Меню Закрыть

Принцип работы дроссельной заслонки: типы устройств и особенности их обслуживания

Содержание

Дроссельная заслонка в карбюраторе, инжекторе и в моновпрыске

Для эффективной работы любого двигателя внутреннего сгорания необходимо обеспечить верное соотношение топлива и воздуха. Но, требования к соотношению топливовоздушной смеси бензинного двигателя во много раз выше, чем для дизельного мотора. Поэтому в бензиновых двигателях необходимо одновременно регулировать подачу воздуха и топлива, тогда как в дизельных достаточно изменения количества горючего. Дроссельная заслонка обеспечивает регулировку количества воздуха, который поступает в цилиндры.

Что такое дроссельная заслонка?

Дроссельная заслонка является частью системы впуска двигателей внутреннего сгорания, которая предназначена для регулировки подачи воздуха, с дальнейшим созданием топливовоздушной смеси. Такая заслонка монтируется в промежутке между впускным коллектором и воздушным фильтром.

Дроссельная заслонка играет роль воздушного клапана. Как только она открывается, то давление, создаваемое во впускной системе становится равным атмосферному, а при ее закрытии, давление уменьшается до степени вакуума.

Существуют два типа привода заслонки: механический и электрический.

Устройство и схема дроссельной заслонки с механическим приводом

  1. патрубок подвода охлаждающей жидкости;
  2. патрубок системы вентиляции картера; 
  3. патрубок отвода охлаждающей жидкости;
  4. датчик положения дроссельной заслонки;
  5. регулятор холостого хода;
  6. патрубок системы улавливания паров бензина;
  7. дроссельная заслонка.

Этот способ регулирования подачи воздуха применяется на карбюраторных автомобилях. Дроссельная заслонка и педаль газа имеют тесную связь, выполненную в виде металлического троса. Все элементы заслонки представляют собой единый блок, который включает в себя: регулятор холостого хода, датчик положения дроссельной заслонки, заслонка, закрепленная на специальном валу и корпус.

Корпус имеет отдельные патрубки для циркуляции системы охлаждения, которая подключается к системе охлаждения двигателя автомобиля. Также, встроена система вентиляции картера и улавливания паров бензина.

Регулятор холостого хода обеспечивает равномерное вращение коленчатого вала на время пуска двигателя и его прогрева, в то время как, дроссельная заслонка закрыта. В состав регулятора входит шаговый электродвигатель и специальный клапан. Они регулируют количество поступающего воздуха независимо от положения дроссельной заслонки.

Дроссельная заслонка в карбюраторе

Дозирование топлива в карбюраторе производится на основе эффекта Вентури – поток с малой плотностью, но  высокой скоростью движения увлекает за собой более плотные частицы. Во время работы двигателя на холостых оборотах, наполнение цилиндров топливовоздушной смесью минимально. Движение воздуха через щель между заслонкой и корпусом карбюратора увлекает за собой топливо из поплавковой камеры.

Топливный жиклер ограничивает количество бензина, которое выходит к дроссельной заслонке и смешивается с воздухом. Когда водитель нажимает на педаль газа, сопротивление движению воздуха сокращается, скорость возрастает, это приводит к усилению влияния эффекта Вентури. Благодаря такой конструкции карбюратор при любом положении дроссельной заслонки обеспечивает равное соотношение топливовоздушной смеси.

В моновпрыске

По конструкции моновпрыск похож на карбюратор – топливовоздушная смесь образуется в смесительной камере. В отличие от карбюратора, состав смеси регулируется электроникой. Дроссельная заслонка регулирует количество воздуха, которое поступает в цилиндры. Датчики массового расхода воздуха (ДМРВ), положения дроссельной заслонки (ДПДЗ) и положения коленчатого вала (ДПКВ) поставляют контроллеру всю необходимую информацию для расчета количества топлива. По команде контроллера форсунка с электрическим управлением впрыскивает необходимое количество топлива, которое смешиваясь с воздухом, образует топливовоздушную смесь.

В инжекторе

В инжекторе используется тот же способ управления топливом, что и в моновпрыске. Разница в том, что топливовоздушная смесь формируется во впускном коллекторе (инжекторные системы) или непосредственно в цилиндре (системы прямого впрыска). Дроссельная заслонка в инжекторных двигателях точно также регулирует количество воздуха, как в карбюраторных или моновпрысковых моторах.

Заслонка с электрическим приводом

В настоящее время, автомобили комплектуются дроссельной заслонкой со встроенным электродвигателем. Это позволяет достигнуть самого минимального расхода топлива и сделать управление автомобилем безопасным и экологичным.

Среди особенностей электрической заслонки можно отметить полное отсутствие механической связи дросселя и педали газа, так как вместо троса, теперь, стоит электронный блок управления. Кроме того, регулировка холостого хода выполняется только дроссельной заслонкой.

Электронный блок сам подбирает частоту вращения коленчатого вала без участия водителя при любых режимах работы двигателя.

Как устроен привод дроссельной заслонки?

Прежде чем рассмотреть привод дроссельной заслонки, давайте ознакомимся непосредственно с самой дроссельной заслонкой. Дроссельная заслонка – это механизм, контролирующий подачу воздуха в двигатель внутреннего сгорания, в процессе чего происходит смешивание топлива и воздуха, а если уж совсем по-простому – это обычный воздушный клапан. Включает в себя корпус, в котором собраны детали: штуцера подвода и отвода охладителя, штуцер вентиляции, штуцер определения наличия паров топлива, регулятор холостого хода, датчик положения дроссельной заслонки и непосредственно заслонки. В большинстве, карбюраторы на автомобилях двухкамерные. Дроссельная заслонка первой камеры управляется акселератором из кабины машины, обеспечивает подачу воздуха на малом газу (холостые обороты), крейсерский режим, номинальный режим. Заслонка вторичной камеры открывается при полностью открытой первичной заслонке и обеспечивает подачу воздуха от номинального до максимального режима.

Назначение привода дроссельной заслонки вытекает из вышесказанного – контроль подачи воздуха. При нажатии на педаль акселератора открывается заслонка, происходит подача воздуха и его смешивание с топливом, после чего эта смесь сгорает, придавая мощность двигателю.

Типы приводов дроссельных заслонок.

Существует два типа приводов дроссельных заслонок – механический и электрический.

МЕХАНИЧЕСКИЙ. Дроссельная заслонка с механическим приводом чаще всего используется в отечественных (машины прошлого века), классических и недорогих автомобилях. Данный тип заслонки приходит в движение за счёт тесного соединения с педалью акселератора через тросик газа.

ЭЛЕКТРИЧЕСКИЙ. Дроссельная заслонка с электрическим приводом устанавливается на современных автомобилях. Приходит в действие за счёт чёткого контроля электронным блоком, в связи с чем процесс происходит моментально.

Устройство привода дроссельной заслонки.

Механический привод дроссельной заслонки включает: акселератор, тяги и поворотные рычаги, металлический трос. При нажатии на акселератор дроссельная заслонка поворачивается вокруг оси, приоткрывая доступ воздуха для приготовления топливно-воздушной смеси. В данном типе приводов, параллельно управлению при помощи акселератора предусмотрено также ручное управление, состоящее из ручки управления, троса в металлической оплётке типа «Боуден», рычага управления на карбюраторе.

Электрический привод в силу своего конструктивного решения позволяет добиваться более эффективной передачи крутящего момента на колёса при каждом изменении положения акселератора; при всём этом повышается экономичность двигателя, снижается содержание СО в выхлопных газах, а также улучшаются эксплуатационные характеристики, влияющие на безопасность машины. Электрический привод выполнен достаточно сложно и включает в себя:

— электрический двигатель с двумя измерителями положения, связанными с рычагом управления дроссельной заслонки;

— акселератор с измерителем положения;

— электронный блок управления.

В дополнение к вышеперечисленным деталям в системе задействованы выключатели положения педалей тормоза и сцепления. Особенностью данного привода и положительной его стороной являются: электрическая связь акселератора с заслонкой; возможность управлять частотой вращения двигателя на холостых оборотах (изменением поворота дроссельной заслонки).

Принцип работы привода дроссельной заслонки.

Механический. Нажимая на акселератор, водитель преодолевает усилие возвратной пружины, воздействуя на тяги и рычаги поворота (металлический трос), перемещает дроссельную заслонку. Проходное сечение дросселя увеличивается, в связи с чем увеличивается подача воздуха в смесительную камеру. В зависимости от количества поступившего воздуха, впрыскивается определённое количество топлива. Топливо с воздухом перемешивается, подаётся в камеру сгорания цилиндров, за счёт чего частота вращения двигателя увеличивается.

При полностью отпущенном акселераторе заслонка перекрывает проходное сечение дросселя. Для нормальной работы двигателя на режиме «малого газа» существует регулировочный винт, который ограничивает закрытие заслонки (запуск двигателя, работа при включённой нейтральной передаче). В некоторых случаях, особенно для запуска и работы непрогретого двигателя, открытия заслонки регулировочным винтом недостаточно, поэтому применяется параллельно ручное открытие заслонки в кабине машины. При промежуточном, ручном открытии заслонки водитель может, нажимая на акселератор, достичь большей частоты вращения, но при отпускании акселератора заслонка повернётся до положения, открытого вручную, и дальше закрываться не будет. Для полного закрытия необходимо закрыть вручную.

Открытие вторичной камеры осуществляется при помощи системы рычагов, связывающих обе заслонки. После открытия заслонки первичной камеры на 2/3 хода начинает открываться вторая камера. В некоторых карбюраторах начало открытия вторичной камеры происходит только после полного открытия первичной камеры. Также применимы карбюраторы с пневматической системой открытия вторичной заслонки.

Электрический.

При перемещении акселератора водителем датчик положения педали акселератора, представляющий собой наличие двух работающих независимо друг от друга переменных резисторов (потенциометров), изменяющих сопротивление от положения акселератора, передаёт сигнал на электронный модуль управления силовой установкой машины. Модуль, получив сигнал, выполняет необходимые операции и подаёт команду на электродвигатель для закрытия или открытия дроссельной заслонки. Датчик положения дроссельной заслонки контролирует её фактическое положение и сигнализирует об этом в модуль управления силовой установки.

При необходимости выполняется коррекция положения дроссельной заслонки. Если происходит отказ одного из датчиков (потенциометров), двигатель автоматически выходит на пониженный режим работы с максимальным крутящим моментом 80Нм.

При отказе обоих потенциометров на режим работы 55 Нм. При переключении передач датчик положения педали сцепления передаёт сигнал на модуль, и происходит коррекция подачи топливно-воздушной смеси в двигатель. При торможении машины выполняются подобные манипуляции. Это позволяет экономить топливо, снижается содержание СО в выхлопных газах, улучшается безопасность управления автомобилем.

Электронный модуль управления силовой установкой предусматривает аварийный режим. При возникновении неисправности поступает сигнал в модуль управления, который анализирует его и выдаёт команду на закрытие дроссельной заслонки до положения, обеспечивающего ограниченное движение автомобиля, позволяющее доехать до станции технического обслуживания. В электронный модуль управления силовой установкой встроена европейская диагностическая система, которая постоянно следит за наличием СО в выхлопных газах, определяет и предупреждает о возникшем его превышении.

Рассмотрев и проанализировав устройство и работу привода дроссельной заслонки, мы видим, что конструктивно они бывают как самыми простыми механическими, так и сложными и дорогостоящими электрическими, с электронным управлением приводами. Если водитель, имея некоторые навыки, может самостоятельно ремонтировать более простые, то для ремонта электрических приводов необходим высококвалифицированный специалист, имеющий необходимое диагностическое оборудование. Также мы видим, что на автомобилях с электрическим приводом дроссельной заслонки достигнуто улучшение эксплуатационных характеристик, влияющих на расход топлива, безопасность движения и экологию окружающей среды.

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

Дроссельная заслонка

Всем известно, что для движения автомобилю необходимо топливо. Когда двигатель набирает обороты, в него попадает больше воздуха и бензина. За приготовление этого «горючего коктейля» в правильных пропорциях отвечает дроссельная заслонка.

Роль дроссельной заслонки в системе впуска

Двигатель внутреннего сгорания обладает впускной системой, которая объединяет подачу топлива и воздуха в камеру сгорания. Топливная система отвечает за перемещение горючего, его впрыск в камеру внутреннего сгорания и воспламенение. Дроссельная заслонка относится к воздушной части впускной системы.

Дроссельная заслонка — «побочный продукт» поиска дешевого топлива для двигателей, которым были озабочены изобретатели 19-го века

В системе создается разрежение, которое изменяется в зависимости от оборотов двигателя. Открываясь, дроссельная заслонка не только регулирует поток воздуха, но и общее количество смеси, попадающее в цилиндры: при открытии в коллектор попадает больше воздуха, а форсунки по команде блока управления впрыскивают большую дозу топлива.

История появления дроссельной заслонки 

Если обратиться к истории автомобилестроения, то можно обнаружить несколько значительных фактов. Далеко не сразу в качестве горючего для двигателей начали использовать бензин. Изначально в этих целях использовался светильный газ. Это давало возможность избежать применения отдельного прибора для смешивания топлива, поскольку газ уже содержал в своем составе молекулы кислорода, соответственно мог гореть без смешивания с воздухом. Однако светильный газ был крайне дорогим и дефицитным продуктом. Например, в конце XIX века в России было всего два завода по его производству.

В связи с этим ученые занимались поиском более дешевого топлива. Наилучшим вариантом стало использование в этих целях бензина, керосина и дизтоплива.

С переходом на жидкое топливо, в 1872 году, был изобретен первый карбюратор. Несколько позже он был запатентован инженерами Готлибом Даймлером и Вильгельмом Майбахом. Одним из важнейших элементов этой системы стала дроссельная заслонка, которая решила проблему смеси топлива и воздуха.

Дроссельная заслонка. Принцип работы.

Конструкция дроссельной заслонки

Фактически, дроссельная заслонка является клапаном, который при открытии повышает давление в системе до атмосферного, а при закрытии снижает объем воздуха до состояния вакуума. Конструкция заслонки очень проста: в корпусе-трубе установлена ось, к которой за центральную часть прикреплена круглая заслонка. Привод поворачивает ось, а вместе с осью поворачивается и заслонка. Соответственно, сечение трубы то увеличивается, то уменьшается. Этот процесс называется дросселированием.

Вопреки распространенному убеждению, на дизельных двигателей дроссельной заслонки — нет. В их конструкции применен принцип регулируемой подачи топлива

В оригинальной конструкции, придуманной для карбюраторных двигателей, привод заслонки был механическим — ось приводилась в движение тросом, соединенным с педалью акселератора. С появлением инжекторов эта конструкция в течение долгого времени оставалась неизменной, пока инженеры не разработали привод на основе электромотора. Педаль превратилась в электронное устройство управления, подающее на блок дроссельной заслонки сигнал разного уровня.

Дроссельная заслонка с механическим приводом чаще всего применяется на бюджетных автомобилях. Практически на все автомобили модельного ряда  ВАЗ до 2003 года устанавливались заслонки с механическим приводом.

Простота и дешевизна в производстве — эти качества механической дроссельной заслонки обеспечивают ей применение в течение уже полутора веков

В отличие от механической дроссельной заслонки, современный электронный узел уже не повинуется воле водителя в полном объеме. Корректировать количество бензина и воздуха, попадающих в двигатель, водителю помогает целый ряд датчиков:

датчик положения дроссельной заслонки;

датчик положения педали газа;

датчик-выключатель на педалях сцепления и газа и так далее.

Датчики и электронный блок управления в сочетании с электроприводом заслонки позволяют наиболее гибко контролировать расход топлива в разных режимах движения и стабилизировать холостой ход двигателя.

Почему дроссельная заслонка нуждается в периодической очистке? 

Основная проблема, возникающая при эксплуатации дроссельной заслонки в том, что через нее проходит забортный воздух. Условия на дороге бывают разными, и в некоторых случаях мельчайшие частицы пыли проникают даже через качественный воздушный фильтр. Есть и еще одна причина загрязнения – масляная пыль, которая проникает через систему вентиляции картера. Две эти субстанции, смешиваясь, образуют на заслонке довольно прочный налет. Постепенно им зарастают края пластины, и заслонка перестает закрываться до конца.

