Меню Закрыть

Почему загибает клапана: причины и последствия, на каких двигателях может произойти

Содержание

3 способа защитить клапана от загиба при обрыве ремня ГРМ и почему это важно

Не секрет, что ремень газораспределительного механизма подлежит замене через каждые пройденные 60-70 тыс. километров, однако многие водители по разным обстоятельствам пренебрегают этим предписанием. Результатом становится разрыв ГРМ с обязательно последующим за ним гнетом моторных клапанов, который, кстати, может произойти и раньше превышения заявленного запаса прочности ввиду воздействия на элемент различных негативных факторов.

Почему загибает клапана и возможные риски

К сожалению, потеря целостности ГРМ вне зависимости от типа его привода (ременного или цепного) практически всегда влечет за собой загиб клапанов в двигателе, что чревато серьезными последствиями в виде усложнения ремонтного процесса и, как следствие, его максимального удорожания. Так, мастерам придется не только менять газораспределительный элемент, но и полностью разбирать двигатель, дабы заменить погнувшиеся клапаны и поршневую систему, и иногда проще купить новый мотор, чем оплачивать ремонт старого.

А для того чтобы избежать столь негативных последствий, необходимо понять сам механизм поломки, а также понимать последствия:

  1. Так, в абсолютном большинстве случаев клапанная деформация происходит в следствие обрыва шлейфа или растяжения цепи, в результате чего происходит моментальная остановка распределительного вала при продолжающем свою работу коленвале.
  2. В итоге клапаны уходят в цилиндр, тогда как им навстречу поднимается поршень, со всей силой бьющий по клапанным тарелкам и сгибающий стержни, после чего двигатель останавливается, и дальнейшая его эксплуатация становится невозможной.
  3. Если же продолжить ездить на таком моторе, то следующими выйдут из строя поршни и, как следствие, головки цилиндров, со всеми вытекающими отсюда последствиями. Если поршни полностью вышли из строя, их нужно заменить. Предлагаем вам приобрести качественные кованы поршни. Смотрите подробнее тут.

Порванный ремень ГРМ

Что касается причин, провоцирующих разрыв ремня ГРМ или растяжение звеньев его цепи, то к наиболее распространенным из них относятся:

  • износ;
  • неправильная замена;
  • использование некачественных комплектующих при повторной установке;
  • образование течи технических жидкостей.

Важно помнить, что любой из этих факторов обязательно повлечет за собой гнет стержней, если конечно, речь не идет об эксплуатации предыдущих поколений автомобилей отечественного производства, в конструкции которых по умолчанию были предусмотрены специальные поршневые выемки, предотвращающие прямое столкновение с клапанами. И сегодня все большее количество новых моделей российских автоконцернов оборудуются подобной защитой, что позволяет избежать столь серьезных повреждений.

Формирование углублений в поршне

Примечательно, что некоторые народные умельцы сами выполняют такие выемки на поршневых элементах, благодаря чему даже в случае повреждения привода резкая остановка распредвала не повлечет за собой сгибания и поломки стержней, которые просто упрутся в предусмотренные углубления и останутся там.

Клапаны авто с выемками

Главное, соблюсти соответствие расположения и габаритов выемок стержневым головкам, иначе можно нажить себе еще более серьезные проблемы, чем деформация.

Кроме того, подобная модернизация приводит к тому, что двигатель теряет в своей мощности до 7%, и любителей динамичной езды вряд ли устроят такие особенности, хотя они никак не влияют на расход ГСМ.

Настройка работы блока управления двигателем

Еще один эффективный и более щадящий способ защиты сводится к регулировке функционирования двигательного блока управления, которым должны заниматься исключительно квалифицированные специалисты. Итогом проведенной работы станет более корректная и высокоэффективная работа силовой установки.

ЭБУ двигателя

Установка прокладки

Так как в зону риска столкновения попадают считанные миллиметры клапанных тарелок, некоторые мастера предпочитают нивелировать это расстояние с помощью обычной прокладки, которая также не будет допускать прямого столкновения в случае обрыва ГРМ.

Однако и эта схема имеет серьезный недочет, который сводится к снижению динамических характеристик авто ввиду образования физических зазоров и снижения контактности между основными элементами основного агрегата.

Именно поэтому лучший способ перестраховаться от подобных поломок заключается в регулярной диагностике состояния всех узлов и систем транспортного средства с обязательным выполнением их своевременной замены или качественного ремонта.

ЭБУ двигателяLoading… ЭБУ двигателя

Почему мотор гнет клапаны и как от этого защититься? | Обслуживание | Авто

Газораспределительный механизм видел любой автомобилист, который хоть раз открывал капот. Сверху двигателя находится крышка, прикрывающая распредвал, и кулачки, отвечающие за управление клапанами. Спереди мотора натянут ремень, раскручивающий эти валы. Он подсоединен к коленвалу мотора и приводится в движение за счет за счет работы поршней. Эта система способна работать довольно долго без вмешательства технических специалистов, однако если хозяин недоглядел за началом разрушения ремня, то жди беды. О том, как правильно обслуживать привод газораспределительного механизма (ГРМ) и как не дать клапанам загнуться, рассказывает

мастер СТО Bosch Александр Мельник.

В Сети распространяются списки двигателей от разных моделей, которые якобы не гнут клапаны. Эти данные вводят автомобилистов в заблуждение. Появляются люди, которые верят байкам о защищенных клапанах и принципиально не меняют ремень ГРМ, считая, что при его обрыве силовой агрегат не пострадает.

Первым мотором, который якобы был защищен от подобных повреждений, называют силовой агрегат от ВАЗ 2105, который имел поршневую группу с углублениями. При зависании клапана они якобы позволяли спрятаться головкам при возвращении поршня. Между тем такие выемки нужны совсем для другого. У двигателей с большой степенью сжатия и широкими фазами газораспределения клапан остается немного приоткрытым в тот момент, когда поршень подходит к своей верхней точке. Чтобы не произошло касания, делается выемка.

Однако при обрыве ремня ГРМ никакая фрезерованная канавка не поможет. Поэтому списки безопасных моторов — миф. Клапаны гнутся у всех двигателей, правда, не всегда и с разными последствиями для техники.

Как работает ГРМ

Рассмотрим этот механизм более подробно. В верхней части цилиндра современного двигателя тесно: тут расположены два или четыре клапана, свеча, форсунка впрыска горючего. А свод головки делают низким и почти прямым для достижения высокой степени сжатия и увеличения мощности.

Когда раскручивается распредвал ГРМ, то благодаря специальным кулачкам со сложным профилем он нажимает на ножку клапана и открывает его для выпуска отработавших газов. Распредвал и коленвал обязательно синхронизируются. Если поршень уходит вниз, то клапаны впускают смесь, а при движении поршня вверх они закрываются. Так создается давление в камере сгорания. Дальше свечи поджигают смесь, которая и толкает поршень. Этот цикл многократно повторяется.

При повреждении ремня ГРМ или его обрыве распредвалы мгновенно останавливаются под действием тормозящих пружин. Головка клапана не успевает спрятаться в гнездо, и поршень бьет в нее верхней плоскостью. Иногда все заканчивается благополучно: клапаны выдерживают касание, мотор глохнет.

В худшем случае шток клапана гнется, направляющая втулка деформируется, клапан заклинивает в открытом положении и острым краем встает перед плоской крышкой поршня. От второго и третьего удара разрушается сам поршень, обломки крушат стенки цилиндра, царапают поверхность или устраивают задиры.

Гораздо чаще при обрыве ГРМ клапан лишь подгибается и перестает закрываться полностью, отчего мотор работает нестабильно и с необычным звенящим звуком.

Поэтому лучше не доводить дело до обрыва ремня ГРМ, внимательно изучать его состояние и ставить новый в сроки, как того требует регламент технического обслуживания.

Почему рвется ремень ГРМ?

Ремень ГРМ обрывается из-за выработки своего ресурса. Он извивается среди множества звездочек и роликов, как змея. Резина со временем теряет эластичность, появляются микротрещины.

Кроме того, на ремень влияет неправильная работа направляющих и натяжных роликов в сложном приводе. При разрушении подшипников ролик перекашивает, а это ведет к росту усилия.

Помимо натяжного ролика, ремень проходит через шкив привода насоса системы охлаждения (помпа). А он тоже имеет массу вращающихся механизмов, которые разрушаются с течением времени. Если подшипники помпы вдруг перекашивает, то вал заклинивает и потрескавшийся ремень ГРМ не в силах выдержать рост давления от привода помпы. Он рвется с непредсказуемыми последствиями для мотора.

Для повреждения газораспределительного механизма достаточнно даже повреждения одного-двух зубьев на ремне. Это иногда происходит при морозном запуске или при старте с буксира. Иногда плохо натянутый ремень перескакивает на один-два зуба. Тогда фазы газораспределения смещаются и двигатель начинает работать с перебоями. Он троит и трясется.

Поэтому с заменой ремня лучше не тянуть. Свыше 100 тыс. км ремень ходить не может. Вместе с ним ставятся и новые направляющие ролики, а также натяжители помпы. Автопроизводители вместе с заменой ремня ГРМ рекомендуют менять даже насос системы охлаждения.

На каких моторах гнет клапана при обрыве ремня ГРМ.

На каких двигателях гнёт клапана?

На машинах с 8-ми клапанным двигателем загибает реже всего, а вот 16-ти и 20-ти кл., будь-то бензин или дизель загиб происходит в большинстве случаев. Правда иногда это может быть один или несколько клапанов, а если двигатель работал на холостых, то и вовсе беда пронесет. Но таких случаев мало, в основном, последствия необратимы. Таблица со списком двигателей на которых гнет клапана всех популярных автомобилей при обрыве ремня газораспределительного механизма.

Работа клапанного механизма происходит следующим образом: в момент достижения поршнем верхней мертвой точки происходит закрытие обоих клапанов в камере сгорания – в ней создается определенное давление. Обрыв ремня приводит к тому, что клапана не успевают своевременно закрыться перед приходом поршня. Таким образом, возникает их встреча – столкновение, которое непосредственно приводит к тому, что клапан гнется. Ранее, для того, чтобы предотвратить подобную проблему, на старых двигателях производились специальные проточки под клапана. На двигателях нового поколения также встречаются похожие выемки, но предназначаются они лишь для того, чтобы избежать в процессе работы двигателя деформации клапанов и при возникновении обрыва ремня они абсолютно не спасают.

С физической точки зрения с момент обрыва ремня ГРМ происходит моментальная остановка распредвалов, под действием возвратных пружин, которые тормозят его кулачки. Коленвал в этот момент инерционно продолжает вращательное движение (независимо от того, была включена передача или же нет, низкие были обороты или же высокие, маховик продолжает его крутить). То есть поршни продолжают работать, а как результат – бить по открытым на данный момент клапанам. Довольно редко, но случается, когда клапана повреждают и сам поршень.

Причины обрыва ремня ГРМ

  • изнашивание ремня как такового или же его низкое качество (шестерни валов имеют острые края или попадание масла из сальников).
  • клинит коленвал.
  • клинит помпа (самое распространенное явление).
  • клинят несколько или один распредвал (например, из-за прихода в негодность одного из них – однако, тут последствия немного иные).
  • откручивается натягивающий ролик или клинят ролики (происходит ослабление или перетяжка ремня).

Современные двигатели, так как они мощнее, в сравнении с их предшественниками, имеют намного меньшую и живучесть. Если рассматривать причину, опираясь на клапана, данная проблема возникает вследствие малого расстояния между ними и поршнем. То есть, если в момент прихода поршня клапан приоткрыт, то моментально происходит его загиб. Так как для большей компрессии и сжатия в дне поршня нет проточки под клапан необходимой глубины.

Как узнать гнет ли клапана?

Проверка двигателя грозит ли загиб клапанов после обрыва ГРМ

В этом вопросе вам не поможет ни визуальный осмотр, ни цифры, приведенные в таблицах «гнет клапана». Даже если у вас в руках есть информация от производителя о повреждениях в случае обрыва ремня, неизвестно, насколько она является достоверной.

При желании проверить наличие вероятности загиба поршнем клапанов при обрыве ремня ГРМ необходимо снять ремень, выставить первый поршень у ВМТ, провернуть на 720 градусов распредвал.

Если все прошло хорошо и он не уперся, можно продолжать проверку – переходить на второй поршень. Когда и там все нормально, то возможный обрыв ремня не приведет к негативным последствиям для двигателя вашего автомобиля.

Во избежание данной проблемы (загиб клапанов при обрыве) необходимо постоянно держать под контролем состояние и натяжение ремня ГРМ. При появлении малейшего незнакомого шума при работе, сразу же необходимо стараться выяснить причину его возникновения, осмотреть состоянием роликов и помпы.

При покупке подержанного автомобиля, произведите незамедлительную замену ремня ГРМ не зависимо от того, что вам рассказал продавец. И тогда такой актуальный вопрос как гнет ли клапана при обрыве Вас беспокоить не будет.

Загнуло клапана признаки

Когда оборвался ремень, то просто поменяв ремешок ГРМ, надеясь, что все прошло без последствий и вы запустите мотор, не стоит. Особенно если двигатель в списке тех, на которых гнет клапана. Да, бывают случаи, если загиб был не большой и несколько клапанов перестали плотно прилегать в седле, то можно крутить стартером, однако часто такие действия еще больше усугубят ситуацию. Так как при незначительном повреждении все будет работать и крутится, однако двигатель будет трясти, а последствия только ухудшатся.

Лучше всего, если вы снимите «голову», дабы проверить это наглядно или залив керосин, тем не менее, есть несколько способов как проверить погнут ли клапан без разбора двигателя.

Главным симптомом если загнутые клапана – малая или полностью отсутствует компрессия. Поэтому необходимо замерить компрессию в цилиндрах. Но, такие действия актуальны если коленвал можно провернуть и нигде ничего не упирается. Так что первое что нужно сделать – это установив новый ремень, вручную, за болт на КВ, прокрутить несколько оборотов весь газораспределительный механизм (нужно при этом выкрутить свечи).

Как проверить загнуло ли клапана

Чтобы определить, погнуло ли какой-то стержень клапана, достаточно будет буквально пяти оборотов ручного проворачивания ключом за болт коленвала. Если стержни целые, то вращение будет свободным, погнуты – тяжёлым. А еще должны быть четко ощутимые 4 точки (при одном обороте) сопротивления движению поршней. Если такие сопротивления неощутимы, то вкрутив назад свечи, выкручивайте их по очереди и снова прокручивайте коленчатый вал.

По усилию на ручное кручение, при отсутствующей одной из свечей, сравнительно не сложно понять в каком конкретно цилиндре произошел загиб клапана (-ов). Однако такой метод не всегда сможет помочь точно узнать загнуло клапана или нет.

Если коленчатый вал крутится свободно, тогда можно проверить компрессометром. Нет такого инструмента? Значит делать пневмотест, причем проверка герметичности цилиндров самый правильный способ, который даст ответ как прилегают тарелки клапанов в седлах, без дополнительных последствий при прокручивании стартером и без установки нового ремня.

Как проверить погнут ли клапан самому?

Для пневмо-теста ненужно тянуть машину на СТО, вы сами можете узнать, герметичен цилиндр или нет. Проще всего:

  • добрать по диаметру свечного колодца кусок шланга;
  • выкрутить свечу;
  • установить поршень цилиндра в верхнюю мертвую точку (клапана закрыты) по очередно;
  • вставляете плотно шланг в колодец;
  • со всех сил пытаетесь дуть в камеру сгорания (проходит воздух – погнуло, не проходит – “пронесло”).

Такой же тест можно сделать с использованием компрессора (даже автомобильного). Правда придется немного потратить больше времени, так как нужно подготовиться. В старой свече высверлить центральный электрод, а на керамический наконечник одеть шланг (зафиксировав хорошо хомутом). Потом качать давление в цилиндр (при условии, что поршень в нём стоит у ВМТ).

По шипению и по давлению на манометре будет понятно сидят шляпы клапанов в седлах или нет. Причем в зависимости от того куда пойдет воздух определите впускные загнуло или выпускные. При загнутых выпускных, воздух идет в выхлопной коллектор (глушитель). Если загнуло впускные клапана, то во впускной тракт.

На каких двигателях гнёт клапана?Скачать (документ MS Word *.docx)

Источник: https://etlib.ru

Автор материала: Иван Матиешин.

Обрыв ремня ГРМ – 6 причин, почему он рвется и на каких двигателях

Разберем, почему происходит повышенный износ ремня ГРМ и последующий его обрыв. Эксперты поделятся опытом, какие последствия будут при разрыве ременного привода газораспределительного механизма на разных моделях автомобилей.

Давайте рассмотрим вкратце основные признаки «умирающего» ремня. Потом перейдет к причинам повышенного износа и как их можно избежать. Поэтапно вы сможете понять, как уберечь ремешок ГРМ и продлить ему срок службы.

Причины и последствия обрыва ремня ГРМ

Признаки

Некоторые из них могут быть спорными, об этого говорилось в этом обзоре, по их появление должно насторожить внимательного автовладельца.

Визуальный

Первым делом нужно периодически осматривать ремень ГРМ на наличие микротрещин. Если есть такая возможность и доступ у нему, раз в 20-30 тыс. км. проводите визуальный осмотр ременного привода. В некоторых случаях он частично скрыт защитным кожухом. Обычно это верхняя его часть, где расположены звездочки распределительного вала. В некоторых моделях авто, например Опель Кадет, защиты нет. Это тоже может стать причиной быстрого износа и обрыва ремня, но об этом позже.

Отсутствие защитного кожуха на механизме ГРМ – отлично подходит для визуального осмотра, но это причина сокращения срока эксплуатации

 

Если есть на внешней поверхности микротрещины или сильные потертости, то пора задуматься о его скорой замене. В некоторых случаях наблюдается частичное разрушение ремня. Его «сжирает», можно видеть уменьшение его ширины вплоть до половины.

Визуальные признаки износа ремня ГРМ - жрет ремешок и микротрещины

Нередко внешняя сторона ремешка визуально целая. Но не стоит обольщаться. Капнем глубже. Берем фонарик и осматриваем внутреннюю сторону, где зубья. Были случаи, когда не досчитывались нескольких зубчиков на ремне ГРМ. Это уже не просто признак, а крик о его немедленной замене. В подобных случаях гнет клапана, если в поршнях нет специальных выемок на случай обрыва ременного механизма.

При визуальном осмотре ремня ГРМ обнаружили оборванные зубья

Шум

Если у вас цепь в приводе газораспределительного механизма, то шум – это нормальное явление на некоторых моделях авто, например на двигателях Фольксваген. Даже если они считаются надежными, то шуметь она может уже с завода. Если использован ремень, то это явный признак обратить внимание.

Но шум может исходить не только от ремешка. Посторонние звуки могут издавать натяжной ролик, помпа и др. Но провести дефектовку всего механизма обязательно нужно. В противном случае произойдет обрыв ремня ГРМ, а последствия – загнет клапана. Это ремонт головки и возможная замена поршней.

Масло и охлаждающая жидкость

Если на передней стороне двигателя в районе шкива коленвала обнаружили течь масла или масляное запотевание – есть утечка через сальник. Масло уже пробивается через защитный кожух ГРМ, то оно попало на ремень в 100 % случаев. Масляный привод не будет обеспечивать должного сцепления зубьев со звездочками коленчатого вала и распредвала. Это ускорит его износ.

Подтеки масла под шкивом коленвала - признак скорой замены ремня ГРМ

Помпа может протекать охлаждающей жидкостью. В большинстве случаев ремень является ее приводом. Если она потекла, то тосол смачивает его регулярно. Антифриз является агрессивной средой и негативно влияет на резиновые изделия автомобиля. Это сокращает срок службы ремешка.

Если эти признаки обнаруживаются при визуальном осмотре мотора или ремня ГРМ, то пора задуматься о его скорой замене. Потом последствия будут печальными.

Причины

Теперь разберем, что сокращает срок эксплуатации ременного привода газораспределительного механизма автомобиля.

Отсутствие защитного кожуха

Если его нет совсем или верхняя часть была утеряна при ремонте, эксплуатации, то пыль, грязь с дороги и подкапотного пространства попадает на ремень и шестерни ГРМ. Со временем это все работает как абразив. Повышается износ ремня и металлических звездочек шкивов коленвала и распредвала.

Дорожная пыль и грязь съедает шестерни и ремень ГРМ

Грязь «съедет» трущиеся элементы механизма. Происходит выработка на звездочках, высота зубьев уменьшается. Все это грозит перескоком на один зуб или его обрывом. Последствия – гнет клапана или сбиваются фазы газораспределения.

Сползание

Второй причиной сокращения ресурса ремня ГРМ является его сползание с натяжного ролика. В результате чего его края срезаются об края ролика, так называемые бурты. В этом случае уменьшается его ширина вплоть до половины.

Ремень сползает на бурт натяжного ролика

На этот процесс влияет:

  1. Выработка зубчатых шкивов коленчатого вала, распредвала;
  2. Износ шкива помпы или ее перекоса;
  3. Изменение шайбы под натяжным роликом.

Проведем эксперимент, его хорошо видно на видео ниже. Срезаем бурты ролика для наглядности. Если соблюдена соосность всех элементов ГРМ, то ремень не будет сползать. Достаточно изменить шайбу под ним, имитируя её выработку, видно, как ременной привод «съезжает». Так его «сжирает», происходит его уменьшение в размерах и обрыв.

Помпа

Часто при её замене не полностью удаляется прокладка или герметик под ней. По своей невнимательности многие на это не обращают внимание. Устанавливают новую прокладку, деталь, затягивают.

В результате получается еле видимый перекос. Нарушается соосность одного из элементов ГРМ. В результате этого происходит смещение ремня на бурты ролика. Последствия – «разлохмачивание» ремешка, ускоренный износ. Это причина последующего обрыва ремня.

Со временем подшипник помпы может разрушаться. Появляется люфт шестерни. Это приводит к вибрации ременного привода. В результате увеличивается износ зубьев из-за неплотного прилегания. Люфт может привести к соскальзыванию ремня ГРМ, так же как в случае перекоса шкива. Последствия описывались выше.

Течь помпы тоже может быть причиной быстрого износа. Антифриз и другая охлаждающая жидкость наносит не поправимый урон резине. Ремешок теряет свои механические свойства, трескается и рвется в самый не подходящий момент, обычно далеко от гаража.

Люфт подшипника помпы и течь ее прокладки - причины износа ремня ГРМ

Натяжные и обводные ролики

Все они должны в исправном состоянии свободно вращаться. Заклинивание, шум при вращении – это признак разрушения подшипника. Если происходит подклинивание, то ремень не может свободно скользить по его поверхности, ролик его задерживает. Повышается трение между этими двумя элементами. Это увеличивает износ ремешка, он «сгорает», уменьшается его толщина и механические свойства. Результат очевиден – разрыв и загнутые клапана.

При неаккуратном монтаже нового ролика, мастер может загнуть его шпильку. Достаточно на пару миллиметров. Это приведет к изменению соосности элементов привода газораспределения. Ремень сползает, стирается, рвется.

Неудовлетворительное качество запасных частей. В некоторых случаях попадаются некачественные запчасти. Ролик имеют дисбаланс поверхности скольжения. При его вращении заметно неровность его рабочей стороны. Она имеет «волну». Это приводит к вибрации ремня на нем, соответственно будет быстрее рваться.

Заклинивание натяжных роликов приводит к обрыву ремня ГРМ

Сальники и уплотнения

Привод механизма в большинстве автомобилях скрыт от внешних воздействий кожухом. Но он может не спасти от быстрого износа ремня ГРМ. Дело в сальниках и уплотнителях. Через сальник коленвала и распредвала на него может попадать масло. Через уплотнительное кольцо помпы – антифриз. Все эти агрессивные вещества разрушают резину ремня, он теряет механические свойства.

Масло, попав на зубья, уменьшает сцепление ремешка с шестернями. Он будет проскальзывать. Последствия – повышенный износ, а как следствие его обрыв, или собьются фазы газораспределения. Это повлияет на мощность, нормальную работу двигателя или погнет клапана.

Промасленный ремень ГРМ - причина быстрого износа

Длительный простой

Как бы это удивительно не звучало, но если долго не эксплуатировать автомобиль, то даже на небольших пробегах ремни приходят в негодность. Не у меня, но у моих соседей мотористов приезжали автомобили с пробегом 30-40 тысяч километров после простоя в гараже 3-4 года на ТО.

При дефектовке было выявлено усталостное разрушение ремня ГРМ. Это выражается появлением трещин на основании зубьев. Вроде и пробег маленький, но из-за длительного простоя резина стала «дубеть». Она теряет гибкость и соответственно прочность. Когда работает двигатель, зубья испытывают большое напряжение. Так как резина стала более хрупкой, зубцы начинают надламываться в месте наибольшего приложения силы – у своих оснований.

У каких моторов гнутся клапана при обрыве ремня

Теперь рассмотрим последствия разрыва ременного привода системы газораспределения. Возьмем самые популярные модели.

Последствия обрыва ремня ГРМ - гнутые клапана

ВАЗ

Самара 2108-21099 оснащались такими моторами:

  1. Маркировка силового агрегата – 21081, 2108 с инжектором и карбюратором;
  2. 21083, 21091;
  3. ВАЗ-2111 с 8 клапанами.

Последние два мотора не загибали клапана при обрыве. На 2108 и 21081 – гнулись.

На первых моделях Лада 2110 с 8-клапанными двигателями объемом 1,5 литра после обрыва ремня клапана не гнуло. Потому что они не встречались с поршнями. Последующие моторы 1,5 литра 16-клапанный, 1,6 л. на 16 и 8 клапанов загибали их.

На 2112 с 16-клапанным мотором в конструкции двигателя были внесены изменения. Кроме увеличения мощности до 92 лошадиных сил, владельцы получали гнутые клапана при разрыве ремешка ГРМ. В последствии на эти модели ставили усовершенствованные силовые агрегаты объемом 1,6 литра. У них были цековки на поршнях. Последствия обрыва ремня газораспределительного механизма владелец переживал спокойно. Клапана не гнуло.

На автомобилях Лада Приора тоже установлены силовые агрегаты с 16 клапанами и объемом 1,6 литра. Но здесь ремонт будет дорогой. Выход их строя ремня приведет к загибу клапанчуков. Конструкторы знали о последствиях, поэтому увеличили ширину ременного привода ГРМ в два раза. Он стал шире, вероятность его обрыва уменьшилась. Исключением является базовый двигатель.

ДВС Лада Гранта:

  1. 11183 – «безвтыковая» версия;
  2. 11186, 21126 и 21128 – гнутся клапана.

Моторы ВАЗ Приора «втыковые». Нет специальных выемок на зеркале поршней. Клапана гнутся при обрыве ремня.

Клапана гнутся на всех моделях лада гранта при разрыве ремня

Калина:

  1. ВАЗ 11183 – не загибает;
  2. 11186, 11194, 21126, 21127 – гнет. Последние два силовых агрегата устанавливались на Калину Спорт, моторы 21127 и 11186 ставились на Кросс версию.

Приора – вся линейка силовых агрегатов этой модели загибает клапана после обрыва ремня ГРМ.

Renault

Рено Логан комплектуется «втыковыми» двигателями при обрыве ремня загибаются клапана газораспределительного механизма. K7J, K7M, K4J, K4M 8 и 16-клапанники – гнут после разрыва ремешка.

Дизель

В связи с конструктивными особенностями на дизелях клапана гнутся всегда при разрыве ремней. На данный момент не известны маркировки силовых агрегатов, лишенных этой проблемы. Это связано с особенностью технологии сжигания дизельного топлива.

Степень сжатия большая, камера сгорания выполнена в днище поршня. Изменение его конструкции и появление проточек для клапанов уменьшит их мощность в разы. Так как изменится вихревые потоки и процесс сгорания топлива.

Вывод

Ремень в системе ГРМ менее надежный, чем цепь, она может порваться, если не следить за её состоянием, не обращая на признаки скорой замены. Цепочка хоть и не рвется, но может перескочить чрез один или два зуба на шестернях коленвала или распредвала при ее растяжении. В этом случае устанавливаются механические или гидравлические натяжители. На старых моделях ВАЗ с цепным приводом, натяжку нужно выполнять самостоятельно.

Ремешок не способен так сильно растягиваться. Даже при неправильной натяжке, вероятность перескока на зуб крайне мала. Он будет прыгать в системе, издавая неприятные, шлепающие звуки. Задевая собой все внутреннее пространство под защитным кожухом, ремень будет тереться об выступы, острые края, приходя в негодность. Это тоже является причиной повышенного износа ремня ГРМ.

Если не проводить регламентную замену ременного привода, то последствия его обрыва будут гнутые клапана. В некоторых случаях повреждаются их направляющие и поршня. Поэтому нужно следить за его состоянием.

Почему мой клапан протекает? -Allied Valve Inc.

Утечка клапана — обычное явление в промышленных условиях. Даже клапаны, помеченные как «нулевые утечки» или «непроницаемые для пузырьков», не обязательно полностью герметичны. В этой статье рассматриваются типы и распространенные причины утечки клапана, а затем предоставляется информация о промышленных стандартах, регулирующих скорость утечки для различных типов клапанов.

Типы течи клапана

Существует два основных типа утечки клапана:

Общие причины негерметичности клапана

Клапаны

могут протекать по разным причинам, в том числе:

  • Клапан не полностью закрыт (эл.g. из-за грязи, мусора или других препятствий).
  • Клапан поврежден . Повреждение седла или уплотнения может вызвать утечку.
  • Клапан не предназначен для 100% закрытия . Клапаны, которые предназначены для точного управления во время дросселирования, могут не иметь отличных возможностей включения / выключения.
  • Клапан не тот размер для проекта.

Промышленные стандарты утечки клапана

Стандарты утечки для различных типов клапанов определены Американским институтом нефти (API), Американским национальным институтом стандартов (ANSI), Институтом контроля жидкостей (FCI) и Обществом стандартизации производителей (MSS).

Клапаны сброса давления

Клапаны сброса давления обнаруживают утечку (также называемую кипячением или предупреждением), так как рабочее давление в системе приближается к 80–90% от установленного на паспортной табличке давления. Стандарт API 527 определяет методы определения герметичности седла предохранительных клапанов с металлическим и мягким седлом и определяет максимально допустимые скорости утечки.

Подробнее об API 527.

Клапаны шаровые, дроссельные, обратные, запорные, запорные и пробковые

Стандарт API 598 обеспечивает основу для утечек из седел промышленных клапанов.Этот стандарт охватывает требования к утечкам для шаровых, дроссельных, обратных, запорных, запорных и пробковых клапанов, как с металлическими, так и с мягкими седлами, для испытаний жидкости и газа.

Подробнее об API 598.

Клапаны обратные, запорные и запорные

Стандарт MSS SP-61 устанавливает допуски на утечки как для металлических клапанов, так и для клапанов с мягким седлом. В этом стандарте содержится руководство по испытаниям клапанов, которые обычно используются в «полностью открытых» и «полностью закрытых» режимах, таких как обратные, запорные и запорные клапаны, в отличие от дроссельных и регулирующих клапанов.

Узнайте больше о MSS SP-61.

Стандарт ANSI / FCI 70-2 определяет шесть различных классификаций утечки специально для регулирующих клапанов, от класса 1 (испытания не требуются) до класса IV (0,01% от номинальной мощности). Класс V представляет собой «практически нулевую утечку», испытанную водой. Класс IV — это классификация мягких седел, определяющая допустимую утечку в зависимости от размера клапана, испытанного воздухом или азотом.

Узнайте больше о ANSI / FCI 70-2.

Как я могу защитить себя от повреждений, вызванных протечкой клапана?

Утечка клапана произойдет, но это не значит, что она должна вызвать проблемы для вашего проекта.Вот три способа защиты от повреждений, вызванных протечкой клапана.

  • Укажите величину допуска утечки для проекта. Допуск на утечку может сильно варьироваться от проекта к проекту. «Нулевая утечка» не всегда необходима или желательна.
  • Выберите подходящий размер клапана. Превышение допустимого значения — одна из наиболее частых причин утечки клапана, особенно регулирующих клапанов. К счастью, этого также можно избежать путем правильного выбора размера клапана.
  • Проводите регулярные испытания и проверки. Лучший способ убедиться, что протечка клапана не повредит систему или не нанесет чрезмерного вреда окружающей среде, — это проводить регулярные испытания и проверки клапана. Раннее обнаружение позволит вам исправить мелкие проблемы до того, как они станут серьезными.
,

Что такое обратный клапан? Узнайте о типах обратных клапанов и деталях

Перейти к содержанию
  • На главную
  • ТрубопроводРазвернуть / Свернуть
    • ТрубопроводРасширить / свернуть
      • Направляющая
      • Размеры и спецификации труб
      • Таблицы спецификации труб
      • Цветовые коды сварных труб
      • 9000 Производство
      • Осмотр труб
    • ФитингиРазвернуть / Свернуть
      • Руководство по трубным фитингам
      • Производство трубных фитингов
      • Размеры и материалы трубных фитингов
      • Осмотр трубных фитингов — визуальный осмотр и испытания
      • Размеры отвода
      • и 45 градусов Размеры колен и возвратных колен
      • Размеры тройника
      • Размеры трубного редуктора
      • Размеры заглушки
      • Размеры трубной муфты
    • Фланцы расширяются / сжимаются
      • Направляющая фланца
      • Отверстие и длинная приварная шейка Фланец
      • 9000Размеры фланца с шейкой
      • Размеры фланца RTJ
      • Размеры фланца с соединением внахлест
      • Размеры фланца с удлиненной шейкой
      • Размеры фланца с муфтой под приварку
      • Размеры фланца с муфтой
      • Размеры глухого фланца
      • Размеры фланца с отверстием
    • p
        Направляющая
      • клапанов
      • Детали клапана и трим клапана
      • Запорный клапан
      • Проходной клапан
      • Шаровой клапан
      • Обратный клапан
      • Поворотный клапан
      • Заглушка
      • Игольчатый клапан
      • Пневматический предохранительный клапан
      • Материал трубыРасширение / сжатие
        • Направляющая материала трубы
        • Углеродистая сталь
        • Легированная сталь
        • Нержавеющая сталь
        • Цветные металлы
        • Неметаллические
        • ASTM A53
        • ASTM A105
      • ASTM A105
    • Олец Г uide
    • Weldolet и размеры
    • Sockolet и размеры
    • Threadolet и размеры
    • Latrolet и размеры
    • Elbolet и размеры
  • Болты-шпилькиРазвернуть / свернуть
    • Процедура затяжки шпильки
    • Болт
    • Схема затяжки болта
    • Размеры тяжелой шестигранной гайки
  • Прокладки и жалюзи для очков Развернуть / Свернуть
    • Направляющая прокладок
    • Спирально-навитая прокладка
    • Размеры спирально-навитой прокладки
    • Размеры и размеры прокладки RTJ
    • Габаритные размеры для слепых очков
    • и проставки
  • P & IDExpand / Collapse
    • Как читать P&ID
    • Схема технологического процесса
    • Символы P&ID и PFD
    • Символы клапана
  • ОборудованиеРазвернуть / свернуть
    • PumpExpand
    • Типы насосов и центрифуг
    • Сосуд под давлениемРазвернуть / свернуть
      • Скоро
  • Курсы
  • ВидеоРазвернуть / свернуть
    • Видеоуроки
    • हिंदी Видео
  • Блог
  • Запрос
HardHat Engineer HardHat Engineer Search Искать:
  • Home
  • Трубопровод
    • Трубопровод
      • Трубопровод
      • Размеры и график труб
      • Таблицы графиков труб
      • Цветовые коды сварных трубопроводов
      • 000 Цвет сварных труб 9000
      • Осмотр труб
    • Фитинги
      • Руководство по трубопроводным фитингам
      • Производство трубопроводных фитингов
      • Размеры и материалы трубных фитингов
      • Осмотр трубных фитингов — Визуальные и испытания
      • Размеры колен — 90 и 45 градусов
      • Отводы труб И возвратные размеры
      • Размеры тройника
      • Размеры переходника
      • Размеры заглушки
      • Размеры трубной муфты
    • Фланцы
      • Направляющая фланца
      • Диафрагма и фланец с длинной приварной шейкой
      • Размеры фланца
      • Характеристики фланца
      • Размеры фланца RTJ
      • Размеры фланца внахлест
      • Размеры фланца с длинной приварной шейкой
      • Размеры фланца, приварного внахлест
      • Размеры скользящего фланца
      • Размеры глухого фланца
      • Размеры фланца с диафрагмой
    • Клапаны
    • Детали клапана и трим клапана
    • Задвижка
    • Проходной клапан
    • Шаровой клапан
    • Обратный клапан
    • Дисковый затвор
    • Заглушка
    • Игольчатый клапан
    • Материал пережимного клапана
    • Материал предохранительного клапана
    • 2
    • Направляющая по материалам труб
    • Углеродистая сталь
    • Легированная сталь
    • Нержавеющая сталь
    • Цветные металлы
    • Неметаллические
    • ASTM A53
    • ASTM A105
  • Olets
      & Olets Guide
      • Размеры
      • Гнездо и размеры
      • Резьба и размеры
      • Latrolet и размеры
      • Эльболет и размеры
    • Болты шпильки
      • Направляющая шпильки
      • Порядок затяжки болтов
      • Таблица гаек фланцев
      • 900 Размеры 9000
      • Прокладки и жалюзи для очков
        • Направляющая для прокладок
        • Спирально-навитая прокладка
        • Размеры спирально-навитой прокладки
        • Прокладка и размер RTJ
        • Очковые слепые и проставки
        • Габаритные размеры для очков
          • P&000
            • Диаметр технологического потока грамм
            • Символы P&ID и PFD
            • Символы клапанов
          • Оборудование
            • Насос
              • Работа и типы центробежного насоса
            • Сосуд под давлением
              • Видео Скоро
            • 9003 9000 Видео Обучающие видео
          • हिंदी Видео
        • Блог
        • Обо мне
          • Контакты
          • Политики
          • Запрос продукта
        ,

        Зачем нужны двойные соленоиды на регулирующем клапане?

        Электромагнитные клапаны часто используются в некоторых приложениях, в которых регулирующий клапан при определенных условиях требует, чтобы он быстро переводился в положение отказа.

        Электромагнитные клапаны обычно представляют собой двухпозиционные или трехходовые клапаны с электрическим приводом, устанавливаемые в воздушную систему и предназначенные для выполнения определенных действий при срабатывании.

        Соленоид

        SOV SCHEMATIC SOV SCHEMATIC

        Соленоид можно рассматривать как двухпозиционный переключатель для пневматической системы.

        Сигнал на соленоид управляет работой внутреннего клапана в сборе, позволяя потоку через клапан в одном положении и в другом положении, изолируя или удаляя воздух.

        Dual Solenoid Valves on Control Valve Dual Solenoid Valves on Control Valve

        Почему нам требуется одиночный SOV на регулирующем клапане?

        Например, есть регулирующий клапан, который требует быстрого действия в аварийном состоянии в аварийных ситуациях, тогда между выходом позиционера и входом исполнительного механизма устанавливается двухходовой SOV.

        Когда SOV находится под напряжением, тогда вход SOV соединен с выходом и позволяет воздуху течь от выхода позиционера к приводу.

        Когда SOV находится в обесточенном состоянии, выход соединен с вентиляционным отверстием (выпускным отверстием), и он быстро выпускает воздух регулирующего клапана из выпускного отверстия и переводит клапан в безопасное положение.

        Why we require Single SOV on a Control Valve Why we require Single SOV on a Control Valve

        Почему нам нужен двойной SOV на регулирующем клапане

        В некоторых случаях было обнаружено, что из-за отказа SOV (SOV может выйти из строя по многим причинам, таким как обрыв катушки, перегорел предохранитель, застрял плунжер, прохождение SOV и т. д.) регулирующий клапан переходит в аварийное состояние, что приводит к отключению установки из-за закрытия / открытия клапана или может вызвать некоторые нежелательные нарушения процесса.

        Поскольку закрытие завода обходится очень дорого, философия двойного SOV используется в целях резервирования.

        При двойном SOV, если один SOV выйдет из строя, то установка не будет мешать.

        Dual Solenoids on a Control Valve  Dual Solenoids on a Control Valve 

        Двойные контуры SOV:

        Пневматическая схема двойных SOV показана на рисунке ниже.

        Предположим, что воздух постоянно поступает к приводу в нормальных условиях.

        Выход позиционера подключен к обоим входам SOV, выход SOV-1 подключен к выходу SOV-2, а конечный выход идет от SOV-2 к приводу.

        Случай 1: Когда SOV-1 выйдет из строя в этом состоянии, то что произойдет:

        When SOV-1 become failure When SOV-1 become failure

        Если SOV-1 выходит из строя, то выходной порт SOV-1 соединен с выхлопом, и воздух выходит из SOV -2, потому что SOV-2 находится под напряжением, и вход подключен к выходу.

        Показания воздушного потока показаны на рисунке выше стрелками.

        Случай 2: Когда SOV-2 выходит из строя в этом состоянии, то что произойдет: —

        When SOV-2 becomes failure When SOV-2 becomes failure

        Если SOV-2 выходит из строя, то выход SOV-2 соединяется с выхлопом, и SOV-1 включается, тогда воздух идет от входа СОВ-1 к выходу, затем выход соединяется с выходом СОВ-2, который в аварийном состоянии соединен с выходом СОВ-2, и воздух идет к исполнительному механизму.

        Показания воздушного потока показаны на рисунке выше стрелками.

        Случай-3: Когда оба SOV становятся обесточенными

        When both SOV become de-energies When both SOV become de-energies

        Когда оба SOV обесточены, тогда оба выхода SOV соединены с выхлопом и блокируют вход, тогда воздух привода выпускается из выхода SOV-2 для выпуска, затем выхлоп соединен с выходом СОВ-1, а выход СОВ-1 соединен с выхлопом, и выпускается воздух.

        Показания воздушного потока показаны на рисунке выше стрелками.

        Как проверить работоспособность SOV в работающей установке:

        Проверьте ежемесячную температуру поверхности SOV пирометром. если оба SOV принадлежат одной компании, то температура поверхности почти одинакова. (Максимальная разница между обоими SOV составляет 5 градусов c). Если разница температур больше, проверьте сопротивление катушки.

        Физически проверьте выпускное отверстие на предмет закупорки или его нормального состояния.

        Спонсор: Solenoid-valve.world

        Автор: Ашиш Агравал

        Читать дальше:
        .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *