Меню Закрыть

Общее устройство системы питания: Система питания

Содержание

Система питания

Система питания двигателя служит для приготовления горючей смеси из паров топлива и воздуха в определенных пропорциях, подачи ее в цилиндры двигателя и отвода из них отработавших газов. За подачу топлива в цилиндры в современных автомобилях отвечает система впрыска топлива, основными элементами, которой являются форсунки.

Устройство системы питания

В систему питания карбюраторного двигателя входят: топлив­ный бак, фильтр-отстойник, топливопроводы, топливный насос, фильтр тонкой очистки топлива, карбюратор, воздухоочиститель, впускной трубо­провод, выпускной трубопровод, приемные трубы, глушитель, приборы контроля уровня топлива.

Работа система питания

При работе двигателя топливный насос засасывает топливо из топлив­ного бака и через фильтры подает в поплавковую камеру карбюратора. При такте впуска в цилиндре двигателя создается разрежение и воздух, пройдя через воздухоочиститель, поступает в карбюратор, где смешивается с парами топлива и в виде горючей смеси подается в цилиндр, и там, сме­шиваясь с остатками отработавших газов, образуется рабочая смесь. После совершения рабочего хода, отработавшие газы выталкиваются поршнем в выпускной трубопровод и по приемным трубам через глушитель в окру­жающую среду.

Системы питания и выпуска отработавших газов двигателя автомобиля:

1 — канал подвода воздуха к воздушному фильтру; 2 — воздушный фильтр; 3 — карбюратор; 4 — рукоятка ручного управления воздушной заслонкой; 5 — рукоятка ручного управления дроссельны­ми заслонками; 6 — педаль управления дроссельными заслонками; 7 — топливо проводы; 8 — фильтр-отстойник; 9 — глушитель; 10 — приемные трубы; 11 — выпускной трубопровод; 12 — фильтр тонкой очистки топлива; 13 — топливный насос; 14 — указатель уровня топлива; 15 — датчик указателя уровня топлива; 16 — топливный бак; 17— крышка горловины топливного бака; 18 — кран; 19 — выпускная труба глушителя.

Топливо. В качестве топлива в карбюраторных двигателях обычно ис­пользуют бензин, который получают в результате переработки нефти.

Требования, предъявляемые к бензинам:

• быстрое образование топливовоздушной смеси;

• скорость сгорания не более 40 м/с;

• минимальное коррозирующее воздействие на детали двигателя;

• минимальное отложение смолистых веществ в элементах системы питания;

• минимальное вредное воздействие на организм человека и окружаю­щую среду;

• способность длительное время сохранять свои свойства.

Автомобильные бензины в зависимости от количества легко испаряющихся фракций подразделяют на летние и зимние.

 Для автомобильных карбюраторных двигателей выпускают бензины А-76, АИ-92, АИ-98 и др. Буква «А» обозначает, что бензин автомобильный, цифра — наименьшее октановое число, характеризующее детонационную стойкость бензина. Наибольшей детонационной стойкостью обладает изооктан, (его стой­кость принимают за 100), наименьшей —  н-гептан (его стойкость равна 0). Октановое число, характеризующее детонационную стойкость бензи­на, — процентное содержание изооктана в такой смеси с н-гептаном, ко­торая по детонационной стойкости равноценна испытуемому топливу. Например, исследуемое топливо детонирует так же, как смесь 76 % изо­октана и 24 % н-гептана. Октановое число данного топлива равно 76. Октановое число определяется двумя методами: моторным и исследова­тельским. При определении октанового числа вторым методом в марки­ровке бензина добавляется буква «И». Октановое число определяет до­пустимую степень сжатия.

 

 

Топливный бак. На автомобиле устанавливают один или несколько топливных баков. Объем топливного бака должен обеспечивать 400—600 км пробега автомобиля без заправки. Топливный бак  состоит из двух сварных половинок, выполненных штамповкой из освинцованной стали. Внутри бака имеются перегородки, придающие жесткость конструкции и препятствующие образованию волн в топливе. В верхней части бака приварена наливная горловина, которая закрывается пробкой. Иногда для удобства заправки бака топливом используют выдвижную горловину с сетчатым фильтром. На верхней стенке бака крепится датчик указателя уровня топлива и топливо заборная трубка с сетчатым фильтром. В днище бака имеется резьбовое отверстие для слива отстоя и удаления механических примесей, которое закрыто пробкой. Наливную горловину бака закрывают плотно пробкой, в корпусе которой имеется два клапана — паровой и воздушный. Паровой клапан при повышении давления в баке открывается и выводит пар в окружающую среду. Воздушный клапан открывается, когда идет расход топлива и создается разрежение.

 

Топливные фильтры. Для очистки топлива от механических примесей применяют фильтры грубой и тонкой очистки. Фильтр-отстойник грубой очистки отделяет топливо от воды и крупных механических примесей. Фильтр-отстойник  состоит из корпуса, отстойника и фильтрующего элемента, который собран из пластин толщиной 0,14 мм. На пластинах имеются отверстия и выступы высотой 0,05 мм. Пакет пластин установлен на стержень и пружиной поджимается к корпусу. В собранном состоянии между пластинами имеются щели, через которые проходит топливо. Крупные механические примеси и вода собираются на дне отстойника и через отверстие пробки в днище периодически удаляются.

Топливный бак (а) и работа выпускного (б) и впускного (в) клапанов: 1— фильтр-отстойник; 2 — кронштейн крепления бака; 3 — хомут крепления бака; 4 — датчик указателя уровня топлива в баке; 5 — топливный бак; 6 — кран; 7 — пробка бака; 8 — горловина; 9 — облицовка пробки; 10 — резиновая прокладка; П — корпус пробки; 12 — выпускной клапан; 13 — пружина выпускного клапана; 14 — впускной клапан; 15 — рычаг пробки бака; 16 -пружина впускного клапана.

Фильтр-отстойник: 1 — топливо провод к топливному насосу; 2 — прокладка корпуса; 3 — корпус-крышка; 4 — топливо провод от топливного бака; 5 — прокладка фильтрующего элемента; 6 — фильтрующий элемент; 7— стойка; 8 — отстойник; 9— сливная пробка; 10 — стержень фильтрующего элемента; 11 — пружина; 12 — пластина фильтрующего элемента; 13 — отверстие в пластине для прохода очищенного топлива; 14 — выступы на пластине; 15 — отверстие в пластине для стоек; 16 — заглушка; 17 — болт крепления корпуса-крышки.

Фильтры тонкой очистки топлива с фильтрующими элементами: a — сетчатый; б — керамический; 1— корпус; 2— входное отверстие; 3— прокладка; 4— фильтрующий элемент; 5— съемный стакан-отстойник; 6 — пружина; 7— винт креплении стакана; 8— канал для отвода топлива.

Фильтр тонкой очистки. Для очистки топлива от мелких механических примесей применяют фильтры тонкой очистки , которые состоят из корпуса, стакана-отстойника и фильтрующего сетчатого или керамического элемента. Керамический фильтрующий элемент — пористый материал, обеспечивающий лабиринтное движение топлива. Фильтр удерживается скобой и винтом.
Топливо проводы соединяют приборы топливной системы и изготовляются из медных, латунных и стальных трубок.

Топливный насос системы питания

Топливный насос служит для подачи топлива через фильтры из бака в поплавковую камеру карбюратора. Применяют насосы диафрагменного типа с приводом от эксцентрика распределительного вала. Насос  состоит из корпуса, в котором крепится привод — двуплечий рычаг с пружиной, головки, где размещены впускные и нагнетательные клапаны с пружинами, и крышки. Между корпусом и головкой зажаты края диафрагмы. Шток диафрагмы к рычагу привода крепится шарнирно, что позволяет диафрагме работать с переменным ходом.

Когда двуплечий рычаг (коромысло) опускает диафрагму вниз, в полости над диафрагмой создается разрежение, за счет чего открывается впускной клапан и наддиафрагменная полость заполняется топливом. При сбегании рычага (толкателя) с эксцентрика диафрагма поднимается вверх под действием возвратной пружины. Над диафрагмой давление топлива повышается, впускной клапан закрывается, открывается нагнетательный клапан и топливо поступает через фильтр тонкой очистки в поплавковую камеру карбюратора. При смене фильтров поплавковую камеру заполняют топливом с помощью устройства для ручной подкачки. В случае выхода диафрагмы из строя (трещина, прорыв и т. п.) топливо поступает в нижнюю часть корпуса и вытекает через контрольное отверстие.

Воздушный фильтр служит для очистки воздуха, поступающего в карбюратор, от пыли. Пыль содержит мельчайшие кристаллы кварца, который, оседая на смазанных поверхностях деталей, вызывает их изнашивание.

Требования, предъявляемые к фильтрам:


• эффективность очистки воздуха от пыли;

• малое гидравлическое сопротивление;
• достаточная пылеемкость:
• надежность;
• удобство в обслуживании;
• технологичность конструкции.


По способу очистки воздуха фильтры делятся на инерционно-масляные и сухие.
Инерционно-масляный фильтр состоит из корпуса с масляной ванной, крышки, воздухозаборника и фильтрующего элемента из синтетического материала.
При работе двигателя воздух, проходя через кольцевую щель внутри корпуса и, соприкасаясь с поверхностью масла, резко изменяет направление движения. Вследствие этого крупные частицы пыли, находящиеся в воздухе, прилипают к поверхности масла. Далее воздух проходит через фильтрующий элемент, очищается от мелких частиц пыли и поступает в карбюратор. Таким образом, воздух проходит двухступенчатую очистку. При засорении фильтр промывают.

Воздушный фильтр сухого типа состоит из корпуса, крышки, воздухозаборника и фильтрующего элемента из пористого картона. При необходимости фильтрующий элемент меняют.

Общее устройство системы питания дизелей

Основными механизмами и узлами топливной аппаратуры дизелей ЯМЗ-236 и -238 (рис. 8.2, а) являются: топливный насос 10 высокого давления, топливоподкачивающий насос низкого давления, муфта опережения впрыскивания топлива, форсунки, расположенные в головках цилиндров, топливный бак с фильтром грубой очистки топлива, фильтр тонкой очистки топлива, топливопроводы низкого давления, топливопроводы 9 высокого давления, сливные топливопроводы.

Привод насоса высокого давления осуществляется от распределительного вала дизеля посредством зубчатой передачи. Вал 15 привода установлен в подшипниках, закрытых крышкой. При помощи автоматической муфты опережения впрыскивания он соединяется с кулачковым валом насоса, на заднем конце которого под крышкой смонтирован всережимный регулятор частоты вращения коленчатого вала дизеля.

Взаимодействие механизмов и узлов топливной аппаратуры, а также циркуляция топлива в них происходят следующим образом. Топливоподкачивающий насос низкого давления через топливопровод засасывает топливо из бака через фильтр грубой очистки и нагнетает его под избыточным давлением по топливопроводу в фильтр тонкой очистки. Из этого фильтра по топливопроводу топливо поступает к насосу высокого давления, откуда оно под большим давлением по топливопроводам подается в соответствии с порядком работы дизеля к его форсункам, через которые впрыскивается в цилиндры.

Так как насос низкого давления подает больше топлива, чем это необходимо для работы двигателя, то часть топлива, не использованного в насосе высокого давления, через перепускной клапан по сливным топливопроводам отводится обратно в бак. Просочившееся через зазоры в деталях форсунок топливо сливается в бак по сливным топливопроводам. При этом не использованное топливо обеспечивает смазывание и охлаждение деталей насоса и форсунки.

В дизелях семейства КамАЗ-740 (рис. 8.2, б) топливо из бака под действием разрежения, создаваемого топливоподкачивающим насосом низкого давления, проходят фильтры грубой и тонкой очистки.

По топливопроводам магистрали низкого давления топливо поступает к насосу высокого давления и от него по топливопроводам высокого давления подается к форсункам в соответствии с порядком работы двигателя. Неиспользованное топливо и попавший в систему воздух отводятся через перепускной клапан насоса высокого давления и клапан-жиклер фильтра тонкой очистки по сливным топливопроводам. Из форсунок лишнее топливо по топливопроводам поступает в бак через тройник и топливопровод.

У дизелей автомобилей ЗИЛ-4331 и семейства КамАЗ к топливной системе присоединено электрофакельное устройство для облегчения их пуска в условиях отрицательных температур. В это устройство входят факельные свечи, устанавливаемые во впускном трубопроводе и служащие для подогрева воздуха, поступающего в цилиндры. Топливо к факельным свечам поступает из топливопровода через магнитный клапан. Электрофакельное устройство является эффективным средством облегчения пуска двигателя при температурах до — 25 °С, а также предохраняет аккумуляторные батареи от перегрузки в процессе пуска, ускоряет начало работы дизеля под нагрузкой и снижает дымность отработавших газов у непрогретого двигателя.

Общее устройство и принцип действия системы питания

Система питания дизельного двигателя обеспечивает раздельную подачу воздуха и топлива в цилиндры, а также отвод из них продуктов сгорания в окружающую среду.

В зависимости от выполняемых функций элементы системы питания можно условно разделить на три группы: приборы, обеспечивающие подачу воздуха; приборы, обеспечивающие подачу топлива; приборы, обеспечивающие отвод отработавших газов в атмосферу.

Рассмотрим общее устройство системы питания на примере двигателя Д-240 (рис. 32).

32. Система питания двигателя Д-240 (тракторов МТЗ-80, МТЗ-82, Т-70С

1 — глушитель; 2 — воздухоочиститель; 3 — электрофакельный подогреватель; 4, 14 — топливопроводы низкого давления; 5 — дренажная трубка; 6 — топливопровод высокого давления; 7— заливная горловина; 8—баки; 9 — топливомерная трубка; 10 — сливной кран; 11 и 13 — фильтры грубой и тонкой очистки топлива; 12 — продувочный вентиль; 15 — регулятор топливного насоса высокого давления; 16 — рычаг регулятора; 17 — подкачивающий насос с насосом ручной подкачки; 18 — перепускной топливопровод; 19 — топливный насос высокого давления; 20—форсунка; 21 — камера сгорания; 22 — выпускной коллектор; 23 — заслонка аварийной остановки двигателя.

Воздух, засасываемый в цилиндры двигателя при тактах впуска, очищается в воздухоочистителе.

Воздухоочистители, в которых применяются несколько способов очистки воздуха, называются комбинированными. Именно такие в настоящее время применяются на тракторах.

Итак, очистку и подачу воздуха в цилиндры двигателя обеспечивают воздухоочиститель, впускная труба и впускной коллектор. Во впускной трубе некоторых двигателей установлена заслонка 23, предназначенная для немедленной остановки двигателя в аварийной ситуации.

При наличии турбокомпрессора (СМД-60, СМД-62) подача воздуха в цилиндры осуществляется более сложным путем: воздух нагнетается центробежным компрессором, который имеет привод от турбины, приводимой в действие отработавшими газами, выходящими через выпускную трубу и глушитель в атмосферу.

К элементам системы подачи топлива относятся топливный бак 8, фильтры грубой 11 и тонкой 13 очистки топлива, подкачивающий насос 17, насос высокого давления 19, форсунки 20, топливопроводы низкого 4, 14 и высокого 6 давления.ч.тающим нягосом 17 и нагнетается под давлением примерно 0,2 MПa в фильтр тонкой очистки 13. От фильтра тонкой очистки топливо подается в головку топливного насоса 19, а оттуда — к его секциям. Поскольку к насосу топливо подается с избытком, чтобы избежать подсоса воздуха, часть его перепускается специальным клапаном и возвращается по топливопроводу 18 в подкачивающий насос.

В некоторых двигателях (СМД-60, СМД-62 и др.) топливо отводится не к подкачивающему насосу, а в бак. Это исключает излишний подогрев, уменьшение цикловой подачи топлива и снижение мощности двигателя.

Секции топливного насоса в соответствии с порядком работы цилиндров двигателя и в необходимом количестве подают топливо по топливопроводам высокого давления 6 к форсункам 20, которые впрыскивают его под давлением в пределах 17,5 МПа в камеры сгорания. Топливо, просочившееся через зазоры между деталями форсунок, отводится дренажными трубками 5 в бак.

Очищенный воздушным фильтром 2 воздух поступает во время такта впуска через впускную трубу и впускной коллектор в цилиндр. При такте сжатия он сжимается и нагревается Подача в эту среду струи мелкораспыленного топлива приводит к образованию топливо-воздушной смеси, которая самовоспламеняется.

33. Схема типовой топливной системы тракторного дизельного двигателя.

1—топливозаборник с краном; 2 — сливной кран; 3 — отстойник; 4 — датчик сигнализатора воды; 5 — топливный бак: 6 — сетчатый фильтр; 7 — насос ручной подкачки; 8 — подкачивающий насос; 9 — клапан удаления воздуха; 10 — фильтр тонкой очистки; 11 — насос высокого давления; 12 — дроссель; 13 — датчик сигнализатора загрязненности фильтров; 14 — перепускной клапан.

Заданный скоростной режим работы двигателя поддерживается регулятором 15, который автоматически изменяет подачу топлива в цилиндры при изменении нагрузки. Рычаг регулятора 16 служит для включения и изменения подачи топлива в цилиндры.

Насос ручной подкачки обеспечивает заполнение системы топливом и удаление из нее воздуха.

В результате проведенных научно-исследовательских работ по совершенствованию топливных систем дизелей в части повышения качества очистки топлива и улучшения приспособленности к техническому обслуживанию разработана- и внедряется тракторными заводами типовая система подачи топлива, представленная на рис. 33. Характерными особенностями такой системы являются следующие.

1. Применен сигнализатор, дающий оперативную информацию о накоплении воды в отстое, образующемся в баке, с целыо своевременного ее удаления. Контроль производится дистанционно, из кабины трактора.

Принцип работы сигнализатора основан на существенном различии электрического сопротивления воды и дизельного топлива.

Датчик сигнализатора (рис. 34) представляет собой электрод 4, изолированный от корпуса отстойника и связанный с пороговой электрической схемой, состоящей из транзистора 5, источника питания постоянного тока 7, сигнальной лампы 6.

34. Сигнализатор воды в отстойнике.

1 — отстойник; 2—вода; 3 — топливо; 4 —электрод; 5 — транзистор; 6 — сигнальная лампа; 7 — источник питания.

При достижении водой определенного уровня (обусловленного расположением датчика) резко снижается сопротивление между датчиком и корпусом отстойника. В результате возрастает сила тока в базовой цепи транзистора: транзистор открывается, возрастает сила тока в цепи эмиттера с источником питания, и загорается сигнальная лампа, установленная на щитке приборов.

2. Применен сигнализатор состояния фильтра тонкой очистки и топливоподкачивающего насоса. Для обеспечения надежного наполнения топливом насоса высокого давления, сохранения его производительности и мощности двигателя на всех режимах его работы необходимо, чтобы давление подаваемого к насосу топлива было не ниже определенного (минимального) значения. Снижение давления может быть обусловлено загрязнением фильтра тонкой очистки, повышенным износом топливо-подкачивающего насоса или неисправностью перепускного клапана.

Сигнализатор представляет собой датчик мембранного типа 13 (см. рис. 33), соединенный с сигнальной лампочкой, и дроссель 12, необходимый для демпфирования колебаний топлива в полости датчика. Питается сигнализатор от электрооборудования трактора. Загорание лампочки информирует тракториста о том, что давление топлива подаваемого к топливному насосу высокого давления ниже критического.

3. В контуре перепуска топлива из фильтра тонкой очистки в бак установлен клапан, обеспечивающий эффективную предпусковую прокачку топливной системы и автоматическое удаление воздуха в процессе работы.

Системы питания двигателя: система питания бензинового двигателя

Системы питания бензиновых и дизельных двигателей значительно отличаются, поэтому рассмотрим их по отдельности. Итак, что такое система питания автомобиля?

Система питания бензинового двигателя

Системы питания бензиновых двигателей бывают двух типов — карбюраторная и впрысковая (инжекторная). Поскольку на современных автомобилях карбюраторная система уже не применяется ниже рассмотрим лишь основные принципы ее работы. При необходимости вы легко сможете найти дополнительную информацию по ней в многочисленных специальных изданиях.

Система питания бензинового двигателя, независимо от типа двигателя внутреннего сгорания, предназначена для хранения запаса топлива, очистки топлива и воздуха от посторонних примесей, а также подачи воздуха и топлива в цилиндры двигателя.

Для хранения запаса топлива на автомобиле служит топливный бак. На современных автомобилях применяются металлические или пластмассовые топливные баки, которые в большинстве случаев расположены под днищем кузова в задней части.

Систему питания бензинового двигателя можно условно разделить на две подсистемы — подачи воздуха и подачи топлива. Что бы ни случилось, в любой ситуации наши специалисты по выездной тех помощи на дорогах москвы приедут и окажут необходимую помощь.

Система подачи воздуха практически одинакова для всех типов двигателей внутреннего сгорания. Воздух, предназначенный для подачи в цилиндры двигателя, очищается от пыли воздушным фильтром, который расположен в моторном отсеке автомобиля. Воздух очищается сменным фильтрующим элементом, который выполнен из специальной бумаги с мелкими порами. Из следующей главы можно будет узнать электронная система управления двигателем — что это такое и как осуществляется диагностика электронной системы управления двигателем.

Дальнейший путь очищенного воздуха зависит от типа системы питания и будет рассмотрен ниже. А в одной из следующих глав можно будет узнать система питания дизельного двигателя: устройство системы питания дизельного двигателя.

Система питания бензинового двигателя карбюраторного типа

В карбюраторном двигателе система подачи топлива работает следующим образом.

Топливный насос (бензонасос) подает топливо из бака в поплавковую камеру карбюратора. Топливный насос, обычно мембранный, расположен непосредственно на двигателе. Привод насоса осуществляется при помощи штока-толкателя эксцентриком на распределительном валу.

Очистка топлива от загрязнений совершается в несколько этапов. Самая грубая очистка происходит сеточкой на заборнике в топливном баке. Затем топливо фильтруется сеточкой на входе в бензонасос. Также сетчатый фильтр-отстойник установлен на входном патрубке карбюратора.

В карбюраторе очищенный воздух из воздушного фильтра и бензин из бака смешиваются и подаются во впускной трубопровод двигателя.

Карбюратор устроен таким образом, чтобы обеспечить оптимальное соотношение воздуха и бензина в смеси. Это соотношение (по массе) составляет приблизительно 15 к 1. Топливовоздушная смесь с таким соотношением воздуха к бензину называется нормальной.

Нормальная смесь необходима для работы двигателя в установившемся режиме. На других режимах двигателю могут потребоваться топливовоздушные смеси с иным соотношением компонентов.

Обедненная смесь (15-16,5 частей воздуха к одной части бензина) имеет меньшую скорость сгорания по сравнению с обогащенной, но зато происходит полное сгорание топлива. Обедненная смесь применяется при средних нагрузках и обеспечивает высокую экономичность, а также минимальный выброс вредных веществ.

Бедная смесь (более 16,5 частей воздуха к одной части бензина) горит очень медленно. На бедной смеси могут возникать перебои в работе двигателя.

Обогащенная смесь (13-15 частей воздуха к одной части бензина) обладает наибольшей скоростью сгорания и используется при резком увеличении нагрузки.

Богатая смесь (менее 13 частей воздуха к одной части бензина) горит медленно. Богатая смесь необходима при пуске холодного двигателя и последующей работе на холостом ходу.

Для создания смеси, отличной от нормальной, карбюратор снабжен специальными устройствами — экономайзер, ускорительный насос (обогащенная смесь), воздушная заслонка (богатая смесь).

В карбюраторах разных систем эти устройства реализованы по-разному, поэтому здесь мы не будем рассматривать их более подробно. Суть просто в том, что система питания бензинового двигателя карбюраторного типа содержит такие конструктивные элементы.

Для изменения количества топливовоздушной смеси и, следовательно, частоты вращения коленчатого вала двигателя служит дроссельная заслонка. Именно ею управляет водитель, нажимая или отпуская педаль газа.

Система питания бензинового двигателя инжекторного типа

На автомобиле с системой впрыска топлива водитель тоже управляет двигателем посредством дроссельной заслонки, но на этом аналогия с карбюраторной системой питания бензинового двигателя заканчивается.

Топливный насос расположен непосредственно в баке и имеет электропривод.

Электробензонасос обычно объединен с датчиком уровня топлива и сетчатым фильтром в узел, получивший название топливный модуль.

На большинстве впрысковых автомобилей топливо из топливного бака под давлением поступает в сменный топливный фильтр.

Топливный фильтр может быть установлен под днищем кузова либо в моторном отсеке.

Топливные трубопроводы подсоединяются к фильтру резьбовыми или быстросъемными соединениями. Соединения уплотнены кольцами из бензостойкой резины или металлическими шайбами.

В последнее время многие автопроизводители стали отказываться от применения подобных фильтров. Очистка топлива производится только фильтром, установленным в топливном модуле.

Замена такого фильтра не регламентирована планом технического обслуживания.

Системы впрыска топлива бывают двух основных типов — центральный впрыск топлива (моновпрыск) и распределенный впрыск, или, как его еще называют, многоточечный.

Центральный впрыск стал для автопроизводителей переходным этапом от карбюратора к распределенному впрыску и на современных автомобилях применения не находит. Это связано с тем, что система центрального впрыска топлива не позволяет выполнить требования современных экологических стандартов.

Агрегат центрального впрыска похож на карбюратор, только вместо смесительной камеры и жиклеров внутри установлена электромагнитная форсунка, которая открывается по команде электронного блока управления двигателем. Впрыск топлива происходит на вход впускного трубопровода.

В системе распределенного впрыска количество форсунок равно количеству цилиндров.

Форсунки установлены между впускным трубопроводом и топливной рампой. В топливной рампе поддерживается постоянное давление, которое обычно составляет около трех бар (1 бар равен примерно 1 атм). Для ограничения давления в топливной рампе служит регулятор, который стравливает излишки топлива обратно в бак.

Раньше регулятор давления устанавливали непосредственно на топливной рампе, а для соединения регулятора с топливным баком использовалась обратная топливная магистраль. В современных системах питания бензинового двигателя регулятор располагают в топливном модуле и необходимость в обратной магистрали отпала.

Топливные форсунки открываются по командам электронного блока управления, и происходит впрыск топлива из рампы во впускной трубопровод, где топливо смешивается с воздухом и поступает в виде смеси в цилиндр.

Команды на открытие форсунок вычисляются на основании сигналов, поступающих от датчиков электронной системы управления двигателем. Тем самым обеспечивается синхронизация работы системы подачи топлива и системы зажигания.

Система питания бензинового двигателя инжекторного типа обеспечивает большую производительность и возможность соответствия более высоким экологическим стандартам, чем карбюраторного.

Система питания двс


Система питания двигателя в современных автомобилях

Система питания автомобиля используется для подготовки топливной смеси. Она состоит из двух элементов: топлива и воздуха. Система питания двигателя выполняет сразу несколько задач: очищение элементов смеси, получение смеси и ее подача к элементам двигателя. В зависимости от используемой системы питания автомобиля различается состав горючей смеси.

Типы систем питания

Различают следующие виды систем питания двигателя, отличающиеся местом образования смеси:

  1. внутри двигательных цилиндров;
  2. вне двигательных цилиндров.

Топливная система автомобиля при образовании смеси за пределами цилиндра разделяется на:

  • топливную систему с карбюратором
  • с использованием одной форсунки (с моно впрыском)
  • инжекторную
Назначение и состав топливной смеси

Для бесперебойной работы двигателя автомобиля необходима определенная топливная смесь. Она состоит из воздуха и топлива, смешанных по определенной пропорции. Каждая из этих смесей характеризуется количеством воздуха, приходящегося на единицу топлива (бензина).

Для обогащенной смеси характерно наличие 13-15 частей воздуха, приходящихся на часть топлива. Такая смесь подается при средних нагрузках.

Богатая смесь содержит менее 13 частей воздуха. Применяется при больших нагрузках. Наблюдается увеличенный расход бензина.

У нормальной смеси характерно наличие 15 частей воздуха на часть топлива.
Обедненная смесь содержит 15-17 частей воздуха и применяется при средних нагрузках. Обеспечивается экономный расход топлива. Бедная смесь содержит более 17 частей воздуха.

Общее устройство системы питания

В системе питания двигателя имеются следующие основные части:

  • бак для топлива. Служит для хранения топлива, содержит насос для закачки топлива и иногда фильтр. Имеет компактные размеры
  • топливопровод. Это устройство обеспечивает поступление топлива в специальное смесеобразующее устройство. Состоит из различных шлангов и трубок
  • устройство смесеобразования. Предназначено для получения топливной смеси и подачи в двигатель. Такими устройствами могут быть инжекторная система, моновпрыск, карбюратор
  • блок управления (для инжекторов). Состоит из электронного блока, управляющего работой системы смешения и сигнализирующего о возникающих сбоях в работе
  • топливный насос. Необходим для поступления топлива в топливопровод
  • фильтры для очистки. Необходимы для получения чистых составляющих смеси
Карбюраторная система подачи топлива

Эта система отличительна тем, что смесеобразование происходит в специальном устройстве – карбюраторе. Из него смесь попадает в нужной концентрации в двигатель. Устройство системы питания двигателя содержит такие элементы: бак для топлива, очищающие фильтры для топлива, насос, фильтр для воздуха, два трубопровода: впускной и выпускной, карбюратор.

Схема системы питания двигателя реализуется так. В баке находится топливо, которое будет использоваться для подачи в двигатель внутреннего сгорания. Оно попадает в карбюратор через топливопровод. Процесс подачи может быть реализован с помощью насоса или естественным способом с помощью самотека.

Чтобы топливная подача осуществлялась в камеру карбюратора самотеком, то его (карбюратор) необходимо размещать ниже топливного бака. Такую схему не всегда можно реализовать в автомобиле. А вот использование насоса дает возможность не зависеть от положения бака относительно карбюратора.

Топливный фильтр очищает топливо. Благодаря ему из топлива удаляются механические частички и вода. Воздух попадает в камеру карбюратора через специальный фильтр для воздуха, очищающий его от частиц пыли. В камере происходит смешение двух очищенных составляющих смеси. Попадая в карбюратор, топливо поступает в поплавковую камеру. А после направляется в камеру смесеобразования, где соединяется с воздухом. Через дроссельную заслонку смесь поступает во впускной коллектор. Отсюда она направляется к цилиндрам.

После отработки смеси газы из цилиндров удаляются с помощью выпускного коллектора. Далее из коллектора они направляются в глушитель, который подавляет их шум. Из него они поступают в атмосферу.

Подробно об инжекторной системе

В конце прошлого столетия карбюраторные системы питания стали интенсивно заменяться новыми системами, работающими на инжекторах. И не просто так. Такое устройство системы питания двигателя обладало рядом преимуществ: меньшая зависимость от свойств окружающей среды, экономная и надежная работа, выхлопы менее токсичны. Но у них есть недостаток – это высокая чувствительность к качеству бензина. Если этого не соблюдать, то могут возникнуть неполадки в работе некоторых элементов системы.

«Инжектор» переводится с английского, как форсунка. Одноточечная (моновпрысковая) схема системы питания двигателя выглядит так: топливо подается на форсунку. Электронный блок подает на нее сигналы, и форсунка открывается в нужный момент. Топливо направляется в камеру смесеобразования. Далее все происходит как в карбюраторной системе: образуется смесь. Затем она проходит впускной клапан и попадает в цилиндры двигателя.

Устройство системы питания двигателя, организованное с помощью инжекторов, следующее. Эта система характеризуется наличием нескольких форсунок. Данные устройства получают сигналы от специального электронного блока и открываются. Все эти форсунки соединены друг с другом с помощью топливопровода. В нем всегда имеется в наличии топливо. Лишнее топливо удаляется по обратному топливопроводу назад в бак.

Электронасос подает топливо в рампу, где образуется избыточное давление. Блок управления направляет сигнал на форсунки, и, они открываются. Топливо впрыскивается во впускной коллектор. Воздух, проходя дроссельный узел, попадает туда же. Полученная смесь поступает в двигатель. Количество необходимой смеси регулируется с помощью открытия дроссельной заслонки. Как только такт впрыска заканчивается, форсунки снова закрываются, прекращается подача топлива.

Электронный блок является своеобразным «мозговым» элементом системы. Этот сложный механизм обрабатывает поступающие на него сигналы от различных датчиков. Так происходит управление всеми устройствами топливной системы. Такая схема системы питания двигателя дает возможность водителю во время узнать о сбоях в работе, так как блок управления сигнализирует о них с помощью специальной лампы и кодов ошибки. Данные коды позволяют специалистам быстро выявить неполадки. Для этого им достаточно подключить внешнее диагностическое устройство, которое сможет распознать возникшие проблемы и назвать их.

Также на эту тему вы можете почитать:

Поделитесь в социальных сетях

Alex S 11 октября, 2013

Опубликовано в: Полезные советы и устройство авто

Метки: Как устроен автомобиль

Система питания бензинового двигателя: характеристики, особенности, описание, предназначение

Система питания силового агрегата участвует непосредственно в образовании воздушно-топливной смеси. Система питания бензинового двигателя включает в себя достаточное количество элементов, которые имеют разные функции и предназначение.

Виды системы питания бензиновых двигателей

Среди всех возможных бензиновых двигателей различают две основополагающие системы питания силового агрегата — инжекторная и карбюраторная. Первой, оснащаются большинство современных транспортных средств. Вторая, считается морально устаревшей, но по сей день используется при эксплуатации старых автомобилей, таких как ВАЗ, Волги, Газоны и т.д.

Отличаются они пусковым механизмом закачки топлива во впускной коллектор и цилиндры. У карбюраторной системы — эту функцию выполняет карбюратор, а вот в инжекторе — электронная система впрыска топлива при помощи форсунок.

Элементы питания и их функции

Конструктивно сложилось так, что существует стандартный набор элементов топливной системы бензинового силового агрегата. Разницу составляет непосредственно система впрыска топлива в коллектор или цилиндры. Рассмотрим, все элементы инжекторного и карбюраторного моторов.

Топливный бак

Неотъемлемый элемент любого транспортного средства. Именно в нём храниться горючее, которое поступает в камеры сгорания. В зависимости от конструктивных особенностей автомобиля, объём топливного резервуара может быть разный. Изготавливается данный элемент из стали, нержавейки, алюминия или пластика.

Трубопроводы

Топливопроводы служат транспортной системой между топливным баком и системой впрыска. Обычно они изготавливаются из пластика или металла. На старых автомобилях можно встретить их медными. Для соединения с остальными элементами топливной системы могут использоваться переходники, соединители или прочие элементы.

Топливный фильтр

В связи с не особо качественным топливом, для фильтрации используется фильтр горючего. Располагаться этот элемент может в топливном баке, подкапотном пространстве или под автомобилем, вмонтированным в топливопроводы. Для каждой группы автомобилей используется разный элемент.

Каждый производитель автомобилей использует свои фильтры. Они бывают разные за формою и материалом. Наиболее распространенными считаются волокнистые или хлопчатобумажные. Эти элементы наиболее лучше задерживают сторонние элементы и воду, которые засоряют цилиндры и форсунки.

Некоторые автомобилисты устанавливают два разных фильтра в топливную систему для более эффективной защиты. Замену элемента рекомендуется проводить каждое второе техническое обслуживание.

Бензонасос

Бензонасос — это насос прогоняющий топливо по всей системе. Так, они бывают двух типов — электрический и механический. Многие бывалые автолюбители помнят, что на старых «Жигулях» и «Волгах» устанавливались бензонасосы механического действия с лапкой, которой можно было подкачать недостающее топливо для запуска. Располагался этот элемент на блоке цилиндров, зачастую с левой стороны.

Все современные бензиновые силовые агрегаты оснащаются электрическими бензиновыми насосами. Располагаются элементы, зачастую, непосредственно в топливном баке, но бывает и такое, что данный элемент находится в подкапотном пространстве.

Карбюратор

На старых транспортных средствах устанавливались карбюраторы. Это элемент, который при помощи механических действий подавал топливо в камеры сгорания. Для каждого производителя, они имели разную структуру и строение, но принцип работы оставался не сменным.

Наиболее запомнившимися для отечественного автолюбителя, стали карбюраторы ОЗОН и серии К для Жигулей и Волги.

Форсунки

Форсунки — часть топливной системы инжекторного бензинового силового агрегата, который выполняет функцию дозированной подачи бензина в камеры сгорания. По форме и видам, форсунки бывают разные, это индивидуально для каждого автомобиля.

Располагаются эти элементы на топливной рампе. Обслуживание форсунок стоит проводить регулярно, поскольку если они слишком засоряться, их уже вычистить может, не представится возможным и придётся менять детали полностью.

Вывод

Топливная система бензинового автомобиля имеет простую структуру и конструкцию. Так, топливо, которое храниться в баке, при помощи бензонасоса попадает в цилиндры. При этом, оно проходит очистку в фильтре и распределяется при помощи карбюратора или форсунок.

Система питания

Система питания двигателя служит для приготовления горючей смеси из паров топлива и воздуха в определенных пропорциях, подачи ее в цилиндры двигателя и отвода из них отработавших газов. За подачу топлива в цилиндры в современных автомобилях отвечает система впрыска топлива, основными элементами, которой являются форсунки.

Устройство системы питания

В систему питания карбюраторного двигателя входят: топлив­ный бак, фильтр-отстойник, топливопроводы, топливный насос, фильтр тонкой очистки топлива, карбюратор, воздухоочиститель, впускной трубо­провод, выпускной трубопровод, приемные трубы, глушитель, приборы контроля уровня топлива.

Работа система питания

При работе двигателя топливный насос засасывает топливо из топлив­ного бака и через фильтры подает в поплавковую камеру карбюратора. При такте впуска в цилиндре двигателя создается разрежение и воздух, пройдя через воздухоочиститель, поступает в карбюратор, где смешивается с парами топлива и в виде горючей смеси подается в цилиндр, и там, сме­шиваясь с остатками отработавших газов, образуется рабочая смесь. После совершения рабочего хода, отработавшие газы выталкиваются поршнем в выпускной трубопровод и по приемным трубам через глушитель в окру­жающую среду.

Системы питания и выпуска отработавших газов двигателя автомобиля:

1 — канал подвода воздуха к воздушному фильтру; 2 — воздушный фильтр; 3 — карбюратор; 4 — рукоятка ручного управления воздушной заслонкой; 5 — рукоятка ручного управления дроссельны­ми заслонками; 6 — педаль управления дроссельными заслонками; 7 — топливо проводы; 8 — фильтр-отстойник; 9 — глушитель; 10 — приемные трубы; 11 — выпускной трубопровод; 12 — фильтр тонкой очистки топлива; 13 — топливный насос; 14 — указатель уровня топлива; 15 — датчик указателя уровня топлива; 16 — топливный бак; 17— крышка горловины топливного бака; 18 — кран; 19 — выпускная труба глушителя.

Топливо. В качестве топлива в карбюраторных двигателях обычно ис­пользуют бензин, который получают в результате переработки нефти.

Требования, предъявляемые к бензинам:

• быстрое образование топливовоздушной смеси;

• скорость сгорания не более 40 м/с;

• минимальное коррозирующее воздействие на детали двигателя;

• минимальное отложение смолистых веществ в элементах системы питания;

• минимальное вредное воздействие на организм человека и окружаю­щую среду;

• способность длительное время сохранять свои свойства.

Автомобильные бензины в зависимости от количества легко испаряющихся фракций подразделяют на летние и зимние.

 Для автомобильных карбюраторных двигателей выпускают бензины А-76, АИ-92, АИ-98 и др. Буква «А» обозначает, что бензин автомобильный, цифра — наименьшее октановое число, характеризующее детонационную стойкость бензина. Наибольшей детонационной стойкостью обладает изооктан, (его стой­кость принимают за 100), наименьшей —  н-гептан (его стойкость равна 0). Октановое число, характеризующее детонационную стойкость бензи­на, — процентное содержание изооктана в такой смеси с н-гептаном, ко­торая по детонационной стойкости равноценна испытуемому топливу. Например, исследуемое топливо детонирует так же, как смесь 76 % изо­октана и 24 % н-гептана. Октановое число данного топлива равно 76. Октановое число определяется двумя методами: моторным и исследова­тельским. При определении октанового числа вторым методом в марки­ровке бензина добавляется буква «И». Октановое число определяет до­пустимую степень сжатия.

 

 

Топливный бак. На автомобиле устанавливают один или несколько топливных баков. Объем топливного бака должен обеспечивать 400—600 км пробега автомобиля без заправки. Топливный бак  состоит из двух сварных половинок, выполненных штамповкой из освинцованной стали. Внутри бака имеются перегородки, придающие жесткость конструкции и препятствующие образованию волн в топливе. В верхней части бака приварена наливная горловина, которая закрывается пробкой. Иногда для удобства заправки бака топливом используют выдвижную горловину с сетчатым фильтром. На верхней стенке бака крепится датчик указателя уровня топлива и топливо заборная трубка с сетчатым фильтром. В днище бака имеется резьбовое отверстие для слива отстоя и удаления механических примесей, которое закрыто пробкой. Наливную горловину бака закрывают плотно пробкой, в корпусе которой имеется два клапана — паровой и воздушный. Паровой клапан при повышении давления в баке открывается и выводит пар в окружающую среду. Воздушный клапан открывается, когда идет расход топлива и создается разрежение.

 

Топливные фильтры. Для очистки топлива от механических примесей применяют фильтры грубой и тонкой очистки. Фильтр-отстойник грубой очистки отделяет топливо от воды и крупных механических примесей. Фильтр-отстойник  состоит из корпуса, отстойника и фильтрующего элемента, который собран из пластин толщиной 0,14 мм. На пластинах имеются отверстия и выступы высотой 0,05 мм. Пакет пластин установлен на стержень и пружиной поджимается к корпусу. В собранном состоянии между пластинами имеются щели, через которые проходит топливо. Крупные механические примеси и вода собираются на дне отстойника и через отверстие пробки в днище периодически удаляются.

Топливный бак (а) и работа выпускного (б) и впускного (в) клапанов: 1— фильтр-отстойник; 2 — кронштейн крепления бака; 3 — хомут крепления бака; 4 — датчик указателя уровня топлива в баке; 5 — топливный бак; 6 — кран; 7 — пробка бака; 8 — горловина; 9 — облицовка пробки; 10 — резиновая прокладка; П — корпус пробки; 12 — выпускной клапан; 13 — пружина выпускного клапана; 14 — впускной клапан; 15 — рычаг пробки бака; 16 -пружина впускного клапана.

Фильтр-отстойник: 1 — топливо провод к топливному насосу; 2 — прокладка корпуса; 3 — корпус-крышка; 4 — топливо провод от топливного бака; 5 — прокладка фильтрующего элемента; 6 — фильтрующий элемент; 7— стойка; 8 — отстойник; 9— сливная пробка; 10 — стержень фильтрующего элемента; 11 — пружина; 12 — пластина фильтрующего элемента; 13 — отверстие в пластине для прохода очищенного топлива; 14 — выступы на пластине; 15 — отверстие в пластине для стоек; 16 — заглушка; 17 — болт крепления корпуса-крышки.

Фильтры тонкой очистки топлива с фильтрующими элементами: a — сетчатый; б — керамический; 1— корпус; 2— входное отверстие; 3— прокладка; 4— фильтрующий элемент; 5— съемный стакан-отстойник; 6 — пружина; 7— винт креплении стакана; 8— канал для отвода топлива.

Фильтр тонкой очистки. Для очистки топлива от мелких механических примесей применяют фильтры тонкой очистки , которые состоят из корпуса, стакана-отстойника и фильтрующего сетчатого или керамического элемента. Керамический фильтрующий элемент — пористый материал, обеспечивающий лабиринтное движение топлива. Фильтр удерживается скобой и винтом.
Топливо проводы соединяют приборы топливной системы и изготовляются из медных, латунных и стальных трубок.

Топливный насос системы питания

Топливный насос служит для подачи топлива через фильтры из бака в поплавковую камеру карбюратора. Применяют насосы диафрагменного типа с приводом от эксцентрика распределительного вала. Насос  состоит из корпуса, в котором крепится привод — двуплечий рычаг с пружиной, головки, где размещены впускные и нагнетательные клапаны с пружинами, и крышки. Между корпусом и головкой зажаты края диафрагмы. Шток диафрагмы к рычагу привода крепится шарнирно, что позволяет диафрагме работать с переменным ходом.
Когда двуплечий рычаг (коромысло) опускает диафрагму вниз, в полости над диафрагмой создается разрежение, за счет чего открывается впускной клапан и наддиафрагменная полость заполняется топливом. При сбегании рычага (толкателя) с эксцентрика диафрагма поднимается вверх под действием возвратной пружины. Над диафрагмой давление топлива повышается, впускной клапан закрывается, открывается нагнетательный клапан и топливо поступает через фильтр тонкой очистки в поплавковую камеру карбюратора. При смене фильтров поплавковую камеру заполняют топливом с помощью устройства для ручной подкачки. В случае выхода диафрагмы из строя (трещина, прорыв и т. п.) топливо поступает в нижнюю часть корпуса и вытекает через контрольное отверстие.

Воздушный фильтр служит для очистки воздуха, поступающего в карбюратор, от пыли. Пыль содержит мельчайшие кристаллы кварца, который, оседая на смазанных поверхностях деталей, вызывает их изнашивание.

Требования, предъявляемые к фильтрам:


• эффективность очистки воздуха от пыли;
• малое гидравлическое сопротивление;
• достаточная пылеемкость:
• надежность;
• удобство в обслуживании;
• технологичность конструкции.


По способу очистки воздуха фильтры делятся на инерционно-масляные и сухие.
Инерционно-масляный фильтр состоит из корпуса с масляной ванной, крышки, воздухозаборника и фильтрующего элемента из синтетического материала.
При работе двигателя воздух, проходя через кольцевую щель внутри корпуса и, соприкасаясь с поверхностью масла, резко изменяет направление движения. Вследствие этого крупные частицы пыли, находящиеся в воздухе, прилипают к поверхности масла. Далее воздух проходит через фильтрующий элемент, очищается от мелких частиц пыли и поступает в карбюратор. Таким образом, воздух проходит двухступенчатую очистку. При засорении фильтр промывают.
Воздушный фильтр сухого типа состоит из корпуса, крышки, воздухозаборника и фильтрующего элемента из пористого картона. При необходимости фильтрующий элемент меняют.

система питания двигателя, основные типы двс, система питания двигателя, принцип работы системы

Любой автомобиль состоит из многочисленных систем и агрегатов, в число которых входит и «сердце» авто – двигатель внутреннего сгорания. Чаще всего на автомобилях устанавливают именно ДВС, несмотря на то, что данные моторы относительно несовершенны, в частности они довольно шумные, обладают несколько меньшим ресурсом в отличите от некоторые других типов двигателей, а также оказывают негативное воздействие на окружающую среду своими выбросами.

ДВС созданы для преобразования химической энергии топлива, в качестве которой обычно выступает углеводородное топливо (оно может быть жидким или газообразным), что сгорает в рабочей зоне, в механическую работу.

Основные типы ДВС

Существует несколько основных типов ДВС. Так, есть поршневые двигатели, которые, в свою очередь, тоже подразделяются на несколько видов. У поршневых ДВС в качестве камеры сгорания используется цилиндр – именно тут тепловая энергия топлива преобразуется в механическую энергию, а она потом превращается во вращательную. Поршневые двигатели могут быть бензиновыми, дизельными, газовыми и газодизельными.

Помимо поршневых двигателей, существуют роторно-поршневые и газотурбинные ДВС. Интерес представляет ДВС с впрыском воды – это комбинированный двигатель, в котором совмещены поршневая и лопаточная машины. Ещё один вид ДВС – RCV, у которого система газораспределения реализована за счёт вращения цилиндра.

Одним из недостатков ДВС является то, что данный тип мотора способен производить высокую мощность только в узком диапазоне оборотов. Именно поэтому неотъемлемыми «атрибутами» ДВС являются трансмиссия и стартёр. Тем не менее, как уже упоминалось выше, ДВС являются одними из наиболее часто используемых двигателей.

Как правило, в автомобилях используют четырёхтактовые ДВС, получившие такое название потому, что их работу можно разделить на четыре равные по времени части.

Двигатель состоит из различных механизмов и систем, в том числе и системы питания двигателя.

Система питания двигателя

Для чего вообще нужна система питания двигателя? Она отвечает за подачу топлива из бака, фильтрацию, образование горючей смеси, а также подачу последней в цилиндры. В уже прошедшем столетии наиболее часто используемой была карбюраторная система подачи смеси топлива. Потом появилась улучшенная система питания двигателя, при которой смесь топлива подаётся впрыском с помощью одной форсунки – благодаря этому производители смогли сократить расход топлива. Однако сейчас обычно применяется инжекторная система подачи топлива, которая предусматривает подачу топлива под давлением непосредственно в впускной коллектор.

Перечисленные выше системы питания двигателя похожи – различаются же они способами смесеобразования. В целом, в топливной системе присутствует топливный бак, где хранится топливо, — это компактная ёмкость, у которой имеется устройство забора топлива, то есть насос, в редких случаях могут присутствовать и грубые элементы фильтрации.

Также в системе питания двигателя есть топливопроводы – это комплекс трубок и шлангов, которые нужны для того, чтобы переместить топливо к устройству смесеобразования. В качестве устройства смесеобразования может выступать карбюратор, моновпрыск или инжектор – данное устройство необходимо для соединения самого топлива с воздухом. У инжекторных систем питания двигателей имеется и блок управления инжектором, который представляет собой электронное устройство, назначение которого – управление работой топливных форсунок, а также датчиков контроля с клапанами отсечки.

Чтобы топливо поступило в топливопровод, необходим так называемый топливный насос (как правило, используется погружной насос). Это электродвигатель, который соединён с жидкостным насосом. Стоит отметить, что иногда топливный насос крепится к самому двигателю (по крайней мере, в более старых моделях) и приводится в действие с помощью вращения промежуточного вала.

Наконец, в систему питания двигателя могут входить дополнительные элементы как тонкой, так и грубой очистки, а устанавливаются они в цепь подачи топлива.

Принцип работы системы питания двигателя

Как именно работает система питания двигателя? Сначала в движение приходит насос – он высасывает топливо из бака и передаёт его в устройство смесеобразования по топливопроводу, где установлены фильтры очистки, благодаря чему в устройство смесеобразования топливо поступает очищенным.

В карбюраторе топливо начинает свой путь в поплавковой камере, откуда оно впоследствии поступает в камеру смесеобразования через калиброванные жиклеры. Там оно смешивается с воздухом, а затем поступает в впускной коллектор, проходя через дроссельную заслонку. Через некоторое время впускной клапан открывается, и топливо подаётся в цилиндр.

Немного иной принцип работы у системы моновпрыска – здесь топливо сначала подаётся на форсунку, управляемую электронным блоком. В камеру смесеобразования топливо попадает после открытия форсунка, что происходит в определённый срок. В камере смесеобразования, как и в карбюраторной системе, происходит смешение топлива с воздухом, а остальные процессы те же, что и в карбюраторе.

В инжекторной системе питания двигателя, как и в предыдущей, топливо поступает к форсункам – ими управляет блок управления. Форсунки соединяются между собой при помощи топливопровода, при этом в нём всегда есть топливо. Отметим, что в топливных системах имеется также и обратный топливопровод, благодаря которому излишки топлива сливаются в бак.

Если же сравнивать систему питания двигателя, работающего на дизеле, с бензиновой, то можно сказать, что они очень похожи. Однако в системе питания дизельного двигателя впрыск топлива осуществляется сразу в камеру сгорания цилиндра, и смесеобразование происходит непосредственно в цилиндре. Подача топлива в данной системе происходит под большим давлением, для чего используется насос высокого давления.

Система питания топливом бензинового (карбюраторного) двигателя

Система питания топливом бензинового двигателя ⭐ предназначена для размещения и очистки топлива, а также приготовления горючей смеси определенного состава и подачи ее в цилиндры в необходимом количестве в соответствии с режимом работы двигателя (за исключением двигателей с непосредственным впрыском, система питания которых обеспечивает поступление бензина в камеру сгорания в необходимом количестве и под достаточным давлением).

Бензин, как и дизельное топливо, является продуктом перегонки нефти и состоит из различных углеводородов. Число атомов углерода, входящих в молекулы бензина, составляет 5 — 12. В отличие от дизелей в бензиновых двигателях топливо не должно интенсивно окисляться в процессе сжатия, так как это может привести к детонации (взрыву), что отрицательно скажется на работоспособности, экономичности и мощности двигателя. Детонационная стойкость бензина оценивается октановым числом. Чем больше оно, тем выше детонационная стойкость топлива и допустимая степень сжатия. У современных бензинов октановое число составляет 72—98. Кроме антидетонационной стойкости бензин должен также обладать низкой коррозионной активностью, малой токсичностью и стабильностью.

Поиск (исходя из экологических соображений) альтернатив бензину как основному топливу для ДВС привел к созданию этанолового топлива, состоящего в основном из этилового спирта, который может быть получен из биомассы растительного происхождения. Различают чистый этанол (международное обозначение — Е100), содержащий исключительно этиловый спирт; и смесь этанола с бензином (чаще всего 85 % этанола с 15 % бензина; обозначение — Е85). По своим свойствам этаноловое топливо приближается к высокооктановому бензину и даже превосходит его по октановому числу (более 100) и теплотворной способности. Поэтому данный вид топлива может с успехом применяться вместо бензина. Единственный недостаток чистого этанола — его высокая коррозионная активность, требующая дополнительной защиты от коррозии топливной аппаратуры.

К агрегатам и узлам системы питания топливом бензинового двигателя предъявляются высокие требования, основные из которых:

  • герметичность
  • точность дозирования топлива
  • надежность
  • удобство в обслуживании

В настоящее время существуют два основных способа приготовления горючей смеси. Первый из них связан с использованием специального устройства — карбюратора, в котором воздух смешивается с бензином в определенной пропорции. В основу второго способа положен принудительный впрыск бензина во впускной коллектор двигателя через специальные форсунки (инжекторы). Такие двигатели часто называют инжекторными.

Независимо от способа приготовления горючей смеси ее основным показателем является соотношение между массой топлива и воздуха. Смесь при ее воспламенении должна сгорать очень быстро и полностью. Этого можно достичь лишь при хорошем смешении в определенной пропорции воздуха и паров бензина. Качество горючей смеси характеризуется коэффициентом избытка воздуха а, который представляет собой отношение действительной массы воздуха, приходящейся на 1 кг топлива в данной смеси, к теоретически необходимой, обеспечивающей полное сгорание 1 кг топлива. Если на 1 кг топлива приходится 14,8 кг воздуха, то такая смесь называется нормальной (а = 1). Если воздуха несколько больше (до 17,0 кг), смесь обедненная, и а = 1,10… 1,15. Когда воздуха больше 18 кг и а > 1,2, смесь называют бедной. Уменьшение доли воздуха в смеси (или увеличение доли топлива) называют ее обогащением. При а = 0,85… 0,90 смесь обогащенная, а при а < 0,85 — богатая.

Когда в цилиндры двигателя поступает смесь нормального состава, он работает устойчиво со средними показателями мощности и экономичности. При работе на обедненной смеси мощность двигателя несколько снижается, но заметно повышается его экономичность. На бедной смеси двигатель работает неустойчиво, его мощность падает, а удельный расход топлива возрастает, поэтому чрезмерное обеднение смеси нежелательно. При поступлении в цилиндры обогащенной смеси двигатель развивает наибольшую мощность, но и расход топлива также увеличивается. При работе на богатой смеси бензин сгорает неполностью, что приводит к снижению мощности двигателя, росту расхода топлива и появлению копоти в выпускном тракте.

Карбюраторные системы питания

Рассмотрим сначала карбюраторные системы питания, которые еще недавно были широко распространены. Они более просты и дешевы по сравнению с инжекторными, не требуют высококвалифицированного обслуживания в процессе эксплуатации и в ряде случаев более надежны.

Система питания топливом карбюраторного двигателя включает в себя топливный бак 1, фильтры грубой 2 и тонкой 4 очистки топлива, топливоподкачивающий насос 3, карбюратор 5, впускной трубопровод 7 и топливопроводы. При работе двигателя топливо из бака 1 с помощью насоса 3 подается через фильтры 2 и 4 к карбюратору. Там оно в определенной пропорции смешивается с воздухом, поступающим из атмосферы через воздухоочиститель 6. Образовавшаяся в карбюраторе горючая смесь по впускному коллектору 7 попадает в цилиндры двигателя.

Топливные баки в силовых установках с карбюраторными двигателями аналогичны бакам систем питания дизелей. Отличием баков для бензина является лишь их лучшая герметичность, не позволяющая бензину вытечь даже при опрокидывании ТС. Для сообщения с атмосферой в крышке наливной горловины бака обычно устанавливают два клапана — впускной и выпускной. Первый из них обеспечивает поступление в бак воздуха по мере расходования топлива, а второй, нагруженный более сильной пружиной, предназначен для сообщения бака с атмосферой, когда давление в нем выше атмосферного (например, при высокой температуре окружающего воздуха).

Фильтры карбюраторных двигателей аналогичны фильтрам, применяемым в системах питания дизелей. На грузовых автомобилях устанавливаются пластинчато-щелевые и сетчатые фильтры. Для тонкой очистки используют картон и пористые керамические элементы. Кроме специальных фильтров в отдельных агрегатах системы имеются дополнительные фильтрующие сетки.

Топливоподкачивающий насос служит для принудительной подачи бензина из бака в поплавковую камеру карбюратора. На карбюраторных двигателях обычно применяют насос диафрагменного типа с приводом от эксцентрика распределительного вала.

В зависимости от режима работы двигателя карбюратор позволяет готовить смесь нормального состава (а = 1), а также обедненную и обогащенную смеси. При малых и средних нагрузках, когда не требуется развивать максимальную мощность, следует готовить в карбюраторе и подавать в цилиндры обедненную смесь. При больших нагрузках (продолжительность их действия, как правило, невелика) необходимо готовить обогащенную смесь.

Рис. Схема системы питания топливом карбюраторного двигателя:
1 — топливный бак; 2 — фильтр трубой очистки топлива; 3 — топливоподкачивающий насос; 4 — фильтр тонкой очистки; 5 — карбюратор; 6 — воздухоочиститель; 7 — впускной коллектор

В общем случае в состав карбюратора входят главное дозирующее и пусковое устройства, системы холостого хода и принудительного холостого хода, экономайзер, ускорительный насос, балансировочное устройство и ограничитель максимальной частоты вращения коленчатого вала (у грузовых автомобилей). Карбюратор может содержать также эконостат и высотный корректор.

Главное дозирующее устройство функционирует на всех основных режимах работы двигателя при наличии разрежения в диффузоре смесительной камеры. Основными составными частями устройства являются смесительная камера с диффузором, дроссельная заслонка, поплавковая камера, топливный жиклер и трубки распылителя.

Пусковое устройство предназначено для обеспечения пуска холодного двигателя, когда частота вращения проворачиваемого стартером коленчатого вала невелика и разрежение в диффузоре мало. В этом случае для надежного пуска необходимо подать в цилиндры сильно обогащенную смесь. Наиболее распространенным пусковым устройством является воздушная заслонка, устанавливаемая в приемном патрубке карбюратора.

Система холостого хода служит для обеспечения работы двигателя без нагрузки с малой частотой вращения коленчатого вала.

Система принудительного холостого хода позволяет экономить топливо во время движения в режиме торможения двигателем, т. е. тогда, когда водитель при включенной передаче отпускает педаль акселератора, связанную с дроссельной заслонкой карбюратора.

Экономайзер предназначен для автоматического обогащения смеси при работе двигателя с полной нагрузкой. В некоторых типах карбюраторов кроме экономайзера для обогащения смеси используют эконостат. Это устройство подает дополнительное количество топлива из поплавковой камеры в смесительную только при значительном разрежении в верхней части диффузора, что возможно лишь при полном открытии дроссельной заслонки.

Ускорительный насос обеспечивает принудительный впрыск в смесительную камеру дополнительных порций топлива при резком открытии дроссельной заслонки. Это улучшает приемистость двигателя и соответственно ТС. Если бы ускорительного насоса в карбюраторе не было, то при резком открытии заслонки, когда расход воздуха быстро растет, из-за инерционности топлива смесь в первый момент сильно обеднялась бы.

Балансировочное устройство служит для обеспечения стабильности работы карбюратора. Оно представляет собой трубку, соединяющую приемный патрубок карбюратора с воздушной полостью герметизированной (не сообщающейся с атмосферой) поплавковой камеры.

Ограничитель максимальной частоты вращения коленчатого вала двигателя устанавливается на карбюраторах грузовых автомобилей. Наиболее широко распространен ограничитель пневмоцентробежного типа.

Инжекторные топливные системы

Инжекторные топливные системы в настоящее время применяются гораздо чаще карбюраторных, особенно на бензиновых двигателях легковых автомобилей. Впрыск бензина во впускной коллектор инжекторного двигателя осуществляется с помощью специальных электромагнитных форсунок (инжекторов), установленных в головку блока цилиндров и управляемых по сигналу от электронного блока. При этом исключается необходимость в карбюраторе, так как горючая смесь образуется непосредственно во впускном коллекторе.

Различают одно- и многоточечные системы впрыска. В первом случае для подачи топлива используется только одна форсунка (с ее помощью готовится рабочая смесь для всех цилиндров двигателя). Во втором случае число форсунок соответствует числу цилиндров двигателя. Форсунки устанавливают в непосредственной близости от впускных клапанов. Топливо впрыскивают в мелко распыленной виде на наружные поверхности головок клапанов. Атмосферный воздух, увлекаемый в цилиндры вследствие разрежения в них во время впуска, смывает частицы топлива с головок клапанов и способствует их испарению. Таким образом, непосредственно у каждого цилиндра готовится топливовоздушная смесь.

В двигателе с многоточечным впрыском при подаче электропитания к электрическому топливному насосу 7 через замок 6 зажигания бензин из топливного бака 8 через фильтр 5 подается в топливную рампу 1 (рампу инжекторов), общую для всех электромагнитных форсунок. Давление в этой рампе регулируется с помощью регулятора 3, который в зависимости от разрежения во впускном патрубке 4 двигателя направляет часть топлива из рампы обратно в бак. Понятно, что все форсунки находятся под одним и тем же давлением, равным давлению топлива в рампе.

Когда требуется подать (впрыснуть) топливо, в обмотку электромагнита форсунки 2 от электронного блока системы впрыска в течение строго определенного промежутка времени подается электрический ток. Сердечник электромагнита, связанный с иглой форсунки, при этом втягивается, открывая путь топливу во впускной коллектор. Продолжительность подачи электрического тока, т. е. продолжительность впрыска топлива, регулируется электронным блоком. Программа электронного блока на каждом режиме работы двигателя обеспечивает оптимальную подачу топлива в цилиндры.

 

Рис. Схема системы питания топливом бензинового двигателя с многоточечным впрыском:
1 — топливная рампа; 2 — форсунки; 3 — регулятор давления; 4 — впускной патрубок двигателя; 5 — фильтр; 6 — замок зажигания; 7 — топливный насос; 8 — топливный бак

Для того чтобы идентифицировать режим работы двигателя и в соответствии с ним рассчитать продолжительность впрыска, в электронный блок подаются сигналы от различных датчиков. Они измеряют и преобразуют в электрические импульсы значения следующих параметров работы двигателя:

  • угол поворота дроссельной заслонки
  • степень разрежения во впускном коллекторе
  • частота вращения коленчатого вала
  • температура всасываемого воздуха и охлаждающей жидкости
  • концентрация кислорода в отработавших газах
  • атмосферное давление
  • напряжение аккумуляторной батареи
  • и др.

Двигатели с впрыском бензина во впускной коллектор имеют ряд неоспоримых преимуществ перед карбюраторными двигателями:

  • топливо распределяется по цилиндрам более равномерно, что повышает экономичность двигателя и уменьшает его вибрацию, вследствие отсутствия карбюратора снижается сопротивление впускной системы и улучшается наполнение цилиндров
  • появляется возможность несколько повысить степень сжатия рабочей смеси, так как ее состав в цилиндрах более однородный
  • достигается оптимальная коррекция состава смеси при переходе с одного режима на другой
  • обеспечивается лучшая приемистость двигателя
  • в отработавших газах содержится меньше вредных веществ

Вместе с тем системы питания с впрыском бензина во впускной коллектор имеют ряд недостатков. Они сложны и поэтому относительно дорогостоящи. Обслуживание таких систем требует специальных диагностических приборов и приспособлений.

Наиболее перспективной системой питания топливом бензиновых двигателей в настоящее время считается довольно сложная система с непосредственным впрыском бензина в камеру сгорания, позволяющая двигателю длительное время работать на сильно обедненной смеси, что повышает его экономичность и экологические показатели. В то же время из-за существования ряда проблем системы непосредственного впрыска пока не получили широкого распространения.

Система питания

 

Форсунка (инжектор), является основным элементом системы впрыска.

Назначение форсунки

Дозированная подача топлива, распыление его в камере сгорания (впускном коллекторе) и образования топливно-воздушной смеси. Форсунки нашли свое применение в системах впрыска бензиновых и дизельных двигателей. На современных автомобилях устанавливаются форсунки с электронным управлением впрыска.

Виды форсунок

Форсунки различаются в зависимости от способа осуществления впрыска топлива. Давайте рассмотрим основные виды форсунок:

  • Электромагнитные форсунки;
  • Электрогидравлические форсунки;
  • Пьезоэлектрические форсунки.
Устройство электромагнитной форсунки

1 — сетчатый фильтр; 2 — электрический разъем; 3 – пружина; 4 — обмотка возбуждения; 5 — якорь электромагнита; 6 — корпус форсунки; 7 — игла форсунки; 8 – уплотнение; 9 — сопло форсунки.

Электромагнитная форсунка нашла свое применение на бензиновых двигателях, в том числе оборудованных системой непосредственного впрыска. Электромагнитной форсунка имеет простую конструкцию, которая включает электромагнитный клапан с иглой и соплом.

Как работает электромагнитная форсунка

Работа электромагнитной форсунки осуществляется в соответствии с заложенным алгоритмом в электронный блок управления. Электронный блок в определенный момент подает напряжение на обмотку возбуждения клапана. Вследствие этого создается электромагнитное поле, которое преодолевая усилие пружины, втягивает якорь с иглой и освобождает сопло форсунки, после чего производится впрыск топлива. Когда напряжение исчезает, пружина возвращает иглу форсунки обратно на седло.

Устройство электрогидравлической форсунки

1 — сопло форсунки; 2 – пружина; 3 — камера управления; 4 — сливной дроссель; 5 — якорь электромагнита; 6 — сливной канал; 7 — электрический разъем; 8 — обмотка возбуждения; 9 — штуцер подвода топлива; 10 — впускной дроссель; 11 – поршень; 12 — игла форсунки.

Электрогидравлическая форсунка применяется на дизельных двигателях. Электрогидравлическая форсунка включает электромагнитный клапан, камеру управления, впускной и сливной дроссели.

Как работает электрогидравлическая форсунка

Работа электрогидравлической форсунки основана на использовании давления топлива при впрыске. В обычном положении электромагнитный клапан закрыт и игла форсунки прижата к седлу силой давления топлива на поршень в камере управления. Давление топлива на иглу меньше давления на поршень, благодаря этому впрыск топлива не происходит.

Когда электронный блок управления дает команду на электромагнитный клапан, открывается сливной дроссель. Топливо вытекает из камеры управления через сливной дроссель в сливную магистраль. Впускной дроссель препятствует выравниванию давлений в камере управления и впускной магистрали, вследствие чего давление на поршень снижается, а давление топлива на иглу форсунки не изменяется. Игла форсунки поднимается и происходит впрыск топлива.

Устройство пьезоэлектрической форсунки

1 — игла форсунки; 2 – уплотнение; 3 — пружина иглы; 4 — блок дросселей; 5 — переключающий клапан; 6 — пружина клапана; 7 — поршень клапана; 8 — поршень толкателя; 9 – пьезоэлектрический элемент; 10 — сливной канал; 11 — сетчатый фильтр; 12 — электрический разъем; 13 — нагнетательный канал.

Пьезофорсунка (пьезоэлектрическая форсунка) является самым совершенным устройством, обеспечивающим впрыск топлива в современных автомобилях. Форсунка применяется на дизельных двигателях с системой впрыска Common Rail. Основные преимущества пьезоэлектрической форсунки в точности дозировки и быстроте срабатывания. Благодаря этому пьезофорсунка обеспечивает многократный впрыск на протяжении одного рабочего цикла.

Как работает пьезофорсунка (пьезоэлектрическая форсунка)

Работа пьезофорсунки основана на изменении длины пьезокристалла при подачи напряжения. Пьезоэлектрическая форсунка состоит из: корпуса, пьезоэлемента, толкателя, переключающего клапана и иглы.

Пьезофорсунка работает по гидравлическому принципу. В обычном положении игла прижата к седлу силой высокого давления топлива. Электронный блок подает электрический сигнал на пьезоэлемент и его длина увеличивается, воздействуя на поршень толкателя, открывает переключающий клапан и топливо поступает в сливную магистраль. Давление над иглой падает, и за счет давления в нижней части игла поднимается, что приводит к впрыску топлива. Количество впрыскиваемого топлива зависит от длительности воздействия на пьезоэлемент и давления топлива в топливной рампе.

Как работает двигатель внутреннего сгорания — x-engineer.org

Подавляющее большинство автомобилей (легковые и коммерческие), которые продаются сегодня, оснащены двигателями внутреннего сгорания . В этой статье мы расскажем, как работает четырехтактный двигатель внутреннего сгорания .

Двигатель внутреннего сгорания классифицируется как тепловой двигатель . Он называется внутренний , потому что сгорание топливовоздушной смеси происходит внутри двигателя, в камере сгорания, а некоторые сгоревшие газы являются частью нового цикла сгорания.

В основном двигатель внутреннего сгорания преобразует тепловую энергию горящей топливовоздушной смеси в механическую энергию . Он называется , 4 такта , потому что поршню требуется 4 хода для выполнения полного цикла сгорания. Полное название двигателя легкового автомобиля: 4-тактный поршневой двигатель внутреннего сгорания , сокращенно ICE (Двигатель внутреннего сгорания).

Теперь давайте посмотрим, какие компоненты являются основными компонентами ДВС.

Изображение: Детали двигателя внутреннего сгорания (DOHC)

Обозначение:
  1. распредвал выпускных клапанов
  2. ковш выпускного клапана
  3. свеча зажигания
  4. ковш впускного клапана
  5. впускной распредвал
  6. выпускной клапан
  7. впускной клапан
  8. ГБЦ
  9. поршень
  10. поршневой палец
  11. шатун
  12. блок двигателя
  13. коленчатый вал

ВМТ — верхняя мертвая точка

НМТ — нижняя мертвая точка

Головка блока цилиндров ( 8) обычно содержит распределительный вал (ы), клапаны, клапанные лопатки, возвратные пружины клапанов, свечи зажигания / накаливания и форсунки (для двигателей с прямым впрыском).Через головку блока цилиндров протекает охлаждающая жидкость двигателя.

Внутри блока цилиндров (12) мы можем найти поршень, шатун и коленчатый вал. Что касается головки блока цилиндров, то через блок цилиндров течет охлаждающая жидкость, которая помогает контролировать температуру двигателя.

Поршень перемещается внутри цилиндра из НМТ в ВМТ. Камера сгорания — это объем, создаваемый между поршнем, головкой блока цилиндров и блоком двигателя, когда поршень находится близко к ВМТ.

На рисунке 1 мы можем изучить полный набор механических компонентов ДВС.Некоторые компоненты неподвижны (например, головка блока цилиндров, блок цилиндров), а некоторые из них движутся. На рисунке ниже мы рассмотрим основную движущуюся часть ДВС, которая преобразует давление газа в цилиндре в механическую силу.

Изображение: Движущиеся части двигателя внутреннего сгорания

Обозначения:

  1. звездочка распределительного вала
  2. поршень
  3. коленчатый вал
  4. шатун
  5. клапан
  6. ковш клапана
  7. распредвал

Вращение синхронизированного вала распределительного вала составляет с вращением коленчатого вала через зубчатый ремень или цепь.Положение впускных и выпускных клапанов должно быть точно синхронизировано с положением поршня, чтобы циклы сгорания проходили соответствующим образом.

Полный цикл двигателя для 4-тактного ДВС имеет следующие фазы (такты):

  1. впуск
  2. сжатие
  3. мощность (расширение)
  4. выпуск

Ход — это движение поршня между двумя мертвыми центры (нижний и верхний).

Теперь, когда мы знаем, какие компоненты ДВС, мы можем изучить, что происходит на каждом такте цикла двигателя.В приведенной ниже таблице вы увидите положение поршня в начале каждого хода и подробную информацию о событиях, происходящих в цилиндре.

Ход 1 — ВПУСК

Такт впуска двигателя внутреннего сгорания

В начале такта впуска поршень близок к ВМТ. Впускной клапан открывается, поршень начинает двигаться в сторону НМТ. В цилиндр втягивается воздух (или топливовоздушная смесь). Этот ход называется ВПУСКОМ, потому что в двигатель попадает свежий воздух / смесь.Такт впуска заканчивается, когда поршень находится в НМТ.

Во время такта впуска двигатель потребляет энергию (коленчатый вал вращается из-за инерции компонентов).

Ход 2 — СЖАТИЕ

Такт сжатия двигателя внутреннего сгорания

Такт сжатия начинается с поршня при НМТ после завершения такта впуска. Во время такта сжатия оба клапана, впускной и выпускной, закрываются, и поршни движутся в направлении ВМТ.Когда оба клапана закрыты, воздух / смесь сжимаются, достигая максимального давления, когда поршень находится близко к ВМТ.

До того, как поршень достигнет ВМТ (но очень близко к нему), во время такта сжатия:

  • для бензинового двигателя: генерируется искра
  • для дизельных двигателей: впрыскивается топливо

Во время такта сжатия двигатель потребляет энергии (коленчатый вал вращается за счет инерции компонентов) больше, чем такт впуска.

Ход 3 — МОЩНОСТЬ

Рабочий ход двигателя внутреннего сгорания

Рабочий ход начинается с поршня в ВМТ.Оба клапана, впускной и выпускной, по-прежнему закрыты. Сгорание топливовоздушной смеси начинается в конце такта сжатия, что приводит к значительному увеличению давления внутри цилиндра. Давление внутри цилиндра толкает поршень вниз по направлению к НМТ.

Только во время рабочего такта двигатель вырабатывает энергию.

Ход 4 — ВЫПУСК

Такт выпуска двигателя внутреннего сгорания

Такт выпуска начинается с поршня в НМТ после завершения рабочего такта.Во время этого хода выпускной клапан открыт. Движение поршня от НМТ к ВМТ выталкивает большую часть выхлопных газов из цилиндра в выхлопные трубы.

Во время такта выпуска двигатель потребляет энергию (коленчатый вал вращается из-за инерции компонентов).

Как видите, для полного сгорания цикла (двигатель) поршень должен совершить 4 хода. Это означает, что на один цикл двигателя уходит за два полных оборота коленчатого вала (720 °).

Единственный ход, который производит крутящий момент (энергию), — это рабочий ход , все остальные потребляют энергию.

Линейное движение поршня преобразуется в вращательное движение коленчатого вала через шатун.

Для лучшего понимания мы суммируем исходное положение поршня, положение клапана и баланс энергии для каждого хода.

Энергетический баланс

84

Порядок хода Название хода Исходное положение поршня Состояние впускного клапана Состояние выпускного клапана 33
TDC Открыто Закрыто Потребляет
2 Сжатие BDC Закрыто Закрыто Потребляет
3 Мощность TDC Закрыто Закрыто Производит
4 Выхлоп BDC Закрыто Открыто Потребляет

На анимации ниже вы можете ясно увидеть, как работает двигатель внутреннего сгорания.Обратите внимание на положение поршня, положение клапана, момент зажигания и последовательность ходов.

Анимация двигателя внутреннего сгорания

В следующих статьях мы более подробно рассмотрим параметры, характеристики и компоненты двигателя внутреннего сгорания. Если у вас есть вопросы или комментарии по поводу этой статьи, используйте форму ниже для публикации.

Не забывайте ставить лайки, делиться и подписываться!

Проверьте свои знания о двигателях внутреннего сгорания, пройдя тест ниже:

ВИКТОРИНА! (щелкните, чтобы открыть)

.Основы двигателя внутреннего сгорания

| Министерство энергетики

Двигатели внутреннего сгорания обеспечивают исключительную управляемость и долговечность, и от них в Соединенных Штатах полагается более 250 миллионов транспортных средств по шоссе. Наряду с бензином или дизельным топливом они также могут использовать возобновляемые или альтернативные виды топлива (например, природный газ, пропан, биодизель или этанол). Их также можно комбинировать с гибридными электрическими силовыми агрегатами для увеличения экономии топлива или подключаемыми гибридными электрическими системами для расширения ассортимента гибридных электромобилей.

Как работает двигатель внутреннего сгорания?

Горение, также известное как горение, является основным химическим процессом высвобождения энергии из топливно-воздушной смеси. В двигателе внутреннего сгорания (ДВС) воспламенение и сгорание топлива происходит внутри самого двигателя. Затем двигатель частично преобразует энергию сгорания в работу. Двигатель состоит из неподвижного цилиндра и подвижного поршня. Расширяющиеся газы сгорания толкают поршень, который, в свою очередь, вращает коленчатый вал.В конечном итоге, это движение приводит в движение колеса автомобиля через систему шестерен трансмиссии.

В настоящее время производятся два типа двигателей внутреннего сгорания: бензиновый двигатель с искровым зажиганием и дизельный двигатель с воспламенением от сжатия. Большинство из них представляют собой четырехтактные двигатели, что означает, что для завершения цикла требуется четыре хода поршня. Цикл включает четыре различных процесса: впуск, сжатие, сгорание, рабочий ход и выпуск.

Бензиновые двигатели с искровым зажиганием и дизельные двигатели с воспламенением от сжатия различаются по способу подачи и воспламенения топлива.В двигателе с искровым зажиганием топливо смешивается с воздухом, а затем вводится в цилиндр во время процесса впуска. После того, как поршень сжимает топливно-воздушную смесь, искра воспламеняет ее, вызывая возгорание. Расширение дымовых газов толкает поршень во время рабочего хода. В дизельном двигателе только воздух вводится в двигатель, а затем сжимается. Затем дизельные двигатели распыляют топливо в горячий сжатый воздух с подходящей дозированной скоростью, вызывая его возгорание.

Улучшение двигателей внутреннего сгорания

За последние 30 лет исследования и разработки помогли производителям снизить выбросы ДВС определенных загрязняющих веществ, таких как оксиды азота (NOx) и твердые частицы (PM), более чем на 99%, чтобы соответствовать стандартам выбросов EPA. .Исследования также привели к улучшению характеристик ДВС (мощность в лошадиных силах и время разгона 0-60 миль в час) и эффективности, помогая производителям поддерживать или увеличивать экономию топлива.

Узнайте больше о наших передовых исследованиях и разработках двигателей внутреннего сгорания, направленных на повышение энергоэффективности двигателей внутреннего сгорания с минимальными выбросами.

.

Двигатель внутреннего сгорания — Простая английская Википедия, бесплатная энциклопедия

Анимация, показывающая работу четырехтактного двигателя.

Двигатель внутреннего сгорания — это двигатель, в котором сгорание или сгорание топлива происходит внутри. Есть много видов, но этот термин часто означает машину, которую изобрел Никлаус Отто. В этом виде огонь вызывает повышение давления внутри герметичного ящика (баллона). Давление толкает шток, который прикреплен к колесу. Шток толкает колесо и заставляет его вращаться.Вращающееся колесо прикреплено к другим колесам, например к четырем автомобильным колесам, с помощью ремня или цепи. Двигатель очень мощный и может заставить двигаться все колеса.

Двигателям требуется масло, чтобы они были скользкими, в противном случае движущиеся части могли скрежетать и слипаться. Части автомобильного двигателя имеют размер 0,01 миллиметра, а некоторые детали двигателя очень плотно прилегают друг к другу.

Внутреннее сгорание отличается от внешнего сгорания, когда огонь происходит вне двигателя, например, в паровом двигателе.

В настоящее время в большинстве дорожных транспортных средств используется двигатель внутреннего сгорания, и в большинстве из них используется четырехтактный двигатель.Другой тип двигателя внутреннего сгорания — двигатель Ванкеля.

Газовые турбины — это двигатели внутреннего сгорания, которые работают непрерывно, а не тактово. Ракетные двигатели и пушки — это двигатели внутреннего сгорания, но они не вращают колеса.

.

Двигатель внутреннего сгорания — BattleTechWiki

Пример двигателя внутреннего сгорания

Описание [править]

Во всех отношениях идентичен современному двигателю внутреннего сгорания , I.C.E. в BattleTech используется в основном для обычных транспортных средств и промышленных мехов. Его выходная мощность меньше, чем у термоядерного двигателя такой же массы, то есть I.C.E. должен быть тяжелее, чтобы иметь такую ​​же мощность двигателя, как у термоядерного двигателя.Фактически, у него самое высокое соотношение массы к номинальной из всех двигателей, доступных в TechManual. Двигатели внутреннего сгорания не могут приводить в действие энергетическое оружие без усилителей мощности, в отличие от термоядерных двигателей.

Спасительная благодать I.C.E. это его стоимость. Поскольку они значительно дешевле и проще в производстве, чем термоядерные двигатели, I.C.E. используется во многих обычных транспортных средствах, которые, как правило, составляют основу планетарного ополчения.

I.C.E. обычно более надежен, чем типичный двигатель Fusion / Fission, и если в него стреляют с боевой способностью, когда он установлен в роботе, класс двигателя, будучи поврежденным, не будет способствовать перегреву меха, на котором был получен этот урон.Однако это сопряжено с риском того, что двигатель или топливо, питающее его, может взорваться при ударе. [1] Однако одного удара по двигателю обычной боевой машины обычно достаточно, чтобы полностью обездвижить ее.

Многие I.C.E. могут использовать практически любой горючий материал в качестве жизнеспособного топлива. Стоит отметить, что из-за природы I.C.E они должны использоваться в среде с подходящей атмосферой, в отличие от топливных элементов или более дорогих двигателей термоядерного синтеза или деления.

Notes [править]

Двигатели внутреннего сгорания производятся на следующих планетах:

.

Двигатель внутреннего сгорания


2

Четкое представление о том, как образуются оксиды азота

12 марта 2018 г. — На протяжении десятилетий исследователи внутреннего сгорания и производители двигателей пытались понять, как эти газы образуются во время сгорания, чтобы найти способы их уменьшения. Теперь у исследователей есть …


Простой экономичный ракетный двигатель может сделать более дешевый и легкий космический корабль

Февраль18, 2020 — Исследователи разработали математическую модель, описывающую, как вращаются детонационные двигатели …


Под давлением, нетоксичный солевой пропеллент дает хорошие результаты

18 августа 2020 г. — В небольших космических аппаратах, таких как спутники CubeSat, перспективным является монотопливо на основе соли. Он может использоваться как в химических силовых установках большой тяги для быстрых, чувствительных ко времени маневров, так и …


Новые клапанные технологии обещают более дешевые и экологичные двигатели

Мар.21 февраля 2018 г. — Новые технологии надежно и по доступной цене повышают эффективность двигателей внутреннего сгорания более чем на 10 процентов. Запатентованная система открытия и закрытия клапанов позволила значительно снизить …


Вид изнутри сверхзвукового горения

15 марта 2018 г. — В сверхзвуковых двигателях сложно добиться нужной скорости потока, произвести нужное соотношение испаренного топлива и вызвать воспламенение в нужное время. На вихри действует ударная волна, и…


Новые возможности двигателя ускоряют передовые исследования автомобилей

21 декабря 2020 г. — В поисках усовершенствованных транспортных средств с более высокой энергоэффективностью и сверхнизкими выбросами исследователи ускоряют разработку исследовательского механизма, который дает ученым и инженерам беспрецедентный обзор …


Революционная новая ракетная двигательная установка

30 апреля 2020 г. — Исследователи разработали новую усовершенствованную ракетно-двигательную установку, которая когда-то считалась невозможной.Система, известная как вращающийся детонационный ракетный двигатель, позволит запускать в космос разгонные ракеты …


Научное машинное обучение открывает путь для разработки быстрых ракетных двигателей

16 апреля 2020 г. — Исследователи разрабатывают более быструю методику моделирования для конструкторов ракетных двигателей, чтобы проверить производительность в различных …


Инновационный клапанный механизм экономит 20% топлива

19 августа 2019 г. — Ученые разработали инновационную систему клапанов с электрогидравлическим приводом для двигателей внутреннего сгорания, которая позволяет совершенно бесплатно регулировать ход и синхронизацию, при этом…


Почему импульсные искры способствуют лучшему зажиганию

16 июля 2018 г. — Исследователи изучили механизмы, лежащие в основе средств улучшенного зажигания, помогающих открыть дверь к лучшим характеристикам во всех типах горения …


.

Измерение и анализ горения

  • Продукты
  • Приложения
  • Поддержка
  • О нас
  • Карьера
  • Обучение

EN

Бразилия английский французский язык Немецкий Итальянский русский словенский испанский язык
  • Настройки счета
  • Мои заказы
  • Выход
Результатов не найдено. Все результаты
  • Обзор
  • Системы сбора данных
    • СИРИУС®
    • SIRIUS® XHS
    • SBOX
    • R1DB / R2DB
    • R3
    • R4
    • R8
    • МИНИТАВРЫ
    • DEWE-43A
    • SIRIUS® MINI
  • Надежные системы сбора данных
    • SIRIUS® Водонепроницаемый
    • SBOX Водонепроницаемый
    • КРИПТОН
    • KRYPTON CPU
  • Системы сбора данных и управления
    • R8rt
    • ИОЛИТ
    • ИОЛИТ LX
    • ИОЛИТ
  • Интерфейсы передачи данных, датчики и исполнительные механизмы
    • CAN / CAN FD интерфейсы
    • Устройства GPS и IMU
    • Аэрокосмические интерфейсы
    • Видеокамеры
    • Токовые клещи и преобразователи
    • Акселерометры и датчики угла
    • Вибрационные шейкеры
  • Программное обеспечение DAQ
    • DewesoftX
    • Разработчик
    • Историк
  • Аксессуары
.

Система питания двигателя в современных автомобилях

Система питания автомобиля используется для подготовки топливной смеси. Она состоит из двух элементов: топлива и воздуха. Система питания двигателя выполняет сразу несколько задач: очищение элементов смеси, получение смеси и ее подача к элементам двигателя. В зависимости от используемой системы питания автомобиля различается состав горючей смеси.

Типы систем питания

Различают следующие виды систем питания двигателя, отличающиеся местом образования смеси:

  1. внутри двигательных цилиндров;
  2. вне двигательных цилиндров.

Топливная система автомобиля при образовании смеси за пределами цилиндра разделяется на:

  • топливную систему с карбюратором
  • с использованием одной форсунки (с моно впрыском)
  • инжекторную

Назначение и состав топливной смеси

Для бесперебойной работы двигателя автомобиля необходима определенная топливная смесь. Она состоит из воздуха и топлива, смешанных по определенной пропорции. Каждая из этих смесей характеризуется количеством воздуха, приходящегося на единицу топлива (бензина).

Для обогащенной смеси характерно наличие 13-15 частей воздуха, приходящихся на часть топлива. Такая смесь подается при средних нагрузках.

Богатая смесь содержит менее 13 частей воздуха. Применяется при больших нагрузках. Наблюдается увеличенный расход бензина.

У нормальной смеси характерно наличие 15 частей воздуха на часть топлива.
Обедненная смесь содержит 15-17 частей воздуха и применяется при средних нагрузках. Обеспечивается экономный расход топлива. Бедная смесь содержит более 17 частей воздуха.

Общее устройство системы питания

В системе питания двигателя имеются следующие основные части:

  • бак для топлива. Служит для хранения топлива, содержит насос для закачки топлива и иногда фильтр. Имеет компактные размеры
  • топливопровод. Это устройство обеспечивает поступление топлива в специальное смесеобразующее устройство. Состоит из различных шлангов и трубок
  • устройство смесеобразования. Предназначено для получения топливной смеси и подачи в двигатель. Такими устройствами могут быть инжекторная система, моновпрыск, карбюратор
  • блок управления (для инжекторов). Состоит из электронного блока, управляющего работой системы смешения и сигнализирующего о возникающих сбоях в работе
  • топливный насос. Необходим для поступления топлива в топливопровод
  • фильтры для очистки. Необходимы для получения чистых составляющих смеси

Карбюраторная система подачи топлива

Эта система отличительна тем, что смесеобразование происходит в специальном устройстве – карбюраторе. Из него смесь попадает в нужной концентрации в двигатель. Устройство системы питания двигателя содержит такие элементы: бак для топлива, очищающие фильтры для топлива, насос, фильтр для воздуха, два трубопровода: впускной и выпускной, карбюратор.

Схема системы питания двигателя реализуется так. В баке находится топливо, которое будет использоваться для подачи в двигатель внутреннего сгорания. Оно попадает в карбюратор через топливопровод. Процесс подачи может быть реализован с помощью насоса или естественным способом с помощью самотека.

Чтобы топливная подача осуществлялась в камеру карбюратора самотеком, то его (карбюратор) необходимо размещать ниже топливного бака. Такую схему не всегда можно реализовать в автомобиле. А вот использование насоса дает возможность не зависеть от положения бака относительно карбюратора.

Топливный фильтр очищает топливо. Благодаря ему из топлива удаляются механические частички и вода. Воздух попадает в камеру карбюратора через специальный фильтр для воздуха, очищающий его от частиц пыли. В камере происходит смешение двух очищенных составляющих смеси. Попадая в карбюратор, топливо поступает в поплавковую камеру. А после направляется в камеру смесеобразования, где соединяется с воздухом. Через дроссельную заслонку смесь поступает во впускной коллектор. Отсюда она направляется к цилиндрам.

После отработки смеси газы из цилиндров удаляются с помощью выпускного коллектора. Далее из коллектора они направляются в глушитель, который подавляет их шум. Из него они поступают в атмосферу.

Подробно об инжекторной системе

В конце прошлого столетия карбюраторные системы питания стали интенсивно заменяться новыми системами, работающими на инжекторах. И не просто так. Такое устройство системы питания двигателя обладало рядом преимуществ: меньшая зависимость от свойств окружающей среды, экономная и надежная работа, выхлопы менее токсичны. Но у них есть недостаток – это высокая чувствительность к качеству бензина. Если этого не соблюдать, то могут возникнуть неполадки в работе некоторых элементов системы.

«Инжектор» переводится с английского, как форсунка. Одноточечная (моновпрысковая) схема системы питания двигателя выглядит так: топливо подается на форсунку. Электронный блок подает на нее сигналы, и форсунка открывается в нужный момент. Топливо направляется в камеру смесеобразования. Далее все происходит как в карбюраторной системе: образуется смесь. Затем она проходит впускной клапан и попадает в цилиндры двигателя.

Устройство системы питания двигателя, организованное с помощью инжекторов, следующее. Эта система характеризуется наличием нескольких форсунок. Данные устройства получают сигналы от специального электронного блока и открываются. Все эти форсунки соединены друг с другом с помощью топливопровода. В нем всегда имеется в наличии топливо. Лишнее топливо удаляется по обратному топливопроводу назад в бак.

Электронасос подает топливо в рампу, где образуется избыточное давление. Блок управления направляет сигнал на форсунки, и, они открываются. Топливо впрыскивается во впускной коллектор. Воздух, проходя дроссельный узел, попадает туда же. Полученная смесь поступает в двигатель. Количество необходимой смеси регулируется с помощью открытия дроссельной заслонки. Как только такт впрыска заканчивается, форсунки снова закрываются, прекращается подача топлива.

Электронный блок является своеобразным «мозговым» элементом системы. Этот сложный механизм обрабатывает поступающие на него сигналы от различных датчиков. Так происходит управление всеми устройствами топливной системы. Такая схема системы питания двигателя дает возможность водителю во время узнать о сбоях в работе, так как блок управления сигнализирует о них с помощью специальной лампы и кодов ошибки. Данные коды позволяют специалистам быстро выявить неполадки. Для этого им достаточно подключить внешнее диагностическое устройство, которое сможет распознать возникшие проблемы и назвать их.

Также на эту тему вы можете почитать:

Поделитесь в социальных сетях

Alex S 11 октября, 2013

Опубликовано в: Полезные советы и устройство авто

Метки: Как устроен автомобиль

Система питания двигателя Д-65

Система питания состоит из устройств, обеспечивающих раздельную подачу в цилиндры дизеля топлива и воздуха, а также выпуск отработанных продуктов в атмосферу.

Рис. Общее устройство системы питания дизеля Д-65 и его модификаций:

1 — топливный бак; 2 — краник бака; 3 — фильтр тонкой очистки топлива; 4 — камера сгорания; 5 — топливная форсунка; 6 — фильтр грубой очистки воздуха; 7 — воздухоочиститель; 8 — трубка высокого давления; 9, 13, 14 и 15 — трубки низкого давления; 10 — топливный насос; 11 — насос ручной подкачки топлива; 12 — подкачивающий насос; 16 – фильтр грубой очистки топлива

Общая схема системы питания дизеля Д-65 и его модификаций приведены на рисунке. Топливо из бака 1 поступает к фильтру грубой очистки 16, потом топливопроводом 15 — к подкачивающему насосу 12. От подкачивающего насоса топливо подается к фильтру 3 тонкой очистки. Пройдя очистку в фильтре, топливо трубкой 13 поступает в головку топливного насоса высокого давления (ТНВД) 10.

Избыточное топливо трубкой 9 возвращается на вход подкачивающего насоса.

Секции ТНВД подают топливо трубками 8 высокого давления к форсункам 5, через распылители которых оно впрыскивается в камеры сгорания. Воздух при тактах впуска засасывается в цилиндры дизеля через воздухоочистель 7, впускной коллектор и зазоры между тарелками открытых впускных клапанов и их седлами в головке цилиндров.

При тактах выпуска, когда открыты выпускные клапаны, отработавшие газы выходят через выпускной коллектор, выпускную трубу и глушитель (на схеме не показано) в окружающую среду. [Тракторы «Беларус» семейств МТЗ и ЮМЗ. Устройство, работа, техническое обслуживание. Под ред. Я.Е. Белоконя]

Статьи по теме: назначение системы питания дизеля; система питания топливом двигателя; схемы систем питания двигателей внутреннего сгорания; система питания двигателя Д-20; система питания двигателя Д-240; система питания двигателя трактора Т-150 (Т-150К); система питания трактора Т-40; ТО системы питания трактора

Что такое система питания? Определение и структура энергосистемы

Определение: Энергетическая система — это сеть, состоящая из системы генерации, распределения и передачи. Он использует форму энергии (например, уголь и дизельное топливо) и преобразует ее в электрическую энергию. Энергосистема включает в себя устройства, подключенные к системе, такие как синхронный генератор, двигатель, трансформатор, автоматический выключатель, проводник и т. Д.

Электростанция, трансформатор, линия передачи, подстанции, распределительная линия и распределительный трансформатор — это шесть основных компонентов энергосистемы.Электростанция вырабатывает мощность, которая повышается или понижается через трансформатор для передачи.

Линия передачи передает мощность на различные подстанции. Через подстанцию ​​мощность передается на распределительный трансформатор, который понижает мощность до соответствующего значения, подходящего для потребителей.

Структура энергосистемы

Энергосистема — сложное предприятие, которое можно разделить на следующие подсистемы.Подсистемы энергосистемы подробно описаны ниже.

Генерирующая подстанция

В генерирующей станции топливо (уголь, вода, атомная энергия и т. Д.) Преобразуется в электрическую энергию. Электроэнергия вырабатывается в диапазоне от 11 кВ до 25 кВ, что является повышением для передачи на большие расстояния. Электростанция генерирующей подстанции в основном подразделяется на три типа: тепловая электростанция, гидроэлектростанция и атомная электростанция.

Генератор и трансформатор являются основными компонентами генерирующей станции.Генератор преобразует механическую энергию в электрическую. Механическая энергия поступает от сжигания угля, газа и ядерного топлива, газовых турбин или, иногда, двигателя внутреннего сгорания.

Трансформатор передает мощность с одного уровня на другой с очень высоким КПД. Передача мощности от вторичной обмотки примерно равна первичной, за исключением потерь в трансформаторе. Повышающий трансформатор снизит потери в линии, что позволяет передавать мощность на большие расстояния.

Передающая подстанция

Передающая подстанция несет воздушные линии, по которым вырабатываемая электроэнергия передается от генерации к распределительным подстанциям. Он поставляет большую часть энергии только на крупные подстанции или очень крупных потребителей.

Линии передачи в основном выполняют две функции

  1. Он транспортирует энергию от генерирующих станций к оптовым приемным станциям.
  2. Он соединяет две или более генерирующих станций.Соседние подстанции также связаны между собой линиями электропередачи.

Напряжение передачи составляет более 66 кВ и стандартизировано на уровне 69 кВ, 115 кВ, 138 кВ, 161 кВ, 230 кВ, 345 кВ, 500 кВ и 765 кВ, между линиями. Линию электропередачи выше 230 кВ обычно называют сверхвысоким напряжением (СВН).

Линия высокого напряжения оканчивается на подстанциях, которые называются подстанциями высокого напряжения, приемными подстанциями или первичными подстанциями. На подстанции высокого напряжения напряжение понижается до подходящего значения для следующей части потока к нагрузке.Очень крупных промышленных потребителей можно обслуживать непосредственно в системе передачи.

Подстанция передачи

Часть системы передачи, которая соединяет подстанции высокого напряжения через понижающий трансформатор с распределительными подстанциями, называется подсистемой передачи.

Уровень напряжения дополнительной передачи колеблется от 90 до 138 кВ. Система субпередачи напрямую обслуживает некоторые крупные отрасли. Конденсатор и реактор расположены на подстанциях для поддержания напряжения в ЛЭП.

Работа вспомогательной системы передачи аналогична работе системы распределения. Он отличается от системы распространения следующим образом.

  1. Подсистема передачи имеет более высокий уровень напряжения, чем система распределения.
  2. Поставляет только большие грузы.
  3. Он снабжает только несколько подстанций по сравнению с распределительной системой, которая питает некоторые нагрузки.

РП

Компонент системы электроснабжения, соединяющий всех потребителей в районе с основными источниками энергии, называется распределительной системой.Магистральные электростанции связаны с генерирующими подстанциями линиями электропередачи. Они питают некоторые подстанции, которые обычно расположены в удобных точках рядом с центрами нагрузки.

Подстанции распределяют электроэнергию между бытовыми, коммерческими и относительно небольшими потребителями. Потребителям требуются большие блоки энергии, которые обычно поставляются в суб-передающей системе или даже в передающей системе.

Энергетическая система: базовая структура и функционирование

Электроэнергия — одна из основных потребностей экономического развития и прогресса страны.Различные функции, жизненно важные для современной жизни, могут быть остановлены из-за отсутствия электроэнергии.
Система энергоснабжения называется Power System. Невозможно оценить роль электричества в развитии современной цивилизации. Экономика страны напрямую зависит от наличия излишков электроэнергии. Фактически, доход на душу населения в стране прямо пропорционален потреблению энергии на человека. Чем выше потребление энергии на душу населения в стране, тем выше уровень жизни ее жителей.

Энергия существует в природе в различных формах, но наиболее важной формой является электрическая энергия. Современное общество настолько сильно зависит от использования электроэнергии, что стало неотъемлемой частью нашей жизни. В этой статье мы сосредоточим наше внимание на общих аспектах системы выработки, передачи и распределения электроэнергии, известной как Power System .

Система питания

Что такое система питания?

Электроэнергия вырабатывается на центральных электростанциях, а затем передается потребителям (т.д, Бытовые, коммерческие и промышленные) через систему передачи и распределения. Комбинация всех этих систем вместе известна как электроэнергетическая система.

Энергетическая система — это комбинация центральных генерирующих станций, системы передачи электроэнергии, системы распределения и использования. Каждая из этих систем подробно описывается в следующих разделах.

Рис. 1: Базовая структура системы электроснабжения (системы энергоснабжения)

Система электроснабжения

Передача электроэнергии от электростанции к помещениям потребителей известна как система электроснабжения.

Система электроснабжения состоит из трех основных компонентов , а именно ., Электростанции, линий передачи и системы распределения. Электроэнергия вырабатывается на электростанциях, которые расположены в благоприятных местах, как правило, вдали от потребителей. Затем он передается на большие расстояния к центрам нагрузки с помощью проводов, известных как линии передачи. Наконец, он распределяется среди большого количества мелких и крупных потребителей через распределительную сеть, систему снабжения можно в целом классифицировать на ( i ) d.c. или переменного тока система ( ii ) надземная или подземная система.

В настоящее время трехфазная трехпроводная система переменного тока повсеместно используется для производства и передачи электроэнергии в качестве экономичного предложения. Однако распределение электроэнергии осуществляется по 3-фазному, 4-х проводному переменному току. система. Подземная система дороже, чем надземная. Таким образом, воздушные сети в основном используются для передачи и распределения электроэнергии.

Типичный источник питания переменного тока в энергосистеме

Большая сеть проводов между электростанцией и потребителями может быть в общих чертах разделена на две части , а именно., система передачи и система распределения. Каждую часть можно дополнительно разделить на две части: первичная передача и вторичная передача, первичное распределение и вторичное распределение. На рис. 2 типовая схема источника питания переменного тока в энергосистеме представлена ​​однолинейной схемой. Можно отметить, что необязательно, чтобы все схемы питания включали все каскады, показанные на рисунке. Например, в определенной схеме мощности может не быть вторичной передачи, а в другом случае схема может быть настолько маленькой, что будет только распределение, а не передача.

Рис. 2: Электропитание переменного тока в энергосистеме

Генерирующие станции

Энергия вырабатывается (преобразуется из одной в другую) на генерирующих станциях. Генерирующие станции бывают разного типа, например, тепловые, гидроэлектростанции, солнечные электростанции, атомные. Вырабатываемая электроэнергия повышается через трансформатор и затем передается по линиям электропередачи в центры нагрузки.

Рис. 3: Процесс преобразования энергии

На рис. 2 G.S. представляет генерирующую станцию, где электроэнергия вырабатывается 3-фазными генераторами переменного тока, работающими параллельно.Обычное напряжение генерации † 11 кВ. Для экономии при передаче электроэнергии напряжение генерации (, т. Е. ., 11 кВ) повышается до 132 кВ на генерирующей станции с помощью трехфазных трансформаторов. Передача электроэнергии при высоком напряжении имеет несколько преимуществ, включая экономию материала проводника и высокую эффективность передачи.

Может показаться целесообразным использовать максимально возможное напряжение для передачи электроэнергии для экономии материала проводника и получения других преимуществ.Но есть предел, до которого это напряжение можно увеличить. Это связано с тем, что повышение напряжения передачи приводит к проблемам с изоляцией, а также к увеличению стоимости распределительного и трансформаторного оборудования. Следовательно, выбор подходящего напряжения передачи — это, по сути, вопрос экономики. Как правило, первичная передача осуществляется при напряжениях 66 кВ, 132 кВ, 220 кВ или 400 кВ.

Рис. 4: Повышающий силовой трансформатор в генерирующей станции

Первичная передача.

Электроэнергия 132 кВ передается по трехфазной трехпроводной воздушной сети на окраины города.Это формирует первичную передачу.

Вторичная передача

Первичная линия передачи заканчивается на приемной станции ( RS ), которая обычно проходит на окраине города. На приемной станции понижают напряжение до 33кВ понижающими трансформаторами. С этой станции электроэнергия 33 кВ передается по трехфазной трехпроводной воздушной сети на различные подстанции ( SS ), расположенные в стратегических точках города. Это формирует вторичную передачу.

Первичное распределение

Вторичная линия передачи заканчивается на подстанции ( SS ), где напряжение снижается с 33 кВ до 11 кВ, трехфазное, трехпроводное. Линии 11 кВ проходят вдоль важных проезжих частей города. Это формирует первичное распределение. Можно отметить, что крупным потребителям (потребляющим более 50 кВт), как правило, предоставляется мощность 11 кВ для дальнейшей обработки на собственных подстанциях.

Вторичное распределение

На последнем этапе в энергосистеме электроэнергия от первичной распределительной линии (11 кВ) доставляется на распределительные подстанции ( DS ) или распределительный трансформатор.Типовой распределительный трансформатор, установленный на опоре, показан на рис. 5. Эти подстанции расположены недалеко от населенных пунктов и понижают напряжение до 400 В, трехфазное, четырехпроводное для вторичного распределения. Напряжение между любыми двумя фазами составляет 400 В, а между любой фазой и нейтралью — 230 В. Однофазная нагрузка жилого освещения подключается между любой одной фазой и нейтралью, тогда как трехфазная нагрузка двигателя 400 В подключается к трехфазной сети. линии напрямую. Здесь стоит упомянуть, что вторичная распределительная система состоит из фидеров , распределителей и обслуживающей сети .

Рис. 5: Распределительный трансформатор на опоре

На Рис. 6 показаны элементы системы распределения низкого напряжения. Питатели ( SC или SA ), исходящие от распределительной подстанции ( DS ), обеспечивают питание распределителей ( AB , BC , CD и AD ). Прямое подключение от фидеров к потребителю не предоставляется. Вместо этого потребители подключаются к дистрибьюторам через их обслуживающие сети.

Рис. 6: Распределительные фидеры в энергосистеме

Сводка

Мы надеемся, что вы получили основное представление об энергосистеме, ее основных компонентах и ​​их функционировании.Вы также можете прочитать наши статьи о реализации схем защиты в ETAP и анализе потока нагрузки в электросети.

Если вам понравилась эта статья, то, пожалуйста, подпишитесь на наш канал YouTube для видеоуроков и описаний проектов. Вы также можете найти нас на Facebook. Оставьте свой отзыв в разделе комментариев.

Структура электроэнергетических систем (производство, распределение и передача энергии)

Что такое электроэнергетическая система?

С общей точки зрения, электроэнергетическая система обычно понимается как очень большая сеть , которая связывает электростанции (большие или малые) с нагрузками посредством электрической сети, которая может охватывать весь континент, например Европу или Северная Америка.

Структуру электроэнергетических систем, которую вы ДОЛЖНЫ понимать полностью (фото предоставлено Карлой Восняк через Flickr)

Таким образом, энергосистема обычно простирается от электростанции до розеток внутри помещений клиентов. Их иногда называют системами полной мощности, поскольку они являются автономными.

Энергосистемы меньшего размера могут состоять из части или секций более крупной полной системы. На рисунке 1 показано несколько элементов, которые работают вместе и подключены к электросети.

Подсистема, представленная на Рисунке 1 (a), может быть одним из конечных потребителей электроэнергии полной энергосистемы . Подсистема, представленная на рисунке 1 (b), может быть одной из небольших электростанций, работающих в режиме распределенной генерации (DG). Большинство этих энергосистем работают только при подключении к полной энергосистеме.

Энергетические системы, которые питаются от внешнего источника электроэнергии или которые производят (путем преобразования из других источников) электричество и передают его в более крупную сеть, называются системами частичного питания.

Рисунок 1 (a, b) — Подсистемы электропитания специального назначения

Энергетические системы, представляющие интерес для наших целей, представляют собой крупномасштабные полнофункциональные энергосистемы, охватывающие большие расстояния и внедряемые энергетическими компаниями на протяжении десятилетий.

Генерация — это производство электроэнергии на электростанциях или генерирующих установках, где первичная энергия преобразуется в электричество. Передача — это сеть, которая перемещает электроэнергию из одной части страны или региона в другую. Обычно это хорошо взаимосвязанная инфраструктура, в которой несколько линий электропередач соединяют разные подстанции, которые изменяют уровни напряжения, обеспечивая повышенное резервирование.

Распределение, наконец, поставляет мощность (можно сказать, локально по сравнению с системой передачи) конечным нагрузкам (большинство из которых получают низкое напряжение) через промежуточные этапы, на которых напряжение понижается (преобразуется) на более низкие уровни. .

Распределительная система заканчивает в точках потребления энергии или нагрузках, где мощность используется по назначению .

В некоторых частях мира дерегулирование и приватизация отрасли уже полностью изменили отраслевой ландшафт, в то время как в других последствиях еще предстоит увидеть.


Производство электроэнергии

Электростанции преобразуют энергию, хранящуюся в топливе (в основном, угле, нефти, природном газе, обогащенном уране) или возобновляемых источниках энергии (вода, ветер, солнце) в электрическую энергию.

Обычные современные генераторы вырабатывают электричество с частотой, кратной скорости вращения машины. Напряжение обычно не более 6-40 кВ. Выходная мощность определяется количеством пара, приводящего в действие турбину, которое в основном зависит от котла.Напряжение этой мощности определяется током во вращающейся обмотке (т. Е. Роторе) синхронного генератора.

Выходной сигнал снимается с неподвижной обмотки (т. Е. Статора). Напряжение повышается трансформатором, как правило, до гораздо более высокого напряжения. При таком высоком напряжении генератор подключается к сети на подстанции.

Рисунок 2 — Паровая турбина и генератор мощностью 472 мегаватта (STG) для электростанции с комбинированным циклом Allen (фото предоставлено businesswire.com)

Традиционные электростанции вырабатывают переменную мощность от синхронных генераторов, которые вырабатывают трехфазную электроэнергию, так что Источник напряжения на самом деле представляет собой комбинацию трех источников переменного напряжения, полученных от генератора, с их соответствующими векторами напряжения, разделенными фазовыми углами 120 °.

Ветровые турбины и мини-гидроагрегаты обычно используют асинхронные генераторы, в которых форма волны генерируемого напряжения не обязательно синхронизирована с вращением генератора.

DG относится к генерации, которая подключается к системе распределения, в отличие от традиционных централизованных систем выработки электроэнергии.

Исследовательский институт электроэнергетики (EPRI) определил распределенную генерацию как «использование небольших (от 0 до 5 МВт) модульных технологий выработки электроэнергии, распределенных по всей распределительной системе коммунального предприятия, чтобы уменьшить нагрузку на временные интервалы или рост нагрузки и тем самым отсрочить модернизация оборудования T&D, снижение потерь в системе, повышение качества и надежности электроэнергии.

Малые генераторы постоянно совершенствуются с точки зрения стоимости и эффективности, приближаясь к характеристикам крупных электростанций.


Как работает ТЭЦ?


Системы передачи

Энергия от генерирующих станций передается сначала через системы передачи, которые состоят из линий передачи, по которым передается электроэнергия на различных уровнях напряжения . Система передачи соответствует сетевой инфраструктуре с ячеистой топологией, соединяющей генерацию и подстанции вместе в сеть, которая обычно определяется на 100 кВ или более.

Рисунок 3 — Электроэнергетическая система

Электроэнергия течет по высоковольтным линиям электропередачи к ряду подстанций, где трансформаторы понижают напряжение до уровней, подходящих для распределительных систем.

Среднеквадратичные уровни переменного напряжения

Предпочтительные среднеквадратические уровни переменного напряжения стандартизированы в международном стандарте IEC 60038: 2009 как:

  • 362 кВ или 420 кВ; 420 кВ или 550 кВ; 800 кВ; Максимальное напряжение 1100 кВ или 1200 кВ для трехфазных систем, имеющее наивысшее напряжение для оборудования, превышающее 245 кВ.
  • 66 (альтернативно 69) кВ; 110 (альтернативно 115) кВ или 132 (альтернативно 138) кВ; Номинальное напряжение 220 (альтернативно 230) кВ для трехфазных систем с номинальным напряжением выше 35 кВ и не более 230 кВ.
  • 11 (альтернативно 10) кВ; 22 (альтернативно 20) кВ; Номинальное напряжение 33 (альтернативно 30) кВ или 35 кВ для трехфазных систем с номинальным напряжением выше 1 кВ и не более 35 кВ. Для североамериканской практики существует отдельный набор ценностей.

В случае систем с номинальным напряжением от 100 В до 1000 В включительно, 230/400 В является стандартным для трехфазных, четырехпроводных систем (50 Гц или 60 Гц), а также 120/208 В для 60 Гц . Для трехпроводных систем стандартным является 230 В между фазами для 50 Гц и 240 В для 60 Гц. Для однофазных трехпроводных систем с частотой 60 Гц стандартно 120/240 В.

Среднее напряжение (MV) как понятие не используется в некоторых странах (например, в Великобритании и Австралии), это «любой набор уровней напряжения, лежащих между низким и высоким напряжением», и проблема определения его состоит в том, что фактический Граница между уровнями среднего и высокого напряжения зависит от местной практики.

В Европе воздушные линии электропередачи используются на открытых площадках, таких как межсетевые соединения между городами или вдоль широких дорог в пределах города . В густонаселенных районах внутри городов для передачи электроэнергии используются подземные кабели. Система подземных электропередач предпочтительнее с экологической точки зрения, но имеет значительно более высокую стоимость.

Линии передачи развернуты с помощью трех проводов вместе с проводом заземления. Практически все системы передачи переменного тока представляют собой трехфазные системы передачи.


Распределительные системы

Распределительный сегмент широко признан самой сложной частью интеллектуальной сети из-за его повсеместного распространения. Уровни напряжения 132 (местами 110) или кВ являются обычными уровнями высокого напряжения, которые можно найти в (европейских) распределительных сетях. Напряжения ниже этого (например, 30, 20, 10 кВ) обычно встречаются в распределительных сетях среднего напряжения.

Уровни распределения ниже 1 кВ находятся в пределах так называемого LV или низкого напряжения .

Топологии сетей среднего напряжения можно разделить на три группы:


Радиальная топология

Радиальные линии используются для соединения первичных подстанций (БП) с вторичными подстанциями (ПС), а также ПС среди них. Эти линии СН или «фидеры» могут использоваться исключительно для одной ПС или могут использоваться для подключения к нескольким из них. Радиальные системы обеспечивают централизованное управление всеми SS.

Эти радиальные топологии демонстрируют древовидную конфигурацию при увеличении сложности до .Это менее затратная топология в разработке, эксплуатации и обслуживании, но они также менее надежны.

Рисунок 4 — Система радиального фидера

Кольцевая топология

Это отказоустойчивая топология для преодоления слабости радиальной топологии , когда происходит отключение одного элемента линии среднего напряжения, которое прерывает подачу электроэнергии (отключение) в остальные подключенные подстанции. Кольцевая топология — это усовершенствованная радиальная топология, соединяющая подстанции с другими линиями среднего напряжения для создания резервирования.

Независимо от физической конфигурации сеть работает в радиальном направлении, но в случае отказа в фидере другие элементы изменяют конфигурацию сети таким образом, чтобы избежать простоев.

Рисунок 5 — Схема кольцевой шины

Сетевая топология

Сетевая топология состоит из первичных и вторичных подстанций, соединенных через несколько линий среднего напряжения , чтобы обеспечить множество альтернативных вариантов распределения. Таким образом, существует множество вариантов реконфигурации для преодоления неисправностей, и в случае отказа могут быть найдены альтернативные решения для перенаправления электричества.

Распределительные системы низкого напряжения могут быть однофазными или трехфазными. В Европе, например, это обычно трехфазных систем на 230/400 В (т.е. каждая фаза имеет среднеквадратичное напряжение 230 В, а среднеквадратичное напряжение между двумя фазами составляет 400 В).

Сети низкого напряжения имеют более сложную и неоднородную топологию, чем сети среднего напряжения. Точная топология низковольтных систем зависит от протяженности и конкретных характеристик зоны обслуживания, типа, количества и плотности точек питания (нагрузок), рабочих процедур для конкретной страны и энергосистемы, а также диапазона опций в международных стандартах.

Рисунок 6 — Сетевая распределительная система

SS обычно подает электроэнергию к одной или нескольким линиям низкого напряжения с одним или несколькими трансформаторами среднего напряжения в одном месте. Топология НН обычно радиальная, с несколькими ответвлениями, которые подключаются к расширенным фидерам, но также бывают случаи сетевых сетей и даже конфигураций с кольцевым или двойным питанием в сетях НН.

Линии НН обычно короче линий СН, и их характеристики различаются в зависимости от зоны обслуживания.

Ссылка // Телекоммуникационные сети для интеллектуальной сети Альберто Сендин (приобретение в твердом переплете у Amazon)

Классификация источников питания и ее различные типы

Блок питания — это часть оборудования, которое используется для преобразования мощности, подаваемой из розетки, в полезную мощность для многих частей внутри электрического устройства.Каждый источник энергии должен управлять своей нагрузкой, которая к нему подключена. В зависимости от конструкции блок питания может получать энергию от различных типов источников энергии, таких как системы передачи электроэнергии, электромеханические системы, такие как генераторы и генераторы переменного тока, преобразователи солнечной энергии, устройства хранения энергии, такие как аккумулятор и топливные элементы, или другие источник питания. Существуют источники питания двух типов: постоянного и переменного тока. В зависимости от электрических характеристик электрического устройства оно может использовать питание переменного или постоянного тока.


Что такое блок питания?

Источник питания можно определить как электрическое устройство, используемое для подачи электроэнергии на электрические нагрузки. Основная функция этого устройства — изменение электрического тока от источника на точное напряжение, частоту и ток для питания нагрузки. Иногда эти блоки питания можно назвать преобразователями электроэнергии. Некоторые типы расходных материалов представляют собой отдельные элементы нагрузки, тогда как другие изготавливаются из устройств, которыми они управляют.

Блок-схема источника питания

Цепь источника питания используется в различных электрических и электронных устройствах. Цепи источника питания подразделяются на различные типы в зависимости от мощности, которую они используют для обеспечения цепей или устройств. Например, схемы на основе микроконтроллера обычно представляют собой схемы регулируемого источника питания (RPS) 5 В постоянного тока, которые могут быть спроектированы с помощью различных методов для изменения мощности с 230 В переменного тока на 5 В постоянного тока.

Блок-схема источника питания и пошаговое преобразование 230 В переменного тока в 12 В постоянного тока обсуждаются ниже.

  • Понижающий трансформатор преобразует 230 В переменного тока в 12 В.
  • Мостовой выпрямитель используется для преобразования переменного тока в постоянный
  • Конденсатор используется для фильтрации пульсаций переменного тока, подаваемых на регулятор напряжения.
  • Наконец, регулятор напряжения регулирует напряжение до 5 В и, наконец, используется блокирующий диод для измерения пульсирующей формы волны.
Блок-схема источника питания

Классификация источников питания и их различных типов

Здесь мы обсудим различные типы источников питания, существовавшие на рынке.В приведенной ниже таблице указаны основные типы источников питания для следующих условий.

ВЫХОД = DC

ВЫХОД = AC

ВХОД = AC

  • Настенная бородавка
  • Настольные источники питания
  • Зарядное устройство
  • Разделительный трансформатор
  • Источник переменного тока
  • Преобразователь частоты

ВХОД = DC

Источник переменного тока

Различные напряжения переменного тока генерируются с помощью трансформатора.Трансформатор может иметь несколько обмоток или ответвлений, и в этом случае прибор использует переключатели для выбора различных уровней напряжения. В качестве альтернативы можно использовать регулируемый трансформатор (регулируемый автотрансформатор) для непрерывного изменения напряжения. Некоторые источники переменного тока включают измерители для контроля напряжения, тока и / или мощности.

Источник переменного тока

Нерегулируемый линейный источник питания

Нерегулируемые источники питания содержат понижающий трансформатор, выпрямитель, фильтрующий конденсатор и спускной резистор.Этот тип источника питания из-за простоты является наименее дорогостоящим и наиболее надежным для требований низкого энергопотребления. Главный недостаток — непостоянство выходного напряжения. Оно будет варьироваться в зависимости от входного напряжения и тока нагрузки, а пульсации не подходят для электронных приложений. Пульсации можно уменьшить, заменив конденсатор фильтра на фильтр LC (индуктор-конденсатор), но стоимость его возрастет.

Нерегулируемый линейный источник питания
Входной трансформатор

Входной трансформатор используется для преобразования входящего линейного напряжения до необходимого уровня источника питания.Он также изолирует выходную цепь от сети. Здесь мы используем понижающий трансформатор.

Выпрямитель

Выпрямитель, используемый для преобразования входящего сигнала из формата переменного тока в необработанный постоянный ток. Пожалуйста, обратитесь по этим ссылкам. Доступны различные типы выпрямителей: однополупериодный и двухполупериодный выпрямители.

Конденсатор фильтра

Пульсирующий постоянный ток от выпрямителя подается на сглаживающий конденсатор. Это устранит нежелательную рябь в пульсирующем постоянном токе.

Прокачивающий резистор

Bleeder Resistor также известен как резистор стока источника питания. Он подключается к конденсаторам фильтра для отвода накопленного заряда, поэтому питание системы не представляет опасности.

Программируемый блок питания

Этот тип источника питания позволяет дистанционно управлять его работой через аналоговый вход или цифровые интерфейсы, такие как GPIB или RS232. Контролируемые свойства этого источника питания включают ток, напряжение, частоту.Эти типы расходных материалов используются в широком спектре приложений, таких как производство полупроводников, генераторов рентгеновского излучения, мониторинг роста кристаллов, автоматическое тестирование оборудования.

Как правило, в этих типах источников питания используется микрокомпьютер, необходимый для управления и контроля работы источника питания. Блок питания, снабженный интерфейсом компьютера, использует стандартные (или) проприетарные протоколы связи и язык управления устройством, такой как SCPI (стандартные команды для программируемых инструментов)

Блок питания компьютера

Блок питания в компьютере — это часть аппаратного обеспечения, которое используется для преобразования мощности, подаваемой из розетки, в полезную мощность для нескольких частей компьютера.Преобразует переменный ток в постоянный

Он также контролирует перегрев посредством управления напряжением, которое может изменяться вручную или автоматически в зависимости от источника питания. Блок питания или блок питания также называют преобразователем мощности или блоком питания.

В компьютере внутренние компоненты, такие как корпуса, материнские платы и блоки питания, доступны в различных конфигурациях, размеры которых известны как форм-фактор. Все эти три компонента должны быть хорошо согласованы, чтобы правильно работать вместе.

Регулируемый линейный источник питания

Регулируемые линейные источники питания такие же, как нерегулируемые линейные источники питания, за исключением того, что вместо стравливающего резистора используется трехконтактный стабилизатор. Основная цель этого источника питания — обеспечить нагрузку требуемым уровнем мощности постоянного тока. Источник питания постоянного тока использует источник переменного тока в качестве входа. Для разных приложений требуются разные уровни атрибутов напряжения, но в настоящее время источники питания постоянного тока обеспечивают точное выходное напряжение. И это напряжение регулируется электронной схемой, поэтому оно обеспечивает постоянное выходное напряжение в широком диапазоне выходных нагрузок.

Блок-схема регулируемого источника питания

Здесь представлена ​​основная принципиальная схема регулируемого линейного источника питания, представленная ниже.

Регулируемый линейный источник питания

Основными особенностями этого источника питания являются следующие.

  • КПД данного блока питания составляет от 20 до 25%
  • Магнитные материалы, используемые в этом источнике питания, представляют собой сердечник из CRGO или стали.
  • Он более надежный, менее сложный и громоздкий.
  • Дает более быстрый ответ.

К основным преимуществам линейного источника питания можно отнести надежность, простоту, дешевизну и низкий уровень шума. Наряду с этими преимуществами есть и недостатки, например,

.

Они лучше всего подходят для нескольких приложений с низким энергопотреблением, поскольку требуется высокая мощность; недостатки становятся более очевидными. К недостаткам этого источника питания можно отнести большие потери тепла, габариты и низкий КПД. Когда линейный источник питания используется в приложениях большой мощности; для управления мощностью требуются большие компоненты.

Сглаживание

После выпрямления из сигнала переменного тока необходимо сглаживать постоянный ток, чтобы удалить изменяющийся уровень напряжения. Для этой цели обычно используются конденсаторы большой емкости.

Регулятор напряжения

Линейный регулятор имеет активное (BJT или MOSFET) проходное устройство (последовательное или шунтирующее), управляемое дифференциальным усилителем с высоким коэффициентом усиления. Он сравнивает выходное напряжение с точным опорным напряжением и регулирует проходное устройство для поддержания постоянного уровня выходного напряжения.Есть два основных типа линейных источников питания. Узнайте больше о различных типах регуляторов напряжения с принципом работы.

Регулятор серии

Это наиболее широко используемые регуляторы для линейных источников питания. Как следует из названия, в схему помещается последовательный элемент, как показано на рисунке ниже, и его сопротивление изменяется с помощью управляющей электроники, чтобы гарантировать, что правильное выходное напряжение генерируется для потребляемого тока.

Концепция последовательного регулятора напряжения или последовательного регулятора прохода
Шунтирующий регулятор

Шунтирующий регулятор менее широко используется в качестве основного элемента в регуляторе напряжения.В этом случае переменный элемент размещается поперек нагрузки, как показано ниже. Сопротивление истока установлено последовательно со входом, а шунтирующий регулятор регулируется, чтобы гарантировать, что напряжение на нагрузке остается постоянным.

Шунтирующий регулятор напряжения с обратной связью

Импульсный источник питания (SMPS)

SMPS имеет выпрямитель, конденсатор фильтра, последовательный транзистор, регулятор, трансформатор, но он более сложен, чем другие источники питания, которые мы обсуждали.

Импульсный источник питания

Показанная выше схема представляет собой простую блок-схему.Напряжение переменного тока выпрямляется до нерегулируемого постоянного напряжения с помощью последовательного транзистора и регулятора. Этот постоянный ток прерывается до постоянного высокочастотного напряжения, что позволяет значительно уменьшить размер трансформатора и позволяет использовать источник питания гораздо меньшего размера. Недостатки этого типа источника питания состоят в том, что все трансформаторы должны изготавливаться по индивидуальному заказу, а сложность источника питания не подходит для низкопроизводительных или экономичных применений с низким энергопотреблением. Пожалуйста, перейдите по этой ссылке, чтобы узнать все о SMPS.

Импульсный источник питания (SMPS)

Источник бесперебойного питания (ИБП)

ИБП

— это резервный источник питания, который в случае сбоя питания или колебаний дает достаточно времени для правильного отключения системы или запуска резервного генератора. ИБП обычно состоит из группы аккумуляторных батарей и схем измерения и кондиционирования мощности. Кроме того, ознакомьтесь с принципиальной схемой ИБП и различными типами, пожалуйста, перейдите по этой ссылке, чтобы узнать больше о принципиальной схеме и работе ИБП.

Источник бесперебойного питания (ИБП)

Источник питания постоянного тока

Источник питания постоянного тока — это источник постоянного напряжения, обеспечивающий его нагрузку постоянным напряжением. Согласно его плану, источник питания постоянного тока может управляться от источника постоянного тока или от источника переменного тока, такого как сеть электропитания.

Источник питания постоянного тока

Это все о различных типах источников питания, включая линейные источники питания, импульсный источник питания, источник бесперебойного питания. Кроме того, для реализации проектов в области электроники и электротехники или любой информации о типах источников питания вы можете оставить свой отзыв, чтобы дать свои предложения, комментарии в разделе комментариев ниже.

Общие сведения об источниках питания переменного / постоянного тока | Статья

.

СТАТЬЯ ОБРАЗОВАНИЯ


Получайте ценные ресурсы прямо на ваш почтовый ящик — рассылается раз в месяц

Мы ценим вашу конфиденциальность

Что такое блок питания?

Источник питания — это электрическое устройство, которое преобразует электрический ток, поступающий от источника питания, такого как сеть, в значения напряжения и тока, необходимые для питания нагрузки, такой как двигатель или электронное устройство.

Назначение источника питания — обеспечить нагрузку надлежащим напряжением и током. Ток должен подаваться контролируемым образом — и с точным напряжением — на широкий диапазон нагрузок, иногда одновременно, и все это без изменения входного напряжения или других подключенных устройств, влияющих на выход.

Источник питания может быть внешним, что часто встречается в таких устройствах, как ноутбуки и зарядные устройства для телефонов, или внутренним, например, в более крупных устройствах, таких как настольные компьютеры.

Источник питания может быть регулируемым или нерегулируемым. В регулируемом источнике питания изменения входного напряжения не влияют на выход. С другой стороны, в нерегулируемом источнике питания выходная мощность зависит от любых изменений на входе.

Все источники питания объединяет то, что они берут электроэнергию от источника на входе, каким-то образом преобразуют ее и доставляют в нагрузку на выходе.

Питание на входе и выходе может быть переменным (AC) или постоянным (DC) током:

  • Постоянный ток (DC) возникает, когда ток течет в одном постоянном направлении.Обычно он поступает от батарей, солнечных элементов или преобразователей переменного / постоянного тока. Постоянный ток — предпочтительный тип питания для электронных устройств.
  • Переменный ток (AC) возникает, когда электрический ток периодически меняет свое направление. Переменный ток — это метод, используемый для подачи электроэнергии по линиям электропередачи в дома и на предприятия

Следовательно, если переменный ток — это тип питания, подаваемого в ваш дом, а постоянный ток — это тип питания, который вам нужен для зарядки телефона, вам понадобится источник питания переменного / постоянного тока для преобразования переменного напряжения, поступающего из электросети к напряжению постоянного тока, необходимому для зарядки аккумулятора вашего мобильного телефона.

Общие сведения об переменном токе (AC)

Первым шагом в разработке любого источника питания является определение входного тока. И в большинстве случаев источником входного напряжения электросети является переменный ток.

Типичная форма волны переменного тока — синусоида (см. Рисунок 1) .`

Рисунок 1: Форма сигнала переменного тока и основные параметры

Есть несколько показателей, которые необходимо учитывать при работе с блоком питания переменного тока:

  • Пиковое напряжение / ток: максимальное значение амплитуды волны
  • Частота: количество циклов, выполняемых волной в секунду.Время, необходимое для завершения одного цикла, называется периодом.
  • Среднее напряжение / ток: Среднее значение всех точек напряжения в течение одного цикла. В чисто переменном токе без наложенного постоянного напряжения это значение будет равно нулю, потому что положительная и отрицательная половины компенсируют друг друга.
  • Среднеквадратичное напряжение / ток: определяется как квадратный корень из среднего значения за один цикл квадрата мгновенного напряжения. В чистой синусоидальной волне переменного тока его значение можно рассчитать с помощью уравнения (1) :
  • $$ V_ {PEAK} \ over \ sqrt 2 $$
  • Он также может быть определен как эквивалентная мощность постоянного тока, необходимая для достижения такого же теплового эффекта.Несмотря на сложное определение, он широко используется в электротехнике, поскольку позволяет найти эффективное значение переменного напряжения или тока. Из-за этого его иногда обозначают как V AC .
  • Фаза: угловая разница между двумя волнами. Полный цикл синусоидальной волны делится на 360 °, начиная с 0 °, с пиками на 90 ° (положительный пик) и 270 ° (отрицательный пик) и дважды пересекая начальную точку, на 180 ° и 360 °. Если две волны изображены вместе, и одна волна достигает своего положительного пика в то же время, когда другая достигает своего отрицательного пика, тогда первая волна будет под углом 90 °, а вторая волна будет под углом 270 °; это означает, что разность фаз составляет 180 °.Считается, что эти волны находятся в противофазе, так как их значения всегда будут иметь противоположные знаки. Если разность фаз равна 0 °, мы говорим, что две волны находятся в фазе.

Переменный ток (AC) — это способ передачи электроэнергии от генерирующих объектов конечным пользователям. Он используется для транспортировки электроэнергии, потому что в процессе транспортировки электричество необходимо преобразовывать несколько раз.

Электрические генераторы вырабатывают напряжение около 40 000 В или 40 кВ.Затем это напряжение повышается до любого значения от 150 кВ до 800 кВ, чтобы снизить потери мощности при транспортировке электрического тока на большие расстояния. Когда он достигает места назначения, напряжение снижается до 4–35 кВ. Наконец, прежде чем ток достигнет отдельных пользователей, он снижается до 120 или 240 В, в зависимости от местоположения.

Все эти изменения напряжения будут либо сложными, либо очень неэффективными по сравнению с постоянным током (DC), потому что линейные трансформаторы зависят от колебаний напряжения для передачи и преобразования электрической энергии, поэтому они могут работать только с переменным током (AC).

Линейный и импульсный источник питания переменного / постоянного тока

Линейный источник питания переменного / постоянного тока

Линейный источник питания переменного / постоянного тока имеет простую конструкцию.

При использовании трансформатора входное напряжение переменного тока (AC) снижается до значения, более подходящего для предполагаемого применения. Затем пониженное переменное напряжение выпрямляется и превращается в напряжение постоянного тока (DC), которое фильтруется для дальнейшего улучшения качества формы волны (Рисунок 2) .

Рисунок 2: Блок-схема линейного источника переменного / постоянного тока

Традиционная конструкция линейного источника питания переменного / постоянного тока развивалась с годами, улучшаясь с точки зрения эффективности, диапазона мощности и размера, но эта конструкция имеет некоторые существенные недостатки, которые ограничивают ее интеграцию.

Огромным ограничением линейного источника питания переменного / постоянного тока является размер трансформатора. Поскольку входное напряжение преобразуется на входе, необходимый трансформатор должен быть очень большим и, следовательно, очень тяжелым.

На низких частотах (например, 50 Гц) необходимы большие значения индуктивности для передачи большого количества энергии от первичной обмотки ко вторичной. Это требует больших сердечников трансформатора, что делает миниатюризацию этих источников питания практически невозможной.

Еще одним ограничением линейных источников питания переменного / постоянного тока является регулировка напряжения большой мощности.

В линейном блоке питания переменного / постоянного тока используются линейные регуляторы для поддержания постоянного напряжения на выходе. Эти линейные регуляторы рассеивают лишнюю энергию в виде тепла.Для малой мощности особых проблем не представляет. Однако для высокой мощности тепло, которое должен рассеивать регулятор для поддержания постоянного выходного напряжения, очень велико и потребует добавления очень больших радиаторов.

Импульсный источник питания переменного / постоянного тока

Новая методология проектирования была разработана для решения многих проблем, связанных с проектированием линейных или традиционных источников питания переменного / постоянного тока, включая размер трансформатора и регулировку напряжения.

Импульсные источники питания теперь возможны благодаря развитию полупроводниковой технологии, особенно благодаря созданию мощных полевых МОП-транзисторов, которые могут очень быстро и эффективно включаться и выключаться даже при больших напряжениях и токах.

Импульсный источник питания переменного / постоянного тока позволяет создавать более эффективные преобразователи мощности, которые больше не рассеивают избыточную мощность.

Блоки питания

AC / DC, в которых используются импульсные преобразователи мощности, называются импульсными блоками питания. Импульсные источники питания переменного / постоянного тока имеют несколько более сложный метод преобразования переменного тока в постоянный.

В импульсных источниках питания переменного тока входное напряжение больше не снижается; скорее, он выпрямляется и фильтруется на входе.Затем постоянное напряжение проходит через прерыватель, который преобразует напряжение в последовательность высокочастотных импульсов. Наконец, волна проходит через другой выпрямитель и фильтр, который преобразует ее обратно в постоянный ток (DC) и устраняет любую оставшуюся составляющую переменного тока (AC), которая может присутствовать до достижения выхода (см. Рисунок 3) .

При работе на высоких частотах катушка индуктивности трансформатора может передавать больше мощности, не достигая насыщения, что означает, что сердечник может становиться все меньше и меньше.Следовательно, трансформатор, используемый для переключения источников питания переменного / постоянного тока для уменьшения амплитуды напряжения до заданного значения, может составлять часть размера трансформатора, необходимого для линейного источника питания переменного / постоянного тока.

Рисунок 3: Блок-схема импульсного источника питания переменного / постоянного тока

Как и следовало ожидать, этот новый метод проектирования имеет некоторые недостатки.

Импульсные преобразователи мощности переменного / постоянного тока могут создавать в системе значительный уровень шума, который необходимо устранить, чтобы исключить его на выходе.Это создает потребность в более сложных схемах управления, что, в свою очередь, усложняет конструкцию. Тем не менее, эти фильтры состоят из компонентов, которые можно легко интегрировать, поэтому они не оказывают существенного влияния на размер блока питания.

Меньшие трансформаторы и повышенная эффективность регуляторов напряжения в импульсных источниках питания переменного / постоянного тока — вот причина, по которой теперь мы можем преобразовывать напряжение переменного тока 220 В ¬RMS в напряжение 5 В постоянного тока с помощью преобразователя питания, который поместится у вас на ладони.

Таблица 1 суммирует различия между линейными и импульсными источниками питания переменного / постоянного тока.

Транзисторы Нерегулируемые источники питания
Линейный источник питания переменного / постоянного тока Импульсный источник питания переменного / постоянного тока
Размер и вес Необходимы большие трансформаторы, что значительно увеличивает размер и вес Более высокие частоты позволяют при необходимости использовать трансформаторы гораздо меньшего размера.
КПД Если не регулировать, потери в трансформаторе являются единственной существенной причиной потери эффективности.В случае регулирования приложения с большой мощностью будут иметь решающее влияние на эффективность. обладают небольшими коммутационными потерями, поскольку действуют как малые сопротивления. Это обеспечивает эффективных мощных приложений .
Шум могут иметь значительный шум, вызванный пульсациями напряжения, но регулируемые линейные источники питания постоянного тока переменного тока могут иметь чрезвычайно низкий уровень шума. Вот почему они используются в медицинских приложениях. Когда транзисторы переключаются очень быстро, они создают шум в цепи. Однако это можно либо отфильтровать, либо частоту переключения можно сделать чрезвычайно высокой, выше предела человеческого слуха, для аудиоприложений
Сложность Линейный источник питания переменного / постоянного тока, как правило, имеет меньше компонентов и более простые схемы, чем импульсный источник питания переменного / постоянного тока. Дополнительный шум, создаваемый трансформаторами, вынуждает добавлять большие сложные фильтры, а также схемы управления и регулирования для преобразователей.

Таблица 1: Линейные и импульсные источники питания

Сравнение однофазных и трехфазных источников питания

Источник питания переменного тока может быть однофазным или трехфазным:

  • Трехфазный источник питания состоит из трех проводников, называемых линиями, каждая из которых несет переменный ток (AC) той же частоты и амплитуды напряжения, но с относительной разностью фаз 120 °, или одной трети цикл (см. рисунок 4) .Эти системы являются наиболее эффективными при передаче большого количества энергии и поэтому используются для доставки электроэнергии от генерирующих объектов в дома и на предприятия по всему миру.
  • Однофазный источник питания является предпочтительным методом подачи тока в отдельные дома или офисы, чтобы равномерно распределять нагрузку между линиями. В этом случае ток течет от линии питания через нагрузку, а затем обратно через нейтральный провод. Этот тип источника питания используется в большинстве установок, за исключением крупных промышленных или коммерческих зданий.Однофазные системы не могут передавать столько мощности на нагрузку и более подвержены сбоям питания, но однофазное питание также позволяет использовать гораздо более простые сети и устройства.

Рисунок 4: Форма кривой переменного тока трехфазного источника питания

Существует две конфигурации для передачи энергии через трехфазный источник питания: конфигурация треугольника $ (\ Delta) $ и конфигурация звезды (Y), также называемые конфигурациями треугольника и звезды, соответственно.

Основное различие между этими двумя конфигурациями заключается в возможности добавления нейтрального провода (см. Рисунок 5) .

Соединения

Delta обеспечивают большую надежность, но соединения Y могут обеспечивать два разных напряжения: фазное напряжение, которое является однофазным напряжением, подаваемым в дома, и линейное напряжение для питания больших нагрузок. Соотношение между фазным напряжением (или фазным током) и линейным напряжением (или линейным током) в конфигурации Y заключается в том, что амплитуда линейного напряжения (или тока) в √3 раз больше, чем амплитуда фазы.

Поскольку стандартная система распределения электроэнергии должна обеспечивать питанием как трехфазные, так и однофазные системы, большинство сетей распределения электроэнергии имеют три линии и нейтраль.Таким образом, и дома, и промышленное оборудование могут быть снабжены одной и той же линией электропередачи. Следовательно, конфигурация Y наиболее часто используется для распределения мощности, тогда как конфигурация треугольника обычно используется для питания трехфазных нагрузок, таких как большие электродвигатели.

Рисунок 5: Трехфазные конфигурации Y и треугольника

Напряжение, при котором электросеть поставляет однофазную электроэнергию своим пользователям, имеет различные значения в зависимости от географического положения.Вот почему очень важно проверять диапазон входного напряжения источника питания перед его покупкой или использованием, чтобы убедиться, что он предназначен для работы в электросети вашей страны. В противном случае вы можете повредить блок питания или подключенное к нему устройство.

В таблице 2 сравниваются напряжения в сетях в разных регионах мира.

Действующее значение (AC) Напряжение Пиковое напряжение Частота Регион
230 В 310 В 50 Гц Европа, Африка, Азия, Австралия, Новая Зеландия и Южная Америка
120 В 170V 60 Гц Северная Америка
100 В 141V 50 Гц / 60 Гц Япония *

* Япония имеет две частоты в своей национальной сети из-за того, что она была электрифицирована в конце 19 века.В западном городе Осака поставщики электроэнергии купили генераторы 60 Гц в Соединенных Штатах, а в Токио, который находится на востоке Японии, они купили немецкие генераторы 50 Гц. Обе стороны отказались изменить свою частоту, и по сей день в Японии все еще есть две частоты: 50 Гц на востоке и 60 Гц на западе.

Как упоминалось ранее, трехфазное питание используется не только для транспортировки, но также для питания больших нагрузок, таких как электродвигатели или зарядки больших аккумуляторов. Это связано с тем, что параллельное приложение мощности в трехфазных системах может передавать гораздо больше энергии нагрузке и может делать это более равномерно из-за перекрытия трех фаз (см. Рисунок 6) .

Рисунок 6: Передача энергии в однофазных (слева) и трехфазных (справа) системах

Например, при зарядке электромобиля (EV) количество энергии, которое вы можете передать аккумулятору, определяет, насколько быстро он заряжается.

Однофазные зарядные устройства подключаются к сети переменного тока (AC) и преобразуются в постоянный ток (DC) внутренним силовым преобразователем переменного / постоянного тока автомобиля (также называемым бортовым зарядным устройством). Мощность этих зарядных устройств ограничена сетью и розеткой переменного тока.

Ограничение варьируется от страны к стране, но обычно составляет менее 7 кВт для розетки на 32 А (в ЕС 220 x 32 А = 7 кВт). С другой стороны, трехфазные источники питания преобразуют мощность из переменного в постоянный внешне и могут передавать более 120 кВт на батарею, обеспечивая сверхбыструю зарядку.

Сводка

Источники питания переменного / постоянного тока есть повсюду. Основная задача источника питания переменного / постоянного тока — преобразовать переменный ток (AC) в стабильное постоянное напряжение (DC), которое затем можно использовать для питания различных электрических устройств.

Переменный ток используется для транспортировки электроэнергии по всей электрической сети от генераторов до конечных потребителей. Цепь переменного тока (AC) может быть сконфигурирована как однофазная или трехфазная система. Однофазные системы проще и могут обеспечивать мощность, достаточную для питания всего дома, но трехфазные системы могут обеспечивать гораздо больше мощности более стабильным образом, поэтому они часто используются для питания промышленных приложений.

Разработка эффективных источников питания переменного / постоянного тока — непростая задача, поскольку современные рынки требуют мощных, чрезвычайно эффективных и миниатюрных источников питания, способных поддерживать эффективность в широком диапазоне нагрузок.

Способы проектирования источников питания переменного / постоянного тока со временем изменились. Линейные источники питания переменного / постоянного тока ограничены по размеру и эффективности, поскольку они работают на низких частотах и ​​регулируют выходную температуру, рассеивая избыточную энергию в виде тепла. Напротив, импульсные источники питания стали чрезвычайно популярными, поскольку в них используются импульсные регуляторы для преобразования переменного тока в постоянный. Импульсные блоки питания работают на более высоких частотах и ​​преобразуют электроэнергию намного эффективнее, чем предыдущие разработки, что позволило создавать мощные блоки питания переменного / постоянного тока размером с ладонь.

_________________________

Вам это показалось интересным? Получайте ценные ресурсы прямо на свой почтовый ящик — рассылайте их раз в месяц!

Статьи по теме

Чему о синхронных выпрямителях не говорят в школе — Избранные темы из реальных проектов

Electric Power Systems — обзор

2.4.3 Дикая природа и дикая природа

Электроэнергетические системы могут оказывать серьезное воздействие на дикую природу и дикую природу, в основном из-за того, что топливные или гидроэлектрические объекты могут быть расположены в пустынных районах или потому, что электроэнергетические системы в разных областях могут считают полезным соединиться между собой для совместного использования ресурсов.В частности, плотины и ветряные турбины могут повлиять на дикую природу. Наиболее очевидное воздействие — затопление среды обитания. Кроме того, дороги и линии электропередач, необходимые для строительства, обслуживания и подключения гидроэлектростанций, иногда проходят через пустынные районы, фрагментируя их. Растительность под линиями электропередач должна быть обрезана, сожжена или контролироваться с помощью гербицидов, а также должны быть подъездные пути для обслуживания, все из которых оказывают воздействие на окружающую среду. Эти эффекты могут привести к сокращению среды обитания угрожаемых видов или к перемещению новых видов (включая виды, находящиеся под угрозой) на территорию.Известно, что птицы поражают опоры и линии электропередачи, но их количество обычно не очень велико, а правильная прокладка маршрута и дизайн могут снизить смертность птиц.

Также известно, что птицы поражают ветряные турбины, иногда в больших количествах. Эту проблему можно значительно уменьшить, если использовать современные конструкции, которые вращаются медленнее, и не размещать ветряные турбины в местах, которые птицы часто используют в качестве коридоров полета.

Подземные и подводные электрические кабели становятся все более распространенными, чаще всего из-за ограниченного пространства, например, в крупных городах, а также частично из-за эстетических соображений.Эти кабели заполнены диэлектрическим маслом и армированы. Разрывы, из-за которых происходит утечка диэлектрического масла, случаются редко и обычно быстро обнаруживаются. Подводные кабели обычно прокладываются на 1 или 2 м ниже морского дна с использованием механического плуга или гидравлической струи для создания траншеи, которая затем засыпается. Это изменяет морское дно, и есть опасения, что это может иметь необратимые последствия для рыболовства и морской фауны. . Необходимо учитывать траление и другие методы рыбной ловли, ремонт троса и извлечение по окончании срока службы.

Распределительная система — обзор

Заземление

Распределительные системы при установке на промышленных предприятиях часто представляют собой незаземленную схему треугольника, заземленную через сопротивление треугольник или звезду. Системы с заземленным сопротивлением могут быть как с высоким, так и с низким сопротивлением. См. Схемы на Рисунке 5-1.

РИСУНОК 5-1. Заземление для распределительных сетей.

Преимущество использования незаземленного или высокоомного заземления заключается в том, что одиночное замыкание на землю не прерывает работу.Это верно даже для схемы, в которой возникла проблема. Это единственное преимущество.

Использование незаземленной системы имеет несколько недостатков. Переходные напряжения, вызванные нарушениями в линии из-за дуги, включения и выключения оборудования или ударов молнии, не имеют пути заземления и могут подвергнуть изоляцию проводки и оборудования напряжению, в несколько раз превышающему их номинальную мощность.

Эта проблема несколько решается за счет емкости между проводниками системы, которая обеспечивает систему емкостного заземления.Небольшая система может подавать на землю приблизительно 0,1 ампера, тогда как очень большая система может иметь токи до 20 ампер.

Когда замыкание на землю происходит в незаземленной системе, оно может оставаться незамеченным в течение длительного периода времени. Из-за природы этих неисправностей может возникнуть повторяющееся искрение, вызывающее переходные процессы и нагрузку на систему. Повреждение, даже без учета переходных процессов, вызовет нагрузку на изоляцию в 1,73 раза больше напряжения на трансформаторе, соединенном звездой.Это не важно для низковольтных систем, где изоляция рассчитана на 600 В, но для систем среднего напряжения изоляция кабеля рассчитана на 100% для межфазного напряжения, и следует учитывать более высокие номинальные напряжения кабеля, если операции должны выполняться. продолжайте работу в условиях замыкания на землю.

Для систем со 100% -ной изоляцией рекомендуется устранить место повреждения в течение 1 минуты. Следует установить устройство обнаружения замыкания на землю для предупреждения о коротких замыканиях, чтобы можно было устранить сбой до повторного замыкания, которое может вызвать серьезное повреждение установки.Чтобы система продолжала работать в течение неопределенного периода времени, рекомендуется, чтобы номинальная мощность изоляции составляла 173% от напряжения между фазой и нейтралью.

В незаземленных системах часто бывает трудно локализовать неисправность, даже если ее наличие обнаруживается системой предупреждения. Если нет физических доказательств, которые можно наблюдать, нагрузки придется выводить из эксплуатации по одной за раз. Проводники, питающие нагрузки, и нагрузки должны пройти тестовый прогон «hipot».

Большинство трудностей, связанных с незаземленными системами, можно преодолеть с помощью систем заземления с высоким сопротивлением.Система будет продолжать работать в условиях неисправности без переходных перенапряжений, а локализацию проблемы определить труднее.

Это может быть выполнено в системе звездой, поместив резистор между нейтралью и землей. В системе треугольника можно использовать зигзагообразный трансформатор, подключенный к трем фазам треугольника. Резистор следует разместить между нейтралью зигзагообразного трансформатора и землей.

При заземлении с высоким сопротивлением токи короткого замыкания ограничиваются до 0.1% от трехфазного тока короткого замыкания на землю, что более чем достаточно для надежной работы реле замыкания на землю. С появлением высокочувствительных реле системы заземления с низким сопротивлением редко используются на современных предприятиях.

Добавить комментарий

Ваш адрес email не будет опубликован.