Загрязнение дроссельной заслонки — одна из самых распространенных причин попадания автомобиля в сервис

Типовые признаки загрязнения дроссельной заслонки:

— затруднения при запуске двигателя

— неустойчивый холостой ход

— рывки при движении на скорости ниже 20 км/ч

Как правило, для очистки заслонки достаточно отсоединить патрубок воздушного фильтра и несколько раз брызнуть на пластину аэрозолем для очистки карбюраторов или инжекторов. Средство растворит налет, после чего его можно удалить тряпкой или бумажной салфеткой. 

Для устранения более серьезных неполадок необходимо демонтировать дроссельный заслонку, освободить ее от резиновых уплотнителей и обработать тем же аэрозолем. Если заслонка механическая и не имеет встроенной электроники, целесообразно погрузить ее на ночь в емкость с бензином. Любой автосервис может выполнить эту процедуру чистки достаточно быстро и сравнительно дешево. Стоимость работы может варьироваться в зависимости от ее сложности и степени загрязнения системы.

Назначение и преимущества использования дроссель-клапанов

Дроссель-клапан предназначен для регулирования величины просвета в внутри воздуховода. Это необходимо для изменения объема перемещающихся потоков воздуха, а значит улучшению производительности вентиляционной системы.

Устройство устанавливают в разрыв воздуховода, регулировка производится про помощи изменения угла поворота лопасти. Полностью канал не перекрывается, поскольку возможность регулировки просвета находится в пределах от 10% до 100%. Дроссель-клапан для вентиляции изготавливается из тех же материалов, что и воздуховоды – листовой оцинкованной или нержавеющей стали.

Принцип действия дроссельного механизма

Дроссель-клапаны предназначаются для работы с неагрессивными воздушными потоками, имеющими температуру не выше 80°С. Перемещаемые массы не должны иметь липкие и волокнистые примеси, содержание твердых частиц – не более 100 мГ/м3. Также ограничивается величина давления в системе, она не может превышать 1500 Па.

Чаще всего данные устройства размещают в точках присоединения ответвлений к магистральному воздуховоду. При помощи дросселя осуществляется регулировка расхода воздушных масс и стабилизация аэродинамического сопротивления потока. Процесс реализуется путем поворота заслонки рукоятью или посредством электропривода.

Принцип работы дроссель-клапана заключается в установке лопасти под определенным углом к корпусу, чтобы частично перекрыть путь движения воздушному потоку. Если же воздух должен проходить по трубе беспрепятственно, то заслонка располагается строго горизонтально. Для закрепления лопасти в заданном положении используется специальный фиксатор.

Сфера использования дросселирующих заслонок

Каких-то особых ограничений для применения дроссель-клапанов не существует. Они могут устанавливаться в вентиляционные системы помещений различного назначения: бытового, общественного, коммерческого, промышленного, производственного. Данное устройство призвано выполнять следующие задачи:

  1. обеспечивать качественную вентиляцию путем регулировки объема воздушных потоков;
  2. в производственных цехах осуществлять контроль за наличием и количеством примесей невзрывоопасного характера в воздухе;
  3. перекрывать вентиляционную трубу при возникновении обратной тяги;
  4. выравнивать силу тяги в системах вентиляции, кондиционирования и воздушного отопления.

Широкое разнообразие моделей с разнообразными конструктивными решениями позволяют подобрать наиболее оптимальный вариант как для самой простой бытовой схемы, так и для мощной сети производственного помещения.

Типы дроссель клапанов, их преимущества и особенности

Дроссельные заслонки классифицируют по форме сечения и функциональному предназначению. Также они отличаются габаритными размерами, способом управления и материалом изготовления. Оптимальным вариантом является изготовленные из металла с одинаковыми техническими характеристиками клапана и воздуховода.

Приспособление представляет собой отрезок трубы круглого, квадратного или прямоугольного сечения, внутри которого располагается заслонка, закрепленная на специальной оси. Дроссель-клапаны можно разделить на такие категории:

  1. Устройства с сечением круглой формы изготавливают диаметром от 100 мм и до 1250 мм. Возможно производство изделий с индивидуальными параметрами по чертежам клиента. Основной материал – оцинкованная сталь толщиной 0,5-1,0 мм. Дроссельная заслонка может быть снабжена специальной площадкой для размещения электропривода. Вариант ручного управления предусматривает наличие рукоятки. Соединение с воздуховодом – ниппельное.

  1. Прямоугольный клапан может иметь размеры от 100х100 мм в стандартном исполнении или другие по персональному заказу. По требованиям СТБ 1915-2008 изготавливается из листовой оцинкованной стали толщиной 0,5-1,0 мм. Состоит из корпуса с внутренней заслонкой и внешним устройством управления, которое может быть ручным или автоматическим. Торцы изделия оформлены фланцами для соединения с элементами воздуховода или патрубком вентилятора.

Широкий типоразмерный ряд позволяет подобрать устройства для любой вентиляционной системы.

Особенности монтажных работ

Поскольку дроссельная заслонка вживляется в воздухопроводящую сеть, то наиболее оптимальным вариантом является установка устройства в период монтажа вентиляционной системы. Если эту работу производить позже, то потребуется частично демонтировать воздуховод и перекраивать его участки. В этом случае будет трудно выполнить герметизирующие мероприятия. Чтобы монтажный процесс прошел эффективно, необходимо:

  1. выбрать заслонку, точно подходящую к воздуховоду по размерам и форме сечения;
  2. установку осуществить таким образом, чтобы был обеспечен свободный доступ к устройству для регулировки и производства ремонтных работ;
  3. при монтаже дроссель-клапана с электроприводом позаботиться об удобстве и безопасности подключения к электрической сети;
  4. учесть условия эксплуатации выбранной модели, соответствие ее технических характеристик и конструктивных особенностей мощности вентиляционной системы.

Дроссельные заслонки решают важные проблемы, связанные с контролем объемов воздушных потоков. Они позволяют создать более надежную и эффективную вентиляцию в закрытых помещениях. Если у вас возникли вопросы или возникла необходимость правильно подобрать оборудование для формирования вентиляционной системы, звоните по номерам: +375 29 62 62 100 и +375 29 66 50 969. Специалисты компании «КВС-Инжениринг» охотно окажут всестороннюю помощь на профессиональном уровне.

Зачем нужно чистить дроссельную заслонку?

Дроссельная заслонка – это заслонка, которая напрямую связана с педалью газа автомобиля. Дроссельные заслонки и педали газа на современных автомобилей электронные.

Принцип работы дроссельной заслонки

Основные элементы дроссельной заслонки

Как происходит контроль оборотов двигателя водителем? Нажимая на газ, он открывает дроссель, увеличивая диаметр пространства, через которое происходит питание двигателя воздухом. Чем больше воздуха попадает в двигатель, тем больше ЭБУ (компьютер) двигателя подаёт топлива, соблюдая при этом необходимую пропорцию воздух/бензин. Большая масса воздушно-топливной смеси приводит к мгновенному увеличению оборотов (и мощности соответственно).

Зачем нужно чистить дроссельную заслонку?

Проверка работы после чистки

Итак, дроссельная заслонка – это своеобразный «дыхательный орган» двигателя. Вместе с воздухом из окружающей среды в неё попадает пыль, которой удалось миновать воздушный фильтр.

Также в двигателе присутствует такая система, как система рециркуляции картерных газов. В картере накапливаются газы, состоящие из масляной пыли, отработанных газов, и топлива, которое не успело сгореть в цилиндрах.

В соответствии с современными экологическими требованиями, конструкторами принято решение отправлять эти газы обратно в цилиндры, с целью их дожигания. Газы проходят через маслоотделитель, но небольшой процент масла все же остаётся в них. Путь их к цилиндрам как раз лежит через дроссельную заслонку.

Оседание пыли

Оседание пыли

Там то и происходит смешивание масляной пыли с пылью обычной. Эта чёрная, липкая масса и оседает в рабочем пространстве дросселя, через которое воздух идёт в двигатель.

Образовавшийся слой влияет на диаметр, а следовательно, и на пропускную способность дросселя. Это влияет на работу двигателя, его реакцию на резкое нажатие педали газа. Кроме того, маслянистая смесь может попасть на КХХ, что неблаготворно влияет на ход холостых оборотов. Поэтому и нужно чистить дроссель от нежелательных образований внутри её.

Симптомы, которые могут возникать при забитом дросселе

  • При забитой дроссельной заслонке наблюдается некоторая заторможенность реакции на педаль газа. Двигатель с чистой заслонкой реагирует на нажатие акселератора гораздо живее.
  • Скопившаяся грязь в дросселе ограничивает поток воздуха, и может стать причиной неплавной работы мотора на холостых оборотах, обороты «плавают».
  • Может наблюдаться подёргивание автомобиля при малых оборотах и скоростях
  • При очень высокой степени загрязнения возможны несанкционированные остановки двигателя, т. е. автомобиль глохнет.
  • Расход топлива. ЭБУ (компьютер) двигателя, распознав слишком слабый поток воздуха, увеличивает холостые обороты, тем самым увеличивая расход топлива.

Что делать, чтобы заслонка не загрязнялась слишком быстро

Её состояние будет зависеть от частоты замены воздушного фильтра, использования качественного масла ДВС, и исправности маслоотделителя системы рециркуляции картерных газов. В целом, процедура чистки не трудоёмкая и не дорогостоящая. Поэтому, при возникновении указанных выше симптомов, да и просто, при прохождении ТО рекомендуется проверять состояние дроссельной заслонки. Ресурс у самого узла очень высокий, но следить за ним стоит, так как он выполняет достаточно важную и тонкую работу.

Быстрый способ дроссельной заслонки

Заключение

Загрязнение дроссельной заслонки – явление естественное для неё. Чистка дросселя, в зависимости от условий эксплуатации производится достаточно редко, примерно раз в 100 тыс. км пробега. Степень загрязнения легко определить на глаз, и если металл внутри покрыт чёрным жирным слоем грязи, то пора чистить.

Дроссельная заслонка — что это? Описание и принцип работы

Хорошо известная дроссельная заслонка, или просто «дроссель», есть конструктивный элемент во впускной системе бензиновых двигателей с любым типом впрыском топлива, и регулирует количества воздуха, который попадает в мотор автомобиля для дальнейшего образования топливно-воздушной смеси. Устанавливают дроссельную заслонку между воздушным фильтром и впускным коллектором.

Если говорить проще, то дроссельная заслонка по сути дела есть специальный воздушный клапан. Если заслонка открыта, то в этом случае давление во впускной системе имеет соответствие давлению вокруг, то есть атмосферному, а когда полностью закрыта, то давление уменьшается до состояния вакуума. Данное свойство «дросселя» применяется, например, в работе таких устройств, как вакуумном усилителе тормозов, «продувателя» адсорбера системы, улавливателей паров бензина и т.д.

В дроссельной заслонке применяются два типа привод механический или электрический с электронным управлением.

О дроссельной заслонке с механическим приводом

Самым простым приводом из всех является механический привод дросселя. Такой тип заслонки в наше время производители применяют на большинстве своих бюджетных версий автомобилей (например, множества российские и китайские модели). Привод служит связью между педалью газа и «дросселю» посредством металлического троса.

Рабочие составляющие дроссельной заслонки совмещаются в отдельном блоке, который состоит из корпуса, самой дроссельной заслонки на валу, сенсора положения дросселя и регулятора холостых оборотов.

Далее, регулятор холостого хода поддерживает заданный диапазон частоты вращения коленвала мотора при полностью закрытой дроссельной заслонке в таких режимах его работы, пуск, прогрев также при изменении нагрузки во время включения дополнительного оборудования, например кондиционера. В его конструкцию входят шаговый электродвигатель и соединенный с ним клапан. Они изменяют количество воздуха, который поступает в обход заслонки дросселя во впускную систему.

Корпус дроссельной заслонки «инсталлирован» в систему охлаждения мотора. В нем также находятся патрубки, благодаря которым обеспечивается работа систем вентиляции картера и улавливания паров бензина.

О дроссельной заслонке с электрическим приводом

Современные модели автомобилей вместо простого и дешёвого механического привода дросселя оснащены электрическим приводом с электронным управлением. Благодаря данной конструкции, такой дроссельный механизм позволяет достичь гораздо более оптимальной величины крутящего момента при всех диапазонах работы мотора. Помимо данного плюса в список достоинств данной системы входят снижение расхода топлива, так сказать «подстраивание» под современные экологические требования и безопасность движения.

Индивидуальными особенностями и плюсами «дросселя» с электроприводом являются:

* полное отсутствие какой либо механической связи между дроссельной заслонкой и педалью акселератора;
* то, что есть возможность регулировать холостые обороты, перемещая дроссельную заслонку.

Благодаря тому, что между дроссельной заслонкой и педалью газа жесткая связь полностью отсутствует, применяется электронная система управления дросселем. Электроника позволяет легко влиять на величину тяги (крутящего момента) мотора автомобиля в процессе управлении дроссельной заслонкой, даже когда водитель не орудует педалью газа. Конструкция системы состоит из входных сенсоров, блока управления мотором и исполнительного устройства.

Помимо сенсора положения дроссельной заслонки в механизме системы управления также применяется сенсор положения педали «газа», выключатели положения педалей сцепления и тормоза.

В процессе работы системы управления дросселю вдобавок используются ещё и сигналы от автоматической трансмиссии, климатической системы, круиз-контроля и тормозной системы.

Мозги «блока» управления двигателем, когда получает эти сигналы от сенсоров, то «переводит» их в понятный язык, на котором и работает модуль дроссельной заслонки. И он оправляет управляющие воздействия.

Конструкция модуля дроссельной заслонки состоит из корпуса, собственно дроссельной заслонки, электромотора, редуктора, возвратного пружинного механизма и сенсоров положения дроссельной заслонки.

Чтобы повысить надёжность в модуле, устанавливают два сенсора положения дросселя. В роли датчиков выступают потенциометры с применением скользящих контактов или же бесконтактные магниторезистивные датчики. Электронные графики изменения выходных сигналов сенсоров направлены навстречу друг другу, благодаря чему становится возможным блоку управления двигателем их различать.

Конструкция модуля предусматривает аварийный режим, с так называемым аварийным положением дроссельной заслонки при неисправностях приводов, которое осуществляется при помощи возвратного пружинного механизма. Если же модуль дроссельной заслонки неисправен, его заменяется в сборе.

  • < Назад
  • Вперёд >

Работа дроссельной заслонки

При активном и долгосрочном использовании автомобиля, дроссельный узел требует регулярной очистки. Под воздействием мелких частиц пыли и грязи, нарушается корректная работа узла, что значительно снижает продуктивность двигателя. Дроссельная заслонка, должна чиститься регулярно, для поддержания корректной работы автомобиля. Производители, рекомендуют производить очистку, каждые пол сотки тысяч километров. Для улучшения работы узла, так же, следует регулярно проводить профилактические работы.

 Дроссельная заслонка, признаки загрязнения.

 — Двигатель автомобиля, с затруднением понижает обороты. Если, вместо постепенного уменьшения крутящего момента, двигатель резко сбрасывает обороты, одна из возможных причин — загрязнена дроссельная заслонка. Как правило, сильные загрязнения, могут способствовать неправильной работе движка. Если, машина глохнет c характерным звуковым сопровождением, необходимо обратить внимание на состояния дроссельного узла.

 — Если автомобиль проблематично запускается на холодный двигатель, это так же может говорить о засоренности рассматриваемого узла. При сильном загрязнении, двигатель может плохо запускаться и в прогретом состоянии. В случае, если самостоятельно открыть заслонку, двигатель восстанавливает обороты. Таким образом, можно сделать вывод о неправильной работе узла. Проблема, может заключаться в карбюраторе, но для выявления причин неисправности — необходимо диагностировать ДУ.

Основные причины засорения ДУ.

 

Во время эксплуатации автомобиля, через воздушный фильтр проходит большое количество воздуха, насыщенного пылью. Смесь пыли и масла, поступающая из вентиляционной системы, постепенно осаживается на поверхности рабочих элементов. В районе дроссельного узла, всегда присутствует сильный воздушный поток. Таким образом, ДУ, постепенно покрывается масленной грязью. Смесь пыли с маслом достаточно липкая и надежно удерживается на поверхности рабочего элемента, мешая правильной работе всей системы. Дроссельная заслонка, один из важнейших элементов, системы впуска автомобиля. Данное устройство, отвечает за подачу воздушного потока в коллектор впуска.

Дроссельная заслонка, важные особенности эксплуатации.

Регулярное обслуживание и соблюдение требований эксплуатации, способны в значительной мере увеличить срок эксплуатации узла. В большинство современных автомобилей, при соблюдении необходимых правил, ДУ, не требует большого количество внимания. Блок дроссельной заслонки, приходить в неисправность достаточно редко. Чаще, элемент необходимо просто очистить от скопившейся грязи. Как и любая деталь автомобиля, заслонка требует определенных правил эксплуатации и своевременного обслуживания. Процедура очистки, не является сложной и по силам каждому автолюбителя. Таким образом, можно значительно снизить материальные и временные затраты. Проводя процедуру своими руками, вы останетесь уверенны в качестве проводимых работ. Операция, не потребует специальных навыков. Все что необходимо, это запастись терпением, необходимым инструментом и внимательно следовать инструкции. При достаточно количестве желания, вы легко добьетесь необходимых результатов. Определим точные факторы, указывающие на необходимость очистки ДУ:

  • Нестабильность оборотов на холостом ходу.
  • Проблематичный запуск холодного или горячего двигателя.
  • На малой скорости, автомобиль начинает произвольно вырываться или тормозить.

Указанное поведения автомобиля, может свидетельствовать не только о неисправности дросселя. Вероятной причиной, так же может является поломка двигателя или датчиков.

Если после проведения очистки ДУ, крутящий момент холостого хода останется прежним или резко повыситься, причиной может являться полный выход из строя узла. В данном случае, стоит доверить диагностику профессионалам. Вероятнее всего, узел требует масштабного ремонта или полной замены. Выявить точную причину неисправности, можно только используя дорогостоящее оборудования и соответствующие навыки. Для проведения процедуры, потребуется современное компьютерное оборудования, которое вряд ли заваляется в гараже автолюбителя.

 Большинство автолюбителей знают, что дроссельная заслонка, засоряется после пробега в 50 тысяч километров. Современные автомобили, способны чуть дольше выдерживать нагрузку. Но, как известно, вечных деталей автомобиля не бывает. Российские дороги, являются не самыми приятными условиями автомобиля, поэтому стоит регулярно проводить обслуживание. Дело в том, что ДУ очень чувствителен к внешним раздражителям и не оснащен ограничителем. Когда мы нажимаем на педаль подачи топливной смеси, дроссельная заслонка протирается о корпус. Таким образом, она постепенно выводиться из строя. Срок службы заслонки, может изменяться исходя из условий эксплуатации автомобиля и завода изготовителя. При обслуживании рассматриваемого механизма и автомобиля в целом =, следует использовать комплектующую инструкцию. Стоит помнить, что каждый автомобиль имеет свои технические особенности и требует особого внимания. Впрочем, устройства узла и процесс чистки, является аналогичным.

Дроссельная заслонка, инструкция по ремонту.

В целях экономии, можно обойти замену старого механизма. Для этого, необходимо полностью восстановить корректную работу узла. Процесс восстановления, поможет сэкономить автолюбителю значительное количество средств.

Порядок процедуры, можно узнать из предоставленной инструкции. Полученные знания и навыки, будут полезны владельцу машины, а результат может приятно удивить пользователя.

Проведение ремонта.
  • Для заточки заслонки, потребуется соответствующая техника. Необходимо заточить корпус заслонки до показателя, указанного в комплектующей инструкции. На современный автомобилях зарубежного производителя, показатель составляет — пятьдесят с половиной миллиметров.
  • Используя латунь, изготавливаем деталь аналогичную заводской.
  • Для увеличения срока эксплуатации узла, осуществляет термическую обработку деталей.
  • Для того, чтобы устранить трение заслонки, ускоряющее износ — монтируем закрытый подшипник.
  • После проведения работ, восстанавливаем узел и настраиваем регулятор холостого хода.

Этапы проведения очистки.

Периодичность чистки узла, указывается производителем. При экстремальных условиях эксплуатации, частота обслуживания узла может возрастать. Процесс очистки, сопровождается настройкой холостого хода.

Порядок проведения:

  • Убираем шланг отвода потока от дросселя.
  • Подготовленную ветошь, необходимо смочить моющим средством. Важно, не допустить попадание жидкости на поверхности датчиков.
  • Удаляем скопившуюся грязь с поверхности заслонки и всего узла. Процедуру необходимо проводить внимательно и аккуратно, не повреждая защитный слой металла.
  • Устанавливаем проводник в исходное положение и регулируем холостой ход.
  • В качестве очищающего средства, рекомендуется использовать смесь для чистки карбюратора авто.

Электронная дроссельная заслонка, имеет свои характерные особенности, которые стоит учитывать проводя обслуживание узла.

Соблюдая все требования эксплуатации устройства и регулярно проводя профилактические работы, можно увеличить срок эксплуатации автомобиля. Дроссель, является важным компонентов в функционировании двигателя авто. Неправильная смесь топлива и воздуха, может быстро вывести транспортное средство из строя. При возникновении неисправностей, необходимо оперативно провести чистку ДУ. Если неисправности не устранены, необходимо провести профессиональную диагностику механизма. При проведении работ, строго соблюдайте рекомендации производителя. Помните о требованиях техники безопасности и используете только исправные инструменты. Обслуживая автомобиль своими руками регулярно, вы получите полезные навыки и опыт, которые могут понадобиться в любую минуту. Удачи в обслуживании любимого автомобиля!

Дроссельный клапан

— обзор

5.2 Поток механической мощности продольно установленной автоматической трансмиссии с четырьмя скоростями и реверсом (рис. 5.2)

(Подобные зубчатые передачи используются в некоторых трансмиссиях ZF, Mercedes-Benz и Nissan) Эпициклическая зубчатая передача состоит из состоит из трех планетарных передач, набора повышающей передачи, набора шестерен переднего и заднего хода. Каждый комплект шестерен состоит из внешнего кольцевого зубчатого колеса с внутренними зубьями, центральной солнечной шестерни с внешними зубьями и водила планетарной передачи, на котором установлены три промежуточные планетарные шестерни.Планетарные шестерни равномерно расположены между внешней кольцевой шестерней и центральной солнечной шестерней и вокруг них.

Ввод в планетарный ряд осуществляется через гидротрансформатор с блокирующей муфтой. Различные части зубчатой ​​передачи могут быть включены или отключены с помощью трех многодисковых муфт, двух ленточных тормозов и одной односторонней роликовой муфты первой передачи.

Таблица 5.1 упрощает последовательность включения сцепления и тормоза для каждого передаточного числа.

Таблица 5.1. Последовательность включения сцепления и тормоза

Диапазон Приводная муфта DC Муфта высокой и обратной передачи (H + R) C Ленточный тормоз второй передачи 2GB Муфта переднего хода FC Тормоз повышающей передачи ODB Низкая и обратная передача тормоз (L + R) B Обгонная муфта OWC Передаточное число
P и N
Первый D Применен Применен Применен 2.4: 1
Второй D Применен Применен Применен Применен 1,37: 1
Третий D Применен Применен Применено 1: 1
Четвертое D Применено Применено Применено 0.7: 1
Обратный R Применяется Применяется Применяется 2,83: 1

Список основных компонентов и используемых сокращений следующие:

9 0033
1 Ручной клапан MV
2 Вакуумный дроссельный клапан VTV
3 Регулирующий клапан GV
4 Клапан регулирования давления PRV
5 Гидротрансформатор TC
6 Клапан переключения 1–2 (1–2) SV
7 Клапан 2–3 переключения ( 2–3) SV
8 3–4-переключающий клапан (3–4) SV
9 Обратный клапан преобразователя CCV
10 Приводная муфта DC
11 Многодисковая муфта высокого и заднего хода (H + R) C
12 Муфта переднего хода FC
13 Ленточный тормоз повышающей передачи ODB
14 Ленточный тормоз второй передачи 2GB
15 Многодисковый тормоз нижнего и заднего хода (L + R) B
16 Первая передача роликовая муфта OWC
17 Обгонная муфта гидротрансформатора OWCR
18 Блокировка парковки PL
5.2.1 Диапазон привода D — первая передача (рис. 5.3 (a) и 5.4 (a))

Когда рычаг селектора находится в диапазоне D, крутящий момент двигателя передается на ведущую шестерню повышающей передачи через выходной вал и водило ведущей шестерни. Затем крутящий момент распределяется между кольцевой шестерней повышающей передачи и солнечной шестерней, причем оба пути сливаются из-за включенного прямого сцепления. Таким образом, ведущие шестерни повышающей передачи не могут вращаться на своих осях, что приводит к тому, что на этом этапе привод повышающей передачи вращается как единое целое без какого-либо уменьшения передаточного числа.Затем крутящий момент передается от кольцевой шестерни повышающей передачи к промежуточному валу, где он проходит через задействованные диски муфты переднего хода к кольцевой шестерне набора шестерен переднего хода. Вращение по часовой стрелке передней кольцевой шестерни заставляет передние планетарные шестерни вращаться по часовой стрелке, вращая двойную солнечную шестерню против часовой стрелки. Водило передней планетарной передачи прикреплено к выходному валу, так что планетарные шестерни приводят в движение солнечную шестерню, а не обходят солнечную шестерню. Это вращение солнечной шестерни против часовой стрелки заставляет планетарные шестерни заднего хода вращаться по часовой стрелке.При односторонней роликовой муфте, удерживающей водило сателлита заднего хода, планетарные шестерни заднего хода поворачивают кольцевую шестерню заднего хода и выходной вал по часовой стрелке с передаточным числом низкой скорости примерно 2,46: 1.

Рис. 5.3 (а – д). Четырехступенчатая и реверсивная автоматическая трансмиссия для продольно установленных агрегатов

Рис. 5.4 (a – e). Четырехскоростной эпицикл и шестерня заднего хода устанавливают направленное движение

5.2.2 Диапазон привода D — вторая передача (рис. 5.3 (b) и 5.4 (b))

В диапазоне D на второй передаче включены как прямая, так и передняя муфты.В то же время ленточный тормоз второй передачи удерживает в неподвижном состоянии двойную солнечную шестерню и водило шестерни заднего хода.

Крутящий момент двигателя передается через блокировку повышающей передачи аналогично первой передаче. Затем он передается через включенную муфту переднего хода через промежуточный вал к кольцевой шестерне переднего хода. Когда двойная солнечная шестерня удерживается задействованным ленточным тормозом второй шестерни, вращение передней кольцевой шестерни по часовой стрелке заставляет ведущие шестерни вращаться вокруг своих собственных осей и «ходить» вокруг неподвижной солнечной шестерни по часовой стрелке.Поскольку пальцы шестерни передней шестерни установлены на водило ведущей шестерни, которое само прикреплено к выходному валу, выходной вал будет приводиться в движение по часовой стрелке с пониженным передаточным числом примерно 1,46.

5.2.3 Диапазон привода D — третья или высшая передача (рис. 5.3 (c) и 5.4 (c))

Когда рычаг селектора находится в диапазоне D, давление в гидравлической магистрали будет воздействовать на муфту прямого действия, муфту высокого и заднего хода и вперед схватить.

Что касается условий работы первой и второй передач, крутящий момент двигателя передается через заблокированную повышающую передачу, установленную на многодисковую муфту высокого и заднего хода и на многодисковую муфту переднего хода, оба из которых задействованы.Затем муфты высшей передачи и заднего хода будут вращать двойную солнечную шестерню по часовой стрелке, и аналогично муфта переднего хода будет вращать кольцевую шестерню переднего хода по часовой стрелке. Это приводит к тому, что как внешняя, так и внутренняя шестерни на переднем наборе шестерен вращаются в одном направлении с одинаковой скоростью, так что мостовые планетарные шестерни блокируются, и, следовательно, весь зубчатый ряд вращается вместе как одно целое. Таким образом, привод выходного вала через водило заднего хода вращается по часовой стрелке без снижения относительной скорости вращения входного вала, то есть с передаточным числом прямого привода 1: 1.

5.2.4 Диапазон привода D — четвертая передача или повышающая передача (рис. 5.3 (d) и 5.4 (d))

В диапазоне D на четвертой передаче включаются ленточный тормоз повышающей передачи, муфта высокого и заднего хода и муфта переднего хода . В этих условиях крутящий момент передается от первичного вала к водилу повышающей передачи, заставляя планетарные шестерни вращаться по часовой стрелке вокруг удерживаемой солнечной шестерни повышающей передачи. В результате кольцевая шестерня повышающей передачи будет вынуждена вращаться по часовой стрелке, но с более высокой скоростью, чем водило входной повышающей передачи.Затем крутящий момент передается через промежуточный вал на передний планетарный ряд, которые затем блокируются вместе за счет зацепления муфты высшей передачи, заднего хода и муфты переднего хода. Впоследствии зубчатая передача вынуждена вращаться телесно как жесткий прямопроточный привод. Затем крутящий момент передается от водила передней планетарной передачи на выходной вал. Следовательно, передаточное отношение повышающей планетарной передачи увеличивается примерно на 30%, то есть передаточное отношение выходного вала к входному валу составляет около 0.7: 1.

5.2.5 Диапазон R — передача заднего хода (рис. 5.3 (e) и 5.4 (e))

Когда рычаг селектора находится в положении заднего хода, задействованы все три сцепления, а также многодисковый тормоз низшей передачи и заднего хода. Впоследствии крутящий момент двигателя будет передаваться от входного вала через заблокированную повышающую передачу, установленную через заблокированную переднюю передачу, установленную через промежуточный вал, на солнечную шестерню заднего хода по часовой стрелке.

Поскольку водило планетарной передачи заднего хода удерживается пластинчатым тормозом низшей передачи и заднего хода, планетарные шестерни вынуждены вращаться против часовой стрелки на своих осях, и при этом кольцевая шестерня заднего хода также вращается против часовой стрелки.В результате выходной вал, прикрепленный к кольцевой шестерне заднего хода, вращается против часовой стрелки, то есть в обратном направлении, к входному валу с передаточным числом примерно 2,18: 1.

(PDF) Функциональное описание гидравлического дроссельного клапана, работающего внутри гидравлического контура

ISSN 1453-7303 «HIDRAULICA» (№ 1/2016)

Журнал гидравлики, пневматики, трибологии, экологии, сенсорики, мехатроники

Функциональное описание гидравлического дроссельного клапана, работающего внутри гидравлического контура

Доцент Фэнел Дорел ЧЕОА1

1 Галацкий университет «Дунэреа де Жос», г. Фанел[email protected]

Аннотация: В настоящее время мировые производители промышленного и мобильного оборудования предлагают продукты

, содержащие передовые гидравлические системы, с помощью которых удобно и легко решаются многочисленные задачи, поставленные разработчиками

. Гидравлические системы состоят из компонентов последнего поколения

, которые способны циркулировать рабочую жидкость (минеральное масло) при высоких значениях давления и значительной скорости

через соответствующий контур.Помимо гидравлического насоса и двигателя в качестве основных компонентов гидравлического контура

, существуют также компоненты управления давлением и потоком, необходимые для

изменения параметров давления и расхода циркулирующей жидкости в определенный момент времени. В этой статье анализируется работа регулируемого дроссельного клапана

, который может изменять скорость потока жидкости в контуре. Модель 3D

для регулируемого блока дроссельной заслонки была построена и введена в численный анализ с использованием ANSYS CFX.

На основе определенных входящих данных была проанализирована работа модели, и результаты представлены в порядке

, чтобы показать, как изменяются параметры при использовании дроссельной заслонки в гидравлическом контуре.

Ключевые слова: жидкость, гидравлический агрегат, гидравлический привод, гидравлический дроссельный клапан

1. Введение

Сегодня мы являемся свидетелями беспрецедентного развития многофункциональных машин

, предназначенных для выполнения различных тяжелых работ в области строительства или сельского хозяйства.Эти работы

могут состоять из рытья земли с использованием предоставленного ковша, выравнивания земли с использованием подходящего отвала,

погрузки различных строительных материалов с помощью колесного погрузчика с ковшом или различных рабочих задач

по подготовке сельскохозяйственных земель. Одновременное выполнение этих задач на одной машине

возможно с помощью нескольких рабочих устройств, которые могут быть связаны с базовой машиной. На все эти специальные вспомогательные устройства

установлены современные гидравлические системы, которые позволяют им

выполнять задачи, для которых они предназначены.Гидравлическая система, которая работает в строительной или сельскохозяйственной технике

, представляет собой сложную комбинацию, состоящую из нескольких компонентов

, соединенных вместе в рабочем контуре с жидкостью в качестве рабочего агента. Основные компоненты гидравлического контура

представлены насосом и двигателем, а также компонентами для ограничения давления или расхода

, фильтрующими элементами для фильтрации гидравлического агента, соединенными посредством гибких или фиксированных каналов

, позволяющих непрерывная циркуляция рабочей жидкости для выполнения рабочего процесса

соответствующего оборудования.Рабочая жидкость, представленная минеральным маслом, представляет собой элемент

, с помощью которого гидростатическая энергия передается от гидравлического насоса к гидравлическому двигателю

, который в конечном итоге обеспечивает вращательное или поступательное движение рабочему телу машины

. Работа гидравлического контура включает использование гидравлических дроссельных клапанов

, способных изменять значения давления или расхода циркулирующей жидкости в определенный момент времени

, в зависимости от текущих потребностей в рабочем органе машины, на котором смонтирована гидросистема

.

2. Модели гидравлических клапанов, обычно используемые в гидравлических контурах

Существует множество моделей устройств регулирования давления или расхода жидкости, используемых в гидравлических контурах

. Для каждой модели доступен ряд номинальных размеров в зависимости от монтажных параметров.

Номинальный размер определяет максимальное значение расхода жидкости, циркулирующей через клапан, а

— максимальное значение давления внутри гидравлического контура. Клапаны могут быть присоединены к контуру

с использованием различных монтажных решений.Наиболее часто встречающиеся монтажные решения — это прямая установка

на трубопровод с использованием резьбового соединения, в качестве картриджа или монтажа на пластине.

В качестве гидравлических компонентов устройства, используемые для регулирования давления и расхода внутри гидравлического контура

, можно классифицировать, как указано в таблице 1. [5]

Дроссельный клапан — HAWE Hydraulik

Флюидлексикон

#ABCDEFGHIJKLMNOPQRSTUVWZ

Ткань materialsFail safeFail безопасное обнаружение positionFailure rateFast excitationFatigue strengthFault detectionFault codeFault diagnosticsFeed вперед Система controlFeedbackFeedback signalFeedback для непрерывного регулируемого движения valvesFeed circuitFeed heightFeed о наличии cylinderFieldbusFiller filterFilling pressureFilterFilter cartridgeFilter characteristicsFilter classFilter кумулятивного efficiencyFilter грязи loadFilter dispositionFilter efficiencyFilter elementFilter для масла removalFilter в главной conduitFilter installationFilter lifeFilter poresFilter selectionFilter размер Поверхность фильтраТкань фильтраФильтр с байпасным клапаномФильтрацияЭффективность фильтрации в целом Конечное устройство контроля Точное управление потоком ФитингиУстановка с коническим кольцомУстановка с фрикционным кольцомФиксированный поршневой двигательФиксированное программное управлениеФиксированный дроссельФлагПламенистойкие гидравлические жидкостиФланцевое соединениеФильтр на фланцеСистема сопла-форсункиФланцевое крепление цилиндра ttingsПлоские уплотненияФлис-фильтрФлисовый материалФлип-флопГрафик расхода / давленияФункция расхода / сигналаКоэффициент расхода Kv (значение Kv) клапанаКоэффициент расхода αDКлапан регулирования расходаКлапан регулирования расхода, 3-ходовой клапан регулирования расходаСхема расходаПрерывно регулируемые клапаныДелитель расходаДеление потокаПотери силыПоток в зазорахПоток в трубопроводахМонитор расхода Скорость потока, зависящая от скорости потери давленияРасход / характеристика давленияСкорость потока / характеристическая кривая сигнала Усиление скорости потока Асимметрия скорости потока Разделение скорости потока Линейность скорости потока Процедура измерения скорости потока Процедура измерения скорости потока Пульсация скорости потока Диапазон требуемого потока Диапазон насыщения скорости потока Жесткость скорости потока Сопротивление потока Сопротивление потока фильтров Датчик потока с овальным ротором в сборе звукиПереключатель потокаПотоковые клапаны Скорость потока в трубопроводах и клапанахТрение жидкости Датчик уровня жидкости Механика жидкости Стандарты мощности жидкости Энергетические системы с магистральным трубопроводом Жидкости Жидкость Технология Промывка системы Промывочный блок питания Давление промывкиПромывной насосПромывочный клапан Тенденция к пенообразованию Последующий регулирующий клапан Последующая ошибка скорости Последующее отслеживание Ошибка последующего отслеживанияПодъемная установка Силовая временная диаграмма Сила: импульс, сигнал: импульс, сила, плотность, сила, обратная связь, усиление, измерение EoForce, коэффициент умножения силы, датчик силы, A Предисловие к онлайн-версии Fluke, v, Oikon + P bis Z «(технический глоссарий O + P» Гидравлическая технология от A до Z «) Эластичность формы Форма импульсов Прямой и обратный ходЧетырехходовой клапанЧетырехпозиционный клапанЧетырехквадрантный режим работы Рамочные условияЧастотный анализЧастотный фильтрПредел частотыЧастотная модуляцияЧастотная характеристикаЧастотная характеристика для заданного входаЧастотный спектрФрикционное движениеФункциональные потериФрикционные условия диаграмма

Компенсация радиального зазораРадиально-поршневые двигателиРадиально-поршневой насосРадиально-поршневой насос с внешними поршнямиПараллельный генераторДиапазон рабочего давленияРапсовое маслоБыстрый ходБыстрый ход контуров Скорость повышения давленияСоотношение площадей поршня αСила реакции на контрольной кромкеРеакционная передачаЛегко биоразлагаемые жидкости Референсное время контрольного сигнала Реальное время удержания грязи Глушитель Регенеративный контур Регулятор Регулятор Регулятора с фиксированной уставкой Относительное колебание подачи δ Относительная амплитуда сигнала Съемный обратный клапан Давление отпускания Сигнал отпускания Клапан сброса Дистанционное управление Повторная точность (воспроизводимость) Условия повторения ВоспроизводимостьПерепрограммируемое управлениеТребуемая степень фильтрацииПрофиль требованияРезультат измерения емкости резервуараОстаточное остаточное сопротивление NSE pressureResponse sensitivityResponse thresholdResponse время в cylinderResponse valueRest positionRetention rateReturn lineReturn линии filterReturn линии номер pressureReversal errorReversible гидростатическое motorReversing motorReversing pumpReynolds ReRigid лопасти machineRippleRise темп signalRise responseRise timeRodless cylinderRod sealingRoller leverRolling лопастного motorROMRoof-образной sealRotary amplifiersRotary потоком dividerRotary трубы jointRotary pistonRotary TRANSFER jointsRotary valveRotation Servo valveRound уплотнительные кольца Рабочие характеристики Постоянная времени разгона До

D-элемент Демпфированные собственные колебания Демпфированные собственные колебания Коэффициент демпфирования d Демпфирующее устройство Демпфирование в цепи управления Демпфирующая сеть Демпфирование движения цилиндра Демпфирование клапанов Демпфирующее давление Демпфирующее уплотнениеКоэффициент трения Дарси? клапанПоток подачиДетентДетергент / диспергент минеральные маслаПульсация подачиДифференциальная системаДиафрагма (мембрана) Дифференциальный датчик давления Цилиндр дифференциального давления Дифференциальный датчик давления Дифференциальный датчик давления Дифференциальный датчик давления Дифференциальный датчик давления Дифференциальный датчик давления ryЦифровое управлениеТеория цифрового управленияЦифровое управление с удержанием сигналаЦифровые цилиндры (с несколькими положениями) Шаг цифрового входаЦифровое управление клапанамиЦифровой измеряемый сигналЦифровой сбор измеренных значенийЦифровая процедура измеренияЦифровая измерительная техникаЦифровая системаЦифровая технологияЦифровая обработка сигналовЦифровые сигналыЦифровая системаЦифровая технологияЦифровой клапан с квантованием потока, 2-ходовые клапаны управления потоком с прямым срабатыванием Клапан управления потокомНаправленный клапанНаправленный клапанНаправленный клапан, 3-ходовые клапаныНаправленные клапаны 2-ходовые клапаныГрязепоглощающая способность фильтраГрязеудерживающая способностьГрязеочистительДиск-седельный клапанДискретные контроллерыДискретные Диспергентные маслаДискретные камерные машиныКонтроль смещенияДиапазон смещенияДиапазон смещенияДиапазон смещенияДиапазон смещения эффект Цилиндр двойного действияРучной насос двойного действия Двойное горловое уплотнениеДвойной насосВремя спада потока Перетаскивание Давление потокаСкорость потокаДрейфПривод мощностьДрайверВремя сбросаДвойной контур управленияНасос двойной переменной

TachogeneratorTandem cylinderTankTeach в programmingTechnical cyberneticsTelescopic connectionTelescopic cylinderTemperature компенсации при измерении измерений technologyTemperature driftTemperature в hydraulicsTemperature измерения deviceTemperature rangeTemperature responseTerminalTest benchTest conditionsTest pressureTest signalsThermodynamic measuringThermoplastic elastomersThermoplasticsThickened waterThin фольги elementThin фольги деформации gaugeThreaded вала sealThree камеры valveThree вход controllerThree положение valveThree этап сервопривода valveThresholdThrottleThrottle проверить valveThrottle formsThrottle valveThrottling pointThrough поршень стержень, шток-цилиндр, управление на основе времени, управление рабочим процессом на основе времени, непрерывный сигнал, временные сигналы управления, постоянная времени, дискретное время, элемент таймера, управление временем, допуск на скачкообразную реакцию агрегата, предел максимального давления, усилитель крутящего момента, электрогидравлический nОбщая эффективностьОбщее давлениеПередаточный элементПередаточный коэффициентПередаточная функцияФункция переноса системы φСигнал передачиПереходный откликПереходная частьЭффективность передачиМетод передачиДавление передачиПередаточное отношениеСкорость передачиТехнология передачиТрансмиттер (единичный преобразователь) Транспортное движение цилиндраТрибологияСигнал триггера — Двухточечный фильтр — Двухточечный регулятор — Двухпозиционный клапан — Двухпозиционный регулятор потока Квадрантный режимДвухступенчатое управлениеДвухступенчатый сервоклапанТипы тренияТипы движения цилиндровТипы крепления цилиндров

Фланец

SAEСхема безопасностиСхемы управления безопасностьюЗадвижка-задвижкаБезопасный замокБезопасность системыПравила безопасностиРиск безопасностиПредохранительный клапанПробоотборник Блок отбора и удержанияСхема управления пробойКонтроллер отбора пробОшибка выборкиУправление обратной связью пробыЧастота отбора пробВремя отбора пробПередаточные элементы для отбора пробОткладочный патрон-фильтрЗаполнитель-фильтрНасос для мытья ) Уплотняющий элемент Уплотняющее трение Уплотняющий зазор Уплотнительный край Уплотнительный поршень Уплотнительный профиль Уплотнительный набор Уплотнительный набор Система уплотнения Утечка уплотнения Предварительная нагрузка уплотнения Уплотнения Износ уплотненияСедельный клапанВторичная регулировка гидростатических трансмиссийВторичные меры (в случае шума) Вторичное давлениеСегментный компенсатор давленияСамоконтроль системСамовсасывающий насосСамостоятельная настройка датчиков положения-регуляторыДуплексный датчик положенияДукторные регуляторы температуры мера йти во время deviceSensitivity гидравлических устройств dirtSensorSensor для управления фактического valuesSensor systemSensor technologySensor valveSeparate цепи hydraulicSeparation capabilitySeparatorSequence controlSequence из actuatorsSequence diagramSequence из measurementsSequentialSerialSeries-производства cylinderSeries circuitSeries connectionSeries соединения characteristicServo всасывания valveServo actuatorsServo cylinderServo driveServo гидравлического systemServo motorServo pumpServo technologyServo valveSet геометрической displacementSet действующего conditionsSetpointSetpoint generationSetpoint generatorSetpoint processingSet давление pe Точка настройкиУстановочный импульсПроцесс настройкиВремя настройкиВремя настройки давленияВремя настройки T gНагрузка на вал в поршневой машинеСтабильность сдвига гидравлической жидкостиУдарная волнаТвердость берегаКороткоходовой цилиндр Блок отключенияОтключающий клапанКлапан-заслонкаСигналСигнал / Формы выходного сигнала Формы сигнала Генератор сигнала elementSignal parameterSignal pathSignal processingSignal processorSignal selectorSignal stateSignal Переключаемый сигнал technologySignal transducerSilencerSiltingSingle действующего контроль cylinderSingle цепь systemSingle для управления с обратной связью controlSingle actuatorSingle краем circuitsSingle или отдельным приводом для станкиОдноцелевых квадранте operationSingle resistorSingle стадии серво valvesSintered металла filterSinus responseSI unitsSix-ходового valveSlave поршня principleSliderSliding frictionSliding gapSliding кольцо sealSlipperSlotted скорости близости switchesSlow двигатель с высоким крутящим моментомМалый диапазон сигналаСглаживание сигналаСоленоидСрабатывание соленоида Растворимость газа в гидравлической жидкостиЗвук в воздухеЗвук в жидкостиЗвуковое давление pИсточники погрешности в измерительных приборахСпециальный цилиндрСпециальный шестеренчатый насосСпециальный импедансСкоростная характеристика гидравлических двигателейСхема управления скоростью Измерение скоростиДиапазон уплотненияКвадратное передаточное отношениеСферический конус с пружинным конусом Напряжение сжатия в уплотнениях Стабилизированные гидравлические масла Анализ устойчивости Критерии стабильности Стабильность гидравлической жидкости Поэтапное регулирование часов Поэтапный насос Поэтапный переключатель двигателяСтандартный цилиндрСтандартное отклонение измерения Давление в режиме ожидания Время пуска Пусковая характеристика Пусковые характеристики гидравлических двигателей Пусковое положение; Основная positionStarting torqueStart pressureStartup discontinuityStartup ProcessStart viscosityState controllerState diagramState equationsStatement listStatement listState variableStatic behaviourStatic параметры плавной регулировкой valvesStatic sealStationary flowStationary hydraulicsStationary stateStatus monitorsSteady stateStep управления actionStep Диаграмма controlStep functionStepper motorStepper двигателя управлением пропорционального направленного valveStick slipStiction от sealsStiffness из actuatorsStiffness гидравлического fluidStraight трубы fittingStrain gaugeStress relaxationStretch -загрузка уплотненийСальниковый контурПодсхема Погружной двигательПодсистема управленияВсасывающая характеристикаВасосная фильтрацияВасосная линияВсасывающая линияДавление всасыванияРегулирование давления всасыванияУправление всасывающим дросселемВсасывающий клапанКонтроллер суммированной мощностиСуммарное давлениеПодача блока управленияДавление подачиСостояние подачи гидравлической жидкостиПоверхностное кольцоПоверхностный фильтрПоверхность пластинчатый автоматПодмывной пластинчатый насосНабухание герметиковДавление выключенияВключение характеристики соленоидаВремя включенияВключениеПоведение переключения устройствКлючающая способность гидрораспределителейКоммутационные характеристикиЦикл переключенияПереключающий элементМетоды переключения (электрические) Способы переключения для гидравлических насосовКонтроль переключаемой мощности Переключаемое положение переключаемых клапанов Переключаемое положение переключаемых клапанов (гистерезис) Импульсное переключение Символы переключения Время переключения Поворотный двигатель Винтовой фитингСимволы Синхронизирующий цилиндр Синхронное управлениеСинхронный датчик углового положенияСистемный совместимый сигналСистемный заказСистемное давление

Обратное давлениеКлапан обратного давленияЗаднее кольцоШариковый клапанПроход полосыБанковый клапан в сборе (моноблок) БарБарометрическая обратная связьСреднее уплотнение барьераBasicBaudСила изгиба осей БернуллиУравнение БернуллиБета-значение (значение β) Двоичные двоичные символы Выпускной фильтр Выпускной клапан Стравливающий клапан (Hy), выпускной клапан (PN) Блок-схема Положение блокировки Узел штабелирования блокировки Эффект продувки Давление продувки Удар через уплотнения поршня Диаграмма характеристик Диаграмма характеристик (частотные характеристики) Графики связиНижний конец цилиндра Без отскокаТрубка Бурдона Тормозной клапан Точка разветвленияТочка отрываФильтр отрываТрение отталкивания расстояние до направления потока жидкости Встроенная грязь Объемный модуль Давление разрыва Автобусная системаБайпасБайпасное расположениеБайпасная фильтрацияБайпасный клапан

Магнитный filterMain valveMale fittingManual adjustmentManual modeMaterials для обработки данных sealsMeasured signalMeasured valueMeasured variableMeasurement данных processingMeasurement (кондиционирование) Измерение uncertaintyMeasuringMeasuring accuracyMeasuring amplifierMeasuring усилитель с несущей процедуры frequencyMeasuring chainMeasuring converterMeasuring deviceMeasuring errorMeasuring instrumentsMeasuring (системы) Измерение rangeMeasuring дроссельной заслонки (калиброванное отверстие) Измерение turbineMechanical actuationMechanical dampingMechanical feedbackMechanical impedanceMechanical lossesMedium Диапазон давлений Емкость памяти Цепи памятиМеталлические уплотненияМетрический контрольСпособы установки клапанаДвигатель MH (станок с изогнутой осью) МикроэмульсияМикрофильтрМикрогидравликаМинеральные маслаМини-измерительное устройство (для работы в режиме онлайн) Минимальный расход управленияМинимальное поперечное сечение для регулирования расходаМинимальное давлениеМалогабаритный контурМодульная система управленияМинутыМобильная система управления designModula r проектирование систем управленияМодульная системаМодуляцияМодульМониторингСистемы мониторингаСистемы мониторинга гидравлической жидкостиМоностабильное управление засаживаниемСхема движенияУправление двигателем (замкнутый контур) Управление двигателем (разомкнутый контур) Проскальзывание двигателяЖесткость двигателяМонтажные размеры (схемы расположения отверстий) Монтажная плитаМонтажная стенкаСистема с подвижным змеевикомМногоконтурная система насосМногоконтурная система Функциональный клапанМногоконтурные схемы управления с обратной связьюМульти-медийный разъемМногопозиционный контроллерМноготактный гидростатический двигательМультишинаМногопроходный тестМногонасосный двигатель MZ (машина с наклонной шайбой)

А / Ц converterAbrasion resistanceAbsolute цифровой измерительный systemAbsolute фильтрации ratingAbsolute измерения systemAbsolute pressureAbsolute давление gaugeAbsolute давления transducerAcceleration feedbackAcceleration measurementAccess timeAccumulatorAccumulator, hydraulicAccumulator зарядки расход valveAccumulator тест diagramAccumulator driveAccumulator lossesAccumulator regulationsAccumulator sizeACFTD dustAcoustic расцепления measuresAcoustic impedanceAC solenoidAction методов множественного resistanceActive sensorActual pressureActual valueActuated timeActuating для valvesActuationActuation elementActuatorAdaptationAdaptive controlAdaptive controllerAddition pointAdditiveAdditive (для смазочных материалов) Адрес Адгезионные режимы Адгезионные свойства гидравлических жидкостей Адгезионные соединения труб Регулируемый поршневой насос Регулируемый дроссель Регулировка поршневых машин Время регулировки ДопускВозрастание гидравлических жидкостей Старение уплотнений Воздухоочиститель Fine Test Dust (ACFTD) Расход воздухаAi г в стоимостном выражении oilAlgorithmAlphanumericAlphanumeric codingAlphanumeric displayAlpha из filtersAmplifierAmplifier cardAmplitude marginAmplitude modulationAmplitude plotAmplitude ratioAmplitude responseAnalogueAnalogue computerAnalogue controlAnalogue controllerAnalogue данные acquisitionAnalogue измеряется valuesAnalogue измерения procedureAnalogue измерения положения technologyAnalogue measurementAnalogue signalAnalogue сигнал processingAnalogue technologyAngle encoderAngle measurementAngular угловой частоты ω EAnharmonic oscillationAnnular область А RAnnular шестеренчатого насоса / motorAnti-вращение элемента для cylindersApparent грязеемкостьАрифметический логический блокСреднее арифметическое, среднее ASCIIASICАсинхронное управлениеПерепад атмосферного давленияАвтоматическое переключение цилиндровАвтоматическое управлениеАвтоматическое обнаружение неисправностейАвтоматическое включение шестеренчатые насосы (так называемая компенсация зазора) аксиально-поршневой станок аксиально-поршневой двигатель аксиально-поршневой насос

I-блок (в системах управления) I-контроллер Идентификация системы Холостой циркуляционный клапан Потери на холостом ходу Давление холостого хода IEC Устойчивость к помехам Импеданс Z Импеллер Подаваемый поток Подавленное давление Импульсное срабатывание клапанов Импульсный дозирующий лубрикатор Импульсный шум Импульсное сопротивление шлангов Инкрементальный датчик положения Цифровое измерение угла наклона Импульсная модуляция угла наклона ) Повышение точности индексации с делителями потока Индексирование коэффициентов при использовании делителей потока Точность индикации Диапазон индикации Индикатор Непрямое срабатывание Непрямые методы измерения Индивидуальный компенсатор давления Индуктивное давление Индуктивное измерение положения Индуктивные датчики давленияНадувные уплотненияВлияние на время переключения Индуктивные датчики давленияВходной перепад давления Начальный угол наклона начального давления сигнал Входной сигнал Неустойчивость системы управления Мгновенные рабочие условия Инструкция Характеристики впуска Высота всасывания Интегрированная гидростатическая трансмиссия Интегрированная схема (IC) Интегрированное управление Интегрированная электроника Интегрированные системы измерения положенияКонтроллер интерференцииВзаимодействие с прерывистым режимомВнутреннее управление с обратной связьюВнутренний впуск жидкостиВнутренний шестеренчатый насосВнутренняя утечкаВнутреннее безопасное управление давлением 9Внутренняя поддержка давления

Фильтр сверхтонкой очисткиУльтразвуковое измерение положения Сигнал компенсации зазора Пониженное давление Нестабильный Разгрузочный клапан Полезный объем Коэффициент полезного действия

EDEEPROM (электронно стираемое программируемое постоянное запоминающее устройство) КПД Эффективность трубыЭластичность жидкостей под давлениемЭластичные материалы Устройства для измерения давления с эластичной трубой (типа Бурдона) Уплотнение из эластомера / пластика под напряжениемЭластомерыКонкурентная арматураЭлектрогидравлическая аналогияЭлектрическое срабатываниеЭлектрическое управление мощностью или силой сигнала электрического управленияЭлектрическая обратная связь приводЭлектрогидравлическая технология управленияЭлектрогидравлический линейный усилительЭлектрогидравлическая системаЭлектрогидравлические системыЭлектромеханические преобразователи сигналовЭлектроуправлениеЭлектрогидравлический усилитель крутящего моментаЭлектромагнитная совместимостьЭлектромеханическое управление перемещением насосов / моторовЭлектронный фильтрЭлектронное распределение потокаЭлектронная обработка сигналовЭлемент для фильтров давленияГидравлическое преобразование энергии sses в гидравликеЭкономия энергии в гидравликеЭнергосбережение в гидравликеМоторное масло в качестве гидравлической жидкостиEPROMEэквивалентный объемный модульЭквивалентная схемаЭквивалентная постоянная времениЭрозионный износОшибкаОшибкоустойчивый компьютерКлассификация ошибки в измерениях Кривая погрешности измерительных приборовПределы ошибки измерительного прибораПороговое значение ошибкиСигнал ошибкиОшибка в датчике ошибкиПредупреждение Клапаны Внешнее деление мощности Внешняя опора

Управление обратной связью p / QБумажный фильтрПарафиновое базовое маслоПараллельная цепь / подключенные параллельноПараллельное подключениеПараллельная обработкаПараметрыФильтрация частичного потокаЭрозия струи частицРазмер частицыПассивный датчикКонтроллерPDPD elementP elementP elementPerformance / weight ratioPerformance mapPD elementP elementP elementPerformance / weight ratioPerformance mapPeriod patternPhase-frequency responsePhosespesse effect valvePhase-act Управляемое поведениеПилотный расходПилотная линияПилотные клапаныПилотная ступень для плавно регулируемых клапановПилотный клапанШтуцер поршня в сбореТрубопровод в сбореПроизводительность трубыПолное сопротивление трубы Индуктивность трубыЗащита трубы от разрываТрубные винтовые соединенияТрубопроводПоршень для быстрого ходаПоршневые машиныПоршневой двигательПоршневой манометр подключение Вставной клапан Вставной клапан, 2-ходовой вставной клапан Вставной клапан, 3-ходовой вставной клапан Вставной усилительПлунжерПлунжерный контур для быстрого продвиженияПоршень поршняТочечный контрольПолиацеталь (POM) Полиамид (PA) Полимерные материалы Политетрафторэтилен (PTFE) Полиуретан (AU, EU) ) Порт Поперечное сечение портаЗависимые от положения управляющие сигналыПроцесс блокировки, зависимый от положенияПозиционная / временная диаграмма Диаграмма положенияПогрешность положенияОбратная связь по положениюОшибка позиционированияОшибка позиционированияИзмерение положенияИзмерение положения с помощью потенциометраПроцесс измерения положенияДатчики положенияПоложительно-импульсное управлениеПринцип положительного смещенияПостолечение, избыточная выдержкаТочка перегибаХарактеристики мощностиГрафические характеристики мощностиПлотность мощности Контроллер мощностиПлотность мощности потериПотери мощностиСиловой агрегатСиловая частьРазделение мощностиПередача мощностиПредварительный резервуарПредзаправленный масляный бакПредварительная заправка уплотненийКлапан предварительной заправкиПредварительный фильтр рабочая часть (заданная точка разрыва) Предварительный нагреватель Давление Давление-расход (pQ) в насосе Характеристика давления-расхода (p / Q) Клапан ограничения давления Герметичный соленоид Редукционный клапан (клапан регулирования давления) Редукционный клапан, 3-ходовой Редукционный клапан Функция сигнала давления Диаграмма давления / расхода Срабатывание давления Изменение давления Процесс чередования давления в машинах прямого вытеснения Усилитель давления Центрирование давления на направляющих клапанах Камера давления Компенсатор давления Регулирование давления Характеристика регулирования давления Контур управления давлением Контур управления давлением для переменного насоса Перепад давления Падение давления График падения давления для клапанов Обратная связь по давлению Фильтр давления Дросселирование Поток давления Формы Колебания давления Жидкость под давлением Прирост давления на плавно регулируемых клапанах Манометр Переключатель выбора манометра Градиент давления Напор давления Независимое от давления регулирование расхода Индикация давления Ограничение давления Падение давления Потери давления из-за дросселей Процедуры измерения давления Колебания давления Пик давления Диапазон позиционирования давления Колебания, вызванные пульсацией давления Клапан Волна давления Первичное срабатывание Первичное и вторичное управление Первичное управление Первичное управление шумом Первичное давление Первичный клапан Печатная плата Приоритетный клапан Управление рабочим процессом, зависящее от процесса Глубина обработки Обработка фактических значений (или сигналов) Профиль загрязненияПрограмма Носитель программы (память, носитель) Последовательность выполнения программыПрограммная блок-схемаПрограммная библиотекаПрограммный цикл Программируемый логический контроллер управлениеПрограммированиеЯзыки программированияМетоды программированияСистема программированияПрограммный модульПРОМРаспространение ошибкиПропорциональный усилительПропорциональная технология управленияПропорциональный соленоидПропорциональные клапаныЗащитные фильтрыКонтактный переключательPSIPT1 — КонтроллерPT1 — элементPT2 — КонтроллерPT2 — элементPT1 — элементPT2 — КонтроллерPT2 — элементPT1 — элементPT2 — КонтроллерPT2 — элементИмпульсная кодовая модуляцияИмпульсный датчик подачи для ускоренного хода Насос клапан циркуляции холостого хода Насос с установленными в ряд поршни / рядный поршневой насос

Рассчитано pressureCalculating множественного доступа звук powerCalibrating throttlesCamCAN-BUSCapacitive положения measurementCapillary tubeCarrier смысла с обнаружением столкновений (CSMA / CD) Каскадированный (многоканальный контур) управления systemCascaded controlCavitationCavitation erosionCentralised гидравлического маслом supplyCentralised hydraulicsCentre positionCentrifugal pumpCentring по springsCETOPCharacteristic curveCharacteristic с усредненной hysteresisCharge amplifierCharge pumpCheck valveChipChlorinated hydrocarbonsChopperChurning lossesCircuit diagramCircuit схемаСхема технологииКруглый уплотнительный зазорИндекс циркуляции UПотери циркуляции в гидравлических системахКруговое перемещение машины Давление зажимаКласс точностиУровень чистотыКлиматическое сопротивлениеСигнал блокировкиКонтроль засорения отверстийСистема с закрытым центромЗамкнутый контурСистема управления положением с замкнутым контуромЗамкнутый контур управления Индекс derCode translatorCodingCoil impedanceCold flowCollapse pressureCollective lineCombined actuationCombined pistonCompact sealComparabilityCompatibility для elastomersCompressibilityCompressibility factorCompression энергии EKCompression setCompression объема ΔVKComputer controlsComputerised числового программного управления (ЧПУ) ConcentratesConditions из comparisonCone valveConfigureConical pistonConstant (фиксированный) throttleConstant расхода соотношения gaugeContact давления systemConstant Контакта насос controlsContact systemConstant сила давления characteristicConstant т pContact sealsContamination classContamination в operationContamination Измерение Загрязнение гидравлической жидкости Непрерывно регулируемый клапан потока Непрерывно регулируемый клапан давления Непрерывно регулируемые клапаны Непрерывные рабочие условия Непрерывное давление Непрерывное значение Контроль Алгоритм управления Управляющий усилитель Блок управления (блок клапанов) Карта управления Управляющая характеристика Управляющая команда Управляющий компьютер Концепция управления в жидкости t технологияЦилиндр управления Отклонение управленияУстройства управленияСхема управленияРазница управленияГеометрия краев клапанов Управляющая электроникаОборудование управленияОшибка управленияРасход управленияРасход управленияКонтроль в диапазоне мощностей Контролируемая подсистемаКонтроллерКонцепции контроллераКонтроллер для демпфирования (фильтр верхних частот) Входная переменная контроллера y Входная переменная RC-контроллера поток сигнала) Память управленияМотор управленияКолебания управленияПанель управленияПараметры управленияПластина управленияМощность управленияДавление управленияПрограмма управленияДиапазон управленияЭлектромагнитный клапан управленияПружины управленияСтруктура управленияКонтроль площади поверхностиПереключатель управленияТехнология управленияДроссельная заслонкаБлок управленияПеременная управленияГромкость управления для клапановКонтроль со сменным ПЗУКонтроль с дроссельной заслонкойКоулер Корректирующая скорость Корректирующая переменная Корректировка характеристик Стоимость гидравлической электростанции Противоточное охлаждение Покрывающая пластина Ползучая подача (скорость) Медленное движениеПотеря давления, зависящая от поперечного сечения Система с питанием от тока Индикатор тока Фитинг с врезным кольцомЦикл Частота цикла Цилиндр КПД цилиндра

Закон Хагена-Пуазейля Половина разомкнутого гидравлического контура Датчик Холла Дистанция заклинивания dРучной насос Регулятор с жесткой проводкой (VPS) Твердость материалов для уплотнений Тепловой баланс в гидравлических системах Жидкости HFB Жидкости HFC под давлением Жидкости HFDИерархическая схема управленияВысокочастотный фильтр (фильтр) Фильтр высокого давленияВысокоскоростной пропорциональный клапан Высокоскоростные двигатели Выпускной клапан motorsHigh Water Based Fluids (HWBF)
HL oilsHLPD oilsHLP oilsHolding currentHolding elementHole patternsHose assembliesHose lineHosesHose stretchingHumHVLP oilsHybrid accumulatorHydraulic accumulatorHydraulic actuationHydraulic axisHydraulic braking cylinderHydraulic bridge circuitHydraulic bridge rectifierHydraulic capacity C hHydraulic consumerHydraulic cylinderHydraulic damping (of servomotors)Hydraulic drive systemsHydraulic efficiencyHydraulic fluidsHydraulic half bridgesHydraulic inductance L hHydraulic intensifierHydraulic motorHydraulic motors subject to secondary controlHydraulic piloting stageHydraulic p ower packHydraulic power packHydraulic pumpHydraulic resonance frequencyHydraulicsHydraulic sealsHydraulic shockHydraulic signal technologyHydraulic spring constantHydro-mechanical closed loop controlHydro-mechanical signal converterHydro-mechanical systemHydrokineticsHydromechanical efficiencyHydropneumatic accumulatorHydrostatic bearingHydrostatic driveHydrostatic energyHydrostatic lawsHydrostatic machinesHydrostatic power P hHydrostatic reliefHydrostatic resistanceHydrostaticsHydrostatic servo driveHydrostatic traction driveHydrostatic transmissionHydrostatic transmission with separated primary/secondaryHysteresis

O-ring sealOil-in-water emulsionOil coolerOil hydraulicsOil samplingOil separatorOn-off controlOn-stroke time of a pumpOnboard-ElektronikOne-way tripOpen-centre positionOpen-centre pump controlOpen centre systemOpen circuitOpen control circuitOpened control circuitOpening/closing pressure differenceOpening pressureOpen loopOpen loop control systemOpen loop synchronisation controlOperating characteristicsOperating conditionsOperating cycle frequencyOperating defectOperating life of a filterOperating loadsOperating manualOperating mode of a controlOperating modes of drivesOperating parametersOperating pointOperating pressureOperating safetyOperating systemOperating viscosityOperational amplifierOperation pressureOptical fibre technologyOptimising the controllerOrbit motorOrificeOscillationsOscilloscopeOutlet pressureOutput deviceOutput moduleOutput unitOutput volumeOver-excitationOverall control unitOverlap in valvesOverload protectionOverpressureOverrunOvershootOvershoot time 9000 5

Waiting periodWater glycol solutionWater hydraulicsWater in oilWater in oil emulsionWear protection capacityWelded nipple fittingWetting abilityWheel motorWordWord lengthWord processorWorking cycleWorking linesWorking positions

Labyrinth gap sealLabyrinth sealLaminar flowLaminar flow resistorLANLaplace transformationLarge signal rangeLaw of superpositionLeakage, leakLeakage compensationLeakage lineLifetimeLimiting conditionsLimit load controlLimit monitorLimit pick upLimit signalLimit switchLinearLinear control signalLinear control theoryLinearisationLinearityLinearity errorLinear motorLinear regulatorsLine filterLip sealLoad-holding valveLoad collectiveLoad flow Q LLoading models for cylindersLoad pressure compensationLoad pressure differenceLoad pressure feedbackLoad pressure p LLoad sensing systemLoad stiffnessLocking cylindersLogic controlLogic diagramLogic elementLoop gain V KLoop lineLosses in displacement machinesLow-pressure pumpLowering brake valveLow pass filterLow pressure

Naphta based oilNatural angular frequency ω eNatural angular frequency ω oNatural dampingNatural frequencyNatural frequency foNatural frequency of a hydraulic cylinderNBRNeedle-type throttleNegative-pulse controlNeutralisation numberNeutral positionNeutral position of the pumpNewtonian fluidNoiseNoise levelNoise level (A-weighted) L pANoise level additionNoise level L pNoise level L WNoise level WNoise measurementNominal flow rateNominal force of a cylinderNominal mode of operationNominal operating conditionsNominal powerNominal pressureNominal sizeNominal valve sizesNominal viscosityNominal widthNon-contact sealsNon-linear control systemNon-linearityNon-linear signal transmitterNormally closed (NC) valveNormally open valveNormal pressureNozzleNull-adjustment signalNull biasNull bias adjustmentNull driftNull range of a proportional spool valveNull shift stability

Value discreteValveValve-controlled pumpsValve actuationValve assembly systemsValve blockValve block designValve control spoolValve control with four edgesValve dynamicsValve efficiencyValve noisesValve operating characteristicsValve plate-controlled pumpsValve polarityValve pressure differenceValve sealsValve with flat sliderVane pumpVariable area principleVariable delivery flow (control)Variable pumpVariable pump, variable motorVariable throttleVelocity amplificationVelocity controlVelocity errorVelocity feedback control circuitVelocity feedback loopVelocity measurementVelocity of sound pressure wavesVertical column pressure gaugeVertical stacking assemblyVibration fatigue limit of a systemViscosityViscosityViscosity/pressure characteristicViscosity/temperature characteristicViscosity classesViscosity index (VI)Viscosity index correctorViscosity rangeVisual display of contaminationVoltage tolerance for solenoid valvesVolume (bulk) filtersVolumetric efficiencyVolumetric losses 9 0005

5-chamber valve5-way valve

Gap bridgingGap extrusionGap filterGap flowGap sealsGas filling pressureGauge protection valveGeared pump/motorGear pumpGear pump flow meterGerotor motorGraduated glass scaleGrooved ring sealGroup signal line

Kinematical viscosity vKv factor (speed/stroke gain)Kv value (of valves)

Quad-ringQuantisationQuantisation errorQuasistaticQuick connector couplingQuiescent flow

Zero overlap

Jet contractionJet pipe amplifier

What Valves Can Be Used For Throttling?

Pipeline systems are not complete without industrial valves.Они бывают разных размеров и стилей, потому что они должны соответствовать различным потребностям.

Промышленные клапаны можно классифицировать в зависимости от их функции. Есть клапаны остановки или запуска потока среды; есть те, которые контролируют, где течет жидкость. Есть и другие, которые могут изменять количество протекающих медиа.

Выбор правильного типа клапана имеет решающее значение для промышленной эксплуатации. Неправильный тип будет означать, что система отключена или система не работает.

Что такое дроссельные клапаны

Дроссельный клапан может открывать, закрывать и регулировать поток среды.Дроссельные клапаны — это регулирующие клапаны. Некоторые люди используют термин «регулирующие клапаны» для обозначения дроссельных клапанов. По правде говоря, между ними есть четкая линия. Дроссельные клапаны имеют диски, которые не только останавливают или запускают поток среды. Эти диски также могут регулировать количество, давление и температуру проходящей среды в любом заданном положении.

Дроссельные клапаны будут иметь более высокое давление на одном конце и более низкое давление на другом конце. Это закрывает клапан в зависимости от степени давления.Одним из таких примеров является мембранный клапан.

С другой стороны, регулирующие клапаны будут управлять потоком среды с помощью привода. Он не может функционировать без него.

Давление и температура нарушают поток среды, поэтому регулирующие клапаны регулируют это. Кроме того, эти клапаны могут изменять условия потока или давления, чтобы соответствовать требуемым условиям трубопроводной системы.

В этом смысле регулирующие клапаны представляют собой специализированные дроссельные клапаны. При этом регулирующие клапаны могут дросселировать, но не все дроссельные клапаны являются регулирующими клапанами.

Лучшим примером является гидравлическая система, в которой внешняя сила должна сбросить вакуум, чтобы газ мог попасть в клапан.

Дроссельный механизм

Когда в трубопроводе используется дроссельный клапан, скорость потока среды изменяется. При частичном открытии или закрытии клапана происходит ограничение потока жидкости. Итак, контроль СМИ.

Это, в свою очередь, уплотняет среду в частично открытом клапане. Молекулы носителя начинают тереться друг о друга.Это создает трение. Это трение дополнительно замедляет поток среды, проходящей через клапан.

Чтобы лучше проиллюстрировать, представьте трубопровод как садовый шланг. При включении вода беспрепятственно выходит прямо из шланга. Течение несильное. Теперь представьте, что клапан — это большой палец, частично закрывающий отверстие шланга.

Выходящая вода меняет скорость и давление из-за препятствия (большого пальца). Он намного сильнее воды, еще не прошедшей через клапан.В основном это троттлинг.

Чтобы применить это в трубопроводной системе, системе необходимо, чтобы более холодный газ был в требуемом более горячем состоянии. При установленном дроссельном клапане температура газа повышается. Это происходит из-за того, что молекулы трутся друг о друга, пытаясь выйти из клапана через ограниченное отверстие.

Источник: https://www.quora.com/What-is-the-throttling-process

Применение дроссельного клапана

Дроссельные клапаны находят широкое применение.Часто дроссельные клапаны можно встретить в следующих промышленных применениях:

● Системы кондиционирования воздуха

● Холодильное оборудование

● Гидравлика

● Приложения Steam

● Высокотемпературные приложения

● Фармацевтические приложения

● Химическая промышленность

● Приложения для пищевой промышленности

● Топливные системы

Клапаны

, которые можно использовать для дросселирования

Не все клапаны предназначены для дросселирования.Конструкция клапана — одна из основных причин, почему некоторые клапаны не подходят для дроссельной заслонки.

Глобус

Проходные клапаны — один из самых популярных видов клапанов. Шаровой клапан в основном используется как дроссельный клапан. Он принадлежит к семейству клапанов линейного перемещения. Шаровой диск перемещается вверх или вниз по отношению к неподвижному кольцевому гнезду. Его диск или заглушка контролируют количество носителей, которые могут пройти.

Пространство между седлом и кольцом позволяет шаровому клапану работать как отличный дроссельный клапан.Седло, диск или плунжер меньше повреждаются благодаря своей конструкции.

Ограничения

Из-за конструкции шарового клапана, когда он используется в системах с высоким давлением, ему требуется автоматический или приводной привод для перемещения штока и открытия клапана. Падение давления и диапазон регулирования потока — два фактора, влияющие на эффективное регулирование.

Также существует возможность утечки из-за поврежденного седла, поскольку оно полностью контактирует с текучей средой.Этот клапан также подвержен воздействию вибрации, особенно когда среда — газ.

Бабочка

Дроссельные заслонки похожи на задвижку. Но одно из их явных отличий заключается в том, что дроссельная заслонка относится к семейству четвертьоборотных клапанов.

На привод действует внешняя сила. Этот привод прикреплен к штоку, который соединяется с диском.

Среди наиболее распространенных клапанов для дросселирования больше всего подходит дроссельная заслонка. Полная четверть оборота может открыть или закрыть клапан.Чтобы дросселирование произошло, достаточно лишь немного приоткрыться, чтобы носитель прошел.

Ограничения

Одним из ограничений дроссельных заслонок является то, что диск всегда находится на пути потока среды. Весь диск более подвержен эрозии. Также из-за такой конструкции затруднена чистка внутренних деталей.

Для того чтобы дроссельная заслонка была эффективной, при правильных расчетах необходимо определить требования к максимальному расходу и давлению.

Ворота

Задвижка относится к семейству клапанов линейного перемещения.Задвижки имеют диски, которые перемещаются вверх и вниз для открытия и закрытия клапанов. Они в основном используются как службы включения-выключения. Задвижки имеют ограничения как дроссельные клапаны.

В почти закрытой апертуре происходит дросселирование, поскольку оно ограничивает поток среды. Это увеличивает скорость среды, выходящей из клапана.

Ограничения

Единственный раз, когда вы должны использовать задвижки для дросселирования, — это когда клапан закрыт на 90%. Если закрыть его примерно до 50%, то желаемые возможности дросселирования не достигнуты.Обратной стороной использования задвижки является то, что скорость среды может легко разрушить поверхность диска.

Кроме того, задвижки не должны использоваться в качестве дроссельных клапанов в течение длительного времени. Давление может привести к разрыву седла затвора, и клапан больше не сможет полностью закрыться. Во-вторых, если среда жидкая, возникает вибрация. Эта вибрация также может повлиять на сиденье.

Щипок

Пережимной клапан, считающийся одной из самых простых конструкций, имеет футеровку из мягкого эластомера.Он зажат, чтобы закрыть с помощью давления жидкости. Отсюда и его название. Пережимной клапан, принадлежащий к семейству линейных перемещений, легок и прост в обслуживании.

Пережимные клапаны очень эффективны, когда важны стерильность и санитария. Эластомерный вкладыш защищает металлические части клапана.

Шток присоединяется к компрессору, который расположен точно над гильзой. Пережимной клапан закрывается, когда компрессор опускается на гильзу.

Возможности дросселирования пережимного клапана обычно составляют от 10% до 95% пропускной способности.Его лучший КПД составляет 50%. Это связано с мягким лайнером и гладкими стенками.

Ограничения

Этот клапан не работает наилучшим образом, когда в среде есть острые частицы, особенно когда клапан закрыт на 90%. Это может вызвать разрыв эластомерного покрытия. Этот клапан не подходит для газовых сред, а также приложений с высоким давлением и температурой.

Диафрагма

Мембранный клапан очень похож на пережимной клапан. Однако его дросселирующее устройство представляет собой эластомерную диафрагму вместо эластомерного вкладыша.Вы можете проверить, как работают мембранные клапаны, в этом видео.

В пережимном клапане компрессор опускается во вкладыш, а затем сжимает его, чтобы остановить поток среды. В мембранном клапане диск мембраны прижимается к нижней части клапана, чтобы закрыть его.

Такая конструкция позволяет более крупным частицам проходить через клапан. Между проходным диафрагменным клапаном и диафрагменным клапаном водосливного типа последний лучше подходит для дросселирования.

Ограничения

Хотя мембранные клапаны могут обеспечивать герметичное уплотнение, они могут выдерживать только умеренный диапазон температуры и давления.Кроме того, его нельзя использовать в многооборотных операциях.

Игла

Игольчатый клапан похож на шаровые краны. Вместо шаровидного диска игольчатый клапан имеет игольчатый диск. Это больше подходит для приложений, требующих точного регулирования.

Кроме того, игольчатые клапаны являются лучшими регуляторами управления клапанами для небольших количеств. Жидкость течет по прямой линии, но при открытии клапана поворачивается на 900 градусов. Из-за этой конструкции 900 некоторые части диска проходят через отверстие седла до полного закрытия.Вы можете просмотреть 3D-анимацию пережимного клапана здесь.

Ограничения

Игольчатые клапаны предназначены для деликатных промышленных применений. При этом более густые и вязкие среды не подходят для игольчатых клапанов. Открытие этого клапана небольшое, и частицы суспензии попадают в полость.

Как выбрать дроссельный клапан

У каждого типа дроссельного клапана есть свои преимущества и ограничения. Понимание цели реализации дроссельного клапана всегда сужает выбор правильного типа дроссельного клапана.

Размер клапана

Правильный размер клапана означает устранение проблем с клапанами в будущем. Например, слишком большой клапан означает ограниченную дроссельную способность. Скорее всего, это будет около своей закрытой позиции. Это делает клапан более подверженным вибрации и эрозии.

Кроме того, слишком большой клапан будет иметь дополнительные фитинги для регулировки труб. Фурнитура стоит дорого.

Конструкционные материалы

Материал корпуса клапана является важным аспектом при выборе дроссельного клапана.Он должен быть совместим с типом материала, который будет проходить через него. Например, среда на химической основе должна проходить через некоррозионный клапан. Среда, склонная к высокой температуре или давлению, должна перейти в прочный сплав с внутренним покрытием.

Привод Привод

также играет большую роль в выборе правильного дроссельного клапана. В трубопроводах есть случаи, когда присутствует сильное давление. Из-за этого ручной привод может быть неэффективным при открытии или закрытии клапана.

Подключения

Также стоит подумать о том, как клапан подсоединяется к трубам. Важно адаптироваться к существующим трубным соединениям, а не к трубам, адаптированным к клапану.

Более рентабельно приспособить клапан к существующим требованиям к трубам. Например, если концы труб имеют фланцы, клапан также должен иметь фланцевые концевые соединения.

Отраслевые стандарты

Не менее важны отраслевые стандарты.Существуют стандарты для типа материала, используемого для конкретного носителя. Также существуют стандарты на торцевые соединения или толщину металла, используемого для клапана.

Такие стандарты обеспечивают безопасность приложений. При использовании дроссельных клапанов часто наблюдается повышение температуры и давления. Таким образом, жизненно важно понимать такие стандарты для безопасности каждого.

Итого

Хотя большинство клапанов имеют ограниченные возможности дросселирования, их просто так не использовать.Чтобы клапан прослужил дольше, лучше всего знать, какой тип клапана подходит для конкретного дросселирования.

Ресурс производителя эталонных клапанов: полное руководство: лучшие производители клапанов в Китае

% PDF-1.4 % 1 0 объект > / Контуры 424 0 R / Метаданные 463 0 R / Страницы 2 0 R / Тип / Каталог >> эндобдж 422 0 объект > эндобдж 424 0 объект > эндобдж 463 0 объект > поток 2007-11-20T07: 59: 18 + 01: 002007-11-20T08: 00: 49 + 01: 002007-11-20T08: 00: 49 + 01: 00 Adobe InDesign CS3 (5.0.1)

  • JPEG256256 / 9j / 4AAQSkZJRgABAgEASABIAAD / 7QAsUGhvdG9zaG9wIDMuMAA4QklNA + 0AAAAAABAASAAAAAEA AQBIAAAAAQAB / + 4AE0Fkb2JlAGQAAAAAAQUAAtH8 / 9sAhAAMCAgICAgMCAgMEAsLCxAUDg0NDhQY EhMTExIYFBIUFBQUEhQUGx4eHhsUJCcnJyckMjU1NTI7Ozs7Ozs7Ozs7AQ0LCxAOECIYGCIyKCEo MjsyMjIyOzs7Ozs7Ozs7Ozs7Ozs7OztAQEBAQDtAQEBAQEBAQEBAQEBAQEBAQEBAQED / wAARCAEA ALUDAREAAhEBAxEB / 8QBQgAAAQUBAQEBAQEAAAAAAAAAAwABAgQFBgcICQoLAQABBQEBAQEBAQAA AAAAAAABAAIDBAUGBwgJCgsQAAEEAQMCBAIFBwYIBQMMMwEAAhEDBCESMQVBUWETInGBMgYUkaGx QiMkFVLBYjM0coLRQwclklPw4fFjczUWorKDJkSTVGRFwqN0NhfSVeJl8rOEw9N14 / NGJ5SkhbSV xNTk9KW1xdXl9VZmdoaWprbG1ub2N0dXZ3eHl6e3x9fn9xEAAgIBAgQEAwQFBgcHBgI7AQACEQMh MRIEQVFhcSITBTKBkRShsUIjwVLR8DMkYuFygpJDUxVjczTxJQYWorKDByY1wtJEk1SjF2RFVTZ0 ZeLys4TD03Xj80aUpIW0lcTU5PSltcXV5fVWZnaGlqa2xtbm9ic3R1dnd4eXp7fh2 + f3 / 9oADAMB AAIRAxEAPwDrfqx9WPq3kfVvpN9 / ScG223Bxn2WPxqnOc51TC5znFkkkpKdL / mn9Vf8Aym6f / wCw tP8A6TSUr / mn9Vf / ACm6f / 7C0 / 8ApNJSv + af1V / 8pun / APsLT / 6TSUr / AJp / VX / ym6f / AOwtP / pN JSv + af1V / wDKbp // ALC0 / wDpNJSv + af1V / 8AKbp // sLT / wCk0lK / 5p / VX / ym6f8A + wtP / pNJSv8A mn9Vf / Kbp / 8A7C0 / + k0lK / 5p / VX / AMpun / 8AsLT / AOk0lK / 5p / VX / wApun / + wtP / AKTSUr / mn9Vf / Kbp / wD7C0 / + k0lK / wCaf1V / 8pun / wDsLT / 6TSUr / mn9Vf8Aym6f / wCwtP8A6TSUr / mn9Vf / ACm6 f / 7C0 / 8ApNJSv + af1V / 8pun / APsLT / 6TSUr / AJp / VX / ym6f / AOwtP / pNJSv + af1V / wDKbp // ALC0 / wDpNJSv + af1V / 8AKbp // sLT / wCk0lK / 5p / VX / ym6f8A + wtP / pNJSv8Amn9Vf / Kbp / 8A7C0 / + k0l K / 5p / VX / AMpun / 8AsLT / AOk0lObkfVj6tt + smBQOk4Iqfg5r31jGq2ucy3ADXFuyJAe6PiUlOl9U / wDxK9G / 9N + L / wCea0lOskpH6j / U27DtgnfIiQTpEz2SUo3DgDcREtBbOpj95JTMGQCRE9j2SUsX tE7iAB4 + Gn96Sl5BMA6jskpTjAJ8BKSmHraEkRqWiS2CQY8e6SmIyQa22FhbuYHlpcyWz2J3x9xj RJSQOBA7E9tP4JKZJKYh7du4kDSTrxpKSlwQdQZSUomCPMwkpZr2PAcxwcDqCDIKSmSSml1bOf0 / D + 0Vt3ONtVUBjrCPVsbXIYyHOjdwElOXg / W6vLxfWdjPa8VPvBlrazW31yxznvfDC5lMlrvok7Sd HQlMsT621ZrN9OJZFjKnUFzmNDzey21jHEu9jtlfungmElL1 / Wawuc + zFincS0teC / 0 / 1Xa9zTtg xk6hJTvJKcnJ / wDFV07 / ANN + f / 5 + 6akpX1T / APEr0b / 034v / AJ5rSU6ySloHgkpQa0cAfckpdJS0 A8pKVAmYEpKXSUttbMwJ8YSUra3iB93ikpUCZgSkpdJS0DwSUoNa0Q0AAaaJKXSUtA + 5JS6SkGYz JfjubiFrbvzC / wCiD48O / Ikpj6Nxt9zKTUQQdDu1IPmDOspKY20ZDq9jBU4lrtxc32l / 5pLYM6 + Y SUu + vLDnuY2h34aFwIM6fS57BJTaSU5OT / 4qunf + m / P / APP3TUlK + qf / AIlejf8Apvxf / PNaSnWS UpJSklKSUpJSklKSUpJSklKSUpJSklKSUpJSklKSUpJSklKSUpJSklOTk / 8Aiq6d / wCm / P8A / P3T UlK + qf8A4lejf + m / F / 8APNaSnWSUpJSklKSUpJSklKSUpJSklKSUpJSklKSUpJSklKSUpJSklKSU pJSklOTk / wDiq6d / 6b8 // wA / dNSU1PqtmuZ9WekN2j24GMPuqYkp1Pt7 / wBwJKV9vf8AuBJSvt7 / ANwJKV9vf + 4ElK + 3v / cCSlfb3 / uBJSvt7 / 3AkpX29 / 7gSUr7e / 8AcCSlfb3 / ALgSUr7e / wDcCSlf b3 / uBJSvt7 / 3AkpX29 / 7gSUyrzXPsawtA3GElNtJSklKSUpJSklKSU5OT / 4qunf + m / P / APP3TUlO X9Wf / E30n / wjjf8AnpiSnSSU8zl / W3Ixsu7HbjscKbh2gknXaS2fwSUh / wCeeT / 3Gr / zikpX / PPJ / wC41f8AnFJSv + eeT / 3Gr / zikpX / ADzyf ​​+ 41f + cUlK / 555P / AHGr / wA4pKV / zzyf + 41f + cUlOj0P 6wXdWy349lTaw2s2S0k8FrY1 / rJKdtJSklKSUpJSklJKP55n9YJKaHU / rRl4GdbiV41D21kAOflV 1uMgHVjjI5SU1f8Annnf9xMX / wBjaf8AySSlf8887 / uJi / 8AsbT / AOSSU9H0zLfnYNWXY1rHWgkt Y8WNEEjR7dDwkpHm5PVKcqmrDwhkUPj1bjY1myTB9rtTA1SU3klOTk / + Krp3 / pvz / wDz901JTl / V n / xN9J / 8I43 / AJ6Ykp0klIXYWG9xc6ipznGSSxpJJ + SSlvsGD / 3Gq / zG / wBySlfYMH / uNV / mN / us Ur7Bg / 8Acar / ADG / 3JKV9gwf + 41X + Y3 + 5JSvsGD / ANxqv8xv9ySlfYMH / uNV / mN / uSUzqxsal26m plbiIJY0NMfIJKSJKUkpSSlJKUkpJR / PM / rBJTLJ + rvRsy9 + Tk4rbLbNXOJcJgR2cPBJSP8A5qfV 7 / uGz / Of / wCSSUr / AJqfV7 / uGz / Of / 5JJTo42NRh0MxsZgrqrENaJMSZ7pKSpKUkpycn / wAVXTv / AE35 / wD5 + 6akpy / qz / 4m + k / + Ecb / AM9MSU6SSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKSUfz zP6wSU6iSlJKUkpSSlJKUkpycn / xVdO / 9N + f / wCfumpKcv6s / wDib6T / AOEcb / z0xJTpJKUkpSSl JKUkpSSlJKUkpSSlJKUkpSSlJKUkpJR / PM / rBJTqJKUkpSSlJKUkpSSnJyf / ABVdO / 8ATfn / APn7 pqSnL + rP / ib6T / 4Rxv8Az0xJToWEhummqSnHu666q19X2TKfscW7mskGDEjXhJTH / nC7 / uFl / wCZ / tSU6GLlOysdt + 19W + fZZo4QSNR8klJdzvEpKVud4lJStzvEpKVud4lJStzvEpKVud4lJStzvEpK Vud4lJStzvEpKVud4lJTC99opea3ua6NC0kEh5hJTnG7qX / cq / 8A7cf / AOSSUjff1Mf9q7 / + 3H / + SSU17Mrqo4zMj / t1 / wD5JJTUtz + sDjOyR / 15 / wD5JJTTt6p1pvGflf8Ab1n / AJJJTWd1rrjT / wAo ZX / b1n / kklIj1fqzrW3nNyDaxrmMsNr9zWvLS5odumCWNn4BJT6N9VcJj / qx0hxcfdgYx ++ piSm9 kYTWtB3HlJSD7K394pKV9lb + 8UlK + yt / eKSlfZW / vFJSvsrf3ikpX2Vv7xSUr7K394pKV9lb + 8Ul K + yt / eKSlfZW / vFJSvsrf3ikpX2Vv7xSUr7K394pKWdit2nUlJSE4nkkppZtuDhj9auZWf3Sfd / m jVJTz3UPrN0ygE1MstAMbogH8rvwSU4 + T17IttDGCurcNwbMuI + BSU1bupX3y1rmAtMODOQfPmEl NV2Y + k7Xnf5Hn70lJ / U / Q + vtMbd0JKfW / qn / AOJXo3 / pvxf / ADzWkpv5X0B8UlNZJSklKSUpJSkl KSUpJSklKSUpJSklKSUpJS7BueB4pKeU619auoY + ZfgYlTKTU9zA94LnODTG5sw3VJTx13pVz65E gyd2pkfikpA59GTXFb26GS1 + kgdklMmv9RwqpY6x50DWAmT5d / wSU36fqz1vK9z6BitA3A3 + 13 + Z Dnj47UlPOZD + CTJlJTqR / kr1P + B / hCSn1r6p / wDiV6N / 6b8X / wA81pKb + V9AfFJTlP6v0up7q7Mq pr2Etc0vAII0IKSkuNnYeYXDFuZcWRu2OBifGElJ0lKSUpJSklKSUpJSklKSUpJSklKSUyq / nGpK eB6l1uhv1ss6Bm4wsoc4xY6Zl8uBDvCYCSnmOsVV0Z2VTXoxlr2tkzoHGElObj2RkBvYtP4JKfQP 8XjwKM / sN1cu0nh3nikp2 + rZ + LRi2HItFbSCNznbdY8UlPk + B0 / I6zecfHc1hY31HOfP0QQ3SAfF JT0X7Hf + z / 2b6g3ens9SNJmeJSU + lfVP / wASvRv / AE34v / nmtJTfyvoD4pKfN + p3NHUssbsbS + z6 VbifpHk + mdUlMcTquVglxxMjGqL4DttTtY4 / wSSmz / zm6v8A9zaf + 2z / AOkklK / 5zdX / AO5tP / bZ / wDSSSnZx / rd0ttFbcix7rgxosc1hgvj3EcaSkpJ / wA7 + i / v2f5hSUr / AJ39F / fs / wAwpKUfrf0Y GC6zT + QUlJcX6zdKzMhmNS55ssO1stIEpKdZJSklKSUpJSt233eCSnlOp9Ptx + ou6nbiV51Ie57D W2Lqg7mRw4BJTxGfVldX6rkjp2PZc6yxzgytpcQCe8TCSkdn1S + tODdXZf028tslrfSAu54n0S + P mkp6Ton1N + unoPYy1vSqbyHP3umwxMQ1m4jnuQkp1qP8XPTqnev1XIu6ld3Nji1n3Al3 / SSU2n9M xMJhrxKK6W8RW0N ++ ElOd6P6wkp636p / + JXo3 / pvxf8AzzWkpv5X0B8UlPOZh2dtvvsuHUcmsWPc / Y1xhu4zA14CSmH / ADYt / wDLPK / zj / ekpX / Ni3 / yzyv84 / 3pKV / zYt / 8s8r / ADj / AHpKV / zZt / 8A LPK1 / lH + 9JSv + bFv / lnlf5x / vSUr / mxb / wCWeV / nH + 9JTstpqa0Da0wImAkpkK6wZDWg + IASUySU pJSklKSUgzLW0YttzzDWNJJSU4 + P1ajIcRU / cRqdCPyhJTfx8ho + jAkyY01KSnSoumElNtpkJKQ3 MkJKcnMq5SU5HpfrCSnoPqn / AOJXo3 / pvxf / ADzWkp1SAeRPxSUtsZ + 6PuSUrYz90fckpWxn7o + 5 JStjP3R9ySlbGfuj7klK2M / dh4JKVsZ + 6PuSUrYz90fckpWxn7o + 5JStjP3R9ySlbGfuj7klK2M / dh4JKVsZ + 6PuSUsaq3AtcxpB5BAISUw + yYn + hr / zB / ckpkMbHHFTB / ZH9ySmQrrHDWj4AJKXgDgJ KVAPISUxNVTuWNPxASU5WRVUPrNgVBjQx2DnOc2BBc23p4aSPEbjHxSUy + qf / iV6N / 6b8X / zzWkp 1klPNZef9bWZVzMZmGaW2OFRe9odsBO3d + lGsJKQ / tH65 / 6PC / z2 / wDpVJSv2j9c / wDR4X + e3 / 0q kpLi9Q + thyaRlNw20GxotLXtkMkbiP0p7JKeh + 043 + lZ / nD + 9JSvtON / pWf5w / vSUr7Tjf6Vn + cP 70lK + 043 + lZ / nD + 9JSvtON / pWf5w / vSUyZbVYYre1xHZpB / Ikp5vIz / rc3ItbQzDNQe4V7ntnaD7 Z / SjWElI / wBo / XP / AEeF / nt / 9KpKem + 043 + lZ / nD + 9JSvtON / pWf5w / vSUr7Tjf6Vn + cP70lK + 04 3 + lZ / nD + 9JSvtON / pWf5w / vSUr7Tjf6Vn + cP70lK + 043 + lZ / nD + 9JTJltVhit7XEc7SD + RJTmZP / AIqunf8Apvz / APz901JSvqn / AOJXo3 / pvxf / ADzWkp1klPLZnVc2vMvrZ1zEpayx7RU6qXMAcRtJ 28hJSH9sZ3 / l / h / 9tf8AmKSlftfP / wDL / D / 7a / 8AMUlK / a + f / wCX + H / 21 / 5ikpX7Xz // AC / w / wDt r / zFJSv2vn / + X + H / ANtf + YpKV + 18 / wD8v8P / ALa / 8xSUr9r5 / wD5f4f / AG1 / 5ikpX7Xz / wDy / wAP / tr / AMxSU6fQc7Jysmxl3U6M8NZIZSzYWmR7iYCSmhk9VzWZNrG9cxKg17gK3VSWgE + 0 + 3skpH + 1 8 / 8A8v8AD / 7a / wDMUlK / a + f / AOX + H / 21 / wCYpKbfTeu102ud1PrGNkVlsNaxmwh08zCSnR / 5y9B / 7m1fef7klK / 5y9B / 7m1fef7klNrC6jg9RD3YVzbhXAcWdp4 / IkpspKUkpSSnJyf / ABVdO / 8ATfn / APn7pqSlfVP / AMSvRv8A034v / nmtJTrJKeSzX5AzLw2 / oTR6r4F5Hqj3H + c0 + l4 + aSkO / J5 + 0fV7 7x / 5FJSt + T / 3I + r33j / yKSlepk / 9yPq994 / 8ikpXqZP / AHI + r33j / wAikpXqZP8A3I + r33j / AMik pXqZP / cj6vfeP / IpKV6mT / 3I + r33j / yKSlepk / 8Acj6vfeP / ACKSnV + rzrTk2 + pb0uwenx08gv5H 0tB7UlOZ1nM6FfmEUdRqwnVlzLWfYvV3PDjucXFiSmh6nSv / AC9q / wDcaP8AyKSlep0r / wAvav8A 3Gj / AMikpXqdK / 8AL2r / ANxo / wDIpKV6nSv / AC9q / wDcaP8AyKSlep0r / wAvav8A3Gj / AMikp3sH 6y / VfCx2VNymbw1ossZjvr9RzRBcWtr7pKbH / PH6uf8Acv8A8Ct / 9JpKb3Tur9P6s17un2 + sKiA / 2ubE8fTa3wSU3ElOTk / + Krp3 / pvz / wDz901JSvqn / wCJXo3 / AKb8X / zzWkp1klPIZzHHNyD9i6Q / 9K / 3W2NFh9x1eN30vFJSHY // ALg9F / 7cb / 5JJSvTd / 3B6L / 243 / ySSlvTf8A9wei / wDbjf8AySSl em // ALg9F / 7cb / 5JJSvTf / 3B6L / 243 / ySSlem / 8A7g9F / wC3G / 8AkklK9N // AHB6L / 243 / ySSlem / wD7g9F / 7cb / AOSSU631daW5Vs4 / T6P0f0sJ4c86jR0OOiSml1jL6r03LLLc2totmytrcUWQ0kwC 4DlJTQ / buf8A9zm / + wX / AJikpX7dz / 8Auc3 / ANgv / MUlK / buf / 3Ob / 7Bf + YpKV + 3c / 8A7nN / 9gv / ADFJTp9OZ1 / qeP8AacbOo2BxZ78YNMiOxb5pKbX7L + s // c / G / wDYdv8A5FJSv2X9Z / 8Aufjf + w7f / IpKXb0761M + h2HHbPhQB / BJTe6bj9Zpe89Tyq8lhA2CtgZBSUhyf / FV07 / 035 // AJ + 6akpX1T / 8 SvRv / Tfi / wDnmtJTrJKeTzcDIfmXvb0fCtDrXkWPuAc + Xh4OG7kpKQ / s7J / 8o8H / ALfH / kklK / Z2 T / 5R4P8A2 + P / ACSSlfs7I / 8AKPB / 7fH / AJJJSv2dk / 8AlHg / 9vj / AMkkpX7Oyf8Ayjwf + 3x / 5JJS v2dk / wDlHg / 9vj / ySSlfs7J / 8o8H / t8f + SSUr9nZH / lHg / 8Ab4 / 8kkp1Pq / i20ZVrrOnY + EDXAfR YHl2o9pAcdElI / rJV1KzKqOE3OLBX7vsdwqbMn6Qg6pKcj7N179zrH / sUP8AyKSlfZuvfudY / wDY of8AkUlK + zde / c6x / wCxQ / 8AIpKdtv1ZvLQT1fqIJEkesdElL / 8ANi7 / AMuOo / 8AbxSU6HTOnP6d W9j8q / L3kHdkP3lsDgJKbqSlJKUkpycn / wAVXTv / AE35 / wD5 + 6akpX1T / wDEr0b / ANN + L / 55rSU6 ySnIv + qnQMi6zIuxd1lrnWPd6lglzjJMB4HJSUw / 5nfVz / uJ / wCC2 / 8ApRJS / wDzP + rkR9k0 / wCN t / 8ASiSlv + Z31c / 7if8Agtv / AKUSUr / md9XP + 4n / AILb / wClElK / 5nfVz / uJ / wCC2 / 8ApRJSv + Z3 1c / 7if8Agtv / AKUSUr / md9XP + 4n / AILb / wClElLj6n / VwEEYmo / 4W3 / 0okptdP6F0rpVrrsCj0nv bscd73SJn89zvBJTUu + quFda + 52Rlg2OLyG3EAFxnQQkpj / zRwP + 5OZ / 28f / ACKSlf8ANHA / 7k5n / bx / 8ikpX / NHA / 7k5n / bx / 8AIpKV / wA0cD / uTmf9vH / yKSkmN9WMPFyK8hmRlOdU4ODX2y0keIhJ TsJKUkpSSlJKcnJ / 8VXTv / Tfn / 8An7pqSlfVP / xK9G / 9N + L / AOea0lOskpSSlJKUkpSSlJKUkpSS lJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKcnJ / 8VXTv / Tfn / wDn7pqSlfVP / wASvRv / AE34v / nm tJTrJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSnJyf / ABVdO / 8ATfn / APn7pqSlfVP / AMSvRv8A034v / nmtJTrJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkp SSlJKUkpSSnJyf8AxVdO / wDTfn / + fumpKV9U / wDxK9G / 9N + L / wCea0lOskpSSlJKUkpSSlJKUkpS SlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKcnJ / 8VXTv / Tfn / 8An7pqSlfVP / xK9G / 9N + L / AOea 0lOskpAc3HaS0uMgkh3u5Bg9klLfbsb94 / 5rv / IpKV9uxv3j / mu / 8ikpX27G / eP + a7 / yKSlfbsb9 4 / 5rv / IpKXGZjuMNLiT2DHH / ​​AL6kpl9or8H / APbb / wDyKSlfaK / B / wD22 / 8A8ikpX2ivwf8A9tv / APIpKXZcx7tg3B0Ew5rm6CP3gPFJSRJSklKSUpJSklKSUpJSklKSUpJTk5P / AIqunf8Apvz / APz9 01JSvqn / AOJXo3 / pvxf / ADzWkp1klPJdZ6LlZ2c ++ vDx7hqN9 / 2kO + k7 / Qua2NUlNH / mzm / + V2D9 + b / 6USUr / mzm / wDldg / fm / 8ApRJSv + bOb / 5XYP35v / pRJTodM + q / T3Vv / a + BW18jZ9nOVER33vKS nTw + hdB6fksy8TFfXdXO136d0bgWnRxI4KSnT + 0V + D / + 23 / + RSUr7RX4P / 7bf / 5FJSvtFfg // tt / / kUlLB4syGlodAY8Eua5o1LP3gPBJSZJSklKSUpJSklKSUpJSklKSUpJTk5P / iq6d / 6b8 / 8A8 / dN SUr6p / 8AiV6N / wCm / F / 881pKdZJSklKSUpJSklKSUpJSklKSUpJSklKSUpJSklKSUpJSklKSUpJS klKSU5OT / wCKrp3 / AKb8 / wD8 / dNSUr6p / wDiV6N / 6b8X / wA81pKdZJSklKSUpJSklKSUpJSklKSU pJSklKSUpJSklKSUpJSklKSUpJSklKSU5OT / AOKrp3 / pvz // AD901JTm / Vj6z / VvH + rfSaL + rYNV tWDjMsrfk1Nc1zamBzXNL5BBSU6X / Oz6q / 8Alz0 // wBiqf8A0okpX / Oz6q / + XPT / AP2Kp / 8ASiSl f87Pqr / 5c9P / APYqn / 0okpX / ADs + qv8A5c9P / wDYqn / 0okpX / Oz6q / 8Alz0 // wBiqf8A0okpX / Oz 6q / + XPT / AP2Kp / 8ASiSlf87Pqr / 5c9P / APYqn / 0okpX / ADs + qv8A5c9P / wDYqn / 0okpX / Oz6q / 8A lz0 // wBiqf8A0okpX / Oz6q / + XPT / AP2Kp / 8ASiSlf87Pqr / 5c9P / APYqn / 0okpX / ADs + qv8A5c9P / wDYqn / 0okpX / Oz6q / 8Alz0 // wBiqf8A0okpX / Oz6q / + XPT / AP2Kp / 8ASiSlf87Pqr / 5c9P / APYq n / 0okpX / ADs + qv8A5c9P / wDYqn / 0okpX / Oz6q / 8Alz0 // wBiqf8A0okpX / Oz6q / + XPT / AP2Kp / 8A SiSlf87Pqr / 5c9P / APYqn / 0okpX / ADs + qv8A5c9P / wDYqn / 0okpX / Oz6q / 8Alz0 // wBiqf8A0okp zcj6z / Vt31kwLx1bBNTMHNY + wZNW1rn24Ba0u3xJDHR8Ckp // 9k =
  • 1uuid: 160c0293-626e-2742-a094-63b73265186badobe: docid: indd: 22e0bf0b-98cd-11dc-9b5e-d79d4f4c7dfbproof: pdf9b43cadc-98ca-11dc-9b5decdf4docb5dcd7dcd7dcd7dcd7dcd7dcd7dc9b5dcd7dcd7dcd4dc9b5dcd7dcd7dc9b5dcd7ddcd4 СсылкаStream72.0072.00Inchesuuid: 6EB67748458911DCBE71B70109E8AFFBuuid: 2FDB23CA458911DCBE71B70109E8AFFB application / pdf Adobe PDF Library 8.0 Ложь конечный поток эндобдж 2 0 obj > эндобдж 7 0 объект > / Font> / ProcSet [/ PDF / Text / ImageB] / Свойства >>> / ExtGState >>> / Type / Page >> эндобдж 57 0 объект > / ProcSet [/ PDF / Text] / ExtGState >>> / Тип / Страница >> эндобдж 198 0 объект > / ProcSet [/ PDF / Text] / ExtGState >>> / Тип / Страница >> эндобдж 234 0 объект > / ProcSet [/ PDF / Text] / ExtGState >>> / Тип / Страница >> эндобдж 264 0 объект > / ProcSet [/ PDF / Text] / ExtGState >>> / Тип / Страница >> эндобдж 307 0 объект > / ProcSet [/ PDF / Text] / ExtGState >>> / Тип / Страница >> эндобдж 376 0 объект > / ProcSet [/ PDF / Text] / ExtGState >>> / Тип / Страница >> эндобдж 397 0 объект > / ProcSet [/ PDF / Text] / ExtGState >>> / Тип / Страница >> эндобдж 421 0 объект > поток HWms۸ | [

    Разница между запорными и дроссельными клапанами

    Разница между запорными и дроссельными клапанами

    Проходной клапан , также называемый запорным клапаном, является одним из наиболее широко используемых клапанов.Он популярен благодаря своей прочности, простоте изготовления, удобству обслуживания и низкому трению между уплотнительными поверхностями при открытии и закрытии. Он подходит не только для среднего и низкого давления, но также подходит для высокого давления.

    Принцип работы шарового клапана состоит в том, чтобы уплотняющие поверхности диска и клапана располагались близко друг к другу и предотвращали протекание среды, в зависимости от давления рычага клапана.

    Запорные клапаны допускают только односторонний поток среды и имеют направленность во время установки.Межфланцевые и сквозные размеры шарового клапана больше, чем у задвижки, а гидравлическое сопротивление велико, поэтому надежность уплотнения клапана невысока при длительной эксплуатации. . Дроссельный клапан — это клапан, который регулирует поток жидкости путем изменения поперечного сечения дроссельной заслонки или длины дроссельной заслонки. Односторонний дроссельный клапан можно комбинировать, подключив дроссельную заслонку и дроссельную заслонку параллельно. Дроссельный клапан и односторонний дроссельный клапан представляют собой простые регулирующие клапаны.В гидравлической системе насоса постоянного рабочего объема дроссельный клапан и перепускной клапан взаимодействуют для образования трех систем регулирования скорости дроссельной заслонки, а именно, линейной системы регулирования скорости дроссельной заслонки, системы регулирования скорости дроссельной заслонки обратной линии и системы регулирования скорости дроссельной заслонки байпаса.

    Дроссельный клапан не имеет функции отрицательной обратной связи по расходу, которая не может компенсировать нестабильность скорости, вызванную изменением нагрузки. Как правило, он используется только в тех случаях, когда нагрузки не сильно меняются или стабильность скорости невысока.Нет никакой разницы во внешнем виде дроссельных заслонок и запорных клапанов , за исключением формы тарелок клапанов. Большинство дисков дроссельных заслонок имеют коническую форму, что позволяет регулировать расход и давление, изменяя поперечное сечение прохода. Дроссельная заслонка используется для снижения среднего давления, когда перепад давления очень велик.

    Преимущества управления дроссельной заслонкой и сбросом вакуума | Digivac

    Преимущества управления дроссельной заслонкой и сбросом вакуума

    Наиболее часто используемые вакуумные насосы работают с одной скоростью.Следовательно, насос всегда стремится к максимально возможному уровню контроля вакуума, при котором они работают оптимально. Тот факт, что это идеальное место для вашего вакуумного насоса, не означает, что это лучший уровень вакуума для вашего процесса.

    Вакуумные технологии применяются в широком диапазоне вакуума от сверхвысокого вакуума до атмосферы. Чаще всего для промышленной обработки вакуума пользователи в идеале ищут уровень вакуума, отличный от предельного давления насоса; следовательно, необходим регулятор вакуума.Двумя общими методами контроля и поддержания приемлемого уровня вакуума являются регулирование дроссельной заслонки или дополнительное регулирование впуска газа с помощью спускного клапана.

    Контроль вакуума дроссельной заслонки

    Думайте о регулировке вакуума в дроссельной заслонке как об использовании педали газа для изменения скорости двигателя вашего автомобиля. В вакуумной системе этот тип контроля вакуума достигается путем установки дроссельного клапана, который работает путем дросселирования давления между вакуумным насосом и технологическим процессом, чтобы контролировать уровень вакуума.Иногда использование дроссельной заслонки называют регулированием ниже по потоку.

    При использовании дроссельного клапана для регулирования уровня вакуума клапан является ограничением между двумя частями оборудования. Это создает перепад давления между ними, тем самым позволяя процессу работать при заданном давлении, в то время как давление в другой зоне изменяется в зависимости от нагрузки. Выбор клапана имеет решающее значение, если этот тип управления должен быть практичным. Этот тип контроля вакуума может использоваться в широком диапазоне давления вакуума.

    Ищете простой вариант для контроля вакуума дроссельной заслонки?

    Модель 450 — это автономный блок контроля уровня вакуума для поддержания давления от 2 до 760 Торр. Он работает в сочетании с прецизионным изолированным датчиком и пропорциональным электромагнитным клапаном для измерения и контроля вакуума. Кроме того, у него есть спускной клапан, который позволяет контролировать выпуск атмосферного воздуха или газа, поставляемого заказчиком. Контроллер в основном использует контроль вакуума дроссельной заслонки, но использует контроль вакуума стравливания для поддержания заданного значения по мере необходимости.

    Модель 450 постоянно контролирует давление в системе и регулирует диафрагму клапана для поддержания желаемого целевого давления даже в сосудах с динамическими газовыми нагрузками или изменяющимися уставками.

    Применения: Идеально подходит для высотного моделирования, дистилляции, исследования композитов и промышленных вакуумных процессов, где повторяемость может быть преобразована в лучшие эксперименты или выход продукта.

    STRATAVAC с использованием контроля вакуума дроссельной заслонки — DIGIVAC предлагает комплект STRATAVAC для регулирования вакуума дроссельной заслонки. Этот комплект поставляется с дроссельным клапаном сильфонного типа, который работает путем дросселирования давления между вакуумным насосом и технологическим процессом, чтобы контролировать уровень вакуума.

    Преимущества клапана сильфонного или плунжерного типа для управления дроссельной заслонкой: сам клапан работает медленнее, но имеет большее отверстие, поэтому вы получаете лучшую пропускную способность с полным отверстием KF25 1 ″. Ищете быстродействующий клапан с лучшим контролем? Тогда вам может понадобиться регулятор дроссельной заслонки STRATAVAC с плунжерным клапаном с отверстием 1/8 дюйма.

    Применения — короткопроходная дистилляция, вакуумные печи, экстракция, вакуумные печи, вакуумная упаковка в мешки / композиты, роторное испарение

    Контроль вакуума стравливания С другой стороны, регулятор вакуума стравливания

    идеально подходит для более короткого диапазона вакуума (от 1 x 10-4 Торр до 10 Торр).Bleed Vacuum Control работает по принципу введения искусственной нагрузки в систему. Искусственная нагрузка может быть воздухом, азотом, аргоном, паром или другим газом. Самый надежный метод — стравливание инертным газом. Важно использовать неконденсируемый пар, а не конденсируемый пар, такой как пар, поскольку этот тип искусственной нагрузки будет конденсироваться в насосе. Обычно контроллер массового расхода используется в процессах управления стравливающим вакуумом.

    Сохраняя простоту

    DIGIVAC предлагает простой способ управления сбросом вакуума.Выпускной клапан VacStable может поддерживать давление от 10 милли Торр до 10 Торр и имеет привлекательную цену по сравнению с контроллерами массового расхода.

    Этот контроллер уровня вакуума работает по принципу регулирования выпуска из вакуумной емкости в атмосферу, во многом так же, как и во многих сублимационных сушилках. Его можно использовать в паре с нашим STRATAVAC для измерения и поддержания давления вакуума.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *