве. Нейтрализатор состоит из нескольких ключевых компонентов:

  • Сразу за выпускным коллектором размещен цельный стальной корпус, внутри которого есть термоизолирующий слой, защищающий основной компонент.
  • Нейтрализатор имеет наполнитель в виде сотовой структуры, покрытой внутри активным слоем. В зависимости от производителя устройства в качестве каталитического вещества может использоваться родий, платина, палладий, платиново-иридиевый сплав. Сотовая структура обеспечивает повышение площади контакта газов с активным вещество, поэтому химические реакции проходят более интенсивно.
  • Наполнитель изготовлен из металла или керамики. Выбор материала зависит от конструкции и конечной стоимости оборудования.

Принцип работы

Принцип работы катализатора в автомобиле достаточно прост и базируется на определенной последовательности химических реакций:

  • Внутренняя поверхность сот покрыта драгоценными металлами, которые отвечают за активацию процессов окисления.
  • Оксид азота в результате реакции разлагается на атомы азота и кислорода. Азот объединяется в молекулы, образуя устойчивый азот. Кислород соединяется с угарным газом до образования углекислого газа.
  • Катализатор захватывает из выхлопных газов остаточный кислород, расщепляет углеводороды, давая на выходе такие соединения, как углекислый газ и вода.
  • Остаточный кислород на выходе из катализатора фиксируется лямбда-зондом, чтобы передать сведения о работе устройства штатному бортовому компьютеру.

Исправное устройство в оптимальных условиях не накапливает ничего внутри себя: все вещества, которые поступают в нейтрализатор, покидают его сотовую структуру. Но добиться этого практически невозможно, поэтому со временем происходит деградация каталитического нейтрализатора, что не дает ему полноценно справляться с задачей.

Классификация

Катализаторы можно разделить на категории по функциональности: на двух- и трехкомпонентные. Первый тип работает только с обезвреживанием угарного газа с углеводородами. Такие модели считаются устаревшими, поэтому не устанавливаются на автомобилях новых версий. Трехкомпонентные обеспечивают нейтрализацию оксида азота. Этот вид теперь устанавливается на всех современных автомобилях.

Если говорить о материале изготовления, то принято выделять керамические, металлические и спортивные: 

  • Керамические считаются самыми дешевыми, но это и наиболее хрупкие катализаторы. При ударе по корпусу происходит разрушение сердцевины. Устройства страдают от перепадов температур, сбоев в системе зажигания авто. Катализатор может постепенно разрушаться, что приводит к образованию большого количества мелкой пыли, которая проникает сквозь выпускной коллектор в мотор, что приводит к поломкам. В результате всех этих неполадок может потребоваться капитальный ремонт.
  • Металлические – это дорогие, но надежные устройства, изготовленные из металлической структуры в виде сот. Она отличается упругостью и устойчивостью к механическим и температурным воздействиям. Металл не способен образовывать мелкие частицы, поэтому для двигателя он не представляет опасности.
  • Спортивные отличаются повышенной пропускной способностью, поэтому мотор становится мощнее на несколько процентов. Спортивные монтируются в прямоточные системы выхлопных газов. Их считают наиболее надежными, хоть они и самые дорогостоящие.
Срок службы катализатора

Для катализатора средний ресурс составляет 100 тысяч километров пробега, но в условиях правильной эксплуатации он способен исправно отработать до 200 тысяч. Ранний износ может произойти из-за низкого качества топлива (топливно-воздушной смеси) и проблем с мотором.

Если топливная смесь обедненная, то случается перегрев нейтрализатора, если слишком богатая, то это приводит к засорению пористого блока остатками несгоревшего топлива, из-за чего не протекают необходимые химические реакции. Это вызывает проблемы в работе катализатора с его ускоренным выходом из строя.

Механические повреждения тоже часто приводят к возникновению неисправностей. Удары и различные механические воздействия приводят к возникновению трещин. Это становится причиной стремительного разрушения блоков.

 

Если возникает любая неисправность, каталитический нейтрализатор начинает хуже работать, что можно понять по показаниям, поступающим в ЭБУ от лямбда-зонда, установленного на выходе из нейтрализатора. Сообщение о неисправности может высвечиваться на приборной панели в виде ошибки «Check Engine». Помимо этого, о выходе из строя свидетельствует ухудшение динамики, увеличение топливного расхода и дребезжание при движении.

В такой ситуации требуется его замена на новый. При этом можно установить новый оригинальный компонент либо воспользоваться универсальным. Восстановление или чистка не возможны, а так как новый компонент обычно стоит довольно дорого, многие автовладельцы предпочитают удалить его.

Удалить катализатор: можно или нет

Так как повлиять на принцип работы датчика катализатора невозможно, и он будет выдавать ошибку, если компонент вышел из строя, то многие автовладельцы предпочитают использовать альтернативные довольно радикальные подходы. Чаще всего просто удаляют катализатор, а на его место устанавливают пламегаситель, который выравнивает поток выхлопных газов. Его рекомендуется использовать для устранения неприятных шумов, сопровождающих движение транспорта, у которого отсутствует катализатор.

Если было решено удалить катализатор, то рекомендуется его полностью снять, а не прибегать к рекомендации автомобилистов просто пробить отверстие в нем. Такая процедура способна слегка улучшить ситуацию на некоторое время.

В машине, которая соответствует экологическому стандарту Евро-3, требуется не только удалить катализатор, но и выполнить перепрошивку ЭБУ. Обновление выполняется до версии, в которой каталитический нейтрализатор отсутствует.

Дополнительно можно установить эмулятор сигнала от кислородного датчика, чтобы не потребовалось перепрошивать ЭБУ полностью.

Самое лучшее решение при поломке каталитического нейтрализатора – это его замена на оригинальный компонент в рамках специализированного сервиса, где работают профессиональные мастера с достаточным опытом. Это обеспечивает исключение вмешательства в конструкцию автомобиля, поэтому сохранится соответствие его экологического класса стандарту, прописанному производителем.

Самостоятельная диагностика работы катализатора

Если машина стала ездить хуже, а на приборной панели загорелся «чек», то можно отправиться в сервисный центр, где после тщательной диагностики станет понятно, что произошло. Однако можно самостоятельно выполнить элементарную диагностику функционирования катализатора:

  • Оценить оттенок выхлопа: если он черный, то это явный признак того, что нейтрализатор не работает, поэтому через него и проходят все вредные вещества и газу наружу.
  • Оценить давление газов, выходящих наружу: если приложить ладонь к отверстию выхлопной трубы, то напор должен быть высоким. Если он низкий, то это свидетельствует о необходимости замены катализатора.
  • После длительной поездки заглянуть под машину: если корпус катализатора раскален, то можно говорить о снижении его пропускной способности.
  • В сервисе можно проверить давление выхлопа и сравнить его с показателями эталонных данных. Для определения давления манометр размещается там, где обычно установлен лямбда-зонд.
  • Визуально можно оценить демонтированный нейтрализатор выхлопа на предмет оплавления, засорения или выгорания.

Заменить катализатор требуется после того, как точно установлено, что проблемы в работе автомобиля возникли из-за оплавленных или забитых сот. Но рекомендуется отыскать причину, по которой случилось засорение нейтрализатора, так как после установке нового элемента он тоже может пострадать от тех же неполадок. Поэтому в современных авто все системы связаны очень сильно, для чего используется большое количество датчиков.

Для чего нужен катализатор выхлопных газов

В настоящее время в мире насчитывается более полумиллиарда легковых автомобилей и где-то около 200 миллионов грузовиков. Такое огромное количество авто своими выбросами очень сильно влияют экологию во всем мире. Поэтому не удивительно, что крупнейшие автопроизводители еще в середине 20-го века задумались об этой проблеме и начали предпринимать активные действия по снижению вредных выбросов.
Технологическим прорывом в этой области можно считать появление каталитических нейтрализаторов. И хотя кое-какие наработки появилась еще в середине 50-х годов XX века, однако массовое распространение данная технология получила только в конце 70-х. Первоначально каталитический нейтрализатор был малоэффективным, а его стоимость была сравнима со стоимостью нового автомобиля. Со временем исходная конструкция катализатора была доработана, а большинство его недостатков было устранено. Это и позволило внедрить столь важное изобретение в выхлопную систему каждого вновь выпускаемого автомобиля.
В идеальных условиях двигатель должен эффективно сжигать все топливо, подаваемое в камеры сгорания. В таких идеальных условиях выхлоп будет состоять лишь из углекислого газа и водяного пара. К сожалению, даже современные моторы не идеальны. Топливо в моторе сгорает не полностью, а это приводит к образованию летучих органических соединений и различных окислов углерода. Такие химические соединения являются вредными. Так, окись углерода является причиной возникновения, так называемого, «парникового эффекта», а летучие органические соединения ядовиты для человека, так как могут спровоцировать появление раковых опухолей. Именно катализатор позволяет многократно снизить концентрацию вредных веществ в составе выхлопных газов автомобиля.
На сегодняшний день большинство стран регламентируют содержание вредных веществ, которые могут содержаться в выхлопе, жесткими экологическими нормами EURO.

Принцип работы катализатора выхлопных газов


Теперь давайте подробнее разберемся с принципом работы катализатора выхлопных газов.
Некоторые люди считают, что катализатор является разновидностью фильтра. Это в корне неверно. Согласно теории катализатор — это вещество, которое способствует ускорению химреакции, оставаясь при этом полностью нейтральным.
На сегодняшний день можно выделить 2 основных типа каталитических нейтрализаторов: катализатор уменьшения и катализатор окисления.
Оба варианта этих катализаторов состоят из керамической основы, выполненной в виде сот. Эти соты покрыты слоем металла, который и обладает каталитическими свойствами (платина, родий, палладий и т. д.). При этом форма керамической основы в форме сот выбрана не случайна. Именно такая форма позволяет обеспечить максимальную площадь контакта при прохождении выхлопа через катализатор. Керамическая основа с катализатором образуют, так называемый, блок-носитель, который устанавливается в стальной корпус. Из-за того, что каталитические реакции проходят при высоких температурах, то между блоком-носителем и металлическим корпусом устанавливается специальная термостойкая прокладка, которая значительно повышает КПД каталитического нейтрализатора.
Основная масса современных автомобилей оснащаются трехходовыми каталитическими нейтрализаторами. Данные катализаторы помогают уменьшить выбросы в три этапа:
  • Первый этап – восстановительный. Катализатор (платина или родий) помогает сократить выбросы NOx. На этом этапе катализатор, по сути, вырывает атом азота из сложной молекулы. В результате сложное азотное соединение распадается на безвредные для человека кислород и азот.
  • Второй этап – окислительный. На этом этапе уменьшается количество углеводородов, которые не сгорели в цилиндрах путем их окисления (сжигания) при помощи очень высоких температур и платинового или палладиевого катализатора.
  • Третий этап можно охарактеризовать, как контрольно-управляющий. На этой стадии поток выхлопных газов непрерывно находится под контролем датчика кислорода. Он используют полученную информацию для управления системой впрыска топлива. Датчик кислорода, установленный перед каталитическим нейтрализатором, сообщает «электронным мозгам» автомобиля, какое количество кислорода находится в выхлопе в данный момент. По этим показателям блок управления сам подбирает оптимальное количество кислорода, регулируя соотношение воздуха и топлива.

В итоге можно сказать, что катализатор является одним из важнейших элементов выхлопной системы автомобиля. Именно он помогает добиться существенного снижения концентрации опасных соединений в составе выхлопных газов.

Каталитический нейтрализатор: устройство и принцип работы

С каждым годом требования к экологической безопасности автомобилей возрастают. В первую очередь это относится к самому опасному в экологическом отношении фактору автомобиля, то есть к токсичности выхлопных газов. К счастью, технический прогресс не стоит на месте, и сегодня это проблема вполне решаема.

Кроме того, что сама конструкция двигателей современных автомобилей позволяет уменьшить токсичность выхлопных газов, на автомобили также устанавливаются и специальные устройства, так называемые каталитические конвертеры – нейтрализаторы, или как называют их автомобилисты — катализаторы.

Каталитический конвертер

Это устройство, интегрированное в выхлопную систему автомобиля, дополнительно снижает токсичность выхлопа. Работает катализатор посредством дожигания несгоревших остатков углеводорода и угарного газа, за счет полученного при восстановлении оксидов азота кислорода, для такого дожигания.

Конструкция катализатора довольно проста (рис. выше) – он состоит из керамического мелкоячеистого наполнителя, поверхность которого покрыта специальным слоем платиноиридиевого сплава. Ячеистая конструкция наполнителя позволяет получить максимальную площадь контакта выхлопных газов, проходящих через наполнитель с его поверхностью, за счет чего увеличивается активная рабочая поверхность катализатора.

Как происходит процесс нейтрализации вредных веществ?

Катализатор позволяет значительно снизить в выхлопных газах содержание таких вредных веществ как:

  • окись углерода;
  • углеводороды;
  • оксиды азота.

Сам процесс нейтрализации проходит так:

  1. Остатки не сгоревших веществ в выхлопных газах (CO, HC, NOx, O2), проходя через катализатор и взаимодействуя с его поверхностью, покрытой каталитическим слоем, окисляются. То есть, как бы дополнительно дожигаются кислородом, который тоже присутствует в выхлопных газах.
  2. Во время этой реакции выделяется тепло, которое в свою очередь дополнительно активизирует реакцию окисления.

Благодаря такому процессу на выходе катализатора выхлопные газы содержат в своем составе N2, h3O, CO2.

Вещества входящие в катализатор и элементы выходящие

Следует заметить, что нормальная работа катализатора может быть обеспечена только при нормальном, так называемом стехиометрическом соотношении топлива и кислорода в горючей смеси. В автомобилях, оснащенных инжекторной системой впрыска топлива с электронным управлением, условия для такой оптимальной работы каталитического нейтрализатора обеспечивает электронная система, регулирующая состав горючей смеси.

Специальный кислородный датчик, установленный в выхлопной системе, определяет содержание кислорода, оставшегося в выхлопных газах. По этому показателю электронный блок управления корректирует состав рабочей смеси, увеличивая или уменьшая подачу топлива в камеры сгорания.

При неполадках в системе подачи топлива, в результате чего нарушается оптимальное соотношение воздуха и топлива в горючей смеси, катализатор также не может работать в оптимальном режиме. Это даже может сократить его срок службы.

Смотрите познавательное видео, как устроен каталитический конвертер-нейтрализатор:

Катализаторы на дизельных двигателях

Катализаторы, устанавливаемые на дизельные двигатели, схожи по принципу работы, но, несколько отличаются по своей конструкции. Такие катализаторы нерегулируемые, из-за особенностей работы дизельного мотора.

Катализатор для дизельного двигателя

Дело в том, что в камеру сгорания дизеля, воздуха поступает всегда больше, чем нужно для полного сгорания топлива, поэтому такая регулировка состава смеси по контролю за количеством оставшегося в выхлопных газах кислорода, просто не нужна. Катализатор для дизельного мотора преобразует токсичный угарный газ и углеводород в углекислый газ и воду, кроме того, устраняет неприятный запах выхлопных газов.

К сожалению, дизельные катализаторы плохо справляются с нейтрализацией оксидов азота (NO и NO2), содержащихся в выхлопе. Это связано с относительно низкой температурой выхлопных газов дизеля, из-за чего процесс нейтрализации проходит хуже.

Для решения этой проблемы, катализаторы для дизельных двигателей, стараются размещать ближе к двигателю, то есть там, где температура газов выше, или снабжают катализаторы собственными встроенными электрическими нагревателями.

Загрузка…

Каталитические преобразователи | Давайте поговорим о науке

Есть ли у вас друзья, которые готовятся к экзамену по вождению? Или, может быть, вы тот, кто усвоил правила дорожного движения. Но как много вы на самом деле знаете о своей машине? Например, вы говорили, что благородные металлы помогают очищать выхлоп двигателя?

Предупреждение о заблуждении

Благородные металлы и драгоценные металлы — это не одно и то же. Драгоценные металлы имеют высокую денежную ценность. Благородные металлы обладают высокой устойчивостью к коррозии и окислению.Однако некоторые драгоценные металлы также относятся к благородным металлам.

Что выходит из выхлопной трубы автомобиля?

Выхлопные газы автомобилей также называют выхлопными газами автомобилей. В нем много веществ. Некоторые из них более вредны, чем другие.

В двигателе вашего автомобиля, вероятно, в качестве топлива используется бензин марки . Бензин — это углеводородов . Ваша машина смешивает это топливо с воздухом перед тем, как сжечь его. Этот процесс называется сжиганием , и он дает множество побочных химических продуктов.

Некоторые из этих побочных продуктов совершенно безопасны. Например, воздух на 78% состоит из газообразного азота (N 2 ). Часть этого азота реагирует с кислородом во время горения. Однако большая его часть попадает в выхлоп двигателя как N 2 . Выхлоп двигателя также включает воду (H 2 O). Зимой вы часто будете видеть, как из выхлопных труб капает вода.

Автомобильные двигатели также выделяют много вредных веществ. Некоторые из них могут вызвать кислотное осаждение.Это относится к диоксиду углерода (CO 2 ), оксидам азота (NO x ) и оксидам серы .

Другие выбросы от транспортных средств могут вызвать проблемы со здоровьем, такие как сердечно-сосудистые заболевания и рак. Это относится к несгоревшим углеводородам, твердым частицам (частицам углерода) и летучим органическим соединениям (ЛОС) .

Автомобильные двигатели также выделяют оксид углерода (CO) . Этот ядовитый газ может заменить кислород в вашем кровотоке.Если вы вдыхаете его достаточно, он может даже задохнуться!

Звучит очень опасно, не так ли? К счастью, каталитические нейтрализаторы помогают снизить вредные выбросы двигателя. Вот как.

Что такое каталитический нейтрализатор?

Каталитический нейтрализатор был изобретен около 1950 года Эженом Удри. Он был французским инженером-механиком. Он разработал каталитический нейтрализатор для очистки выхлопных газов автомобилей.

Каталитические нейтрализаторы стали широко применяться примерно в 1975 году.В то время правительства начали пытаться уменьшить загрязнение воздуха от автомобилей. Но тогда многие автомобили использовали этилированный бензин. Свинец (Pb) может препятствовать нормальной работе каталитического нейтрализатора. Это потому, что свинец может покрывать поверхность, которая обычно вступает в реакцию с выхлопными газами.

Знаете ли вы?

Представьте, что вы использовали одинаковое количество топлива в внедорожнике с каталитическим нейтрализатором и в газонокосилке без него. Газонокосилка будет выделять примерно в 100 раз больше загрязняющих веществ!

Как работают каталитические нейтрализаторы?

На автомобиле каталитический нейтрализатор прикреплен к выхлопной трубе.Металлический корпус содержит керамические соты. Соты покрыты смесью платины (Pt), палладия (Pd) и родия (Rh). Эти благородные металлы хорошо сопротивляются окислению, коррозии и кислоте. Это означает, что они могут противостоять плохой погоде и всем химическим веществам, выделяемым автомобильным двигателем.

Благородные металлы в каталитических нейтрализаторах действуют как катализаторы . Катализаторы — это соединения , которые могут запускать химическую реакцию, не будучи затронутыми ими. Сотовая структура внутри каталитического нейтрализатора увеличивает площадь поверхности, на которой могут происходить реакции.

Каталитические преобразователи используют в качестве катализаторов такие элементы, как платина (Pt), палладий (Pd) и родий (Rh) (Давайте поговорим о науке с использованием фотографий Periodictableru [CC BY], Изображения химических элементов в высоком разрешении [CC BY и Alchemist-hp ( обсуждение) www.pse-mendelejew Производная работа: Purpy Pupple [CC BY-SA 3.0] Wikimedia Commons (Pt, Pd, Rh)).

Знаете ли вы?

Сегодня около 98% всех продаваемых в мире новых автомобилей содержат каталитический нейтрализатор.

Какие химические реакции происходят в катализаторе?

Каталитические нейтрализаторы

используют реакции восстановления , и окисления , (окислительно-восстановительные) для снижения вредных выбросов.

Они используют катализатор восстановления , состоящий из платины и родия. Он помогает уменьшить количество оксидов азота (NO x ), удаляя атомы азота из молекул оксида азота (NO и NO 2 ). Это позволяет свободному кислороду образовывать газообразный кислород (O 2 ). Затем атомы азота, прикрепленные к катализатору, вступают в реакцию друг с другом. В результате этой реакции образуется газообразный азот (N 2 ).

Реакции восстановления азотной кислоты и диоксида азота (© Let’s Talk Science, 2019).

Изображение — текстовая версия

Азотная кислота и диоксид азота восстанавливаются с образованием газообразного азота и газообразного кислорода.

В каталитических нейтрализаторах

также используется окислительный катализатор , состоящий из платины или палладия. Это помогает снизить содержание углеводородов (HC) и оксида углерода (CO). Начнем с того, что окись углерода и кислород соединяются с образованием двуокиси углерода (CO2). Затем несгоревшие углеводороды и кислород объединяются с образованием диоксида углерода и воды.

Реакции окисления монооксида углерода и несгоревших углеводородов (© Let’s Talk Science, 2019).

Изображение — текстовая версия

Окись углерода и кислород соединяются с образованием двуокиси углерода. Несгоревшие углеводороды и кислород соединяются с образованием диоксида углерода и воды.

В современных каталитических нейтрализаторах также используются датчики кислорода . Иногда их называют лямбда-датчиками. Они контролируют, сколько дополнительного кислорода закачивается в выхлопной поток. Поддержание правильного количества кислорода делает реакции восстановления и окисления более эффективными.

Знаете ли вы?

Двигатель автомобиля производит наибольшее количество загрязняющих веществ сразу после его включения.Это потому, что каталитическим нейтрализаторам может потребоваться несколько минут, чтобы сработать. Это отличный повод прогуляться, если вам нужно проехать небольшое расстояние!

Исследователи изучают, можно ли использовать золото в каталитических нейтрализаторах. Это может показаться дорогим. Но на самом деле золото дешевле многих других благородных металлов. И это еще не все! Фактически, в ближайшие пару десятилетий у нас могут закончиться такие металлы, как платина. В некоторых местах люди даже воруют каталитические нейтрализаторы, чтобы добраться до драгоценных благородных металлов внутри!

Объяснение каталитических нейтрализаторов: как они работают и предотвращение краж

Если вы не знаете, что такое каталитический нейтрализатор, не теряйте из-за него сон.Технология не нова, и сегодня она присутствует практически в каждом автомобиле, но нет реальной причины, по которой каталитические нейтрализаторы должны быть в центре внимания любого автомобилиста большую часть времени. Они работают в фоновом режиме, используя химические реакции для очистки выхлопных газов вашего автомобиля от вредных газов. Если ваша не сломается или, как это становится все более распространенным в последние годы, кто-то не попытается ее украсть, беспокоиться не о чем.

В этом руководстве мы объясняем все, что вам нужно знать о каталитических нейтрализаторах — от того, как они работают, до материалов и драгоценных металлов, используемых в них — и как защитить ваш автомобиль от кражи каталитического нейтрализатора…

Как работают каталитические нейтрализаторы?

Каталитические нейтрализаторы превращают вредные вещества в выхлопных газах автомобиля, такие как оксид углерода, оксид азота, диоксид азота и углеводороды, в менее вредные вещества, такие как диоксид углерода и водяной пар, посредством химических реакций.

Внутренняя часть «кошки» обычно заполнена сотовой структурой, на которую нанесено покрытие, содержащее катализатор — вещество, которое вступает в реакцию с выхлопными газами, изменяя их химическую структуру.

Драгоценные металлы, такие как палладий, родий и платина, обычно используются в качестве катализаторов, и они имеют внутреннюю ценность, а это означает, что их стоит утилизировать и утилизировать, когда автомобиль утилизируется. К сожалению, эти драгоценные металлы также делают каталитические нейтрализаторы мишенью для воров.

Каталитические нейтрализаторы должны работать при высоких температурах до 400 градусов, чтобы максимально повысить их эффективность. Чтобы достичь этой оптимальной рабочей температуры, первые блоки были расположены близко к двигателю автомобиля, но это вызвало свои собственные проблемы, и кошка постепенно перемещалась дальше по выхлопной системе, подальше от источника тепла двигателя.

В современных автомобилях каталитический нейтрализатор находится под автомобилем по направлению к выпускному отверстию выхлопной системы, в таком месте, где он доступен для воров, которые могут вырезать весь блок из-под автомобиля.

Типы каталитических нейтрализаторов

Существуют различные типы каталитических нейтрализаторов. Простая «двусторонняя» катализатор окисления превращает оксид углерода (CO) в диоксид углерода (CO2) и углеводороды, которые в основном представляют собой частицы несгоревшего топлива, в диоксид углерода и воду. Более совершенные трехкомпонентные каталитические нейтрализаторы устанавливаются на современные автомобили, и они делают то же самое, а также снижают выбросы оксида азота (NO) и диоксида азота (NO2), которые вместе более известны как NOx, основная причина локального образования воздуха. загрязнение.

• Что такое AdBlue?

Дизельные автомобили обычно оснащены специальными каталитическими нейтрализаторами, которые справляются с определенными выбросами от дизельных двигателей с воспламенением от сжатия. Эти установки с катализатором окисления дизельного топлива обычно сочетаются с дополнительными технологиями очистки выхлопных газов, такими как рециркуляция выхлопных газов, дизельные фильтры твердых частиц для улавливания сажи и селективное каталитическое восстановление, в котором для удаления NOx используются инъекции раствора мочевины AdBlue.

Кража каталитического нейтрализатора

Количество случаев кражи каталитического нейтрализатора из автомобилей в 2019 году резко увеличилось, а общее количество случаев кражи за год примерно в 10 раз выше, чем в 2018 году.

Отчеты показывают, что рост может быть отнесен на счет проблем с цепочкой поставок, из-за которых дилерам стало труднее обеспечить замену каталитических преобразователей через официальные каналы, что привело к возникновению черного рынка. Однако исторически самой большой движущей силой краж были зарубежные рынки драгоценных металлов внутри единиц. Каталитические нейтрализаторы, украденные в Великобритании, часто нелегально вывозятся за границу, а металлы перерабатываются.

Стоимость, связанная с заменой украденного каталитического нейтрализатора, может достигать 2 000–3 000 фунтов стерлингов, и эта цифра завышена из-за того, что воры обычно наносят машине ущерб при снятии устройства.Хотя кражи каталитических нейтрализаторов по-прежнему редки, есть несколько простых шагов, которые вы можете предпринять, чтобы защитить свой автомобиль …

  • Припаркуйте свой автомобиль в запертом гараже или на хорошо освещенном месте на виду у публики, задняя часть автомобиля должна быть близко к стена или забор.
  • Выдавите VIN-номер вашего автомобиля на корпусе каталитического нейтрализатора.
  • Попросите местный гараж приварить болты к каталитическому нейтрализатору или используйте другие коммерческие противоугонные устройства, которые затруднят его удаление.

История каталитического нейтрализатора

Каталитические нейтрализаторы существуют с 19 века, когда металлические цилиндры, содержащие фильтры, покрытые платиной, иридием и палладием, устанавливались на ранних французских легковых автомобилях в попытке очистить дым, выходящий из них. выхлопы. Технология была впервые запатентована французом Юджином Гудри, который переехал в Лос-Анджелес в 1930-х годах и основал компанию под названием Oxy-Catalyst, которая установила каталитические нейтрализаторы в промышленных дымоходах для борьбы со смогом.

• Стандарты выбросов Euro 6 и их значение для вас

Уже установив свои фильтры на складские вилочные погрузчики, к 1950-м годам Гудри начал исследовать технологию каталитического нейтрализатора для использования на автомобилях, и в 1956 году он получил патент на свою конструкцию. Использование этой технологии на серийных автомобилях не получило широкого распространения до тех пор, пока свинец, блокирующий химические реакции, происходящие в каталитических нейтрализаторах, не был удален из бензина, и производители не были вынуждены ужесточить правила выбросов автомобилей.

Сегодня подавляющее большинство автомобилей с двигателем внутреннего сгорания на дорогах имеют каталитический нейтрализатор, и для разных моделей используются различные типы. Многие автомобили также имеют дополнительные системы, такие как рециркуляция выхлопных газов, дизельные сажевые фильтры и технология селективного каталитического восстановления на основе AdBlue, которые работают с «кошкой» для дальнейшей очистки выхлопных газов автомобилей.

Вы стали жертвой кражи каталитического нейтрализатора? Дайте нам знать в комментариях ниже…

7.1: Каталитические преобразователи — Chemistry LibreTexts

Каталитический нейтрализатор — это устройство, используемое для снижения выбросов от двигателя внутреннего сгорания (используется в большинстве современных автомобилей и транспортных средств). Недостаточно кислорода для полного окисления углеродного топлива в этих двигателях до двуокиси углерода и воды; таким образом образуются токсичные побочные продукты. Каталитические преобразователи используются в выхлопных системах, чтобы обеспечить место для окисления и восстановления токсичных побочных продуктов (например, оксидов азота, монооксида углерода и углеводородов) топлива до менее опасных веществ, таких как диоксид углерода, водяной пар и газообразный азот.

Введение

Каталитические нейтрализаторы

были впервые широко внедрены в автомобили американского производства в 1975 году из-за правил EPA по сокращению токсичных выбросов. Закон Соединенных Штатов о чистом воздухе требовал сокращения выбросов всех новых моделей автомобилей на 75% после 1975 года, причем снижение должно было осуществляться с использованием каталитических нейтрализаторов. Без каталитических нейтрализаторов автомобили выделяют углеводороды, окись углерода и окись азота. Эти газы являются крупнейшим источником приземного озона, который вызывает смог и вреден для жизни растений.Каталитические нейтрализаторы также можно найти в генераторах, автобусах, грузовиках и поездах — почти все, что имеет двигатель внутреннего сгорания, имеет форму каталитического нейтрализатора, прикрепленного к его выхлопной системе.

Каталитический нейтрализатор — это простое устройство, в котором используются основные окислительно-восстановительные реакции для уменьшения количества загрязняющих веществ, производимых автомобилем. Он преобразует около 98% вредных паров, производимых автомобильным двигателем, в менее вредные газы. Он состоит из металлического корпуса с керамической сотовой внутренней частью с изолирующими слоями.Этот сотовый интерьер имеет тонкостенные каналы, покрытые тонким слоем оксида алюминия. Это пористое покрытие увеличивает площадь поверхности, позволяя протекать большему количеству реакций и содержит драгоценные металлы, такие как платина, родий и палладий. В одном конвертере уходит не более 4-9 граммов этих драгоценных металлов.

Конвертер использует простые реакции окисления и восстановления для преобразования нежелательных паров. Вспомните, что окисление — это потеря электронов, а восстановление — это их получение.Драгоценные металлы, упомянутые ранее, способствуют переносу электронов и, в свою очередь, преобразованию токсичных паров.

Последняя секция преобразователя управляет системой впрыска топлива. Этой системе управления помогает датчик кислорода, который отслеживает, сколько кислорода находится в выхлопном потоке, и, в свою очередь, сообщает компьютеру двигателя, что нужно отрегулировать соотношение воздух-топливо, поддерживая работу каталитического нейтрализатора на стехиометрической точке и около 100%. эффективность.

Функции

Трехкомпонентный каталитический нейтрализатор выполняет одновременно три функции:

  1. Восстановление оксидов азота до элементарного азота и кислорода: \ [NO_x \ rightarrow N_x + O_x \]
  2. Окисление окиси углерода до двуокиси углерода: \ [CO + O_2 \ rightarrow CO_2 \]
  3. Окисление углеводородов до диоксида углерода и воды: \ [C_xH_ {4x} + 2xO_2 \ rightarrow xCO_2 + 2xH_2O \]

Есть два типа «систем», работающих в каталитическом нейтрализаторе: «обедненная» и «богатая».«Когда система работает« на обедненной смеси », кислорода больше, чем требуется, и поэтому реакции способствуют окислению монооксида углерода и углеводородов (за счет восстановления оксидов азота). Напротив, когда система работает «богатый», топлива больше, чем необходимо, и реакции способствуют восстановлению оксидов азота до элементарного азота и кислорода (за счет двух реакций окисления). При постоянном дисбалансе реакций система никогда не достигает 100% эффективность.

Примечание: конвертеры могут накапливать «лишний» кислород в потоке выхлопных газов для дальнейшего использования. Это хранилище обычно происходит, когда система работает экономно; газ выделяется, когда в выхлопном потоке недостаточно кислорода. Выделяемый кислород компенсирует недостаток кислорода, образовавшийся в результате восстановления NO x , или когда происходит резкое ускорение, и система соотношения воздух-топливо обогащается быстрее, чем каталитический нейтрализатор может адаптироваться к этому. Кроме того, высвобождение накопленного кислорода стимулирует процессы окисления CO и C x H 4x .

Опасности загрязняющих веществ

Без окислительно-восстановительного процесса для фильтрации и преобразования оксидов азота, монооксидов углерода и углеводородов качество воздуха (особенно в больших городах) становится вредным для человека.

Оксиды азота: Эти соединения относятся к тому же семейству, что и диоксид азота, азотная кислота, закись азота, нитраты и оксид азота. Когда NO x выбрасывается в воздух, он вступает в реакцию, стимулируемую солнечным светом, с органическими соединениями в воздухе; результат — смог.Смог является загрязнителем и оказывает вредное воздействие на легкие детей. NO x , реагируя с диоксидом серы, производит кислотный дождь, который очень разрушителен для всего, на что он попадает. Кислотный дождь разъедает автомобили, растения, здания, национальные памятники и загрязняет озера и ручьи до непригодной для рыбы кислотности. NO x может также связываться с озоном, создавая биологические мутации (например, смог) и уменьшая пропускание света.

Окись углерода: Это опасный вариант природного газа, CO 2 .Не имеющий запаха и цвета, этот газ не выполняет многих полезных функций в повседневных процессах.

Углеводороды: Вдыхание углеводородов из бензина, бытовых чистящих средств, топлива, керосина и других видов топлива может быть смертельным для детей. Другие осложнения включают нарушения центральной нервной системы и сердечно-сосудистые проблемы.

Каталитическое ингибирование и разрушение

Каталитический нейтрализатор — это чувствительное устройство с внутренним покрытием из драгоценных металлов.Без этих металлов окислительно-восстановительные реакции не могут происходить. Есть несколько веществ и химикатов, которые тормозят работу каталитического нейтрализатора.

  1. Свинец: Большинство автомобилей работают на неэтилированном бензине, в котором весь свинец удален из топлива. Однако, если свинец добавляется в топливо и сжигается, он оставляет осадок, покрывающий каталитические металлы (Pt, Rh, Pd и Au) и предотвращающий контакт с выхлопными газами, что необходимо для проведения необходимых окислительно-восстановительных реакций.
  2. Марганец и кремний: Марганец в основном содержится в металлоорганическом соединении ММТ (метилциклопентадиенил-трикарбонил марганца).MMT — это соединение, которое использовалось в 1990-х годах для увеличения октанового числа топлива (более высокое октановое число указывает на то, что газ с меньшей вероятностью воспламеняется, вызывая взрыв двигателя. Это важно, поскольку двигатели с более высокими характеристиками имеют высокую степень сжатия, что может требуется бензин с более высоким октановым числом, чтобы дополнить степень сжатия в двигателе), и в настоящее время запрещен к коммерческой продаже из-за правил EPA. Кремний может просачиваться из камеры сгорания в выхлопной поток из охлаждающей жидкости внутри двигателя.

Эти загрязнения препятствуют нормальной работе каталитического нейтрализатора. Однако этот процесс можно обратить вспять, запустив двигатель при высокой температуре, чтобы увеличить поток горячих выхлопных газов через преобразователь, расплавив или сжижая некоторые загрязнения и удалив их из выхлопной трубы. Этот процесс не работает, если металл покрыт свинцом, потому что свинец имеет высокую температуру кипения. Если отравление свинцом достаточно серьезное, весь преобразователь приходит в негодность и подлежит замене.

Термодинамика каталитических нейтрализаторов

Напомним, что термодинамика предсказывает, являются ли реакция или процесс самопроизвольными при определенных условиях, но не скорость этого процесса. Приведенные ниже окислительно-восстановительные реакции протекают медленно без катализатора; даже если процессы термодинамически благоприятны, они не могут происходить без надлежащей энергии. Эта энергия представляет собой энергию активации (\ (E_a \) на рисунке ниже), необходимую для преодоления начального энергетического барьера, препятствующего реакции.Катализатор способствует термодинамическому процессу за счет снижения энергии активации; сам катализатор не производит продукт, но он влияет на количество и скорость образования продуктов.

  1. Восстановление оксидов азота до элементарного азота и кислорода: \ [NO_x \ rightarrow N_x + O_x \]
  2. Окисление окиси углерода до двуокиси углерода. \ [CO + O_2 \ вправо CO_2 \]
  3. Окисление углеводородов до диоксида углерода и воды. \ [C_xH_ {4x} + 2xO_2 \ стрелка вправо xCO_2 + 2xH_2O \]

Каталитический нейтрализатор угонный

Из-за наличия драгоценных металлов в покрытии внутренней керамической конструкции многие каталитические нейтрализаторы стали объектами краж.Преобразователь является наиболее легкодоступным компонентом, поскольку он находится снаружи и под автомобилем. Вор легко мог проскользнуть под машину, пропилить соединительные трубки на каждом конце и уйти вместе с каталитическим нейтрализатором. В зависимости от типа и количества драгоценных металлов внутри каталитический нейтрализатор можно легко продать по 200 долларов за штуку.

Глобальное потепление

Хотя каталитический нейтрализатор помогает снизить токсичность выхлопных газов автомобильных двигателей, он также оказывает вредное воздействие на окружающую среду.При конверсии углеводородов и окиси углерода образуется двуокись углерода. Двуокись углерода — один из наиболее распространенных парниковых газов, вносящий значительный вклад в глобальное потепление. Конвертеры иногда вместе с углекислым газом перестраивают азотно-кислородные соединения с образованием закиси азота. Это то же соединение, которое используется в веселящем газе и в качестве усилителя скорости в автомобилях. Как парниковый газ, закись азота в 300 раз сильнее углекислого газа и пропорционально способствует глобальному потеплению.

Список литературы

  1. Тимберлейк, Карен К. Химия: Введение в общую, органическую и биологическую химию . 10-е изд. Верхняя река Сэдл: Высшее образование Прентис Холл, 2008.
  2. Петруччи, Ральф Х., Уильям С. Харвуд и Джефф Э. Херринг. Общая химия: принципы и современные приложения . 9 изд. Река Аппер Сэдл: Прентис Холл, 2006. d Биологическая химия . 10-е изд. Тимберлейк, Карен К. Химия: Введение в общие, органические и биологические Chmi

Проблемы

  1. Каковы потенциальные опасности токсичных веществ, выбрасываемых автомобилем без каталитического нейтрализатора?
  2. Какие 3 окислительно-восстановительные реакции происходят в трехкомпонентном каталитическом нейтрализаторе?
  3. Каталитический нейтрализатор работает со 100% эффективностью? Почему или почему нет?
  4. Как можно повредить или неправильно использовать каталитические нейтрализаторы?
  5. Почему кражи каталитических нейтрализаторов? What ar

Авторы

Катализатор окисления дизельного топлива

Катализатор окисления дизельного топлива

Вт.Адди Маевски

Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.

Abstract : Катализаторы окисления дизельного топлива способствуют химическому окислению CO и HC, а также органической фракции (OF) твердых частиц дизельного топлива. Они также окисляют диоксид серы, который присутствует в выхлопных газах дизельных двигателей при сгорании серосодержащего топлива. Окисление SO 2 приводит к образованию частиц сульфата и может значительно увеличить общие выбросы твердых частиц, несмотря на уменьшение органической фракции.В современных системах нейтрализации дизельных двигателей важной функцией DOC является повышение содержания NO 2 в выхлопных газах для поддержки работы катализаторов SCR и сажевых фильтров.

Каталитические реакции

Катализатор окисления дизельного топлива (DOC) обязан своим названием своей способности способствовать окислению компонентов выхлопных газов кислородом, который в больших количествах присутствует в выхлопных газах дизельных двигателей. При прохождении над катализатором окисления монооксид углерода (CO), газовая фаза углеводородов (HC), органическая фракция дизельных твердых частиц (OF), а также нерегулируемые выбросы, такие как альдегиды или ПАУ, могут окисляться до безвредные продукты, и, следовательно, их можно контролировать с помощью DOC.В современных системах дополнительной обработки дизельного топлива важной функцией DOC является окисление оксида азота (NO) до диоксида азота (NO 2 ) — газа, необходимого для поддержки работы сажевых фильтров и катализаторов SCR, используемых для снижения NOx. . Подробное обсуждение реакций DOC, кинетики реакций и других аспектов технологии можно найти в литературе [3829] .

Механизм реакции над дизельным катализатором окисления объясняется наличием активных каталитических центров на поверхности носителя катализатора, которые обладают способностью адсорбировать кислород.В целом реакция каталитического окисления включает следующие три стадии:

  1. кислород связан с каталитическим центром
  2. реагентов, таких как CO и углеводороды, диффундируют к поверхности и реагируют со связанным кислородом, а
  3. продуктов реакции, таких как CO 2 и водяной пар, десорбируются с каталитического центра и диффундируют в основную часть выхлопного газа.

Окисление углеводородов и CO в выбросах дизельного топлива можно описать следующими химическими реакциями:

[Углеводороды] + O 2 = CO 2 + H 2 O (1)

C n H 2m + (n + m / 2) O 2 = nCO 2 + mH 2 O (1a)

2CO + O 2 = 2CO 2 (2)

Углеводороды окисляются с образованием диоксида углерода и водяного пара, как описано реакцией (1) или — более стехиометрически строго — реакцией (1а).Фактически реакции (1) и (1а) представляют собой два процесса: окисление газовой фазы HC, а также окисление соединений OF. Реакция (2) описывает окисление монооксида углерода до диоксида углерода. Поскольку углекислый газ и водяной пар считаются безвредными, вышеуказанные реакции приносят очевидную выгоду от выбросов. Окисление углеводородов также приводит к уменьшению запаха дизельного топлива.

Однако катализатор окисления будет способствовать окислению всех соединений восстановительного характера; некоторые из реакций окисления могут приводить к образованию нежелательных продуктов и, по сути, быть контрпродуктивными по отношению к назначению катализатора.Окисление диоксида серы до триоксида серы с последующим образованием серной кислоты (H 2 SO 4 ), описываемое реакциями (3) и (4), возможно, является наиболее важным из этих процессов.

2SO 2 + O 2 = 2SO 3 (3)

SO 3 + H 2 O = H 2 SO 4 (4)

Когда выхлопные газы выпускаются из выхлопной трубы и смешиваются с воздухом либо в окружающей среде, либо в туннеле для разбавления, который используется для отбора проб твердых частиц, их температура снижается.В таких условиях газообразный H 2 SO 4 соединяется с молекулами воды и зародышеобразователями, образуя (жидкие) частицы, состоящие из гидратированной серной кислоты. Этот материал, называемый сульфатными частицами, способствует общему выбросу твердых частиц из двигателя. Каталитическое образование сульфатов, особенно в сочетании с дизельным топливом с высоким содержанием серы, может значительно увеличить общие выбросы ТЧ и, таким образом, стать препятствием для применения катализатора.

Окисление NO до NO 2 необходимо для работы современных систем контроля за выбросами дизельного топлива, где DOC является вспомогательным катализатором, поддерживающим работу других типов катализаторов, расположенных после катализатора окисления, для которых требуется повышенное содержание NO . 2 / NO соотношение.

2НО + O 2 = 2НО 2 (5)

Двуокись азота требуется для повышения эффективности некоторых типов катализаторов SCR, а также для содействия пассивной регенерации сажевых фильтров (DPF). DOC, используемые в приложениях DPF / SCR, обычно оптимизированы для производства с высоким содержанием NO 2 .

Повышенные отношения NO 2 / NO с катализаторами окисления — хотя и необходимы для работы систем нейтрализации дизельных двигателей — также были источником разногласий.Среди двух компонентов выбросов NOx NO 2 проявляет более высокую токсичность, чем NO. В некоторых случаях повышенные выбросы NO 2 могут способствовать ухудшению качества воздуха. Этот потенциальный вредный эффект DOC был впервые обнаружен в подземных выработках [159] . Эта проблема также может играть роль в «уличных каньонах» с высокой интенсивностью движения, даже если термодинамическое равновесие реакции (5) может быть достигнуто быстрее в присутствии солнечного света, а NO может быстро окисляться озоном.

###

Что такое катализатор окисления дизельного топлива?

Катализаторы окисления дизельного топлива (DOC) — это каталитические нейтрализаторы, разработанные специально для дизельных двигателей и оборудования для снижения выбросов окиси углерода (CO), углеводородов (HC) и твердых частиц (PM). DOC просты, недороги, не требуют обслуживания и подходят для всех типов и применений дизельных двигателей.

Рис. 1. Как работает дизельный окислительный катализатор (DOC)

Современные каталитические нейтрализаторы состоят из монолитной сотовой подложки, покрытой катализатором из металла платиновой группы, упакованной в контейнер из нержавеющей стали.Ячеистая структура с множеством небольших параллельных каналов обеспечивает высокую площадь контакта катализатора с выхлопными газами. Когда горячие газы контактируют с катализатором, некоторые загрязнители выхлопных газов превращаются в безвредные вещества: диоксид углерода и воду.

Катализатор окисления дизельного топлива предназначен для окисления монооксида углерода, углеводородов в газовой фазе и фракции твердых частиц дизельного топлива в SOF до CO 2 и H 2 O:

Выхлоп дизеля содержит достаточное количество кислорода, необходимого для вышеуказанных реакций.Концентрация O 2 в выхлопных газах дизельного двигателя колеблется от 3 до 17% в зависимости от нагрузки двигателя. Типичные значения эффективности преобразования CO и HC в дизельном катализаторе окисления Nett ® приведены на рисунке 2. Активность катализатора увеличивается с температурой. Для «выключения» катализатора необходима минимальная температура выхлопных газов около 200 ° C. При повышенных температурах конверсия зависит от размера и конструкции катализатора и может превышать 90%.

Рис. 2. Каталитическая конверсия окиси углерода и углеводородов

Конверсия твердых частиц дизельного топлива является важной функцией современного катализатора окисления дизельного топлива . Катализатор проявляет очень высокую активность в окислении органической фракции (SOF) твердых частиц дизельного топлива. Конверсия SOF может достигать и превышать 80%. При более низких температурах, скажем, 300 ° C, общая конверсия DPM обычно составляет от 30 до 50% (рисунок 3). При высоких температурах, выше 400 ° C, в катализаторе может происходить обратный процесс.Это окисление диоксида серы до триоксида серы, который соединяется с водой, образуя серную кислоту:

Происходит образование твердых частиц сульфата (SO4), что перевешивает выгоду от сокращения SOF. На рис. 3 показан пример ситуации, в которой при 450 ° C общий выброс DPM при неработающем двигателе и катализаторе равен. В действительности образование сульфатов сильно зависит от содержания серы в топливе, а также от состава катализатора. Можно уменьшить выбросы DPM с помощью катализатора даже при высоких температурах, если используется подходящий состав катализатора и топливо хорошего качества с низким содержанием серы.С другой стороны, дизельный катализатор окисления , используемый с топливом с высоким содержанием серы, увеличит общий выход DPM при более высоких температурах. Вот почему дизельные катализаторы получают большее распространение только после коммерческого внедрения дизельного топлива с низким содержанием серы.

Рис. 3. Каталитическая конверсия DPM

Катализаторы окисления дизельного топлива т, в зависимости от его состава, также могут проявлять некоторую ограниченную активность в отношении восстановления оксидов азота в выхлопных газах дизельных двигателей.NO x обычно наблюдаются конверсии 10-20%. Конверсия NO x имеет максимум при средних температурах около 300 ° C.

Каталитический нейтрализатор

— обзор

2.5.2 Современные низкосортные схемы

Наличие в больших количествах каталитических нейтрализаторов из автомобилей (автокотов) привело к развитию технологий плавки, основанных на улавливании железа и меди (Mishra and Reddy, 1987; Hoffmann, 1988). Энгельхард разработал пирометаллургические и гидрометаллургические технологии для концентрирования и очистки различных материалов, содержащих низкие содержания драгоценных металлов, включая золото (Benson et al., 2000). Это отход от типичных плавильных печей с автокатастрофой, где золото не рассматривается как сырье для печи.

Плавильный завод представляет собой угольную дугу под флюсом мощностью 2,5 МВА с трехэлектродным кольцом (AC) и работает как печь сопротивления шлака. Плотность мощности этой специализированной печи относительно высока и составляет 320 кВт / м 2 для подачи высокоглиноземистого сырья. Печь футерована огнеупором и охлаждается тремя водоохлаждаемыми медными пластинами для разработки футеровки замораживания.Операция полунепрерывная; выпуск шлака производится каждые 3 часа через водоохлаждаемую шлакобезьянку, а выпуск сплава производится один раз в день через выпускное отверстие в глиноземном блоке. Брызговик используется для открытия и закрытия летки из сплава, а летка для шлака открывается и закрывается вручную.

Поток отходящего газа проходит через термоокислитель для окисления CO до CO 2 , смешивается с охлаждающим воздухом и фильтруется с использованием статического мешка для первичной очистки. Затем отходящий газ очищается щелочью и проходит через электрофильтр перед окончательным выбросом в атмосферу.

Для плавки доступно довольно большое количество разнообразных материалов, в том числе остатки нефтепереработки, образующиеся во внутренних контурах гидрометаллургической переработки; автокатализаторы (также обозначаемые как автокатализаторы ) от внутреннего производства и сторонних поставщиков, а также отработанные катализаторы от химической промышленности. Остатки нефтепереработки представляют собой нерастворимые материалы, обычно остатки выщелачивания, содержащие значительное содержание МПГ, включая золото и серебро вместе со значительными количествами натрия и хлорида.

При производстве Autocat образуется значительный объем отходов с небольшим, но значительным содержанием МПГ. Эти керамические подложки представляют собой алюмосиликаты с высокой температурой плавления, а именно кордиерит [Mg 2 Al 4 Si 5 O 18 ] и муллит [Al 6 Si 2 O 13 ], с различными количества глинозема. Автокошки после продажи значительно различаются по содержанию МПГ, с загрязнителями, которые включают железо, никель, хром, свинец, фосфор, цинк и редкоземельные металлы, такие как CeO 2 .

Отработанные катализаторы представляют собой тугоплавкие материалы с широким спектром составов от оксида алюминия, алюмосиликатов, цеолитов и силикатов до карбидов кремния. Содержание металлов колеблется от 0,1% до 5% МПГ, а составы варьируются от отдельных МПГ (Pt на Al 2 O 3 ) до отдельных МПГ плюс основной металл (Pt / Fe на Al 2 O 3 ) к смешанным МПГ (Au / Pd на Al 2 O 3 ). Эти материалы обычно имеют относительно небольшое содержание МПГ и большую площадь поверхности и плохо реагируют на выщелачивание из-за значительной потери МПГ, происходящей при повторной абсорбции.

Более традиционные очистители также добавляются в цикл плавки и включают в себя очистители для ювелиров, которые обычно содержат менее 0,1% золота, а также полировальные помады, которые представляют собой смеси тугоплавких абразивных материалов, таких как оксиды железа, корунд [Al 6 Si 2 O 13 ] и оксид алюминия [Al 2 O 3 ]. Плавка таких сложных смесей требует хорошего химического анализа для расчета добавок извести и других флюсов для образования жидких шлаков в диапазоне 1500–1600 ° C.Для этого при компаундировании плавильных смесей делается ссылка на тройные фазовые диаграммы для CaO – Al 2 O 3 –SiO 2 и CaO – FeO – SiO 2 .

Механизм сбора, по сути, использует карботермическую реакцию между гематитом и углеродом с образованием мелкодисперсных частиц железа, которые действуют как коллектор. Считается, что условия плавления являются окислительными, когда большая часть железа выводится в шлак в виде FeO, но некоторая часть оксида железа восстанавливается до металла, образуя плотную мелкодисперсную металлическую фазу.Мелкодисперсный коллектор железа проходит через расплавленный шлак, сталкиваясь с золотом и МПГ, и при достижении критического размера частиц гравитационные силы заставляют частицы оседать на поду.

Основные карботермические реакции резюмируются следующим образом:

(47,1) Fe2O3 + C → 2FeO + CO (г)

(47,2) FeO + C → Fe + CO (г)

Оксид железа не единственный источник коллекционного металла. При температуре 1600 ° C большинство оксидов металлов восстанавливается до металла, что приводит к дополнительному выпадению металла, что снижает содержание МПГ в сплаве.Это особенно верно в присутствии SiO 2 , где восстановление до кремния термодинамически выгодно при температурах выше 1600 ° C. Восстановление приводит к образованию в сплаве ферросилиция, что нежелательно с гидрометаллургической точки зрения. Образовавшийся сплав имеет плотность 7–8 г / см 3 и значительно плотнее шлака, который обычно составляет 2–4 г / см 3 . Содержание МПГ в получаемом сплаве обычно находится в диапазоне 10–15%.

Коэффициенты распределения D x интересующих металлов между фазой сплава и шлака сведены в Таблицу 47.3.

Таблица 47.3. Коэффициенты распределения для МПГ в типичных условиях плавки

6 9029 9029 6
Элемент D x
Au 130
Rh 230

D x (% (м / м) металла X) сплав / (% (м / м) металла X) шлак .

На рис. 47.3 показана типичная технологическая схема для концентрирования МПГ из глинозема и алюмосиликатного сырья в плавильных и гидрометаллургических установках.

Рисунок 47.3. Типовая технологическая схема каталитических нейтрализаторов плавки и выщелачивания.

Каталитические преобразователи | Типы каталитических нейтрализаторов

Двусторонняя

Двухкомпонентный (или «окислительный») катализатор выполняет две одновременные задачи:

  • Окисление окиси углерода до двуокиси углерода: 2CO + O2 → 2CO2
  • Окисление углеводородов (несгоревшее и частично сгоревшее топливо) до диоксида углерода и воды: Cxh3x + 2 + [(3x + 1) / 2] O2 → xCO2 + (x + 1) h3O (реакция горения)

Каталитический нейтрализатор этого типа широко используется в дизельных двигателях для снижения выбросов углеводородов и оксида углерода.Они также использовались в бензиновых двигателях автомобилей американского и канадского рынков до 1981 года. Из-за их неспособности контролировать оксиды азота их заменили трехходовые преобразователи.

Трехходовой

С 1981 года «трехкомпонентные» (окислительно-восстановительные) каталитические нейтрализаторы используются в системах контроля выбросов транспортных средств в Соединенных Штатах и ​​Канаде; многие другие страны также приняли строгие правила выбросов транспортных средств, которые фактически требуют трехходовых преобразователей на транспортных средствах с бензиновым двигателем.Катализаторы восстановления и окисления обычно содержатся в общем корпусе, однако в некоторых случаях они могут размещаться отдельно. Трехкомпонентный каталитический нейтрализатор выполняет одновременно три задачи:

  • Восстановление оксидов азота до азота и кислорода: 2NOx → xO2 + N2
  • Окисление окиси углерода до двуокиси углерода: 2CO + O2 → 2CO2
  • Окисление несгоревших углеводородов (HC) до диоксида углерода и воды: Cxh3x + 2 + [(3x + 1) / 2] O2 → xCO2 + (x + 1) h3O.

Эти три реакции протекают наиболее эффективно, когда каталитический нейтрализатор принимает выхлопные газы двигателя, работающего немного выше стехиометрической точки.Это значение составляет от 14,6 до 14,8 частей воздуха на 1 часть топлива по массе для бензина. Соотношение для автогаза (или сжиженного нефтяного газа (СНГ)), природного газа и этанола немного отличается, что требует изменения настроек топливной системы при использовании этих видов топлива. Как правило, двигатели, оснащенные 3-ходовыми каталитическими нейтрализаторами, оснащены компьютеризированной системой впрыска топлива с обратной связью с использованием одного или нескольких кислородных датчиков, хотя на ранних этапах внедрения трехходовых преобразователей использовались карбюраторы, оборудованные для управления смесью с обратной связью.

Трехкомпонентные катализаторы эффективны, когда двигатель работает в узком диапазоне соотношений воздух-топливо, близкого к стехиометрии, когда выхлопной газ колеблется между богатым (избыток топлива) и бедным (избыток кислорода) условиями. Однако эффективность преобразования очень быстро падает, когда двигатель работает за пределами этого диапазона соотношений воздух-топливо. При работе на обедненном двигателе возникает избыток кислорода, и снижение выбросов NOx не благоприятствует. В богатых условиях избыточное топливо потребляет весь доступный кислород до катализатора, таким образом, только запасенный кислород доступен для функции окисления.Системы управления с обратной связью необходимы из-за противоречивых требований к эффективному восстановлению NOx и окислению HC. Система управления должна предотвращать полное окисление катализатора восстановления NOx, но при этом пополнять запасы кислорода для поддержания его функции в качестве катализатора окисления.

Трехкомпонентные каталитические нейтрализаторы могут накапливать кислород из потока выхлопных газов, обычно когда соотношение воздух-топливо становится бедным. Когда из выхлопного потока поступает недостаточное количество кислорода, накопленный кислород высвобождается и потребляется.Недостаток кислорода возникает либо когда кислород, полученный в результате восстановления NOx, недоступен, либо когда определенные маневры, такие как резкое ускорение, обогащают смесь сверх способности конвертера подавать кислород.

В трехкомпонентном катализаторе могут происходить нежелательные реакции, такие как образование пахучего сероводорода и аммиака. Формирование каждого из них может быть ограничено модификациями используемого покрытия и драгоценных металлов. Полностью устранить эти побочные продукты сложно.Топливо без серы или с низким содержанием серы устраняет или снижает содержание сероводорода.

Например, когда желательно контролировать выбросы сероводорода, в лакокрасочное покрытие добавляют никель или марганец. Оба вещества препятствуют впитыванию серы лаковым покрытием. Сероводород образуется, когда покрытие поглотило серу во время низкотемпературной части рабочего цикла, которая затем высвобождается во время высокотемпературной части цикла, и сера соединяется с НС.

Дизельные двигатели

Для воспламенения от сжатия (т.е.например, дизельные двигатели), наиболее часто используемым катализатором является катализатор окисления дизельного топлива (DOC). Этот катализатор использует O2 (кислород) в потоке выхлопных газов для преобразования CO (монооксида углерода) в CO2 (диоксид углерода) и HC (углеводородов) в h3O (воду) и CO2. Эти преобразователи часто работают с КПД 90 процентов, практически устраняя запах дизельного топлива и помогая уменьшить количество видимых твердых частиц (сажи). Эти катализаторы не активны для восстановления NOx, потому что любой присутствующий восстановитель сначала вступит в реакцию с высокой концентрацией O2 в выхлопных газах дизельных двигателей.

Снижение выбросов NOx из двигателей с воспламенением от сжатия ранее решалось добавлением выхлопных газов к входящему воздушному потоку, известной как рециркуляция выхлопных газов (EGR). В 2010 году большинство производителей дизельных двигателей малой грузоподъемности в США добавили каталитические системы в свои автомобили, чтобы соответствовать новым федеральным требованиям по выбросам. Для каталитического снижения выбросов NOx при обедненных выхлопных газах были разработаны два метода — избирательное каталитическое восстановление (SCR) и ловушка для обедненных NOx или адсорбер NOx.Вместо адсорберов NOx, содержащих драгоценные металлы, большинство производителей выбрали системы SCR на основе неблагородных металлов, в которых используется такой реагент, как аммиак, для восстановления NOx в азот. Аммиак подается в каталитическую систему путем впрыска мочевины в выхлопные газы, которая затем подвергается термическому разложению и гидролизу до аммиака. Одним из товарных знаков раствора мочевины, также называемого Diesel Emission Fluid (DEF), является AdBlue.

Выхлоп дизельных двигателей содержит относительно высокое содержание твердых частиц (сажи), в основном состоящих из элементарного углерода.Каталитические нейтрализаторы не могут очищать элементарный углерод, хотя они удаляют до 90 процентов растворимой органической фракции, поэтому твердые частицы удаляются с помощью уловителя сажи или дизельного сажевого фильтра (DPF). Исторически сложилось так, что DPF состоит из подложки из кордиерита или карбида кремния с геометрией, которая заставляет поток выхлопных газов проходить через стенки подложки, оставляя захваченные частицы сажи. Современные сажевые фильтры могут быть изготовлены из различных редких металлов, которые обеспечивают превосходные характеристики (при более высоких затратах).По мере того как количество сажи, удерживаемой на DPF, увеличивается, увеличивается и противодавление в выхлопной системе. Периодические регенерации (высокотемпературные колебания) необходимы, чтобы инициировать сгорание уловленной сажи и тем самым снизить противодавление выхлопных газов. Количество сажи, загруженной на DPF перед регенерацией, также может быть ограничено, чтобы предотвратить повреждение ловушки во время регенерации в результате экстремальных экзотермических воздействий. В США все легковые, средние и тяжелые автомобили, работающие на дизельном топливе и построенные после 1 января 2007 г., должны соответствовать ограничениям на выбросы твердых частиц, что означает, что они фактически должны быть оснащены двухходовым каталитическим нейтрализатором и сажевый фильтр.Обратите внимание, что это относится только к дизельному двигателю, используемому в автомобиле. Поскольку двигатель был изготовлен до 1 января 2007 г., в автомобиле не требуется установка сажевого фильтра. Это привело к увеличению запасов у производителей двигателей в конце 2006 года, чтобы они могли продолжать продавать автомобили без сажевого фильтра и в 2007 году.

Дизельные двигатели с искровым зажиганием

Для двигателей с искровым зажиганием на обедненной смеси катализатор окисления используется так же, как и в дизельном двигателе.Выбросы от двигателей с искровым зажиганием на обедненной смеси очень похожи на выбросы от дизельных двигателей с воспламенением от сжатия.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *