Меню Закрыть

Принцип работы аккумуляторной батареи: Устройство и принцип работы автомобильного аккумулятора | Полезные статьи

Содержание

Тяговые батареи для электропогрузчика Jungheinrich

Без эффективных тяговых батарей для для электропогрузчика Jungheinrich EFG 215 и другого современного складского оборудования невозможно перемещать в помещении грузы, которые не могут быть подняты человеком без использования навесного оборудования и механизмов. Электродвигатель требует надежного источника питания с достаточной мощностью для работы в режиме переключения.
Поэтому, чтобы обеспечить непрерывность процесса и избежать дорогостоящих простоев, необходимо не только бережно относиться к тяговым батареям для вилочных погрузчиков и другого оборудования, но и иметь (по возможности) запасные батареи.

Компанией АКБ 48 В представлены тяговые аккумуляторные батареи для складской техники Jungheinrich. Основное направление деятельности компании – это продажа тяговых аккумуляторных батарей 24 вольта для складской техники (вилочных погрузчик, штабелеров, ричтраков) Komatsu.

Они обеспечивают эффективный и экологически чистый источник энергии, что очень важно для операций с чувствительными товарами и грузами – будь то в пищевой или фармацевтической промышленности или на складах, где хранятся легковоспламеняющиеся и скоропортящиеся материалы, которые могут быть загрязнены дизельными выхлопами.

В прошлом использовались в основном щелочные тяговые батареи, срок службы которых составлял всего 500 зарядов. Однако сегодня кислотные тяговые батареи стали повсеместными и используются в большинстве современного зарубежного и отечественного складского оборудования. Они не только долговечнее и надежнее, но и поддаются модификации: увеличению емкости путем добавления более густого электролита.

Тяговые батареи для вилочных погрузчиков от АКБ 48 В это:

  • Высокая прочность.
  • Средний срок службы современной тяговой батареи составляет от 1000 до 1500 циклов заряда и разряда.
  • Отличная надежность.
  • Купить тяговый аккумулятор в АКБ 48 В означает получить аккумулятор от авторитетного и надежного производителя, использующего только высококачественные материалы.
  • Простота и удобство эксплуатации.
  • Ремонт тяговой батареи может выполнить даже неквалифицированный специалист, что снижает затраты на привлечение дополнительного персонала.
  • Ремонтопригодность.
  • Повреждение определенных частей батареи не приводит к ее немедленному выводу из эксплуатации. Тяговые батареи можно и нужно ремонтировать при необходимости!

( Пока оценок нет )

Понравилась статья? Поделиться с друзьями:

Строение и принцип работы аккумуляторной батареи

Аккумуляторная батарея служит для выработки дополнительного тока, в те периоды, когда двигатель работает слабо (на холостых оборотах), или же совсем не работает. Батарея представляет собой последовательное соединение одинаковых аккумуляторов. Суть работы такого устройства – превращение электрической энергии в химическую, а затем обратный процесс. Именно так аккумулятор заряжается и разряжается.

Принцип работы аккумулятора следующий (приведен наиболее простой пример):

1. В устойчивую к воздействию кислоты емкость помещают электролит – жидкость, способную проводить ток.

2. В электролит погружают 2 пластины (в свинцовом аккумуляторе, например, свинцовые).

3. При подведении постоянного тока, пластина подключенная к плюсу покрывается слоем перекиси свинца, а подключенная к минусу – покрывается слоем металлического свинца. В результате этих процессов происходит накопление химической энергии, которая впоследствии преобразуется в электрическую (то есть происходит разрядка).

Строение аккумуляторной батареи следующее:

1. Ее основа – разделенный на секции бак, каждый отсек которого предназначен для одного аккумулятора. Бак устойчив к воздействию кислоты.

2. В каждую секцию погружаются 2 заряженные пластины. Вывод контактов с пластин осуществляется на внешние клеммы корпуса батареи.

3. Электролит должен иметь одинаковую плотность и высоту наполнения по всем камерам бака. С этой целью пластины в секциях разделены перегородками, которые позволяют предотвратить замыкание, а также способствуют беспрепятственному проникновению электролита.

4. Крышка бака оснащена отверстиями, через которые происходит подача в секции электролита.

5. Пробки, которыми затыкаются отверстия, не герметичны. Это сделано для того, чтобы они пропускали наружу газ, который образуется в результате химических реакций, проходящих в секциях аккумуляторной батареи. Таким образом происходит газообмен между аккумуляторной батареей и внешней средой.

Не допускайте сильной разрядки аккумулятора (или перезарядки), это может привести к тому что свинцовые пластины осыпятся. Покупать автомобильный аккумулятор лучше в проверенных автомагазинах или через интернет у официальных представителей, так будет меньше вероятность что вам подсунут подделку. Теперь вам известно представление о строение и правила работы аккумуляторной батареи.

24.05.2015

1.1 Условия работы аккумуляторной батареи на электропоезде. Проектирование участка ТР-2 мотор-вагонного депо

Похожие главы из других работ:

Горизонтальный шламовый насос

1.5 .Предельные условия работы

Можно указать некоторые конструкции сальников, которые могут эффективно использоваться в максимально тяжелых условиях без значительной переделки насоса…

Изготовления чашки дифференциала левая автомобиля ЗИЛ 5301

1.1 Условия работы детали

Чашка дифференциала левая автомобиля ЗИЛ 5301 — корпусная деталь, входящая в состав дифференциала заднего моста. Выполняет функции буфера, предотвращающие проскальзывание колес автомобиля при повороте…

Модернизация привода сталкивателя блюмов

4.15 Условия работы

Температура наружного воздуха: Минимальная рабочая температура = -10 °С, максимальная рабочая температура = 50 °С…

Приводы путевых машин

2.2.1 Условия работы СУ

При разработке СУ необходимо обеспечить: — последовательность начала и окончания работы механизмов: выдвижение — опускание — установка в рабочее положение — включение/выключение РО — выдвижение плит из под шпал — подъем — перевод в транспортное…

Проектирование маршрутного технологического процесса сборки изделия

1.2 Служебное назначение изделия, принцип работы узла и условия обеспечения нормальной работы

Механический клапан предназначен для автоматических установок, распыляющих смазочно-охлаждающие жидкости. Принцип работы. Клапан состоит из корпуса, разделенного на две полости, в одну из которых подается сжатый воздух…

Проектирование предварительно напряженной панели перекрытия

1.3 Условия работы

Сборный железобетонный резервуар можно применять на всей территории России, в районах с температурой наружного воздуха не ниже минус 40°С и расчетной сейсмичностью не выше 7 баллов. Строительство возможно на площадках, как с сухими грунтами…

Проектирование участка ТР-2 мотор-вагонного депо

1.2 Основные неисправности аккумуляторной батареи электропоезда, их причина и способы предупреждения

При правильной эксплуатации и тщательном уходе щелочные аккумуляторы работают длительное время без снижения емкости. Чаще всего неисправность щелочных аккумуляторов связана с потерей емкости…

Проектирование участка ТР-2 мотор-вагонного депо

1.3 Общие требования к объему работ по ремонту аккумуляторной батареи 42НК-125

Согласно правилам ремонта ЭПС текущий ремонт ТР-2 аккумуляторной батареи 42НК-125 выполняется в следующей последовательности и с выполнением соответствующих правил и требований: — аккумуляторные батареи снять с электровоза для ремонта; -…

Проектирование участка ТР-2 мотор-вагонного депо

1.4 Ведомость объема работ по ремонту деталей аккумуляторной батареи

Объем работ по ремонту деталей аккумуляторной батареи представлен в таблице 2…

Проектирование участка ТР-2 мотор-вагонного депо

1.7 Организация рабочего места и техника безопасности при ремонте аккумуляторной батареи

В настоящее время все виды текущего ремонта локомотивов производятся в депо. Для этого в депо организованы соответствующие отделения. Помещение для приготовления электролитов должно состоять из двух самостоятельных…

Разработка технологического процесса детали «Шатун»

1.2 Условия работы

При работе шатуны подвержены действию значительных знакопеременных рабочих нагрузок и сил инерции. Для этого шатун должен обладать достаточной прочностью и жесткостью при наименьшей возможной массе…

Схема управления лебёдкой левого зонда

2. УСЛОВИЯ РАБОТЫ УСТАНОВКИ

В системе загрузки доменной печи большое количество механизмов связано между собой условиями технологического процесса. Автоматическая система загрузки должна обеспечивать работу этих механизмов в строго определенной последовательности…

Технология изготовления сварного узла строительной фермы

1.2 Условия работы конструкции

стропильный ферма сварочный электродуговой Нагрузка на ферму передается, как правило, через узлы, благодаря чему уголки фермы подвергаются только осевым воздействиям, что позволяет более полно использовать материал…

Технология струйной цементации грунтов

3.1 Назначение и условия его работы

Гидрофицированный буровой станок для вращательного и ударно-вращательного бурения предназначен для проведения вертикальных и наклонных скважин, при усилении и реконструкции фундаментов зданий, сооружение свайных фундаментов, опор и др…

Узел компрессора ТРДД для пассажирского самолета

2.2 Условия работы лопаток

При работе газотурбинного двигателя на рабочие лопатки действуют статические, динамические и температурные нагрузки, вызывая сложную картину напряжений. Расчет на прочность пера лопатки выполняем…

Принцип работы аккумуляторной батареи (АКБ)

Назначение, устройство и принцип работы аккумулятора

 

Назначение автомобильной аккумуляторной батареи понятно каждому мало-мальски сведущему в технических вопросах автолюбителю. С первой ее функцией — обеспечением запуска двигателя — мы сталкиваемся каждый день. Есть и вторая — реже применяемая, но от того не менее значимая — использование в качестве аварийного источника питания при выходе из строя генератора. Кроме того, на современных автомобилях с электроникой на борту аккумулятор выполняет роль сглаживателя пульсаций напряжения, выдаваемого генератором.

 

Все стартерные батареи, выпускаемые в настоящее время для автомобилей, являются свинцово-кислотными. В основу их работы заложен известный еще с 1858 г., и по сей день остающийся практически неизменным принцип двойной сульфатации.

 

Любая автомобильная батарея представляет из себя корпус — контейнер, разделенный на шесть изолированных ячеек — банок.

 

Каждая банка является законченным источником питания, напряжением порядка 2.1 В. В банке находится набор положительных и отрицательных пластин, отделенных друг от друга сепараторами. Как известно из школьного курса физики, две разнозаряженные пластины уже сами по себе являются источником постоянного напряжения, параллельное же их соединение увеличивает ток.

 

Последовательное соединение шести банок и дает батарею с напряжением порядка 12.6 В. Любая из пластин, как положительная, так и отрицательная, есть не что иное, как свинцовая решетка, заполненная активной массой. Активная масса имеет пористую структуру с тем, чтобы электролит заходил в как можно более глубокие слои и охватывал больший ее объем. Роль активной массы в отрицательных пластинах выполняет свинец, в положительных — перекись свинца.

 

Вес залитой АКБ ёмкостью 55 Ач составляет около 18 кг. Эта цифра складывается из массы электролита — 5кг (что соответствует 5,5 л), массы свинца и всех его соединений — 11 кг, а также 1,5 кг, приходящегося на долю бака и сепараторов.

 

Долговечность работы АКБ.

Средний срок службы современных АКБ при условии соблюдения правил эксплуатации составляет 4-5 лет.

 

Наиболее губительными для батарей являются глубокие разряды. Оставленные на ночь включенными световые приборы, либо другие потребители способны разрядить ее до плотности 1.12 — 1.15 г/см3, т.е. практически до воды, что приводит к главной беде аккумуляторов — сульфатации свинцовых пластин.

 

Пластины покрываются белым налетом, который постепенно кристаллизуется, после чего батарею практически невозможно восстановить. Отсюда вытекает главный вывод — необходимо постоянно следить за состоянием батареи, периодически замерять плотность электролита. Особенно актуально это в зимнее время. Следует отметить, что сульфатация в определенных пределах — явление нормальное и присутствует всегда.

 

Если же разряжать батарею длительное время, не давая ей «подпитки», то падение плотности ниже критического значения неизбежно приводит к образованию кристаллов сульфата свинца, не вступающих в реакцию ни при каких обстоятельствах. А это означает, что начался необратимый процесс сульфатации.

 

Опасен для батареи и перезаряд. Это происходит при неисправном регуляторе напряжения. При этом электролит начинает «кипеть» — происходит разложение воды на кислород и водород и понижение уровня электролита. Вот почему необходимо следить за зарядным напряжением. Естественно, это не составляет труда, если на панели приборов присутствует вольтметр. Если его нет?

 

В этом случае подключите тестер (в режиме вольтметра) между «+» и «массой» аккумуляторной батареи. Нормальный зарядный режим батареи обеспечивается в диапазоне 14,2±0.7В. В более древних авто напряжение в норме было порядка 14 В, в современных ближе к верхней границе 14,5…14,8 В. Если напряжение меньше, то стоит проверить натяжение ремня, надежность контактных соединений цепей системы электроснабжения. Если же это не помогает — неисправность нужно искать в регуляторе напряжения, а это уже другая история и не без участия электрика. Также вина ложится на регулятор, если напряжение превышает 14.6…15 В.

 

Рекомендации по эксплуатации

 

Оптимальным способом зарядки батареи, является ее заряд от бортовой сети автомобиля (естественно, при условии исправности последней).

 

При данном способе происходит постоянное перемешивание электролита и наиболее полное его проникновение во внутренние слои активной массы. Однако было бы ошибочным полагать, что заряд батареи начинается сразу же после пуска двигателя и продолжается все время, пока двигатель в работе. Исследования показывают, что батарея принимает заряд в сильной зависимости от прогрева электролита.

 

Именно этим и опасен довольно распространенный способ эксплуатации транспортных средств. Холодный запуск зимой с получасовым движением до работы, и затем редкие непродолжительные поездки на протяжении рабочего дня не дают прогреться электролиту и, следовательно, зарядиться Вашей батарее. Тем самым разряженность АКБ увеличивается изо дня в день и в итоге может привести к печальному результату.

 

Физические процессы, происходящие при пуске двигателя, отличаются от процессов при разряде батареи потребителями. При пуске участвует не весь объем активной массы и электролита, а лишь та ее часть, которая находится на поверхности пластин и соприкасающийся с поверхностью пластин электролит. Поэтому, после неудачной попытки запустить двигатель, следует подождать некоторое время для того, чтобы электролит перемешался, плотность его выровнялась, он проник в поры активной массы. Нормальный запуск двигателя при однократном вращении стартера в течении 10с забирает ёмкость 300А х 10с = 3000 Ас = 0.83 Ач, что составляет около 1.5% от ёмкости аккумулятора.

 

При медленном же разряде участвуют не только поверхностные слои активной массы, но и глубинные, потому и разряд происходит более глубокий. Однако это не означает, что стартерные режимы не так губительны для батареи — стартером точно также можно разрядить батарею до критической величины.

 

Каковы же признаки выхода из строя батареи? Батарея не заряжается, плотность низкая и не повышается в процессе заряда. Большой саморазряд — батарея зарядилась, но не держит заряд. Можно попытаться потренировать батарею, однако если произошло осыпание активной массы пластин, либо кристаллизация сульфата свинца, то это уже не исправить.

 

Вообще, освоить способ оценки степени возможной разрядки батареи от каких-либо действий (в том числе и осознанных) не составит большого труда. Необходимо усвоить несколько истин и запомнить несколько цифр.

 

1. Батарея начинает более-менее принимать заряд лишь только после прогрева электролита до положительной температуры (как вы понимаете, при температуре воздуха -20° С температура электролита в батарее хранящегося на свежем воздухе автомобиля будет примерно такой же).

 

2. Коэффициент полезного действия процесса зарядки составляет примерно 50%.

 

3. Каждый автомобильный генератор характеризуется следующими показателями:

ток отдачи генератора при работе двигателя на холостом ходу.

ток отдачи генератора при работе двигателя на номинальных оборотах.

Для многих автомобилей эти цифры имеют следующие значения:

 

Таблица 1

 

Ток отдачи на холостом ходуОт 16 до 35 A
Ток отдачи на номинальных оборотах

От 42 до 85 А

Очень важна величина потребления энергии автомобильными приборами:

Таблица 2

Потребитель

Ток, А

Зажигание2
Габариты4
Ближний свет9
Дальний свет10
Обогрев заднего стекла10-11
Вентилятор отопителя (печки):
  • 1-я скорость
  • 2-я скорость
5-7
10-11
Cтеклоочистители3-5
Магнитола5
Итого:38-48

Таким образом, оставленные включенными габариты за три часа «съедят» 4А х 3ч= 12 Ач ёмкости батареи, что соответствует разряду приблизительно на 20%. Это не страшно для одного раза. Однако повторив это ещё раз, Вы уже рискуете не завести свою машину, особенно, если дело происходит зимой, т.к. разряд составит порядка 40% (тем более, что к тому же зимой батареи, как правило, эксплуатируются более разряженными).

 

Аналогично посчитаем, что Вы имеете при продолжительной работе двигателя на холостом ходу. Как уже показано выше, ток отдачи генератора автомобиля на холостом ходу, в среднем, составляет 24А. Вычитаем из этой величины 2А, необходимые для обслуживания системы зажигания. Остается 22А. Используя таблицу 2, нетрудно посчитать, чем стоит пожертвовать с тем, чтобы хоть немного осталось на зарядку АКБ.

 

Для владельцев иномарок с автоматической коробкой передач картина ещё более печальная. Обычно, стоя в пробке или на светофоре, мы не переключаемся на нейтральную передачу, а жмём ногой на тормоз. Это понижает обороты двигателя от стандартных 800-900 об./мин. до 600-700 об./мин., что, соответственно понизит ток генератора, а стоп-сигналы добавят ещё пару ампер потребления тока. Да и обогрев заднего стекла у немцев, например, существенно мощнее, чем у отечественных автомобилей.

 

Следует знать, что зимние условия эксплуатации автомобиля в принципе очень тяжелы для аккумуляторной батареи. Наверняка будут полезны следующие данные. Результаты исследований говорят о том, что при эксплуатации автомобиля в обычных и в то же время очень тяжелых, для АКБ, условиях (испытания в режиме эксплуатации «город-зима-ночь») аккумулятор получает порядка 1Ач в час. Следовательно, если, как в примере, приведенном выше, при запуске двигателя (зимой, при работе стартера 10 сек) расходуется 0,83 Ач энергии аккумулятора, то для восполнения этой энергии двигатель должен проработать, хотя бы 0,83*1=0,83 час=50 минут. Если же это время движения меньше, а плюс расход на дополнительные приборы отопления, обогрева, освещения и музыкального сопровождения, то получается, что Ваш АКБ хронически недозаряжается, чем неизбежно идёт к своей преждевременной кончине и обрекает Вас на риск остаться в одно прекрасное, морозное утро не у дел!!!

 

Терминология

 

Аккумуляторная батарея — один из основных элементов электрооборудования автомобиля, поскольку она накапливает и хранит электроэнергию, обеспечивает запуск двигателя в различных климатических условиях, а также питает электроприборы при неработающем двигателе.

 

Автомобильные свинцово-кислотные 12-вольтовые АКБ состоят из 6-ти последовательно соединенных элементов (банок), объединенных в общий корпус. Из каждой банки осуществляется газоотвод, конструкции могут существенно отличаться.

 

Электролит представляет собой раствор серной кислоты в дистиллированной воде (для средней полосы России плотностью 1.27-1.28 г/см3при t=+20°С). Кипение электролита — бурное выделение газа при электролитическом разложении воды с выделением кислорода и водорода. Это происходит во время заряда батареи.

 

Саморазряд — самопроизвольное снижение ёмкости АКБ при бездействии. Скорость саморазряда зависит от материала пластин, химических примесей в электролите, его плотности, от чистоты верхней части корпуса батареи и продолжительности ее эксплуатации.

 

Напряжение полностью заряженной аккумуляторной батареи без нагрузки (ЭДС — электродвижущая сила) должно находиться в пределах 12.6-12.9 В. Напряжение в бортовой сети автомобиля при работающем двигателе несколько выше, чем на клеммах АКБ, и должно находиться в пределах 13,8-14,8 В (0,2 В от крайних значений). Значение напряжения ниже 13.8 В ведет к недозаряду батареи, а выше 14.4В — к перезаряду, что пагубно сказывается на ее сроке службы.

 

Полярность аккумуляторной батареи — термин, определяющий расположение токосъемных выводов на ее корпусе. На зарубежных батареях полярность может быть прямой или обратной, т. е. ориентировка положительного и отрицательного выводов относительно корпуса может быть различной. По российскому стандарту (если смотреть со стороны выводов) отрицательный (-) должен располагаться справа, положительный (+) слева.

 

Емкость батареи — способность батареи принимать и отдавать энергию — измеряется в ампер-часах (Ач). Для оценки ёмкости батареи принята методика 20-ти часового разряда током 0.05С20 (т.е. током, равным 5% от номинальной ёмкости). Т.е., если ёмкость батареи 55Ач, то разряжая ее током 2.75 А, она полностью разрядится за 20 часов. Аналогично для батарей ёмкостью 60Ач полный 20-ти часовой разряд произойдет при чуть большем токе разряда — 3А.

 

Данная характеристика определяет возможность питать потребителей в экстремальной ситуации (при отказе генератора). Характеризуется объемом активной массы.

 

Значение тока холодного старта при -18°С (по DIN) — Величина тока, которую батарея способна отдать при пуске двигателя при температуре -18°С. Наиболее важная характеристика, напрямую сказывающаяся на пуске двигателя. Ведь при -20°С ток, потребляемый стартером, составляет порядка 300А. (Для пуска в летнее время горячего двигателя этот же показатель равен 100-120А.) Значение стартового тока определяется конструкцией батареи, пластин, сепараторов. Чем ниже внутреннее сопротивление батареи, тем выше стартовый ток, тем надежнее пуск двигателя при низких температурах.

 

Резервная ёмкость — время, в течении которого батарея сможет обеспечить работу потребителей в аварийном режиме. Величина резервной ёмкости, выраженная в минутах, последнее время все чаще проставляется изготовителями батарей после значения тока холодного старта.

 

Корпус современных АКБ — изготавливается из пластмассы, в большинстве случаев полупрозрачной, позволяющей контролировать уровень электролита. Необслуживаемые батареи.

 

Сразу следует оговориться, что этот термин не должен пониматься буквально и восприниматься как руководство к бездействию. Это название говорит об улучшенных потребительских свойствах батареи. Необслуживаемые АКБ требуют долива воды не чаще одного раза в год при условии использования их на автомобилях с исправным электрооборудованием и среднегодовым пробегом 15-20 тыс. км. Встречаются конструкции, исключающие всякое вмешательство на всем протяжении срока службы, но они особенно критичны к состоянию автомобильного электрооборудования.

 

Большинство необслуживаемых батарей выпускаются заводами-изготовителями, залитыми электролитом. Так как эти батареи имеют значительно меньший саморазряд, они могут храниться от 6 месяцев до 1 года без подзаряда. Саморазряд новых необслуживаемых батарей за 12 месяцев может составить до 50% от номинальной ёмкости.

 

Выбор и покупка АКБ

 

Убедитесь, что выбираемая батарея соответствует конструктивным особенностям вашего автомобиля (ёмкость, место установки, способ крепления, полярность, форма и размер токосъемных выводов). Специализированные торговые фирмы имеют каталоги всего ассортимента, в которых систематизирована информация о модификациях и технических характеристиках.

 

Нецелесообразно на автомобиль с устаревшей системой электрооборудования устанавливать батарею, исключающую долив воды. Это приведет к сокращению ее срока службы или отказу. Емкость батареи не должна существенно отличаться от указанной заводом-изготовителем автомобиля. Несоблюдение этого условия приводит к резкому сокращению службы как батареи так и стартера.

 

Очень неплохо знать рекомендуемую величину пускового тока стартера для Вашего автомобиля. На многих автомобилях устанавливаются стартеры с редуктором. Это позволяет существенно уменьшить величину пускового тока в первые моменты запуска, особенно в сильные морозы, а значит существенно продлить жизнь Вашего аккумулятора.

 

Внимательно изучите текст гарантийного талона. Обратите особое внимание на те разделы, где перечислены: случаи, исключающие гарантийное обслуживание; адреса гарантийных мастерских; условия эксплуатации.

 

Маркировка аккумулятора должна иметь ссылку на стандарт (DIN, SAE, En или другие). В маркировке по стандарту SAE не указывается значение ёмкости в ампер-часах (Ач). Указание ёмкости в Ач в стандарте SAE – косвенный признак подделки. Наиболее подвержены подделкам дорогие аккумуляторы известных фирм-изготовителей, поэтому приобретать их лучше в торговых фирмах, заслуживающих доверие.

 

Большинство фирм-изготовителей кодирует дату выпуска АКБ. Современные необслуживаемые батареи допускают достаточно длительное хранение без существенной потери своих потребительских свойств, поэтому дата изготовления менее актуальна. Предпочтительнее приобретать залитый качественным заводским электролитом аккумулятор. Он готов к работе, легко поддается проверке. Не залитый сухозаряженный аккумулятор требует дополнительного времени и затрат на подготовку к эксплуатации.

 

Не спешите отдать деньги! Вы вправе требовать проверки аккумулятора. Первым делом сдерите с него защитную упаковочную пленку, какой бы красивой она ни была, и убедитесь, что корпус не поврежден – такое случается довольно часто. Затем попросите продавца измерить плотность электролита – она не должна быть ниже номинальной более чем на 0,02 г/см3 и одинаковой во всех банках, что соответствует примерно 80-процентной заряженности батареи. Последнюю проверку следует провести с нагрузочной вилкой – ее вольтметр должен показать 12.5–12.9 В при отключенной нагрузке, а при включенной – не опускаться в течение 10 секунд ниже 11В.

 

В случае отклонения от этих значений, батарея может оказаться частично или полностью непригодной к эксплуатации. Если вам отказывают в проверке аккумулятора, не могут подтвердить качество товара сертификатом, гарантийным талоном, то лучше отказаться от покупки.

 

Установка АКБ

 

Перед установкой батареи обязательно полностью удалите с нее полиэтиленовую пленку. Газоотводные отверстия должны быть открытыми. Обратите внимание на правильность подключения. Клеммы АКБ рекомендуется зачистить и после закрепления смазать вазелином. Это делается для предохранения контактов от попадания влаги и окисления места контактов. Особенно это касается силовых проводов с медными (а не свинцовыми) наконечниками.

 

Очень важно уделить внимание проводам. Клеммы необходимо зачистить не только со стороны аккумулятора, но и с другой стороны. Место, куда крепится массовый провод (-) надо тоже тщательно зачистить от краски, масла и прочей грязи. Контакт затянуть туго. Это же касается клеммы на стартёре. Невнимание к проводам и контактам может очень сильно «выйти боком» зимой на морозе.

 

Обратите внимание, что на многих автомобилях батарея стоит довольно близко к выпускному коллектору. То есть летом ей будет довольно жарко, а это для батареи очень плохо! На «правильных» машинах предусмотрена термоизоляция АКБ от двигателя.

 

Рекомендации по эксплуатации и обслуживанию

Условия эксплуатации оказывают существенное влияние на срок службы аккумуляторной батареи. Частые запуски двигателя и поездки на короткие расстояния, неисправности электрооборудования (стартер, генератор, реле-регулятор), дополнительные потребители электроэнергии, несвоевременное обслуживание способны сильно сократить срок ее службы.

 

При продолжительном движении по трассе батарея может перезаряжаться (кипеть) — в городе с малыми пробегами и «пробками» она, как правило, разряжается (см. выше).

 

Генератор (при холостых оборотах двигателя) зимой не обеспечивает работу большинства штатных потребителей, не говоря о дополнительных. К включенным габаритным огням, ближнему свету фар, стоп-сигналам, указателям поворота, аудиоаппаратуре добавляются обогрев заднего стекла и вентилятор отопителя. Ежедневный недозаряд батареи постепенно уменьшает ее ёмкость, что в итоге приводит к невозможности запуска двигателя стартером.

 

Отказ аккумуляторной батареи может быть вызван и током утечки в электрооборудовании автомобиля. Это происходит, когда при отключении всех потребителей один или часть из них остается включенным в электрическую цепь (неисправны выключатель или реле). Виновником может быть и сигнализация. После глубокого разряда АКБ может не восстановить свою первоначальную номинальную ёмкость. Батарея не сможет нормально работать, если для запуска двигателя требуется продолжительное включение стартера (неисправны системы питания, зажигания).

 

Обслуживание АКБ в процессе эксплуатации сводится к проверке и приведению в соответствие с требованиями: уровня и плотности электролита; чистоты и надежности крепления электрических соединений батареи с корпусом автомобиля, параметров электрооборудования автомобиля. Необходимо также очищать и смазывать выводы и клеммы, содержать батарею в чистоте. Протирайте верхнюю поверхность водным раствором питьевой соды. Доведение плотности электролита до требуемой производится путем заряда батареи от стационарного зарядного устройства. Значение зарядного тока в амперах (А) не должно превышать 1/10 ёмкости батареи (упрощенно).

Продление жизни новой батарее

Коротко об этом сказать трудно. В первую очередь, следует залить электролит, точно соответствующий не только климатической зоне, но и сезону эксплуатации. Если батарея будет работать только в теплое время года, то плотность электролита может быть 1.20 г/см3, а если до -15°С — 1.24 г/см3 и т.д. Такая точность, безусловно, снизит скорость сульфатации пластин, следовательно, увеличит долговечность батареи.

 

На срок службы АКБ значительно влияет средняя степень заряженности, которая зависит от исправности реле-регулятора. Необходимо, чтобы эта величина поддерживалась не ниже 75%. справка:

Установлено, что отклонение регулируемого напряжения на 10…12% вверх или вниз от оптимального сокращает срок службы батареи в 2…2.5 раза.

 

Во-первых, отрегулируйте двигатель так, чтобы он легко заводился с пол оборота. Это предохранит АКБ от глубокого разряда. При пуске двигателя стартером через аккумуляторную батарею проходит ток в несколько сот Ампер, что не способствует ее долговечности. Поэтому, чем легче пуск двигателя, тем лучше для АКБ: она прослужит дольше.

 

Cправка:

Сокращение времени работы стартера вдвое при шести-восьми ежедневных пусках повышает срок службы аккумуляторной батареи приблизительно в 1.5 раза. Во-вторых, отрегулируйте при необходимости реле-регулятор, чтобы напряжение было в пределах 13.8…14.4В. Это одно из важнейших условий. В-третьих, никогда не позволяйте снизиться уровню электролита в банках ниже требуемого.

 

Cправка:

Падение (выкипание при высокой температуре воздуха) уровня дистиллированной воды может снизить срок службы батареи на 30%. Эти простые советы, продлят жизнь АКБ.

 

Особенности эксплуатации АКБ в зимний период

 

Первое! Проверить напряжение генератора при заведённом моторе, которое должно соответствовать 13.8…14.4В. Это питание АКБ, без которого ей не жить!!!

 

Второе! Обязательно провести ревизию всех силовых проводов, клемм и контактов. Клеммы зачистить мелкой шкуркой. Контакты на АКБ тоже зачистить и затянуть. Можно затем смазать литолом, чтобы к контактам не попадала влага.. С другой стороны силовых проводов так же провести ревизию контактов.

 

Третье! Замерим плотность электролита во всех банках без исключения. Норма 1.27-1.28 г/см3. У Вас далеко не так!? Значит, снимаем батарею и ставим на зарядку. Ни в коем случае не пытаемся повысить плотность электролита добавлением концентрированной кислоты, какая бы низкая не была его плотность. Желаемого же результата — повышения ёмкости батареи при этом не произойдет.

Прикуривание от другого автомобиля

Для российских автовладельцев нормальная ситуация, когда сосед просит «прикурить» его аккумулятор. Для этой нехитрой процедуры помимо автомобиля с заряженным аккумулятором, необходимы ещё и правильные провода. Те провода, что продаются на рынках имеют просто ужасное качество. Мало одного того, чтобы эти провода были медными и достаточно большого сечения. Необходимы очень качественные «крокодилы», обеспечивающие большую площадь контакта и большое усилие зажима, и необходим хороший контакт между проводом и «крокодилом». Не забываем, что по этим проводам у нас потечёт около 200 ампер!

 

Чтобы не навредить сложным электронным системам вашей собственной машины, эта, казалось бы, элементарная процедура требует соблюдения строгой последовательности действий.

Соедините красный кабель с клеммой (+) на заряженном аккумуляторе.

Соедините другой конец красного кабеля с клеммой (+) на «севшем» аккумуляторе.

Соедините черный кабель с клеммой (-) на заряженном аккумуляторе.

Соедините другой конец черного кабеля с чистой точкой заземления на блоке двигателя или на шасси, главное — подальше от аккумулятора, карбюратора, топливных шлангов и т.п., прикуриваемого авто. В момент подсоединения будьте готовы к небольшой искре.

Следите, чтобы оба кабеля не касались движущихся деталей.

Запустите автомобиль с заряженным аккумулятором и дайте ему поработать не менее одной минуты.

Попробуйте запустить автомобиль с «севшим» аккумулятором. Если двигатель не заведется, подождите несколько минут и повторите попытку. Если же заведется, дайте ему поработать несколько минут в таком положении.

Выключите автомобиль с заряженным аккумулятором.

При отсоединении кабеля следуйте описанной выше процедуре в обратной последовательности.

Совет от Eugenijus K.Eugenijus K. :

На машине, от которой прикуривают (источник) надо врубить печку (вентилятор) на полный ход — и зимой, и летом. Дело в том, что индуктивный (реактивный) характер сопротивления работающего электродвигателя практически полностью гасит тот самый бросок (фронт) напряжения, который на машинах с «звенящей» проводкой (Авдотья 100, Субару Легаси до 1996-го и многие другие) может убить бортовой компьютер.

 

Особенности эксплуатации АКБ в летний период

 

Не удивляйтесь, если однажды вам будет трудно или вообще не завести машину в жаркую погоду. Теплое время года — такое же испытание, как и холод. Тепло ускоряет химические процессы. Неисправности и дефекты электрической системы автомобиля или аккумулятора незамедлительно скажутся на состоянии батареи. Но, скорее всего, узнаете вы об этом в самый неподходящий момент. Например, ночью во время дождя, когда придется включить освещение, вентиляцию и стеклоочистители. Поэтому не расслабляйтесь. Лето — самый подходящий период для покупки нового аккумулятора.

 

Летом автомобилист не сразу заметит, что в аккумуляторе плотность электролита и его уровень в банках недостаточные. Но чем выше температура окружающей среды, тем активнее электрохимические процессы. В результате электролиза кислород вступает во взаимодействие с пластинами, а ставший свободным водород испаряется. Таким образом из электролита исчезает вода. Как только уровень раствора оказывается ниже уровня пластин, начинается сульфатация пластин (сульфат свинца растворяется в электролите, а затем оседает на поверхности пластин уже в виде крупных нерастворимых кристаллов и происходит изоляция пластин от электролита). Емкость батареи уменьшается. Электрохимические реакции останавливаются. Аккумулятор выходит из строя.

 

Имейте в виду, что во время длительного хранения аккумулятора происходит саморазряд (снижение ёмкости). Оставлять батарею в разряженном состоянии не рекомендуется: в этом случае вода испаряется и открываются пластины. А дальше все, как описано выше.

 

Саморазряд увеличивается от высокой температуры, грязи и электролита (воды) на крышке батареи. Еще одна причина возникновения паразитных токов — неодинаковая плотность электролита в разных банка

принцип работы аккумуляторной батарей и схема АКБ > Флэтора

Содержание

Прототип современного аккумулятора был изобретён в начале 19 века во Франции. С тех пор, где бы ни были сделаны аккумуляторные батареи (в Японии, России или Германии), все они используют один принцип действия аккумулятора. Он основан на протекании химической реакции, называемой двойной сульфатацией. В этой статье будут даны ответы на вопросы, как устроен и как работает аккумулятор.

Автомобильный аккумулятор

Типы аккумуляторов

Электротехническое оборудование, являющееся источником электричества, называют аккумулятором. В результате химических реакций освобождённая энергия преобразуется в электрический ток. АКБ прочно вошли во многие сферы деятельности человека. Например, без аккумуляторной батареи любой транспорт будет обездвижен.

На сегодня можно выделить 4 группы мобильных источников тока:

  1. Свинцово-кислотные.
  2. Литий-ионные.
  3. Никель-кадмиевые.
  4. Никель-железные.

Читателей больше интересуют те аккумуляторы, с которыми они сталкиваются в быту. Это акб, которые применяются для:

  • автомобилей;
  • шуруповёртов;
  • мобильных телефонов и ноутбуков;
  • пальчиковые акб.

Кислотный аккумулятор для автомобилей

Устройство аккумулятора для автомобиля состоит из следующих компонентов:

  1. Корпус сделан из кислотоупорного пластика.
  2. Сверху установлена крышка с заливочными отверстиями и двумя разнополюсными клеммами.
Схема строения АКБ
  1. Внутри контейнера находится 6 банок.
  2. В каждой банке – пакет из свинцовых пластин и пластинок из диоксида свинца. Между ними проложены диэлектрические сепараторные прокладки.
  3. Все банки залиты электролитом – водным раствором серной кислоты.
  4. Заливные отверстия имеют книзу форму конуса, в донышках которых сделан паз. Это нужно для визуального контроля уровня электролита.
  5. Последовательно соединённые свинцовыми дорожками группы пакетов (плюсовые и минусовые) выведены на клеммы аккумулятора.
  6. Отверстия в банках закрыты завинчивающими пробками с воздушными клапанами. В случае перегрузки пары кипящего электролита выбрасываются через них в атмосферу.

Принцип работы аккумулятора основан на том, что в результате взаимодействия электролита с катодными и анодными пластинами возникает электрический ток, который поступает на внешние полюсные выводы. В результате протекания электрохимической реакции плотность электролита падает, и вода начинает испаряться. На положительных свинцовых пластинах появляется слой сульфата свинца.

При подключении акб к зарядному прибору возобновляется процесс в обратном порядке: сульфат преобразуется обратно в свинец, и повышается плотность электролита.

Важно! Нужно регулярно проверять высоту поверхности электролита. Донышко конуса должно быть вровень с уровнем жидкости. Если оно сухое, то необходимо долить дистиллированную воду. В противном случае оголившиеся пластины внутри банки будут разрушаться, и АКБ выйдет из строя.

Щелочная аккумуляторная батарея

Принцип действия аккумулятора со щелочным электролитом ничем не отличается от работы свинцово-кислотной батареи. Различие заключается в том, что вместо раствора серной кислоты в батарею заливают раствор едкого кали. Кроме того, отрицательные пластинки сделаны из кадмия губчатой структуры с примесью железа. Анодные пластинки выполнены из никеля в смеси с чешуйчатым графитом. Установленные в банках пары пластинок параллельно соединены между собой.

Во время зарядки валентность никеля меняет своё значение с 2 до 8, и он становится гидратом окиси. Окиси кадмия и железа становятся металлами. Когда аккумулятор разряжается, процессы протекают в обратном порядке.

По сравнению с кислотными собратьями, щелочные источники электроэнергии устойчиво переносят нагрузки механического характера – тряску и удары. Испарение вредных газов происходит в незначительном количестве. Батареи легко переносят перезарядку.

К сведению. Единственным недостатком щелочного электрооборудования из-за применения дорогостоящих материалов является его высокая стоимость (в 4 раза дороже кислотных батарей).

Аккумулятор шуруповёрта

Мобильный шуруповёрт не связан кабелем с электросетью. Его питание осуществляется за счёт аккумуляторного блока, который вставляют в рукоятку электроинструмента. Компактное расположение акб снизу ручки позволяет легко и удобно пользоваться шуруповёртом.

Аккумуляторный блок шуруповёрта

Блок питания оснащён выступом, на котором видно расположение контактных клемм. Они служат, как для подключения питания к самому инструменту, так и для подсоединения к зарядному устройству. Внутри контейнера помещены сами аккумуляторные батарейки. Они относятся к классу литиево-ионных аккумуляторов. Элементы сделаны в неразборном исполнении, и они не подлежат ремонту.

Батареи объединены проводами от плюса к минусу, приваренными к выводам точечной сваркой. Брендовые устройства оснащены термодатчиками, которые отключают питание в случае перегрева батарей (свыше 500С), как при работе инструмента, так и во время зарядки.

Внутри зарядного устройства находятся электронная плата управления процессом зарядки и микросхема, отвечающая за отключение и возобновление работы зарядного устройства.

Ремонт аккумуляторного блока шуруповёрта
  1. Контейнер вскрывают, вывинчивая винты в его корпусе.
  2. Отрезают провода от блока аккумуляторных батарей.
  3. Новые батарейки оборачивают скотчем в том же порядке, в каком было расположение старых элементов.
  4. На выводы полюсов накладывают полоску из никеля.
  5. Точечной сваркой соединяют никелевую дорожку с полюсами батареек.
  6. Также приваривают соединительные провода к концевым выводам акб и клеммам корпуса.
  7. Блок устанавливают в контейнер и закрывают крышкой.
  8. Новый аккумулятор вставляют в зарядное устройство.
  9. По окончании зарядки аккумулятор готов к работе.

Дополнительная информация. Для того чтобы заменить старые аккумуляторные элементы на новые батареи, нужно использовать только точечную сварку.

АКБ для мобильных телефонов

Простые мобильные телефонные аппараты вытесняются из сферы пользования смартфонами. Все они в своих корпусах имеют литиевые батареи. На них нанесена маркировка – Li-ion battery. Они бывают разных размеров, различной ёмкости, в зависимости от модели телефона и производителя.

Внутри алюминиевого корпуса батареи помещены плёнки из графита и диоксида лития. Электролит выглядит в виде густой смазки, который заполняет пространство между листками. На одной из сторон акб установлена электронная плата управления.

Аккумулятор для смартфона

Батарея мобильного телефона во время зарядки остаётся на своём месте. Телефон подключают кабелем к бытовой электросети. Полная зарядка аппарата будет видна на его экране в виде заполненного окошка.

Телефонные аккумуляторы не подлежат ремонту и разборке. При вскрытии корпуса можно отравиться ядовитыми испарениями электролита. Поэтому важна их утилизация отдельно от бытового мусора.

Следует заметить! Аккумуляторы для ноутбуков устроены таким же образом.

Аккумуляторная батарея для ноутбука

Пальчиковые аккумуляторные батарейки

Самый распространённый стандарт пальчиковых батарей – это аккумуляторы 18650. Цифры на маркировке обозначают размеры устройства: 18 мм – диаметр, 65 мм – длина корпуса.

Пальчиковая акб состоит из графитовой плёнки (анода) и расположенного внутри неё алюминиевого катода. Пространство между катодом и анодом заполнено густой смазкой из электролита. Всё это заключено в прочный алюминиевый корпус. По сторонам цилиндра находятся выводы батарейки. Плюсовая клемма выглядит в виде диска с цилиндрическим выступом, минусовый полюс сделан плоским пятачком.

Под плюсовой клеммой установлена микро плата – контроллер. Электронная схема, покрытая фольгой, служит для того, чтобы не допускать перегрев и перезаряд батареи во время процесса её зарядки.

В брендовых изделиях изготовитель вставляет предохранительные клапаны, которые сбрасывают избыточное давление паров электролита при перегрузке акб.

АКБ 18650

Дополнительная информация. В дешёвых батарейках отсутствует защитная плата, что может вызвать разрушение содержимого аккумулятора. «Выгодная» покупка может обернуться различными неприятностями, вплоть до взрыва пальчиковой батареи.

Ремонт пальчиковых аккумуляторных батареек

Бывает, что практически новая дорогостоящая батарея перестаёт полноценно работать. Во всём виновата перегоревшая защитная плата.

Отремонтировать такую батарейку можно следующим образом:

  1. С корпуса удаляют полимерную оболочку.
  2. Кусачками удаляют контактную ленту.
  3. Вокруг плюсовой клеммы прорезают острым ножом щель. Осторожно приподнимают её.
  4. Из-под клеммы удаляют защитную плату.
  5. Плюсовой вывод ставят на место.
  6. Восстанавливают полимерное покрытие. Если нет фирменной плёнки, то батарею можно обернуть скотчем.

Важно! Отремонтированный аккумулятор нужно эксплуатировать с учётом того, что защита на нём отсутствует. Если элемент не перегружать, то он прослужит не один год.

Видео

Аккумулятор 18650

Принцип работы и отличительные особенности карбоновых аккумуляторных батарей

Среди свинцово-кислотных аккумуляторных батарей большую популярность получили герметизированные или, как их еще называют «необслуживаемые». По технологии изготовления они разделяются на AGM-технологию («Absorption Glass Matt») и GEL-технологию («Gelled Electrolite»). Их популярность объясняется тем, что они не требуют обслуживания в виде периодической доливки дистиллированной воды, исключается вероятность протечки электролита, могут работать как в вертикальном, так и в горизонтальном положении, могут размещаться совместно с другим оборудованием, не требуя отдельного аккумуляторного помещения и принудительной вентиляции.

Нововведения в технологии изготовления герметизированных аккумуляторов

Но научно-технический прогресс не стоит на месте, и разработчики при усовершенствовании конструкций современных аккумуляторных батарей нашли способ улучшить технические характеристики герметизированных аккумуляторов AGM.

Известно, что процесс накопления сульфатов является слабым местом свинцово-кислотного аккумулятора. Этот процесс из-за недостаточной шероховатости отрицательной пластины, где используется чистый свинец, препятствует быстрому заряду и приводит к деградации аккумуляторной батареи.

Дело в том, что отрицательный электрод свинцово-кислотной аккумуляторной батареи состоит из губчатого свинца и при разряде на его поверхности образовывается сульфат свинца. При заряде он снова переходит в исходное положение. Процесс разложения происходит медленно, и если попытаться «ускорить» его, например, увеличением зарядного тока, то это вызовет появление избыточных электронов, провоцирующих разложение воды и возникновение газов. Начнется, так называемый процесс «выкипания». В последующем сульфат свинца может формировать кристаллы на электроде, что еще больше снижает скорость заряда.

Был предложен ряд способов для подавления процесса сульфатации в свинцово-кислотных аккумуляторных батареях, и некоторые из этих способов включали использование углерода в различных формах для замедления этого процесса. Например, в патенте Великобритании №18590 раскрыт способ, предназначенный для увеличения срока службы свинцово-кислотной аккумуляторной батареи путем защиты от коррозии решеток со свинцовой основой, которые формируют положительные электроды батареи. Этот способ включает обработку решеток смесью каучука, сурьмы и графита. Смесь наносится на решетки либо путем погружения решеток в смесь или нанесением смеси на решетки кистью. Однако, как и во всех способах нанесения покрытия данного типа, получаемое в результате покрытие довольно толстое. Часто эти покрытия не плотно прикрепляются к поверхностям электродов, и они имеют тенденцию растрескиваться и отшелушиваться от электродов. Более того, добавки в покрытие могут снизить проводимость электродов и подавлять процессы электронного обмена в свинцово-кислотной аккумуляторной батарее.

Для решения этих проблем впервые в Японии была разработана технология добавления углерода в состав отрицательного электрода. Это предает аккумуляторной батарее улучшенные зарядные и разрядные характеристики. Высокопроводящие углеродные частицы тесно связаны с активным материалом и создают улучшенную проводящую сеть, уменьшая внутреннее сопротивление, увеличивая плотность энергии и хорошую восстанавливаемость после разряда.

В природе углерод достаточно доступен. Углерод содержится в графитах (высококристалическая непористая форма углерода), сажах (аморфные углеродные материалы), полученные при разложении углеводородного сырья: нефти, природного газа, каменноугольной смолы, ацетилена. Даже обычный уголь содержит до 80% углерода. Поэтому в перспективе такие аккумуляторы будут дешевыми в производстве, менее токсичными и безвредными для окружающей среды и человека.

На рисунке показано совмещение свинцовой отрицательной пластины из ячейки обычного свинцово-кислотного аккумулятора с углеродным электродом.

В последующем конструкторы усовершенствовали технологию изготовления, применив добавки углерода и в состав положительных электродов, тем самым обеспечив высокую пористость, решив проблему активного разрушения материала и максимально сократив процесс сульфатации.

В тоже время надо отметить, что на положительном электроде также как и на отрицательном формируется сульфат свинца, но при этом на нем поддерживается высокая скорость заряда, в отличие от отрицательного.

Удельная емкость батарей на базе двойного углерода сравнима с литий-ионными аккумуляторами, однако в плане безопасности новые батареи значительно превосходят литиевые. Кроме того новые аккумуляторы гораздо дольше сохраняют рабочий ресурс и быстрее перезаряжаются, что и делает их отличной альтернативой сегодня.

Факторы срока службы батарей и способы его продления

Общеизвестно, что одним из определяющих факторов срока службы обычной свинцово-кислотной батареи является коррозия положительного электрода с последующим увеличением его объема. По мере того, как положительный электрод подвергается коррозии, возникающее расширение объема вызывает механические нагрузки на электрод, приводящие к его растрескиванию и разлому. Далее, на развившихся стадиях коррозии, может произойти внутреннее замыкание решетки и разрыв корпуса батареи.

Одним из способов потенциального продления срока службы в таких условиях является увеличение сопротивляемости коррозии электродов. Углеродное покрытие электродов снижает скорость коррозии электродов путем ограничения контакта между раствором электролита и металлом электрода. При этом электропроводность углерода позволяет осуществлять электронный обмен во время процессов разряда и заряда аккумуляторной батареи.

Таким образом, добавление углерода с состав электродов позволило добиться следующих результатов при эксплуатации свинцово-углеродных аккумуляторных батарей:

  • Сниженная сульфатация при частичном заряде;
  • Улучшенные разрядные характеристики;
  • Улучшенные показатели циклического использования;
  • Увеличенный срок службы в буферном режиме;
  • Увеличенный срок хранения без подзаряда;
  • Сокращение сроков ускоренного заряда;
  • Уменьшение тепловыделения при заряде.

Свинцово-углеродные аккумуляторы идут на замену обычным свинцово-кислотным аккумуляторным батареям с решающим преимуществом в возможности быстрого заряда без повреждений, работы в циклическом режиме с разрядами от 30% до 70% без риска сульфатации, а также отсутствии необходимости принудительного охлаждения.

Но есть и недостатки: быстрое падение напряжения при разряде, особенно при высоких нагрузках. Поэтому применение их как стартерных батарей не целесообразно. Также из-за электрохимических реакций наблюдается увеличение скорости выделения водорода, хотя сегодня в науке процесс выделения водорода на углероде пока не так хорошо изучен.

Наилучшие условия их работы – это равномерная отдача электроэнергии на всем этапе разряда, то есть применение на электротранспорте, инвалидных колясках, гольф-карах, складской и другой технике с использованием циклического режима работы. Но это не исключает возможность применения их в системах альтернативной энергетики, а также системах телекоммуникации и связи.

В перспективе планируется перейти на полностью углеродные электроды, что в корне изменит и название батареи. Она будет полностью углеродной. На самом деле идея полностью углеродной батареи не является новой и разрабатывается в Японии с 70-х годов прошлого века. Около 6-7 лет назад ученые университета Куйсю (Kyushu University) начали работу по нанотехнологиям и улучшению углеродного материала, что позволило значительно увеличить производственную мощность этих батарей.

Карта сайта

Адрес e-mail (Логин)*

ФИО*

Наименование компании*

Должность*

Телефон*

Страна* РоссияБелоруссияУкраинаКазахстанАвстралияАвстрияАзербайджанАлбанияАлжирАмериканские Виргинские островаАнгильяАнголаАндорраАнтарктидаАнтигуа и БарбудаАнтильские островаАрабские ЭмиратыАргентинаАрменияАрубаАфганистанБагамские островаБангладешБарбадосБахрейнБеларусьБелизБельгияБенинБермудские островаБолгарияБоливияБосния и ГерцеговинаБотсванаБразилияБританские Виргинские островаБританские территории в Индийском ОкеанеБрунейБуркина ФасоБурундиБутанВануатуВатиканВеликобританияВенгрияВенесуэллаВосточный ТиморВьетнамГабонГаитиГамбияГанаГваделупаГватемалаГвианаГвинеяГвинея-БиссауГерманияГибралтарГондурасГонконгГренадаГренландияГрецияГрузияГуанаДанияДемократическая республика КонгоДжибутиДоминикаДоминиканская РеспубликаЕгипетЗамбияЗападная СахараЗимбабвеИзраильИндияИндонезияИорданияИракИранИрландияИсландияИспанияИталияЙеменКабо-ВердеКазахстанКаймановы островаКамбоджаКамерунКанадаКатарКенияКипрКиргизияКирибатиКитайКокосовые островаКолумбияКоморосКонгоКорея (Северная)Корея (Южная)Коста РикаКот-Д`ивуарКубаКувейтЛаосЛатвияЛесотоЛиберияЛиванЛивияЛитваЛихтенштейнЛюксембургМаврикийМавританияМадагаскарМайоттаМакаоМакедонияМалавиМалайзияМалиМальдивыМальтаМартиникаМаршалские островаМексикаМикронезияМозамбикМолдавияМонакоМонголияМонтсерратМороккоМьянмаНамибияНауруНепалНигерНигерияНидерландыНикарагуаНиуэНовая ЗеландияНовая КаледонияНорвегияОманОстров БувеОстров НорфолкОстров ПиткэрнОстров РождестваОстров Св.ЕленыОстрова КукаОстрова Сен-Пьер и МикелонОстрова Сент-Киттс и НевисОстрова Тёркс и КайкосОстрова Уоллис и ФутунаОстрова Херд и МакдоналдОстрова Шпицберген и Ян-МайенПакистанПалауПалестинаПанамаПапуа Новая ГвинеяПарагвайПеруПольшаПортугалияПуэрто РикоРеюньонРоссияРуандаРумынияСШАСамоаСан-МариноСанта-ЛючияСаудовская АравияСвазилендСейшеллыСенегалСент-Винсент и ГренадиныСербияСингапурСирияСловакияСловенияСоломоновы островаСомалиСуданСуринамСьерра-ЛеонеТаджикистанТаиландТайваньТанзанияТогоТокелауТонгаТринидад и ТобагоТувалуТунисТуркменистанТурцияУгандаУзбекистанУкраинаУругвайФарерские островаФижиФилиппиныФинляндияФолклендские островаФранцияФранцузская ПолинезияХорватияЦентральноафриканская РеспубликаЧадЧерногорияЧехияЧилиШвейцарияШвецияШри-ЛанкаЭквадорЭкваториальная ГвинеяЭль СальвадорЭритреяЭстонияЭфиопияЮАРЮжная Георгия и Южные Сандвичевы островаЮжные Французские территорииЯмайкаЯпония

Город* АбазаАбаканАбдулиноАбинскАгидельАгрызАдыгейскАзнакаевоАзовАк-ДовуракАксайАлагирАлапаевскАлатырьАлданАлейскАлександровАлександровскАлександровск-СахалинскийАлексеевкаАлексинАлзамайАлупкаАлуштаАльметьевскАмурскАнадырьАнапаАнгарскАндреапольАнжеро-СудженскАниваАпатитыАпрелевкаАпшеронскАрамильАргунАрдатовАрдонАрзамасАркадакАрмавирАрмянскАрсеньевАрскАртемАртемовскАртемовскийАрхангельскАсбестАсиноАстраханьАткарскАхтубинскАхтубинск-7АчинскАшаБабаевоБабушкинБавлыБагратионовскБайкальскБаймакБакалБаксанБалабановоБалаковоБалахнаБалашихаБалашовБалейБалтийскБарабинскБарнаулБарышБатайскБахчисарайБежецкБелая КалитваБелая ХолуницаБелгородБелебейБелевБелинскийБеловоБелогорскБелозерскБелокурихаБеломорскБелорецкБелореченскБелоусовоБелоярскийБелыйБердскБерезникиБерезовскийБесланБийскБикинБилибиноБиробиджанБирскБирюсинскБирючБлаговещенскБлагодарныйБобровБогдановичБогородицкБогородскБоготолБогучарБодайбоБокситогорскБолгарБологоеБолотноеБолоховоБолховБольшой КаменьБорБорзяБорисоглебскБоровичиБоровскБоровск-1БородиноБратскБронницыБрянскБугульмаБугурусланБуденновскБузулукБуинскБуйБуйнакскБутурлиновкаВалдайВалуйкиВелижВеликие ЛукиВеликие Луки-1Великий НовгородВеликий УстюгВельскВеневВерещагиноВереяВерхнеуральскВерхний ТагилВерхний УфалейВерхняя ПышмаВерхняя СалдаВерхняя ТураВерхотурьеВерхоянскВесьегонскВетлугаВидноеВилюйскВилючинскВихоревкаВичугаВладивостокВладикавказВладимирВолгоградВолгодонскВолгореченскВолжскВолжскийВологдаВолодарскВолоколамскВолосовоВолховВолчанскВольскВольск-18ВоркутаВоронежВоронеж-45ВорсмаВоскресенскВоткинскВсеволожскВуктылВыборгВыксаВысоковскВысоцкВытеграВышний ВолочекВяземскийВязникиВязьмаВятские ПоляныГаврилов ПосадГаврилов-ЯмГагаринГаджиевоГайГаличГатчинаГвардейскГдовГеленджикГеоргиевскГлазовГолицыноГорбатовГорно-АлтайскГорнозаводскГорнякГородецГородищеГородовиковскГородской округ ЧерноголовкаГороховецГорячий КлючГрайворонГремячинскГрозныйГрязиГрязовецГубахаГубкинГубкинскийГудермесГуковоГулькевичиГурьевскГусевГусиноозерскГусь-ХрустальныйДавлекановоДагестанские ОгниДалматовоДальнегорскДальнереченскДаниловДанковДегтярскДедовскДемидовДербентДесногорскДжанкойДзержинскДзержинскийДивногорскДигораДимитровградДмитриевДмитровДмитровскДноДобрянкаДолгопрудныйДолинскДомодедовоДонецкДонскойДорогобужДрезнаДубнаДубовкаДудинкаДуховщинаДюртюлиДятьковоЕвпаторияЕгорьевскЕйскЕкатеринбургЕлабугаЕлецЕлизовоЕльняЕманжелинскЕмваЕнисейскЕрмолиноЕршовЕссентукиЕфремовЖелезноводскЖелезногорскЖелезногорск-ИлимскийЖердевкаЖигулевскЖиздраЖирновскЖуковЖуковкаЖуковскийЗавитинскЗаводоуковскЗаволжскЗаволжьеЗадонскЗаинскЗакаменскЗаозерныйЗаозерскЗападная ДвинаЗаполярныйЗарайскЗаречныйЗаринскЗвениговоЗвенигородЗверевоЗеленогорскЗеленоградЗеленоградскЗеленодольскЗеленокумскЗерноградЗеяЗимаЗлатоустЗлынкаЗмеиногорскЗнаменскЗубцовЗуевкаИвангородИвановоИвантеевкаИвдельИгаркаИжевскИзбербашИзобильныйИланскийИнзаИнкерманИнсарИнтаИпатовоИрбитИркутскИркутск-45ИсилькульИскитимИстраИстра-1ИшимИшимбайЙошкар-ОлаКадниковКазаньКалачКалач-на-ДонуКалачинскКалининградКалининскКалтанКалугаКалязинКамбаркаКаменкаКаменногорскКаменск-УральскийКаменск-ШахтинскийКамень-на-ОбиКамешковоКамызякКамышинКамышловКанашКандалакшаКанскКарабановоКарабашКарабулакКарасукКарачаевскКарачевКаргатКаргопольКарпинскКарталыКасимовКаслиКаспийскКатав-ИвановскКатайскКачканарКашинКашираКашира-8КедровыйКемеровоКемьКерчьКизелКизилюртКизлярКимовскКимрыКингисеппКинельКинешмаКиреевскКиренскКиржачКирилловКиришиКировКировградКирово-ЧепецкКировскКирсКирсановКиселевскКисловодскКлимовскКлинКлинцыКнягининоКовдорКовровКовылкиноКогалымКодинскКозельскКозловкаКозьмодемьянскКолаКологривКоломнаКолпашевоКолпиноКольчугиноКоммунарКомсомольскКомсомольск-на-АмуреКонаковоКондопогаКондровоКонстантиновскКопейскКораблиноКореновскКоркиноКоролевКорочаКорсаковКоряжмаКостеревоКостомукшаКостромаКотельникиКотельниковоКотельничКотласКотовоКотовскКохмаКрасавиноКрасноармейскКрасновишерскКрасногорскКраснодарКрасное СелоКраснозаводскКраснознаменскКраснокаменскКраснокамскКрасноперекопскКраснослободскКраснотурьинскКрасноуральскКрасноуфимскКрасноярскКрасный КутКрасный СулинКрасный ХолмКременкиКронштадтКропоткинКрымскКстовоКубинкаКувандыкКувшиновоКудымкарКузнецкКузнецк-12Кузнецк-8КуйбышевКулебакиКумертауКунгурКупиноКурганКурганинскКурильскКурловоКуровскоеКурскКуртамышКурчатовКусаКушваКызылКыштымКяхтаЛабинскЛабытнангиЛаганьЛадушкинЛаишевоЛакинскЛангепасЛахденпохьяЛебедяньЛениногорскЛенинскЛенинск-КузнецкийЛенскЛермонтовЛеснойЛесозаводскЛесосибирскЛивныЛикино-ДулевоЛипецкЛипкиЛискиЛихославльЛобняЛодейное ПолеЛомоносовЛосино-ПетровскийЛугаЛузаЛукояновЛуховицыЛысковоЛысьваЛыткариноЛьговЛюбаньЛюберцыЛюбимЛюдиновоЛянторМагаданМагасМагнитогорскМайкопМайскийМакаровМакарьевМакушиноМалая ВишераМалгобекМалмыжМалоархангельскМалоярославецМамадышМамоновоМантуровоМариинскМариинский ПосадМарксМахачкалаМглинМегионМедвежьегорскМедногорскМедыньМежгорьеМеждуреченскМезеньМеленкиМелеузМенделеевскМензелинскМещовскМиассМикуньМиллеровоМинеральные ВодыМинусинскМиньярМирныйМихайловМихайловкаМихайловскМичуринскМогочаМожайскМожгаМоздокМончегорскМорозовскМоршанскМосальскМоскваМосковскийМуравленкоМурашиМурманскМуромМценскМыскиМытищиМышкинНабережные ЧелныНавашиноНаволокиНадымНазаровоНазраньНазываевскНальчикНаримановНаро-ФоминскНарткалаНарьян-МарНаходкаНевельНевельскНевинномысскНевьянскНелидовоНеманНерехтаНерчинскНерюнгриНестеровНефтегорскНефтекамскНефтекумскНефтеюганскНеяНижневартовскНижнекамскНижнеудинскНижние СергиНижние Серги-3Нижний ЛомовНижний НовгородНижний ТагилНижняя СалдаНижняя ТураНиколаевскНиколаевск-на-АмуреНикольскНикольскоеНовая ЛадогаНовая ЛяляНовоалександровскНовоалтайскНовоаннинскийНововоронежНоводвинскНовозыбковНовокубанскНовокузнецкНовокуйбышевскНовомичуринскНовомосковскНовопавловскНоворжевНовороссийскНовосибирскНовосильНовосокольникиНовотроицкНовоузенскНовоульяновскНовоуральскНовохоперскНовочебоксарскНовочеркасскНовошахтинскНовый ОсколНовый УренгойНогинскНолинскНорильскНоябрьскНурлатНытваНюрбаНяганьНязепетровскНяндомаОблучьеОбнинскОбояньОбьОдинцовоОжерельеОзерскОзерыОктябрьскОктябрьскийОкуловкаОлекминскОленегорскОленегорск-1Оленегорск-2Оленегорск-4ОлонецОмскОмутнинскОнегаОпочкаОрёлОренбургОрехово-ЗуевоОрловОрскОсаОсинникиОсташковОстровОстровнойОстрогожскОтрадноеОтрадныйОхаОханскОчерПавловоПавловскПавловский ПосадПалласовкаПартизанскПевекПензаПервомайскПервоуральскПеревозПересветПереславль-ЗалесскийПермьПестовоПетергофПетров ВалПетровскПетровск-ЗабайкальскийПетрозаводскПетропавловск-КамчатскийПетуховоПетушкиПечораПечорыПикалевоПионерскийПиткярантаПлавскПластПлесПовориноПодольскПодпорожьеПокачиПокровПокровскПолевскойПолесскПолысаевоПолярные ЗориПолярныйПоронайскПорховПохвистневоПочепПочинокПошехоньеПравдинскПриволжскПриморскПриморско-АхтарскПриозерскПрокопьевскПролетарскПротвиноПрохладныйПсковПугачевПудожПустошкаПучежПушкинПушкиноПущиноПыталовоПыть-ЯхПятигорскРадужныйРайчихинскРаменскоеРассказовоРевдаРежРеутовРжевРодникиРославльРоссошьРостовРостов-на-ДонуРошальРтищевоРубцовскРудняРузаРузаевкаРыбинскРыбноеРыльскРяжскРязаньСакиСалаватСалаирСалехардСальскСамараСанкт-ПетербургСаранскСарапулСаратовСаровСасовоСаткаСафоновоСаяногорскСаянскСветлогорскСветлоградСветлыйСветогорскСвирскСвободныйСебежСевастопольСеверо-КурильскСеверобайкальскСеверодвинскСевероморскСевероуральскСеверскСевскСегежаСельцоСеменовСемикаракорскСемилукиСенгилейСерафимовичСергачСергиев ПосадСергиев Посад-7СердобскСеровСерпуховСертоловоСестрорецкСибайСимСимферопольСковородиноСкопинСлавгородСлавскСлавянск-на-КубаниСланцыСлободскойСлюдянкаСмоленскСнегириСнежинскСнежногорскСобинкаСоветскСоветская ГаваньСоветскийСоколСолигаличСоликамскСолнечногорскСолнечногорск-2Солнечногорск-25Солнечногорск-30Солнечногорск-7Соль-ИлецкСольвычегодскСольцыСольцы 2СорочинскСорскСортавалаСосенскийСосновкаСосновоборскСосновый БорСосногорскСочиСпас-ДеменскСпас-КлепикиСпасскСпасск-ДальнийСпасск-РязанскийСреднеколымскСреднеуральскСретенскСтавропольСтарая КупавнаСтарая РуссаСтарицаСтародубСтарый КрымСтарый ОсколСтерлитамакСтрежевойСтроительСтруниноСтупиноСуворовСудакСуджаСудогдаСуздальСуоярвиСуражСургутСуровикиноСурскСусуманСухиничиСухой ЛогСызраньСыктывкарСысертьСычевкаСясьстройТавдаТаганрогТайгаТайшетТалдомТалицаТамбовТараТарко-СалеТарусаТатарскТаштаголТверьТебердаТейковоТемниковТемрюкТерекТетюшиТимашевскТихвинТихорецкТобольскТогучинТольяттиТомариТоммотТомскТопкиТоржокТоропецТосноТотьмаТрехгорныйТрехгорный-1ТроицкТрубчевскТуапсеТуймазыТулаТулунТуранТуринскТутаевТындаТырныаузТюкалинскТюменьУваровоУглегорскУгличУдачныйУдомляУжурУзловаяУлан-УдэУльяновскУнечаУрайУреньУржумУрус-МартанУрюпинскУсинскУсманьУсольеУсолье-СибирскоеУссурийскУсть-ДжегутаУсть-ИлимскУсть-КатавУсть-КутУсть-ЛабинскУстюжнаУфаУхтаУчалыУярФатежФеодосияФокиноФроловоФрязиноФурмановХабаровскХадыженскХанты-МансийскХарабалиХаровскХасавюртХвалынскХилокХимкиХолмХолмскХотьковоЦивильскЦимлянскЧаданЧайковскийЧапаевскЧаплыгинЧебаркульЧебоксарыЧегемЧекалинЧелябинскЧердыньЧеремховоЧерепановоЧереповецЧеркесскЧермозЧерноголовкаЧерногорскЧернушкаЧерняховскЧеховЧехов-2Чехов-3Чехов-8ЧистопольЧитаЧкаловскЧудовоЧулымЧулым-3ЧусовойЧухломаШагонарШадринскШалиШарыповоШарьяШатураШахтерскШахтыШахуньяШацкШебекиноШелеховШенкурскШилкаШимановскШиханыШлиссельбургШумерляШумихаШуяЩекиноЩелкиноЩелковоЩербинкаЩигрыЩучьеЭлектрогорскЭлектростальЭлектроуглиЭлистаЭнгельсЭнгельс-19Энгельс-2ЭртильЮбилейныйЮгорскЮжаЮжно-СахалинскЮжно-СухокумскЮжноуральскЮргаЮрьев-ПольскийЮрьевецЮрюзаньЮхновЮхнов-1Юхнов-2ЯдринЯкутскЯлтаЯлуторовскЯнаулЯранскЯровоеЯрославльЯрцевоЯсногорскЯсныйЯхрома

Подписаться на рассылку новостей и спецпредложений:

Промышленное ПО

Приводы и контроллеры

Электрокомпоненты

После регистрации на вашу почту будут высланы регистрационные данные вашего личного кабинета.

Нажимая кнопку «Регистрация», подтверждаю свое согласие с условиями использования сайта.

Принцип работы литий-ионной батареи — E-Lyte Innovations

Принцип работы литий-ионной батареи — E-Lyte Innovations

Литий-ионные батареи относятся к группе батарей, вырабатывающих электрическую энергию путем преобразования химической энергии посредством окислительно-восстановительных реакций на активных материалах, то есть на отрицательном (аноде) и положительном электроде (катоде), в одном или нескольких электрически связанных электрохимических элементах.Литий-ионные батареи можно разделить на первичные (неперезаряжаемые) и вторичные (перезаряжаемые) батареи, в зависимости от того, перезаряжаются ли они подачей электрического тока.

В обычных литий-ионных батареях Li + -ионы перемещаются между положительным электродом (обычно слоистым материалом оксида переходного металла) и отрицательным электродом на основе графита в соответствии с принципом «кресла-качалки» (см. Видео).

Термин «разряд» используется для обозначения процесса, при котором аккумулятор подает электрическую энергию на внешнюю нагрузку.Электролит в этой системе содержит дополнительные ионы Li + для обеспечения быстрого переноса ионного заряда внутри элемента.

Помимо ионной проводимости, электролит выполняет другие важные функции:

Поддержка образования эффективных межфазных границ (например, межфазной границы твердого электролита, SEI или межфазной поверхности катодного электролита, CEI), которые:

  • включить аккумулятор для работы
  • хорошо Li + -ион проводящий (оцените!)
  • защищают от дальнейшего разложения электролита

Способствовать безопасности клеток — быть инертным по отношению к другим материалам, таким как:

  • Сепаратор
  • Токосъемники
  • Электропроводящие добавки, связующие
  • Обшивка ячейки

Шаг 1 — Исходное состояние (состояние заряда (SOC) 0%)

В разряженном состоянии ионы Li + находятся в материале положительного электрода.Таким образом, положительный электрод является источником ионов Li + , необходимых для преобразования электрической энергии в химическую энергию. Чтобы позволить ионам Li + мигрировать с положительного электрода на отрицательный, электролит также обогащен ионами Li + .

Шаг 2 — Формирование SEI и CEI

В самом начале первого процесса зарядки электроны мигрируют из материала положительного электрода (окисление) через внешний проводник в материал отрицательного электрода (восстановление).Чтобы гарантировать нейтральность заряда, ионы Li + деинтеркалируются из материала положительного электрода в электролит и мигрируют через электролит в материал отрицательного электрода для последующего хранения. В результате этих реакций на границах раздела между электролитом / поверхностью отрицательного электрода и электролитом / поверхностью положительного электрода, соответственно, образуются граничные фазы, так называемые SEI и CEI. Эти промежуточные фазы образуются из нерастворимых электрохимически индуцированных продуктов разложения компонентов электролита и ионов Li + , происходящих от положительного электрода, и обеспечивают обратимое циклическое переключение батареи.После образования SEI и CEI дополнительные ионы Li + деинтеркалируются из материала положительного электрода в электролит и мигрируют через него в материал отрицательного электрода, чтобы затем встраиваться в последний.

Шаг 3 — Электродные реакции

После образования SEI и CEI дополнительные ионы Li + деинтеркалируют из материала положительного электрода в электролит и мигрируют через него в материал отрицательного электрода, чтобы затем встраиваться в последний.

Положительный электрод:

Li M O 2 → Li (1- x ) M O 2 + x · e + x · Li +

Отрицательный электрод:

C 6 + x · e + x · Li + → Li x C 6

Общая реакция клетки:

C 6 + Li M O 2 → Li x C 6 + Li (1- x ) MO 2

Шаг 5 — Выписка

При разряде происходят обратные реакции.Электродные реакции:

Положительный электрод = «катод» (восстановление)

Li (1- x ) M O 2 + x · e + x · Li + → Li M O 2

Отрицательный электрод = «анод» (окисление)

Li x C 6 → C 6 + x · e + x · Li +

Шаг 6 — Принцип кресла-качалки

После разряда (SOC 0%) ионы Li + повторно сохраняются в материале положительного электрода, из которого они изначально были получены.Возвратно-поступательное движение Li + -ions напоминает движение кресла-качалки, поэтому этот принцип получил название «принцип кресла-качалки».

В частности, первый цикл (заряд и разряд) связан с необратимой потерей ионов Li + в SEI и CEI, а также в материале отрицательного электрода. В результате меньше ионов Li + теперь может храниться в отрицательном электроде в следующем цикле зарядки, что приводит к уменьшению емкости батареи.

В литий-ионной батарее происходят различные процессы старения, которые снижают производительность батареи в течение периода использования и сильно зависят от химического состава элемента и предполагаемого использования батареи. Особенно правильный выбор электролита имеет огромное влияние на эти механизмы старения и еще раз подчеркивает важность индивидуальных электролитов.

Для оптимизации литий-ионных батарей в отношении удельной энергии и плотности энергии, срока службы и безопасности было приложено много усилий для дальнейшего расширения возможностей применения LIB.В частности, растущие потребности в литий-ионных батареях с высокой удельной энергией и плотностью энергии, особенно для автомобильных приложений, увеличивают исследовательские усилия во всем мире. Плотность энергии и удельная энергия батарей по определению — это количество энергии, хранящейся в данной системе на единицу объема и на единицу массы, соответственно. Произведение удельной емкости и среднего напряжения разряда дает удельную энергию, и это соотношение находит выражение в уравнении 1:

.

E = C · U (1)

Согласно уравнению 1, кажется разумным, что большая часть текущих исследований сосредоточена на новых материалах положительного электрода с более высокими рабочими напряжениями (высоковольтный подход) и / или увеличенной удельной емкостью (подход с высокой емкостью).Материалы высоковольтных катодов сильно ограничены узким окном электрохимической стабильности современных электролитов на основе карбонатов (≈1,0 — 4,4 В по сравнению с Li / Li + ) и усиливают конструкцию искробезопасных электролитов. электролиты или подходящие добавки к электролиту для высоковольтных литий-ионных батарей.

Мы используем файлы cookie на нашем веб-сайте. Некоторые из них очень важны, а другие помогают нам улучшить этот веб-сайт и улучшить ваш опыт.

Принять все

Сохранить

Принимать только необходимые файлы cookie

Индивидуальные настройки конфиденциальности

Подробная информация о файлах cookie Политика конфиденциальности Отпечаток

Предпочтение конфиденциальности

Здесь вы найдете обзор всех используемых файлов cookie.Вы можете дать свое согласие на использование целых категорий или отобразить дополнительную информацию и выбрать определенные файлы cookie.

Имя Borlabs Cookie
Провайдер Владелец этого сайта
Назначение Сохраняет предпочтения посетителей, выбранные в поле cookie файла cookie Borlabs.
Имя файла cookie Borlabs-печенье
Срок действия cookie 1 год

Thermal Battery — обзор

Введение

За последние несколько десятилетий было предложено множество первичных батарей на основе магниевых анодов, в то время как лишь немногие из них были успешно разработаны, произведены и проданы.Привлекательные свойства магния были признаны еще на заре электрохимии. Магний нетоксичен, обладает высокой теоретической удельной (зарядовой) емкостью, очень низким окислительно-восстановительным потенциалом, легок и много.

Практические первичные магниевые батареи можно разделить на категории в соответствии с электролитической средой (водной или неводной), типом катода (твердый или жидкий) и общей формой батареи («обычные», резервные, активируемые водой и т. Д.).

Несмотря на привлекательные свойства магния в качестве анода в батареях, из-за различных химических и технических препятствий, магниевые батареи находят применение лишь в нескольких специализированных нишах, в основном в военной области.

Двумя основными трудностями при использовании магния для аккумуляторных батарей являются его высокий восстановительный потенциал и природа пассивных пленок, образующихся на магнии во многих электролитических растворах. Поскольку окислительно-восстановительный потенциал магния намного ниже выделения водорода, металл спонтанно и энергично реагирует с водой, что приводит к выделению газообразного водорода и полному растворению. Таким образом, для аккумуляторов на водной основе единственное решение этой проблемы — либо включение сильных окислителей в раствор для образования пассивирующего слоя, либо отделение анода от электролита до тех пор, пока не понадобится аккумулятор, как в случае резервных элементов.Для неводных аккумуляторов, а именно аккумуляторов на основе органических растворителей, одной из самых больших проблем является эффективная и прочная пассивирующая пленка, которой покрывается магний либо в виде слоя естественного оксида, либо из-за восстановления компонентов раствора (растворитель, следы кислорода, вода и т. д.). В отличие от лития, в большинстве случаев пассивирующие слои на магниевых электродах являются как электронными, так и ионными изоляторами. Таким образом, если не разработано специальное средство защиты, магниевые аноды становятся электрохимически неактивными из-за этой пассивации.

Среди современных практичных первичных магниевых батарей важно упомянуть водоактивную магниевую батарею, батарею с магнием и органическим электролитом, тепловую батарею на основе оксида магния и ванадия и систему магний-воздух.

Первичные батареи из диоксида магния и марганца

Батарея из диоксида магния и марганца без резерва является аналогом обычного элемента цинк-MnO 2 , с тем преимуществом, что имеет примерно вдвое большую плотность энергии.В этой батарее в качестве анода и композитного катода используется магниевый сплав из диоксида магния (MnO 2 ), смешанного с углеродной сажей в качестве проводящей добавки. Важным различием между двумя ячейками является использование специальных слабощелочных электролитов (pH ~ 8,5, поддерживаемых добавлением гидроксида магния (Mg (OH) 2 ) в качестве буфера), а именно перхлората магния с добавлением сильный окислитель, такой как хромат бария или лития, который создает стабильный пассивирующий слой на аноде.Этот пассивирующий слой имеет решающее значение для срока службы батареи, поскольку магний самопроизвольно вступает в реакцию с водой.

Схема реакции разряда аналогична схеме в ячейке Mg – MnO 2 резервного типа:

Mg + 2MnO2 + h3O → Mn2O3 + MgOh3

Напряжение холостого хода (OCV) для этого элемента составляет 1,9 –2,0 В, что на ∼1,1 В ниже теоретического значения. Функционирование элемента зависит от разрушения пассивации на анодной стороне в начале разряда батареи. Этот защитный слой никогда не восстанавливается полностью после частичной разрядки, и, таким образом, срок годности аккумулятора значительно снижается после активации.

Первичная батарея Mg – MnO 2 изготавливается различных размеров, в основном для использования в военных целях. За исключением улучшенной плотности энергии по сравнению с элементами на основе цинка, магниевый элемент демонстрирует более пологую кривую разряда и более низкие рабочие температуры, которые имеют решающее значение для некоторых военных приложений.

Серьезным недостатком этой батареи является задержка напряжения. Задержка напряжения — это падение рабочего напряжения аккумулятора сразу после активации.Это явление отражает время, необходимое для электролитического пробоя пассивированного магниевого анода.

Предложены интересные модификации магниево-диоксидной батареи, в которых активный материал катода состоит из окисляющих органических соединений. Например, мета -динитробензол ( m -DNB) предлагается в качестве катодного материала с высокой удельной емкостью, обладающего емкостью 2 Ач gr -1 для восстановления m -DNB до n -фенилендиамина.Элементы с м -DNB показали, что они разряжаются с довольно плоской кривой напряжения, но имеют более низкое рабочее напряжение 1,1–1,2 В на элемент. На практике эти элементы показали лишь немного большую емкость по сравнению с традиционным катодом из диоксида марганца и показали худшие характеристики при низких температурах.

Магниевые резервные батареи
Водно-активируемые магниевые батареи

Это семейство первичных, резервных батарей, содержащих аноды из магния или магниевого сплава, различные катоды и сухие соли (Таблица 1).Эти батареи активируются один раз для непрерывного использования путем введения воды: чистой воды, морской воды или воды с соответствующей солью электролита и, в недавнем уникальном случае, даже мочи. Водоактивируемые магниевые батареи были разработаны для удовлетворения потребности в высокоэнергетических батареях с увеличенным сроком хранения. Батареи имеют сухую конструкцию, что устраняет главную проблему коррозии анода. Это сказывается на батареях с очень долгим сроком хранения.

Таблица 1. Характеристики нескольких водоактивируемых магниевых батарей

902
Положительный электрод (катод) Хлорид серебра Хлорид свинца Йодид меди Тиоцианат меди Хлорид меди

89

Отрицательный электрод (анод) Магний
Электролит Проводящие водные растворы
Напряжение холостого хода (В) 1.6–1,7 1,1–1,2 1,5–1,6 1,5–1,6 1,5–1,6
Номинальное напряжение при 5 мА см –2 (В) 1,4–1,5 0,9–1,06 1,3–1,5 1,25–1,4 1,2–1,4
Внутреннее сопротивление (Ом) 0,1–2 1–4 1–4 1–4 2
Теоретическая удельная емкость катода (Ач гр −1 ) 0.187 0,193 0,141 0,22 0,271
Полезная емкость от теоретической (%) 60–75 60–75 60–75 60–75
Удельная энергия Втч кг −1 100–150 50–80 50–80 50–80 50–80
Плотность энергии L −1 –300 50–120 50–120 50–120 20–200
Рабочая температура (° C) Между –60 и +65

Для этого семейства батарей были предложены различные катоды.Выбор химического состава катода в этом случае очень гибкий. Среди многочисленных протестированных катодных материалов наиболее важными являются CuCl, AgCl 2 , PbCl 2 , Cu 2 I 2 , CuSCN и MnO 2 . Во всех случаях анодная химическая реакция представляет собой окисление магния в воде с образованием иона магния.

Mg → Mg2 ++ 2e−

Реакция разряда магниевого анода в основном дает гидроксид магния по схеме:

Mg + 2OH− → MgOh3 + 2e−

Катодная реакция для всех материалов катода (что являются простыми солями), за исключением оксидов, представляет собой полное восстановление иона переходного металла до металлического состояния:

AgCl + e− → Ag + Cl−

PbCl2 + 2e− → Pb + 2Cl−

CuCl + e− → Cu + Cl−

В случае оксида марганца катодная реакция:

2MnO2 + h3O + 2e− → Mn2O3 + 2OH−

Два усовершенствованных катода, которые были разработаны и введены в практическое использование, состоят из соль переходного металла, смешанная с серой.Соответствующие схемы электрохимических реакций:

Cu2I2 / S + e− → 2Cu + 2I−

2CuSCN / S + 2e− → 2Cu + 2SCN−

Эти серосодержащие катоды демонстрируют потенциалы, которые выше, чем у ячеек с медной солью. Только. Предполагается, что во время разрядной реакции электрогенерированная медь реагирует с серой.

Все батареи этого семейства страдают различными недостатками, наиболее важным из которых является паразитная реакция коррозии, при которой магниевый анод непосредственно реагирует с водой, выделяя газообразный водород, гидроксид магния и тепло.Кроме того, ни один из этих аккумуляторов не может храниться для дальнейшего использования после частичного разряда из-за реакции коррозии.

Водоактивированные магниевые батареи имеют только очень специализированное применение, главным образом в военной, морской и авиационной областях. Некоторые из важных применений этих батарей — источники питания для гидроакустических буев, электрических торпед, метеорологических аэростатов, оборудования для спасения в воздухе и на море, пиротехнических устройств, морских маркеров и аварийных огней.

Недавний патент и статьи описывают новую уникальную магниевую батарею, активируемую жидкостью.Эта батарея в основном представляет собой такую ​​же водно-активируемую батарею из хлорида магния и меди, но в новой конструкции она активируется мочой, и она сделана из тонких листов активных материалов, чтобы получить элемент толщиной с бумагу. Батарея с низким энергопотреблением и низкой плотностью энергии предназначена для домашнего использования в одноразовых медицинских устройствах, таких как тесты здоровья и анализ крови на сахар при диабете.

Магниевые тепловые батареи

Эта статья не будет полной без упоминания тепловой резервной батареи Mg / V 2 O 5 .Эта батарея, как следует из названия, состоит из магниевого анода, катода из оксида ванадия и смеси твердого хлорида лития и хлорида калия в качестве резервного электролита. Батарея активируется пиротехническим устройством, которое запускает и расплавляет солевую смесь. Температура плавления этой смеси составляет около 355 ° C.

Очевидно, что, как и все тепловые батареи, тепловая батарея Mg / V 2 O 5 является очень специализированной и предназначена только для использования в военных целях и в космосе.Эти батареи дороги, опасны и недолговечны. Основными преимуществами этих батарей являются их высокая удельная мощность, надежность и длительный срок хранения. Эти батареи, благодаря сложному механизму, специальному контейнеру и пиротехническому устройству внутри, обладают удельной плотностью энергии от низкой до умеренной.

Как работает аккумулятор?

Энергия не может быть создана или уничтожена, но может быть сохранена в различных формах. Один из способов его хранения — использование в батарее химической энергии.При включении в цепь батарея может вырабатывать электричество.

Батареи преобразуют химическую энергию в электрическую

Батарея имеет два конца — положительный полюс (катод) и отрицательный полюс (анод). Если соединить две клеммы проводом, образуется цепь. Электроны будут течь по проводу, и будет производиться электрический ток. Внутри батареи происходит реакция между химическими веществами.Но реакция происходит только при наличии потока электронов. Батареи могут храниться в течение длительного времени и при этом работать, потому что химический процесс не начинается до тех пор, пока электроны не потекут с отрицательной клеммы на положительную по цепи.

В батарее происходит химическая реакция

Простой пример — лимонная батарея

Начнем с очень простой батареи, в которой используется лимон, в который вставлены два разных металлических предмета, например гальванизированный гвоздь и медная монета или проволока.Медь служит положительным электродом или катодом, а оцинкованный (оцинкованный) гвоздь — отрицательным электродом или анодом, производящим электроны. Эти два объекта работают как электроды, вызывая электрохимическую реакцию, которая генерирует небольшую разность потенциалов.

Поскольку атомы меди (Cu) притягивают электроны больше, чем атомы цинка (Zn), если вы поместите кусок меди и кусок цинка в контакт друг с другом, электроны перейдут от цинка к меди. Когда электроны концентрируются на меди, они отталкиваются друг от друга и останавливают поток электронов от цинка к меди.С другой стороны, если вы поместите полоски цинка и меди в проводящий раствор и соедините их снаружи проводом, реакции между электродами и раствором позволят электронам непрерывно течь через провод.

ЛИМОННАЯ БАТАРЕЯ

Как работает лимонная батарейка?

Лимонная батарея состоит из лимона и двух металлических электродов из разных металлов, таких как медный пенни или проволока и гальванизированный (оцинкованный) гвоздь.

Энергия для батареи исходит не от лимона, а от химического превращения цинка (или другого металла). Цинк окисляется внутри лимона, обмениваясь некоторыми из его электронов, чтобы достичь более низкого энергетического состояния, и высвобождаемая энергия обеспечивает энергию. Лимон просто создает среду, в которой это может произойти, но они не расходуются в процессе.

Если предположить, что используются цинковые и медные электроды (например, медная монета и оцинкованный гвоздь), то один лимон может произвести приблизительно 0.9 Вольт. Слева последовательная цепь лимонов показывает, что вырабатывается напряжение 3,41 вольт.

ПРИМЕЧАНИЕ: Можно использовать картофель, яблоки, квашеную капусту или любые другие фрукты или овощи, содержащие кислоту или другой электролит, но лимоны предпочтительнее из-за их более высокой кислотности. Например, в картофеле электролитом является фосфорная кислота, а в лимонах — лимонная кислота.


В лимонной батарее происходит как окисление (потеря электронов), так и восстановление (увеличение количества электронов).Эта батарея похожа на оригинальные «простые гальванические элементы», изобретенные Алессандро Вольта (см. Ниже). На аноде металлический цинк окисляется и попадает в кислый раствор в виде ионов Zn2 +:

Zn -> Zn2 + + 2 е-

На медном катоде ионы водорода (сольватированные протоны из кислого раствора в лимоне) восстанавливаются с образованием молекулярного водорода:

2H ++ 2e- -> h3

Что заставляет электроны двигаться?

Когда вы отпускаете мяч, который вы держите, он падает на землю, потому что гравитационное поле Земли тянет мяч вниз.Точно так же заряженным частицам, таким как электроны, необходимо проделать работу, чтобы переместить их из одной точки в другую. Количество работы на единицу заряда называется разностью электрических потенциалов между двумя точками. Единица измерения разности потенциалов называется вольт.

Разность потенциалов между катодом и анодом возникает в результате химической реакции. Внутри батареи электроны подталкиваются химической реакцией к положительному концу, создавая разность потенциалов.

Именно эта разность потенциалов движет электроны по проводу.

Разница потенциалов может быть положительной или отрицательной, подобной гравитационной энергии при движении вверх или вниз по холму. В батарее поток электронов идет вниз … электроны могут течь вверх, как в случае зарядного устройства.

Почему электроны просто не перемещаются от анода к катоду внутри батареи?

Электролит в батарее не дает одиночным электронам идти прямо от анода к катоду внутри батареи.Когда клеммы соединены проводящим проводом, электроны могут легко перетекать от анода к катоду.

В каком направлении движутся электроны в проводе?

Электроны заряжены отрицательно, поэтому они будут притягиваться к положительному концу батареи и отталкиваться отрицательным концом. Когда батарея подключена к устройству, которое позволяет электронам проходить через нее, они текут от отрицательного (анода) к положительному (катодному) выводу.

Кто изобрел электрохимический элемент (батарею)?

ПЕРВАЯ БАТАРЕЯ VOLTA

Аккумулятор Volta считается первым электрохимическим элементом. Он состоит из двух электродов: один из цинка, другой из меди. Электролит — серная кислота или смесь соли и воды. Электролит существует в форме 2H + и SO42-.Цинк, содержание которого в электрохимическом ряду выше, чем у меди и водорода, вступает в реакцию с отрицательно заряженным сульфатом SO42-. Положительно заряженные ионы водорода (протоны) захватывают электроны из меди, образуя пузырьки газообразного водорода h3. Это делает цинковый стержень отрицательным электродом, а медный стержень — положительным электродом.

Теперь у нас есть две клеммы, и ток будет течь, если мы их соединим. Реакции в этой ячейке следующие:

цинк

Zn -> Zn2 + + 2e-

серная кислота

2H + + 2e- -> h3

Медь не вступает в реакцию, действуя как электрод для химической реакции.

Как работает современный аккумулятор (угольно-цинковый)?

Сухой цинк-углеродный элемент или батарея упакованы в цинковую банку, которая служит одновременно контейнером и отрицательной клеммой (анодом). Положительный вывод представляет собой углеродный стержень, окруженный смесью диоксида марганца и углеродного порошка. Используемый электролит представляет собой пасту из хлорида цинка и хлорида аммония, растворенных в воде.Углеродный (графитовый) стержень — это то, что собирает электроны, выходящие из анодной части батареи, чтобы вернуться к катодной части батареи. Углерод — единственный практичный проводящий материал, потому что любой обычный металл быстро разъедает положительный электрод в солевом электролите.

Цинк окисляется в соответствии со следующим полууравнением.
Zn (s) -> Zn2 + (водн.) + 2 e- [e ° = -1,04 вольт]

Диоксид марганца смешивают с углеродным порошком для увеличения электропроводности.Реакция протекает следующим образом:

2MnO2 (s) + 2 e- + 2Nh5Cl (водн.) ->
Mn2O3 (s) + 2Nh4 (водн.) + H3O (водн.) + 2 Cl- [e ° ˜ +.5 v]

и CL сочетается с Zn2 +.

В этой полуреакции марганец восстанавливается со степени окисления (+4) до (+3). Возможны и другие побочные реакции, но общую реакцию в углеродно-цинковом элементе можно представить как:

Zn (тв) + 2MnO2 (тв) + 2Nh5Cl (водный раствор) —> Mn2O3 (тв) + Zn (Nh4) 2Cl2 (водный раствор) + h3O (ж)

Батарея имеет эл.м.ф. около 1,5 В.

Какие бывают типы батарей?

В разных типах батарей используются различные химические вещества и химические реакции. Вот некоторые из наиболее распространенных типов батарей:

Щелочная батарея

Используется в Duracell® и Energizer® и других щелочных батареях.Электроды из цинка и оксида марганца. Электролит представляет собой щелочную пасту.

Свинцово-кислотный аккумулятор

Они используются в автомобилях. Электроды изготовлены из свинца и оксида свинца с сильной кислотой в качестве электролита.

Литиевая батарея

Эти батарейки используются в фотоаппаратах для лампы-вспышки.Они сделаны из лития, иодида лития и иодида свинца. Они могут подавать скачки электричества для вспышки.
Литиевая батарея Эти батарейки используются в фотоаппаратах для лампы-вспышки. Они сделаны из лития, иодида лития и иодида свинца. Они могут подавать скачки электричества для вспышки.
Литий-ионный аккумулятор Эти батареи используются в портативных компьютерах, сотовых телефонах и другом портативном оборудовании с высокой нагрузкой.
Никель-кадмиевый или никель-кадмиевый аккумулятор Электроды из гидроксида никеля и кадмия. Электролит — гидроксид калия.
Угольно-цинковая батарея или стандартная угольная батарея — Цинк и углерод используются во всех обычных или стандартных сухих батареях AA, C и D. Электроды изготовлены из цинка и углерода, между которыми находится паста из кислотных материалов, служащая электролитом.

ССЫЛКИ И ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Potato Power: Руководство для учителя
История батареи
Электрохимические реакции
Углеродно-цинковая батарея
Углеродно-цинковая батарея — Как они работают?
Как работают батареи Анимированное руководство по науке об аккумуляторах


Оценка Вопросы:

M крайний Вопросы на выбор

Внутри аккумуляторной батареи | Тех

Механизм разгрузки

Разряд снимает электричество с аккумулятора.Электрохимические реакции происходят в первичных или аккумуляторных батареях, и в результате этих реакций выделяются электроны. Мы объясним, как электричество генерируется в результате электрохимической реакции в батарее.

В аккумуляторной батарее есть положительный и отрицательный электроды. Отрицательный электрод излучает электроны в результате реакции окисления, вызванной связыванием с кислородом. С другой стороны, реакция восстановления происходит за счет поглощения электронов на положительном электроде. Другими словами, избыточные электроны, генерируемые на отрицательном электроде, перемещаются, чтобы компенсировать недостающие электроны за счет реакции восстановления, которая происходит на положительном электроде.

Окислительно-восстановительная реакция, происходящая на каждом электроде, различается в зависимости от материала электрода и раствора электролита. Эти химические реакции продолжаются до тех пор, пока не перестанет существовать необходимое для реакции вещество. Другими словами, аккумулятор может вырабатывать электричество до полной разрядки.

Механизм заряда

С другой стороны, зарядка отправляет электричество в аккумуляторные батареи для повторного использования. В полностью разряженной батарее вещества в батарее поддерживают химическое равновесие без каких-либо электрохимических реакций.Однако можно вернуться в состояние до разряда, вызвав химическую реакцию, которая извлекает электричество из положительного электрода и передает электроны отрицательному электроду.

На положительном электроде происходит реакция окисления, а на отрицательном электроде за счет разряда — реакция восстановления. Электроны, посланные от внешнего источника питания, вызывают обратную электрохимическую реакцию в аккумуляторной батарее. С другой стороны, первичные батареи нельзя заряжать.Поскольку химическая реакция является необратимой или стоимость зарядки высока, даже если это обратимая реакция, она является одноразовой.

Химическая реакция и электрические характеристики во время заряда и разряда

Теперь мы представляем примеры химических реакций во время заряда / разряда и электрические характеристики различных батарей с точки зрения «электрохимии».

Сначала мы объясним химическую реакцию внутри аккумуляторной батареи на примере NiMH (никель-металлогидридная батарея).Соединение никелевой кислоты используется для положительного электрода, а сплав для хранения водорода используется для отрицательного электрода в NiMH. Во время зарядки молекулы воды образуются из гидроксид-ионов на положительном электроде. Молекулы воды разлагаются на атомы водорода и ионы гидроксида на отрицательном электроде, а атомы водорода хранятся в сплаве для хранения водорода. Формула химической реакции выглядит следующим образом (M означает сплав для хранения водорода).

Во время разряда ионы гидроксида генерируются молекулами воды на положительном электроде, и они перемещаются от положительного электрода к отрицательному электроду в электролите.Ионы гидроксида, перенесенные на отрицательный электрод, принимают ионы водорода из сплава для хранения водорода и возвращаются к молекулам воды. Формула химической реакции следующая.

Если эту реакцию записать в формуле электрохимического равновесия, она принимает следующий вид.

Эта вторая строка описывает стандартный электродный потенциал E 0 электрохимической реакцией. Электрические характеристики батареи можно описать стандартным электродным потенциалом, который теоретически может выдавать потенциал.

Электричество вырабатывается в результате химической реакции в батарее. А количество поставляемой электроэнергии зависит от типа аккумулятора. Так же, как атомы и молекулы обладают индивидуальностью, энергия генерируемых электронов также зависит от электрохимической реакции.

Теоретическая электродвижущая сила определяется разностью электрических потенциалов, создаваемых комбинацией материалов положительного и отрицательного электродов. Это стандартный электродный потенциал.Тогда энергия электронов, генерируемых на каждом полюсе, определяется потенциалом, измеренным с помощью SHE (стандартного водородного электрода). «vs. ОНА» означает «СТАНДАРТ ОНА».

Например, в случае литий-ионной аккумуляторной батареи, если вы используете кобальтит лития (LiCoO 2 ) для положительного электрода и углерод для отрицательного электрода для извлечения электронов из лития, разница электрического потенциала с SHE составит +0,87 V для положительного электрода и -2,83 для отрицательного электрода.Стандартный потенциал электрода составляет 0,87 — (-2,83) = 3,7 В относительно SHE.

Аналогично, 1,32 В относительно SHE для NiCd (никель-кадмиевых) батарей и 1,55 В относительно SHE для NiMH аккумуляторов. Однако ЭДС никель-кадмиевого аккумулятора и никель-металлгидридного аккумулятора составляет около 1,2 В, что немного ниже теоретических значений.

В свинцовых аккумуляторных батареях, которые часто используются в автомобильных батареях, диоксид свинца (PbO 2 ) используется для положительного электрода и свинца (Pb) для отрицательного электрода.Тогда стандартный электродный потенциал положительного электрода стандарта SHE составляет 1,70, а отрицательного электрода -0,35, это будет около 2,0 В относительно SHE. Это значение практически совпадает с номинальным значением электродвижущей силы свинцовой аккумуляторной батареи.

Стандартные электродные потенциалы каждой батареи приведены в таблице 1.

Ну а что нам улучшить электродвижущую силу? Для литий-ионных аккумуляторов потенциал, при котором Li испускает электроны, составляет примерно -3.0 В против SHE, так что почти достиг теоретического предела. Следовательно, нет другого выбора, кроме как поднять потенциал с положительной стороны. В качестве другого варианта мы рассматриваем одну батарею как единицу, называемую «ячейкой». Напряжение можно увеличить, подключив несколько ячеек последовательно. Например, в случае свинцовой аккумуляторной батареи одна ячейка имеет напряжение 2 В, поэтому в случае автомобильной батареи на 12 В. шесть элементов подключаются последовательно. То же самое и с портативным компьютером. Например, ЭДС реализуется подключением трех литий-ионных аккумуляторов последовательно в случае 10.Привод 8 В.

Наконец, я объясню эффект памяти. Эффект памяти вызывает падение напряжения аккумулятора в случае никель-кадмиевых и никель-металлгидридных аккумуляторов, если аккумулятор заряжается до полной разрядки. Это называется эффектом памяти, потому что он основан на эффектах предыдущей разрядной ситуации. При зарядке до полной разрядки напряжение, необходимое для работы, не может быть получено в случае оборудования, требующего высокого напряжения, такого как цифровая камера. Известно, что он восстанавливается после полной разрядки, но мы не уверены, почему существуют эффекты памяти.

С другой стороны, литий-ионные батареи не обладают эффектом памяти и подходят для многократного использования. Однако как для положительных, так и для отрицательных электродов происходит реакция интеркаляции, в которой Li + входит и выходит из зазора в материале структуры электрода. Это заставляет материал электрода слегка расширяться и сжиматься из-за заряда и разряда. Но он стабильнее других аккумуляторов.

Структура батареи редко нарушается реакцией интеркаляции.Однако используемый материал разрушается и расширяется из-за осаждения металлического лития, потому что перезарядка или переразрядка повторяются. В результате аккумуляторная батарея смартфона, в котором используется литий-ионный аккумулятор, расширяется, а иногда воспламеняется или взрывается.

Соответствующие технические знания

Принцип работы и использование литий-ионной батареи

— StudiousGuy

Литий-ионная батарея — это тип перезаряжаемой батареи, в которой используются заряженные частицы лития для преобразования химической энергии в электрическую.М. Стэнли Уиттингем, британско-американский химик, известен как отец-основатель литий-ионных батарей. Он разработал концепцию аккумуляторных батарей в конце 1970-х годов. В 2019 году М. Стэнли Уиттингем, Джон Гуденаф и Акира Йошино были удостоены Нобелевской премии по химии за свою работу. По способности перезарядки литий-ионные батареи можно разделить на две большие категории: первичные и вторичные. Первичные литий-ионные батареи по своей природе неперезаряжаемые, а вторичные литий-ионные батареи — перезаряжаемые.

Указатель статей (Нажмите, чтобы перейти)

Принцип работы литий-ионного аккумулятора

Литий-ионные аккумуляторы

работают по принципу кресла-качалки. Здесь преобразование химической энергии в электрическую происходит с помощью окислительно-восстановительных реакций. Обычно литий-ионный аккумулятор состоит из двух или более электрически связанных электрохимических ячеек. Когда аккумулятор заряжен, ионы стремятся двигаться к отрицательному электроду или аноду. Когда батарея полностью разряжается, ионы лития возвращаются обратно к положительному электроду, т.е.е., катод. Это означает, что в процессе зарядки и разрядки ионы лития перемещаются между двумя электродами батареи, поэтому принцип работы литий-ионной батареи называется принципом кресла-качалки.

Работа литий-ионного аккумулятора

Батарея обычно состоит из двух электродов, а именно анода и катода. Катод образует положительную клемму батареи, а анод — отрицательную клемму. Катод литий-ионной батареи в основном состоит из соединения лития, а основным элементом анода является графит.Когда аккумулятор подключен к источнику питания, ионы лития имеют тенденцию перемещаться от катода к аноду, то есть от положительного электрода к отрицательному. Это называется зарядкой аккумулятора. Во время фазы разряда батареи движение ионов лития меняется на противоположное от анода к катоду, то есть от отрицательного электрода к положительному электроду, и электрическая энергия передается на присоединенную нагрузку.

Использование литий-ионной батареи

Сотовые устройства

Почти все сотовые устройства, такие как мобильные телефоны, ноутбуки, беспроводные телефоны и т. Д.использовать литий-ионные батареи. Это связано с тем, что литий-ионные батареи компактны, легки и могут использоваться повторно. Следовательно, они идеально подходят для портативных устройств. Также такие типы аккумуляторов обеспечивают быструю зарядку. Таким образом, позволяя пользователю часто получать доступ к устройствам без помех.

Силовые банки

Power Bank — это портативный гаджет, который помогает пользователю удобно заряжать электронные устройства, такие как мобильные телефоны, умные часы и т. Д. В любом месте и в любое время.Для этой цели в блоке питания обычно используются литий-ионные и литий-полимерные батареи.

Электромобили

Ряд электромобилей, таких как электромобили, электровелосипеды, электросамокаты, электрические велосипеды и т. Д., Используют для своей работы литий-ионные батареи. Это связано с тем, что литий-ионные батареи имеют высокое отношение мощности к весу, большую устойчивость к колебаниям температуры и давления и более высокую плотность энергии, чем свинцово-кислотные батареи.Кроме того, они легкие, портативные, эффективные и безопасные, чем традиционные батареи.

Медицинское оборудование

В медицинских устройствах, таких как слуховые аппараты, хирургические инструменты, диагностические аппараты, кардиостимуляторы, дефибрилляторы, роботы-фельдшеры, инфузионные насосы, мониторы частоты пульса и т. Д., Используются литий-ионные батареи для различных диагностических и лечебных целей. К преимуществам использования литий-ионных аккумуляторов в медицинских гаджетах можно отнести высокую отзывчивость, быструю скорость зарядки, легкий и безопасный характер и т. Д.

Камеры

Литий-ионные батареи

широко используются в цифровых зеркальных фотоаппаратах, поскольку они способны обеспечивать высокую мощность в течение сравнительно более длительного времени, чем традиционные батареи. Кроме того, предпочтительны литий-ионные аккумуляторы, поскольку они легкие и, следовательно, не делают гаджет громоздким. В некоторых камерах также используются перезаряжаемые литий-ионные батареи, которые позволяют пользователю повторно использовать их и повышают надежность.

ИБП

ИБП или система бесперебойного питания — это устройство, которое обеспечивает резервное питание на определенный период времени в случае отключения или сбоя в подаче электроэнергии.В таких устройствах обычно используется комбинация литий-ионных батарей. Это связано с тем, что использование литий-ионных батарей в устройствах ИБП уменьшает занимаемую площадь на 50-80%. Кроме того, система ИБП на основе литий-ионных аккумуляторов весит на 60-80% меньше, чем обычное устройство ИБП на основе свинцово-кислотных аккумуляторов.

Роботы

Литий-ионные батареи

пользуются большим спросом в области робототехники и автоматизации. Они используются для питания человекоподобных роботов, а также промышленных роботов.

Преимущества литий-ионного аккумулятора

1.Литий-ионные аккумуляторы имеют значительно низкую скорость саморазряда по сравнению с аккумуляторами другого типа.

2. Обладают высокой плотностью энергии.

3. В литий-ионных батареях отсутствует эффект памяти.

4. Средний срок службы литий-ионных аккумуляторов в десять раз больше, чем у традиционных свинцово-кислотных аккумуляторов.

5. Скорость зарядки литий-ионных аккумуляторов высока.

6. Литий-ионные батареи эффективно работают в экстремальных условиях, таких как высокое давление и колебания температуры.

7. Литий-ионные аккумуляторы легкие и компактные. Обычно вес литий-ионных аккумуляторов примерно на 50-60% меньше, чем у стандартных свинцово-кислотных аккумуляторов.

8. Установка литий-ионных батарей сравнительно проста.

9. Эти типы батарей гибкие, менее громоздкие и безопасные в использовании.

10. Литий-ионные батареи доступны в различных формах и размерах.

11. Уровень напряжения литий-ионного аккумулятора не падает и поддерживается постоянно на протяжении всего использования.

12. Емкость литий-ионного аккумулятора примерно на 25-50% больше, чем у свинцово-кислотного аккумулятора.

13. Они требуют минимального обслуживания.

14. Литий-ионные батареи не опасны, так как не выделяют токсичных газов.

Недостатки литий-ионного аккумулятора

1. Зарядная емкость литий-ионного аккумулятора со временем уменьшается из-за потери ионов лития в межфазной границе твердого электролита и межфазной поверхности катод-электролит.

2. При повреждении разделителя литий-ионных аккумуляторов возникает опасность возгорания.

3. Они относительно дорогие.

4. Если в аккумуляторе заканчиваются ионы лития, его нельзя заменить. Таким образом, аккумулятор нельзя использовать по истечении ориентировочного срока службы.

Разъяснение принципа работы электрода аккумуляторной батареи большой емкости

Разработка систем хранения электроэнергии с высокой плотностью энергии и низкой стоимостью чрезвычайно важна для развития общества в будущем.В качестве одного из основных устройств хранения энергии литий-ионные батареи широко применяются в портативных электронных устройствах и электромобилях. Однако возможности обычных электродных материалов для литий-ионных батарей приближаются к своим теоретическим пределам; поэтому очень важно разработать новые электродные материалы с высокой энергией.

Двумерные дихалькогениды переходных металлов (ДПМ) в последнее время привлекли большой научный интерес к электрохимическому накоплению энергии благодаря их уникальной слоистой структуре и настраиваемым электронным и химическим свойствам.Как типичный TMD, слоистый дисульфид молибдена (MoS 2 ) рассматривается как многообещающий электрод для высокоэнергетических литий-ионных аккумуляторов. Однако, несмотря на десятилетия усилий и интенсивный интерес в последнее время, механизм реакции литиирования / делитирования MoS 2 все еще остается спорным, в основном из-за отсутствия подходящих методов обнаружения.

В ALS Beamlines 5.3.1 и 10.3.2 исследователи изучали механизм реакции электродов MoS 2 в литий-ионных аккумуляторных элементах в реальных рабочих условиях с помощью рентгеновской абсорбционной спектроскопии (XAS).Результаты показывают, что электрод претерпевает реакции интеркаляции и превращения лития последовательно во время первого разряда. Однако реакция превращения необратима, и образовавшийся Li 2 S окисляется до серы в последующем процессе загрузки, проясняя предыдущие дебаты об обратимости реакции превращения MoS 2 . Эта работа обогащает наше фундаментальное понимание механизма электрохимической реакции электрода MoS 2 , что является важным шагом на пути к рациональной конструкции электродов TMD с превосходными характеристиками циклирования.

Предлагаемый механизм электрохимической реакции электрода MoS 2 получен из спектров in situ, operando XAS. Реакция интеркаляции MoS 2 (верхний ряд) очень обратима и сопровождается преобразованием кристаллической структуры между тригонально-призматической фазой (2H) и искаженной октаэдрической фазой (1T). Реакция превращения необратима, и продукт разряда Li 2 S окисляется до серы в следующей загрузке (нижний ряд).

L. Zhang, D. Sun, J. Kang, J. Feng, H.A. Bechtel, L.-W. Ван, Э.Дж. Кэрнс, Дж .-Х. Го, «Механизм электрохимической реакции электрода MoS 2 в литий-ионном элементе, обнаруженный методами рентгеновской абсорбционной спектроскопии in situ и Operando», Nano Lett. 18 , 1466 (2018), DOI: 10.1021 / acs.nanolett.7b05246.

Принцип работы батареи

— Электротехника 123

Если мы хотим понять базовый принцип батареи должным образом, во-первых, мы должны иметь некоторую базовую концепцию электролитов и сродства к электрону.Фактически, когда два разнородных металла или металлических соединения погружают в электролит, между этими металлами или металлическими соединениями возникает разность потенциалов. Следовательно, возникает протекание тока, которое на самом деле связано с разностью потенциалов.

Было обнаружено, что при добавлении в воду определенных соединений они растворяются и образуют отрицательные и положительные ионы. Этот тип соединения называется электролитом . Популярные примеры электролитов — это почти все виды солей, кислот, оснований и т. Д.

Энергия, выделяемая при приеме электрона нейтральным атомом, известна как сродство к электрону. Поскольку атомная структура для разных материалов различна, сродство к электрону разных материалов будет отличаться. Если два разных типа металлов или металлических соединений погрузить в один и тот же раствор электролита, один из них получит электроны, а другой — высвободит электроны.

Какой металл (или металлическое соединение) получит электроны, а какой потеряет их, зависит от сродства к электрону этих металлов или металлических соединений.Металл с низким сродством к электрону будет получать электроны от отрицательных ионов раствора электролита.

Сродство к электрону в функции батареи

С другой стороны, металл с высоким сродством к электрону высвобождает электроны, и эти электроны выходят в раствор электролита и добавляются к положительным ионам раствора. Таким образом, один из этих металлов или соединений приобретает электроны, а другой теряет электроны. В результате между этими двумя металлами будет разница в концентрации электронов.Эта разница в концентрации электронов вызывает разность электрических потенциалов между металлами. Эта разность электрических потенциалов или ЭДС может использоваться в качестве источника напряжения в любой электронике или электрической цепи. Это общий и основной принцип работы батареи .

Все аккумуляторные элементы основаны только на этом основном принципе. Как мы знаем из истории аккумуляторов, Алессандро Вольта разработал первый аккумуляторный элемент, который широко известен как простой гальванический элемент.Такой тип простой ячейки можно создать очень легко. Возьмите одну емкость и наполните ее разбавленной серной кислотой в качестве электролита. Теперь погрузите цинк и один медный стержень в раствор и подключите их снаружи с помощью электрической нагрузки. Теперь ваш простой гальванический элемент готов. Ток начнет течь через внешнюю нагрузку.

Цинк в разбавленной серной кислоте отдает электроны, как показано ниже:

Эти ионы Zn + + переходят в электролит, и их концентрация очень высока вблизи цинкового электрода.В результате вышеуказанной реакции окисления цинковый электрод остается заряженным отрицательно и, следовательно, действует как катод. Разбавленная серная кислота и вода диссоциируют на ионы гидроксония, как показано ниже: Из-за высокой концентрации ионов Zn + + вблизи катода ионы H 3 O + отталкиваются к медному электроду и разряжаются за счет удаление электронов из атомов меди. На аноде происходит следующая реакция: в результате реакции восстановления, протекающей на медном электроде, медь остается положительно заряженной и, следовательно, действует как анод.

Daniell Battery Cell

Элемент Daniell состоит из медного сосуда, содержащего раствор сульфата меди. Сам медный сосуд действует как положительный электрод.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *