Меню Закрыть

На что влияет крутящий момент: Что важнее — мощность или крутящий момент — Лайфхак

Содержание

Что такое крутящий момент и на что он влияет?

Фото news.herbgordonvolvoofsilverspring.com

Когда автолюбители выбирают автомобиль, некоторые обращают внимание не только на мощность «ласточки» в лошадиных силах, но и на крутящий момент. Почему этот показатель так важен? Как объясняют автоэксперты, он отвечает за динамику разгона.

Вспомните школьную программу по физике. Мы проходили, что крутящий момент является силой, которая приложена к рычагу, и ее умножают на длину этого самого рычага. В моторах крутящий момент — это сила, с которой вращается коленчатый вал. Чем эта сила больше, чем выше крутящий момент. Этот параметр находится в прямой зависимости от скорости вращения коленвала. Нарастают обороты — растет и крутящий момент. Но рост не постоянен: наращивая обороты двигателя, мы увеличиваем и механические потери на трение во всех подвижных элементах. В итоге при езде на максимальных оборотах крутящий момент снижается.

Фото: www.

free-wallpapers.su

Мощность — это некая совершённая работа за единицу времени. В двигателях внутреннего сгорания под ней подразумевают именно крутящий момент. Из этого следует, что мощность мотора — это число «крутящих моментов» за единицу времени. Таким образом, обе эти величины неразрывно связаны друг с другом.

Чтобы рассчитать мощность двигателя в киловаттах, умножьте действующий крутящий момент на текущее число оборотов мотора и разделите на 9549. В итоге крутящий момент будет показывать, какая мощность доступна в автомобиле при определённых оборотах. Таким образом, чем выше число крутящего момента, тем лучше.

По словам автоэкспертов, крутящий момент отвечает в машине за то, как она разгоняется и как тянет. Отсюда следует, что когда вы выбираете авто, обращайте внимание не только на «лошадей», но и на крутящий момент. Мощность влияет лишь на то, какую максимальную скорость развивает автомобиль, а не на то, как быстро он до нее разгонится. Если вам требуется тяговитый мотор, тогда выбирайте дизель — крутящего момента больше именно в этом типе двигателя.

При использовании любых материалов необходима активная ссылка на DRIVENN.RU

Что важнее, крутящий момент или лошадиные силы

Крутящий момент против лошадиных сил, просто о сложном.

Крутящий момент и мощность являются двумя важнейшими техническими условиями, которые касаются самих двигателей, но об этом редко кто рассуждает в логическом и правильном ключе. Обычная точка зрения конкретного обывателя автомобилиста направлена в основнов примерно в одно прямолинейное русло, а именно, все звучит довольно просто: — «Я хочу взять легковой автомобиль, чтобы ездить по обычным дорогам», или: -«Я  люблю иногда погонять, поэтому мне нужна машина с большим количеством лошадиных сил, если в ее двигателе их будет много, то значит она будет быстрой», ну и т.д. и т.п. думают на эту тему некоторые обыватели, хотя это не совсем верные рассуждения.

 

Второй момент. Человек хочет приобрести автомобиль для езды вне дорог. Проходимые настоящие внедорожники всегда оснащаются дизельными двигателями. Моторы на дизельном топливе всегда обладают выдающимся крутящим моментом. Зная эти факты, граждане автомобилисты рассуждают, что «дизель» подходит только для бездорожья и не способен соревноваться с бензиновыми двигателями в их скорости и динамике. А это отчасти не является акссиомой.

 

Что такое крутящий момент? Что такое лошадиная сила?

 

Поэтому мы решили хоть немного просветить своих читателей, то есть, что каждый из этих терминов означает на самом деле, на что нужно обращать внимание при выборе для себя следующего автомобиля, а именно, конкретно на большой крутящий момент или на большее количество лошадиных сил.(?)

Оба этих научных термина существовали задолго до появления самих автомобилей и любых автотранспортных средств в целом, поэтому далее в нашей небодьшой истории мы будем использовать немного определенной научной терминологии из физики.

 

Мощность

Прежде всего друзья давайте изначально вернемся к самому человеку, который научил всех нас измерять мощность. Его звали -Джеймс Уатт. Он был шотландским инженером чье имя стало обозначать стандартизированное название единицы измерения мощности. Ватты, как мы уже знаем используются для измерения конкретной мощности, ок ! Казалось бы, хватит дальше придумывать различную терминологию но, на этом как известно светлые умы человечества не остановились, в обиход ими были приняты еще и лошадиные силы. Зачем? К чему это? А вот к чему. Человеку нужен был реальный эквивалент показателя силы. В те временя им стала обычная лошадь. С тех пор так и повелось, одна метрическая лошадиная сила стала равна 735,5 Вт.

 

Что такое лошадиная сила? Она описывается так, как способность поднимать 75 кг на один метр за одну секунду. Мощность (в лошадиных силах) обозначает следующее, насколько быстро производится работа.

 

Крутящий момент

Между тем сам крутящий момент относится к иному виду силы, которая стремится повернуть объект вокруг оси. С точки зрения не специалиста, этот вращающий момент является мерой силы которая необходима, чтобы повернуть винт или колесо. Когда вы откручиваете крышку пластиковой бутылки, вы обязательно используете крутящий момент.

 

В качестве наглядного примера, продемонстрируем. На заводе сть машина, которая закручивает крышки на пластиковых контейнерах, чтобы прогарантировать, что емкость не будет пропускать жидкость через эту самую крышку, необходима (нужна) настройка под определенный крутящий момент. Последний пример показывает, как сильно машина должна закрутить крышку на контейнере, чтобы убедиться, что она герметична без какого-либо ущерба для резьбы или для крышки. Если необходимое усилие крутящего момента не соблюдается, то жидкость внутри контейнера может протечь или наоборот, резьба так плотно закрутится, что потребитель не сможет добраться до содержимого контейнера, у него, как говорится в простонародье, просто силенок не хватит. Ну а если сказать по- научному, то получится, что его запястье приложит для откручивания крышки недостаточно крутящего момента.

 

Если Вы хотите совсем по-простому понять разницу между этими двумя терминами, то представьте себе следующее, а именно, что этот крутящий момент означает, что вы делаете домашнее варенье в вашем доме и должны разложить его по банкам (положить в банки). Вам потребуется конкретно крутящий момент, чтобы запечатать банки крышками, ну а лошадиные силы будут необходимы для того, чтобы поднять контейнер с наполненными банками в свой шкаф для хранения. Понятно разъясняем.(?)

 

Крутящий момент и мощность в двигателях внутреннего сгорания

И вот уважаемые друзья мы переходим к самой интересной части, которую вы без сомнения от нас ждали. В двигателе внутреннего сгорания крутящий момент совмещается с мощностью, они сообща производят однонаправленную работу. Оба этих вида работают рука об руку, трудятся совместно для вашего автомобиля, чтобы обеспечить его максимальную производительность на дороге.

 

Смотрите также: Топ 5 самых быстрых дизельных автомобилей в 2016 году

 

Формула, которая объясняет все это выглядит таким образом:

Мощность (л.с.) = Моменту (Нм) х (помноженное) на обороты в минуту/5,252. Это уравнение может быть применено к каждому двигателю внутреннего сгорания и  проверено при любых оборотах коленчатого вала в минуту, значение в 5,252 является константой.

Простым объяснением этого факта стало бы следующее, а именно, двигатель производит мощность при помощи вращающегося вала (коленчатого вала) который применяет величину крутящего момента к самой нагрузке при заданных оборотах в минуту. Поэтому мощность вычисляется из крутящего момента и оборотов в минуту. При 5,252 (константе) оборотах в минуту мощность и крутящий момент будут равны. Между тем надо заметить, что при более низких значениях крутящий момент будет выше по своему значению, чем сами лошадиные силы, в то время как при более высоких значениях все окажется с точностью до наоборот. Это утверждение относится ко всем двигателям внутреннего сгорания и ко всем его видам.

 

Таким образом получается, что всякий раз, когда измеряется сила двигателя используется динамометр. Крутящий момент и скорость вращения коленчатого вала перемножаются и далее делятся на 5,252 (для наших единиц это значение составляет 7.120), откуда и получается искусственное значение лошадиных сил.

 

Наглядный пример преимущества автомобиля с большим крутящим моментом.

 

Mercedes-Benz C-Класс

Бензин

141 л.с. при 6200 об/мин

176 Н∙м при 3800 об/мин

Коробка передач — Автоматическая

Количество передач —    7

Снаряженная масса —     1500 кг

Время разгона с 0 — 100 км/ч —    8.7 с

 

Chevrolet Cruze Wagon

Бензин

156 л.с. при 5300 об/мин

250 Н∙м при 1200 — 4000 об/мин

Коробка передач — Механическая

Количество передач —    5

Снаряженная масса —     1445 кг

Время разгона с 0 — 100 км/ч —    11 с

 

Мощность или крутящий момент, что важнее?

Вопрос правда не совсем корректный, но мы должны ответить на него, ведь именно за ним вы и пришли на данную статью. Автомобиль с высоким уровнем мощности как правило быстрее, чем с меньшей мощностью, который при ускорении достигает более высокой максимальной скорости, поэтому он может нести больший вес. Значит мы установили, что автомобиль с большим показателем крутящего момента при определенно заданной нагрузке будет иметь лучшее ускорение по передачам при более низких оборотах двигателя (важно, когда речь доходит до экономии топлива), а вместе с тем он будет иметь еще и способность двигаться быстрее и разгоняться с нуля.

 

Так как лошадиные силы возрастают вместе с самим крутящим моментом, то высокомоментный двигатель может достичь более высоких значений мощности, если он будет способен превысить 5,252 оборотов в минуту и конкретно настроен на достижение этой задачи.

 

Что такое диапазон мощности?

Этот термин обозначает именно диапазон оборотов крутящего момента двигателя и его максимальное число мощности. В промежутке этого, по достижению нужного коэффициента, двигатель работает в оптимальном режиме и обеспечивает высокую производительность и экономию топлива.

  

Электродвигатели имеют достаточно обширный диапазон мощности, поскольку они могут достигать максимальной силы крутящего момента при минимальных оборотах оси, а их максимальная сила будет даже больше чем единица, производимая двигателем внутреннего сгорания.

 

Дизельные же двигатели обладают более узким диапазоном мощности. Поскольку их пик крутящего момента меньше, чем в бензиновых двигателях, то максимальная их мощность достигается на меньших оборотах. Бензиновые двигатели наделены более широким диапазоном мощности. По этой самой причине они сегодня так востребованы и пользуются хорошим спросом как у самих потребителей, так и у производителей. Кроме того, все современные бензиновые двигатели с турбокомпрессором, с непосредственным впрыском, с изменяемыми фазами газораспределения а также и другими разнообразными техническими решениями, обеспечивают крайне широкий диапазон мощности.

 

Почему автомобили с высоким крутящим моментом более динамичнее мощных машин?

Сама причина кроется в приводе. Он увеличивает крутящий момент двигателя и улучшает разгон машины на первых передачах. Таким образом это дает преимущество автотранспортным средствам с низким уровнем крутящего момента. При переключении скоростей двигатель приближается к высшей отметке своей мощности, что приводит к постепенному снижению вращающего момента и соответственному росту оборотов.

 

Именно по этой причине дизельные двигатели выигрывают старт с места у своих бензиновых конкурентов. Кроме этого, разница между ними прослеживается еще и в самой массе, но основными показателями все-же являются сцепление и крутящий момент.

 

Почему высокомощные автомобили участвуют в гонках?

Поскольку автомобили, с высокими показателями лошадиных сил оснащены мощной системой передач, то они обладают соответственно способностью достигать более высоких оборотов двигателя за более короткий промежуток времени, так как в моторизованных соревнованиях непременно должны участвовать автомобили, которые обладают достаточно высоким диапазоном мощности.

 

Автомобильный рынок России: результаты 2015 года и перспективы развития

 

Однако известны случаи, когда дизельные автомобили становятся более успешными в определенных видах гоночных соревнований, например таких, как «24 Часа Ле-Ман», где автомобиль марки Audi неоднократно выигрывал большие призы в споре с его TDI гоночными болидами. Последнюю победу команде «Ауди» принесла повышенная топливная эффективность машины, что позволило потратить меньше топлива и меньшее число раз заезжать на дозаправки.

 

Отвечая на риторический вопрос поставленный в начале нашей статьи «о выборе автомобиля» скажем следующее: -Везде и во всем нужна мера. Важно заранее осознавать, для каких целей вам понадобится автомобиль, где и на каких скоростях вы будете его эксплуатировать. Дизельный двигатель или бензиновый мотор с более высоким крутящим моментом (наступающем при более низких оборотах двигателя) и низкой мощностью может быть гораздо динамичнее другого аналогичного по параметрам автомобиля на скоростях до 100 — 140 км/ч.

 

Ну а если этот мотор обладает еще и высокой мощностью с не самым высоким моментом, то проиграв в разгоне он непременно наверстает упущенное за счет более высокой максимальной скорости.

Крутящий момент двигателя — какой максимальный и оптимальный

Каждый владелец автомобиля хотя бы один раз слышал выражение «крутящий момент двигателя». Этот параметр напрямую влияет на такие характеристики машины, как расход топлива, время разгона до 100 километров в час, мощность мотора и содержание вредных веществ в выхлопе.

Что такое крутящий момент

 

Во время работы бензинового, газового или дизельного двигателя, топливовоздушная смесь сгорает с выделением большого количества выхлопных газов. Во время горения смеси давление в камере сгорания возрастает и газы начинают искать выход. Поскольку единственная подвижная вещь в камере сгорания – поршень, то газы начинают давить на него. В результате чего поршень с помощью шатуна проворачивает коленчатый вал мотора. По мере набора оборотов двигателя эффективность передачи энергии расширения газов увеличивается. На средних и высоких оборотах в дело вступает маховик, увеличивая общую инерционность системы, в результате чего энергия инерции системы и сила давления газов складываются, образуя тот самый крутящий момент, то есть способность вращаться, преодолевая сопротивление.

От чего зависит крутящий момент

В любом описании машины или автомобильного двигателя указан крутящий момент на определенных оборотах. Это связано не только с инерционностью поршней, шатунов и коленчатого вала, но и с таким параметром, как аэродинамическое сопротивление. Чем выше обороты двигателя и сильней нажата педаль газа, тем больше воздуха проходит через впускной коллектор и каналы головки блока цилиндров. Это приводит к увеличению скорости движения воздуха, который тоже обладает определенной инерционностью. Поэтому нельзя увеличивать обороты мотора до бесконечности, ведь наступает момент, когда инерционность и вязкость воздуха окажутся настолько велики, что разряжения, создаваемого поршнем, не хватит для заполнения камеры сгорания.

 

В результате количество (а нередко и соотношение) топливовоздушной смеси окажется недостаточным для дальнейшего увеличения оборотов двигателя и мощность мотора начнет падать. Поэтому максимальный вращающий момент, указанный в справочниках и каталогах, соответствует оборотам, на которых двигатель максимально наполняется воздухом, ведь это обеспечивает наибольшее давление выхлопных газов. Увеличение количества топлива приводит к дальнейшему росту оборотов мотора, но крутящий момент начинает падать. Затем обороты двигателя достигают того значения, когда дальнейший рост оборотов возможет лишь без нагрузки, поэтому мощность мотора начинает снижаться. Поэтому максимальный крутящий момент большинства моторов приходится на средние обороты, а пик мощности на высокие.

Стенд для измерения

Оптимальный и максимальный вращающий момент 

Когда обороты двигателя соответствуют наибольшему крутящему моменту, его КПД (коэффициент полезного действия) максимален. На этих оборотах состав топливовоздушной смеси оптимален, за счет этого снижается расход топлива и износ делателей двигателя. Топливовоздушная смесь сгорает с меньшей температурой, чем в режиме максимальной мощности, поэтому нагрузка на систему охлаждения заметно ниже. Также образуется намного меньше частиц недогоревшего топлива (сажи), которые приводят к закоксовыванию мотора. В этом режиме масляная система мотора обеспечивает максимально эффективную смазку всех трущихся поверхностей.

 

Если вы хотите, чтобы двигатель вашего автомобиля работал долго и эффективно, старайтесь ездить на оборотах, соответствующих максимальному крутящему моменту. Переход на более высокую передачу позволит снизить обороты и расход топлива (незначительно), зато увеличит износ мотора из-за увеличенной нагрузки на коленчатый вал, шатуны и поршни, а также неоптимального состава топливовоздушной смеси. Поэтому движение на 3-й передаче (обороты соответствуют максимальному крутящему моменту) предпочтительней перехода на 4-ю передачу, где обороты мотора будут заметно ниже. 

Мощность и крутящий момент в чем разница


Крутящий момент и мощность двигателя. Что важнее? Пару слов про обороты. Простыми словами + формулы и видео

Знаю, что многих мучает этот вопрос, многие даже не понимают разницу — между крутящим моментом и мощностью двигателя. А ведь реально — что из них важнее? Мы привыкли выбирать машину по лошадиным силам, а вот крутящий момент как то не заслуженно опускается! Лично сам разговаривал со своими друзьями, многие даже не знают какой он на их автомобиле и при каких оборотах он максимальный! Правильно ли это? Конечно же нет, нужно точно знать и понимать все технические характеристики своего авто, особенно такие важные. Вот поэтому решил написать эту статью и разъяснить все простыми словами, как обычно будет видео версия в конце …

СОДЕРЖАНИЕ СТАТЬИ

Что же постараюсь рассказать простыми словами, как я умею, но тема не такая простая, как кажется на первый взгляд, в интернете есть описания, но они крайне запутаны. Я же в этой статье буду оперировать такими понятиями как мощность двигателя и крутящий момент. По сути эта два обозначения идут «бок о бок» и одна характеристика напрямую зависит от другой.

Мощность двигателя

Измеряется в «Лошадиных Силах (л.с.)» или Киловаттах (Ваттах, «Вт»), как становится понятно — ей занимался Джеймс Ватт. Да, именно в Ваттах мы измеряем мощность лампочки накаливания у нас в «люстрах» и светильниках, но оказывается и мощность двигателя тоже. Я не буду вдаваться в подробности, как и что он открыл, просто характеристика идет именно от его фамилии. НО как же лошадиные силы? А все просто, Ватт «тренировался» на лошадях, а именно на переносимых грузах, одной лошадью в единицу времени и на определенное расстояние, так вот после определенных «терзаний» выяснилось — что одна лошадь (если ее заставить генерировать электрический ток, от динамомашины) способна выдавать 736 Ватт в секунду времени, либо 75 кгс м/с, что можно расшифровать так — 75 килограмм, на 1 метр высоты, за 1 секунду времени. Чтобы перевести «ватты» в «лошадиные силы», существует достаточно большой расчет, но если утрировать, то получается 1кВт=1000Вт=1,36л.с.

Не все производители указывают мощность двигателя в «л.с.», например некоторые немецкие производители указывают именно в Ваттах.

Для того чтобы перевести «Л.С». в «Ватты», нужно их разделить на 1,36. Если нужно наоборот тогда мощность в «Вт» умножаем на 1,36, получаем «лошадиные силы».

Думаю это понятно, больше к этому возвращаться не будем.

Мощность двигателя внутреннего сгорания (будь то это бензин или дизель), величина не постоянная! ЭТО НУЖНО ПОНИМАТЬ! Меня просто умиляет то, как многие реагируют на эту величину: — у меня 150 л.с., я тебя сделаю как «два пальца», а у оппонента 145 л.с. и по теории он должен проиграть, но не учитывается крутящий момент и расстояние, на котором будут соревноваться автомобили.

Мощность изменяется от оборотов двигателя! Ваша номинальная величина, будет указана при определенных МАКСИМАЛЬНЫХ оборотах, у современных авто, обычно от 5000 до 6500 оборотов. ТО есть простыми словами, 150л.с. – выдаются при 6000 оборотов (для примера). Соответственно при 3000 или при 1500 оборотов, мощность будет уменьшаться в разы.

Мощность двигателя внутреннего сгорания, которая указана у вас в технических характеристиках, обычно выдается при максимальных оборотах двигателя. При 1500 – 2000 оборотах, она будет в 4 – 5 раз меньше (справедливо для бензиновых агрегатов).

ТО есть, для того чтобы получить весь «табун» силового агрегата, вам нужно активно «педалировать». Например — при обгонах или резких маневрах, вы должны держать почти вашу «полку» в 5000 – 6500 оборотов именно эти обороты вам помогут резко ускориться. Вот почему зачастую приходится понижать передачу, для того чтобы получить максимум мощности.

НО силовой агрегат не может мгновенно раскрутиться, ему на это нужно время, здесь то и приходит такое понятие как крутящий момент.

Крутящий момент двигателя

Стоит понимать, что мощность мотора – это энергия, которая вырабатывается двигателем. И именно эта энергия преобразуется в крутящий момент на выходном (коленчатом) валу двигателя, далее момент изменяется в трансмиссии (при помощи нужных передаточных чисел шестерен) и после передается на привода, или ведущие мосты и после на колеса.

ТО есть если утрировать – крутящий момент, это реально то, что толкает машину механически, а мощность – это то, что производит этот момент.

Тронуться и поехать, вы сможете даже на маломощном двигателе (причем для этого нам не нужно много мощности), здесь работают передаточные числа, которые точно подобраны в трансмиссии вашего авто.

НО мы же не хотим ездить со скоростью 20 – 40 км/ч, нам нужно ускорение, быстрое передвижение. А для этого просто необходим достаточный крутящий момент при всех диапазонах скоростей. Это достигается – достаточной мощностью двигателя и подбором шестерен в трансмиссии и приводах, мостах (если есть).

Если вывести определение:

Крутящий момент – это сила, которая умножена на плечо ее приложения, которую может предоставить мотор машине для преодоления тех или иных сопротивлений движению. Измерения производят в ньютонах, а рычаг измеряется в метрах.

Если разобрать, просто «на пальцах формулу», то 1 Н·м – это сила с которой 0,1 кг, давят на конец рычага (это поршень) длиной в 1 метр. Как становится понятно, в двигателе роль рычага выполняет кривошип коленчатого вала, через который и производится крутящий момент. Понятно, что кривошип, длинной не 1 метр, но момент вычисляется из приложенных характеристик.

Именно от этого показателя и зависит время достижения силовым агрегатом максимальной мощности, а значит и динамики разгона авто.

Если образно утрировать — то момент, собирает все лошадиные силы в «кулак» который и раскручивает мотор, и чем больше этот кулак, тем быстрее раскручивается мотор и ускоряется автомобиль.

Обороты двигателя

Также важный показатель, для различных типов двигателя. Ведь максимальный крутящий момент может образовываться при различных оборотах силового агрегата. Как я писал выше, на бензине это может быть и 5000 и 6000! Поэтому чтобы выйти на такой показатель мотору нужно затратить определенное время.

Конечно же лучше, когда мотор развивает максимальный момент, скажем на 1500 – 2000 оборотов, тогда время на раскрутку силового агрегата в разы меньше, машины быстрее набирает скорость.

Тогда получается что главное, не только в величине момента, но и в оборотах при которых он достигается. Чем они меньше, тем лучше.

И вот тут возникает дилемма – а какие двигатели реально обладают большим запасом момента?

Различные типы двигателей

Как мы с вами уяснили, чем на меньших оборотах наступает максимальный крутящий момент — тем лучше, но какие моторы могут под это подходить? И вообще у каких «большой запас» этого момента? Ведь обычный бензиновый четырехцилиндровый атмосферник, выходит на свой номинал примерно в 5000 – 6000 оборотов.

НО есть моторы, которые выдают достаточно большие моменты, причем наступают они при достаточно низких оборотах. Это многоцилиндровые моторы, а также  «V» – образные типы, начиная с V6 – V8. Турбированные агрегаты, имеют большой запас момента, даже при относительно малых объемах.

Однако абсолютным рекордсменом являются дизельные варианты, особенно те которые устанавливались на трактора, ведь здесь важна тяга именно на низах (скорость на трассах абсолютно не нужна). Такие варианты выходят на номинал, уже при 1500 оборотов, просто представьте! Такие агрегаты называют «тяговитыми» из-за быстрого набора крутящего момента.

Условно моторы можно разделить на четыре лагеря:

  • Это обычные атмосферники, 4 цилиндра.
  • Многоцилиндровые агрегаты, от 6 до 12 «горшков», сюда же можно записать и V – образные.
  • Это турбированные моторы
  • Дизельные агрегаты

Про «многоцилиндровые» (второй тип) сейчас особо заострять не буду, здесь понятно, что чем больше цилиндров – тем больше мощность и соответственно крутящий момент. Минус только в том что эти агрегаты тяжелые, прожорливые, и очень большие по размерам.

А вот остальные три типа стоит сравнить для полного понимания, возьмем три мотора от нового KIA SPORTAGE, смотрим таблицу.

Объем, двигателя Обороты в минуту

(об/мин)

Максимальная мощность

(в л.с.)

Крутящий момент

(в Нм)

Бензиновый, 4 – цилиндровый рядный 2,0 литра 6200 150
  4000 192
Турбированный, 4 —  цилиндровый рядный 1,6 литра 5500 177
  2000 — 4500 265
Дизельный, 4 —  цилиндровый рядный 2,0 литра 4000 185
  1750 — 2750 400

Бензиновая атмосферная «четверка», развивает максимальную мощность только при 6200 оборотах в минуту, зато максимальный крутящий момент наступает уже при 4000 оборотов. Турбо вариант, 177 л.с при 5500 оборотов, но момент здесь намного выше 265 в диапазоне от 2000 до 4500 об. Но рекордсменом по л.с. и крутящему моменту идет дизель, 185 л.с. при 4000 об/мин, и крутящий момент 400! (просто вдумайтесь) в интервале 1750 – 2750 об/мин.

Как видите бензиновые агрегаты проигрывают дизелю в моменте (обычный атмосферник примерно в 2 с небольшим раза). Причем максимальной отдачи можно достичь только при 4000 об/мин. Зато бензиновый мотор легко крутится до 6200, а то и больше 7000 – 8500 об/мин, что позволит развить ему большую мощность. Дизель же не может похвастаться высокими оборотами, максимальная полка зачастую всего 4000 — 5000 об/мин, поэтому они могут проигрывать в максимальной мощности своим бензиновым собратьям.

Если сказать проще, то можно констатировать – мощность определяет максимальную скорость авто, а вот крутящий момент – как быстро агрегат достигнет этой мощности. Собственно все просто. НО если вспомнить законы механики, то здесь стоит помнить – выигрывая в крутящем моменте, проигрываем в частоте вращения.

НА старте бензиновый мотор выиграет у дизельного агрегата! Почему? ДА все просто, бензиновый агрегат можно крутить до 6500, а в редких случаях до 8000 об/мин, не переключая передачи. А вот дизель достигнет пик своего момента максимально быстро (уже при 1750 об/мин) и вам нужно будет тратить время на переключение, далее еще одна передача и т.д. Конечно эта ситуация справедлива для механики, на многих современных автоматах переключения происходят максимально быстро. ДА и для того чтобы тягаться с дизелем бензину, всегда нужно будет держать повышенные обороты, чтобы сравняться в мощности. Например, при 90 км/ч на трассе, чтобы ускориться на бензиновом агрегате, нужно скинуть передачу пониже (увеличивая обороты — увеличиваем мощность), а вот дизелю делать этого не нужно!

Так что же важнее и лучше?

Здесь сложно сказать одно выходит из другого. С одной стороны момент, позволит развивать вам быстро максимальную мощность, в примере с дизелем, но он не сможет крутиться до таких оборотов как бензин, а значит его максимальная мощность в пике будет ниже. Тут знаете, кому что нужно, может быть вы водитель коммерческого транспорта, и вам не нужна максимальная скорость но важна тяга «с низов». Или наоборот, вы любите турбо моторы, которые крутятся до 8000 – 9000 оборотов и выстреливают с места.

Лично мне нравятся новые бензиновые агрегаты, такие как скажем у МАЗДЫ, мотор Skyactiv  которые сейчас устанавливаются на многие модели. Здесь увеличили степень сжатия, немного приблизили мотор к дизелю, но он остался бензиновым с высокими оборотами. Здесь есть и мощность и крутящий момент, золотая середина! Думаю за такими моторами будущее (если не брать гибриды и электромобили).

И запомните: — крутящий момент толкает машину вперед, а вот мощность это то, что этот момент производит. Так что покупаем лошадиные силы, а ездим на моменте!

Сейчас видео версия статьи, смотрим.

А сейчас голосование, что вы считаете важнее – крутящий момент или мощность двигателя.

НА этом заканчиваю, читайте наш АВТОБЛОГ, подписывайтесь на канал в YOUTUBE.

(7 голосов, средний: 3,71 из 5)

Неразлучная парочка – мощность и крутящий момент — DRIVE2

Как-то давно интересовался разницей мощности и крутящего момента и что важнее для разгона, а что для максимальной скорости и вот снова наткнулся на эту хорошую и подробную(на мой взгляд) статейку из журнала Автоцентр

Что интересует людей, изучающих технические характеристики того или иного автомобиля? В первую очередь мощность, затем расход топлива и максимальная скорость. О крутящем моменте вспоминают редко. А зря.

Тяговые возможности моторов еще с момента рождения самоходных колясок принято оценивать по мощности, которая выражается в лошадиных силах. Из-за отсутствия в те далекие времена методики расчета и определения мощности до 1906/1907 годов эта характеристика двигателя имела не вполне четкое обозначение – она показывала приблизительную мощность – «от» и «до», например, от 15 до 20 л.с.

С 1907 года этот неточный показатель мощности разделили на два значения, например, 6/22 л.с. В первую цифру заложили значение налоговой ставки, а во вторую – мощность. Введенная налоговая лошадиная сила соответствовала определенному значению рабочего объема двигателя: 261,8 куб. см для четырехтактных моторов и 174,5 куб. см – для двухтактных. Появление такого способа установления налоговых ставок было обусловлено зависимостью рабочего объема двигателя от количества вырабатываемой им энергии и потребления топлива. Обозначать мощность в киловаттах (кВт), согласно международной системе измерений СИ, начали значительно позже.

На самом деле «мощность» отражает тяговые возможности двигателя лишь косвенно. С этим согласятся те, кто ездил на автомобилях-одноклассниках с двигателями приблизительно равной мощности и объема. Они наверняка заметили, что одни автомобили достаточно резвы начиная с низких оборотов, другие любят только высокие обороты, а на малых ведут себя достаточно вяло.

Много вопросов возникает у тех, кто после легковушки с 110-120-сильным бензиновым мотором пересел за руль такой же машины, но с дизельным двигателем мощностью всего 70-80 л.с. По динамике разгона, не используя спортивный режим (высокие обороты), на первый взгляд маломощный «дизель» с легкостью обойдет своего бензинового брата. В чем же здесь дело?

Вся эта неразбериха вызвана тем, что в каждом случае такая величина как сила тяги (FT, Н), приложенная к ведущим колесам, будет разной. Объяснение этому легко найти из формулы: FT=Мкр•i•h/r, где Мкр-крутящий момент двигателя, i-передаточное число трансмиссии, h – КПД трансмиссии (при продольном расположении двигателя h=0,88-0,92, при поперечном – h=0,91-0,95), r – радиус качения колеса. Из формулы видно, что чем больше крутящий момент двигателя и передаточное число, и чем меньше потери в трансмиссии (т.е. чем выше ее КПД) и радиус ведущих колес, тем больше сила тяги. Радиус колес, передаточное число и КПД трансмиссии у автомобилей-одноклассников очень схожи, поэтому на силу тяги они влияют не в такой степени как крутящий момент двигателя.

Если в формулу подставить реальные цифры, то сила тяги на каждом ведущем колесе, например, автомобиля Volkswagen Golf IV с 75-сильным мотором, развивающим крутящий момент 128 Н•м, будет равна 441 Н или 45 кГ•с. Правда, эти значения действительны, когда частота вращения коленчатого вала двигателя (3300 об/мин) соответствует максимальному крутящему моменту.

Что такое крутящий момент

Разобраться, что такое крутящий момент, можно на простом примере. Возьмем палку и один ее конец зажмем в тисках. Если надавить на другой конец палки, на нее начнет воздействовать крутящий момент (Мкр). Он равен силе, приложенной к рычагу, умноженной на длину плеча силы. В цифрах это выглядит так: если на рычаг длиной один метр подвесить 10-килограммовый груз, появится крутящий момент величиной 10 кг•м. В общепринятой системе измерения СИ этот показатель (умножается на значение ускорения свободного падения – 9,81 м/с2) будет равен 98,1 Н•м. Из этого следует, что получить больший крутящий момент можно двумя путями – увеличив длину рычага или вес груза.

В двигателе внутреннего сгорания нет палок и грузов, а вместо них имеется кривошипно-шатунный механизм с поршнями. Крутящий момент здесь получают благодаря сгоранию горючей смеси, которая при этом расширяется и толкает поршень вниз. Поршень в свою очередь через шатун давит на «колено» коленчатого вала. Хотя в описании характеристик двигателей длину плеча не указывают, об этом позволяет судить величина хода поршня (удвоенное значение радиуса кривошипа).

Примерный расчет крутящего момента двигателя выглядит так. Когда поршень толкает шатун с усилием 200 кг на плечо 5 см возникает крутящий момент 10 кГ•с, или 98,1 Н•м. Чтобы этот показатель стал больше, радиус кривошипа следует увеличить или сделать так, чтобы поршень давил на шатунную шейку с большей силой. Увеличивать радиус кривошипа до бесконечности нельзя, так как размер двигателя тоже придется увеличивать в ширину и в высоту. Возрастают и силы инерции, требующие упрочения конструкции или уменьшения максимальных оборотов. Появляются при этом и другие негативные факторы. В такой ситуации у конструкторов двигателей остался только один выход – увеличить силу, с которой поршень приводит в движение коленчатый вал. Для этого топливно-воздушную смесь в камере сгорания необходимо сжечь более качественно и большее количество. Достигают этого путем увеличения рабочего объема, диаметра цилиндров и их количества, а также улучшения степени наполнения цилиндров топливно-воздушной смесью, оптимизации процесса сгорания, повышения степени сжатия. Подтверждает это и расчетная формула крутящего момента: Мкр=VH •pe / 0,12566 (для четырехтактного двигателя), где VH – рабочий объем двигателя (л), pe – среднее эффективное давление в камере сгорания (бар).

Получить на коленчатом валу двигателя максимальный крутящий момент удается не на всех оборотах. У разных двигателей пик максимального крутящего момента достигается на различных режимах – у одних он больше на малых оборотах (в диапазоне 1800-3000 об/мин), у других – на более высоких (в диапазоне 3000-4500 об/мин). Объясняется это тем, что в зависимости от конструкции впускного тракта и фаз газораспределения эффективное наполнение цилиндров топливно-воздушной смесью происходит только при определенных оборотах.

Кто сильнейший?

Большим крутящим моментом обладают многоцилиндровые двигатели, моторы с турбо- и механическим наддувом. А чемпионами по величине крутящего момента являются «дизели». Многие из них обеспечивают автомобилю высокую динамику уже при 800-1000 об/мин. Если же стать обладателем «дизеля», нет возможности, то подбирать машину лучше с двигателем, у которого максимальный крутящий момент развивается при более низких оборотах. Такой автомобиль легче разгонять. В противном случае двигатель придется «насиловать» высокими оборотами, при которых и расход топлива выше и детали изнашиваются более интенсивно.

Те, кто следит за тенденциями развития автомобилестроения, могли заметить, что создатели двигателей стремятся «выровнять» кривую крутящего момента, т.е. сделать его практически одинаковым во всем диапазоне оборотов. Делается это для того, чтобы исключить провалы на режимах, когда величина крутящего момента еще или уже не позволяет передать на колеса большую силу тяги.

Один из таких моторов – 2,7-литровый V-образный шестицилиндровый турбированный двигатель Audi. Этот 250-сильный двигатель развивает огромный крутящий момент 350 Н•м в широком диапазоне оборотов – от 1800 до 4500. Другой подобный, хотя и менее мощный двигатель предлагает концерн Volkswagen. Его 1,8-литровый 180-сильный турбированный мотор развивает крутящий момент 228 Н•м в диапазоне оборотов от 2000 до 5000. Ездить на машинах с такими двигателями сплошное удовольствие – независимо от оборотов при нажатии на педаль «газа» автомобиль одинаково динамичен (приемист) и не только позволяет любителям спортивной езды полностью реализовать свои желания, но и при спокойной езде способствует уверенным обгонам, перестроениям и движению при полной загрузке.

Повышение и «выравнивание» крутящего момента в современных двигателях обеспечивают различными путями: устанавливают по три, четыре и даже пять клапанов на цилиндр, механизмы изменений фаз газораспределения, впускные тракты делают с изменяемой длиной, крыльчатки турбин делают керамическими и регулируемыми с изменяемым углом наклона лопаток и т.д. Вся эта модернизация направлена на совершенствование процессов наполнения цилиндров свежим зарядом. Наибольшего результата в этом деле добились инженеры SAAB. В свой пока еще экспериментальный двигатель SAAB Variable Compression объемом всего 1,6 л они умудрились заложить мощность, равную 225 л.с. и крутящий момент 305 Н•м. Добиться столь высоких показателей шведским моторостроителям удалось благодаря возможности изменения объема камеры сгорания и соответственно степени сжатия (от 14:1 до 8:1) в зависимости от режимов работы двигателя. Получению этих характеристик способствует и система наддува воздуха под высоким давлением – 2,8 атм., четыре клапана на цилиндр и система промежуточного охлаждения воздуха (Intercooler) (см. «Автоцентр» №14 ‘2000).

Мощность

А как же обстоит дело с таким популярным показателем как мощность? Здесь ситуация складывается следующим образом. Наверное, многие замечали, что рядом с указываемой в характеристике мощностью всегда стоит значение оборотов коленчатого вала, при которых двигатель развивает эту мощность. Как правило, эти обороты приближены к максимальным. Во всех других режимах двигатель выдает только некоторую часть указанной мощности.

Почему так происходит, хорошо видно из формулы для вычисления мощности двигателя (кВт) – N=Mкрn/9549, где Mкр – средний крутящий момент двигателя (Н.м), n – обороты коленчатого вала двигателя (об/мин). Из формулы следует, что на значение мощности влияют величины крутящего момента и обороты двигателя. Но так как численные значения оборотов двигателя в десятки раз превышают величину крутящего момента (например, 3000 об/мин и 120 Н.м), то и на изменение мощности они будут влиять в большей степени. Это еще одно доказательство того, что силу мотора мощность отражает косвенно.

Вышесказанное подтверждается следующим примером. Когда мы едем по трассе с постоянной скоростью, приложенная к ведущим колесам автомобиля сила тяги расходуется на преодоление всевозможных сил сопротивления движению (аэродинамическую, качению колес и т.д.) и трение в различных механизмах. Но когда возникает потребность резко ускориться для обгона, сделать это удается не всегда, так как появляется необходимость преодолевать появившиеся силы инерции. В этом случае говорят, что у двигателя не хватает мощности. Но мощность здесь ни при чем, так как со всеми силами сопротивления движению борется сила тяги, зависящая от величины крутящего момента двигателя. Чтобы увеличить силу тяги, необходим запас крутящего момента. Величина этого запаса и влияет на то, как быстро сможет ускориться автомобиль.

Для получения более резкого ускорения можно, конечно, и переключиться на пониженную передачу, когда передаточное число трансмиссии станет большим и сила тяги на колесах увеличится. Однако при этом есть опасность «перекрутить» двигатель, да и дальнейшего ускорения мы можем не получить, так как режим работы двигателя может быть приближен к экстремальному. Аналогичная ситуация складывается и на подъемах, когда запас крутящего момента одних двигателей позволяет продолжить движение, а у других его отсутствие требует перехода на пониженную передачу.

Вывод отсюда напрашивается следующий: какой бы мощностью ни обладал двигатель, а способность разгонять автомобиль и «вытаскивать» его на подъем полностью возложена на крутящий момент. Возникает вполне справедливый вопрос: что же означает мощность? Это универсальный показатель, в который заложили целый ряд характеристик автомобильного двигателя – энергоемкость, потребление топлива, тяговая способность и т.д.

Юрий Дацык

Page 2

Как-то давно интересовался разницей мощности и крутящего момента и что важнее для разгона, а что для максимальной скорости и вот снова наткнулся на эту хорошую и подробную(на мой взгляд) статейку из журнала Автоцентр

Что интересует людей, изучающих технические характеристики того или иного автомобиля? В первую очередь мощность, затем расход топлива и максимальная скорость. О крутящем моменте вспоминают редко. А зря.

Тяговые возможности моторов еще с момента рождения самоходных колясок принято оценивать по мощности, которая выражается в лошадиных силах. Из-за отсутствия в те далекие времена методики расчета и определения мощности до 1906/1907 годов эта характеристика двигателя имела не вполне четкое обозначение – она показывала приблизительную мощность – «от» и «до», например, от 15 до 20 л.с.

С 1907 года этот неточный показатель мощности разделили на два значения, например, 6/22 л.с. В первую цифру заложили значение налоговой ставки, а во вторую – мощность. Введенная налоговая лошадиная сила соответствовала определенному значению рабочего объема двигателя: 261,8 куб. см для четырехтактных моторов и 174,5 куб. см – для двухтактных. Появление такого способа установления налоговых ставок было обусловлено зависимостью рабочего объема двигателя от количества вырабатываемой им энергии и потребления топлива. Обозначать мощность в киловаттах (кВт), согласно международной системе измерений СИ, начали значительно позже.

На самом деле «мощность» отражает тяговые возможности двигателя лишь косвенно. С этим согласятся те, кто ездил на автомобилях-одноклассниках с двигателями приблизительно равной мощности и объема. Они наверняка заметили, что одни автомобили достаточно резвы начиная с низких оборотов, другие любят только высокие обороты, а на малых ведут себя достаточно вяло.

Много вопросов возникает у тех, кто после легковушки с 110-120-сильным бензиновым мотором пересел за руль такой же машины, но с дизельным двигателем мощностью всего 70-80 л.с. По динамике разгона, не используя спортивный режим (высокие обороты), на первый взгляд маломощный «дизель» с легкостью обойдет своего бензинового брата. В чем же здесь дело?

Вся эта неразбериха вызвана тем, что в каждом случае такая величина как сила тяги (FT, Н), приложенная к ведущим колесам, будет разной. Объяснение этому легко найти из формулы: FT=Мкр•i•h/r, где Мкр-крутящий момент двигателя, i-передаточное число трансмиссии, h – КПД трансмиссии (при продольном расположении двигателя h=0,88-0,92, при поперечном – h=0,91-0,95), r – радиус качения колеса. Из формулы видно, что чем больше крутящий момент двигателя и передаточное число, и чем меньше потери в трансмиссии (т.е. чем выше ее КПД) и радиус ведущих колес, тем больше сила тяги. Радиус колес, передаточное число и КПД трансмиссии у автомобилей-одноклассников очень схожи, поэтому на силу тяги они влияют не в такой степени как крутящий момент двигателя.

Если в формулу подставить реальные цифры, то сила тяги на каждом ведущем колесе, например, автомобиля Volkswagen Golf IV с 75-сильным мотором, развивающим крутящий момент 128 Н•м, будет равна 441 Н или 45 кГ•с. Правда, эти значения действительны, когда частота вращения коленчатого вала двигателя (3300 об/мин) соответствует максимальному крутящему моменту.

Что такое крутящий момент

Разобраться, что такое крутящий момент, можно на простом примере. Возьмем палку и один ее конец зажмем в тисках. Если надавить на другой конец палки, на нее начнет воздействовать крутящий момент (Мкр). Он равен силе, приложенной к рычагу, умноженной на длину плеча силы. В цифрах это выглядит так: если на рычаг длиной один метр подвесить 10-килограммовый груз, появится крутящий момент величиной 10 кг•м. В общепринятой системе измерения СИ этот показатель (умножается на значение ускорения свободного падения – 9,81 м/с2) будет равен 98,1 Н•м. Из этого следует, что получить больший крутящий момент можно двумя путями – увеличив длину рычага или вес груза.

В двигателе внутреннего сгорания нет палок и грузов, а вместо них имеется кривошипно-шатунный механизм с поршнями. Крутящий момент здесь получают благодаря сгоранию горючей смеси, которая при этом расширяется и толкает поршень вниз. Поршень в свою очередь через шатун давит на «колено» коленчатого вала. Хотя в описании характеристик двигателей длину плеча не указывают, об этом позволяет судить величина хода поршня (удвоенное значение радиуса кривошипа).

Примерный расчет крутящего момента двигателя выглядит так. Когда поршень толкает шатун с усилием 200 кг на плечо 5 см возникает крутящий момент 10 кГ•с, или 98,1 Н•м. Чтобы этот показатель стал больше, радиус кривошипа следует увеличить или сделать так, чтобы поршень давил на шатунную шейку с большей силой. Увеличивать радиус кривошипа до бесконечности нельзя, так как размер двигателя тоже придется увеличивать в ширину и в высоту. Возрастают и силы инерции, требующие упрочения конструкции или уменьшения максимальных оборотов. Появляются при этом и другие негативные факторы. В такой ситуации у конструкторов двигателей остался только один выход – увеличить силу, с которой поршень приводит в движение коленчатый вал. Для этого топливно-воздушную смесь в камере сгорания необходимо сжечь более качественно и большее количество. Достигают этого путем увеличения рабочего объема, диаметра цилиндров и их количества, а также улучшения степени наполнения цилиндров топливно-воздушной смесью, оптимизации процесса сгорания, повышения степени сжатия. Подтверждает это и расчетная формула крутящего момента: Мкр=VH •pe / 0,12566 (для четырехтактного двигателя), где VH – рабочий объем двигателя (л), pe – среднее эффективное давление в камере сгорания (бар).

Получить на коленчатом валу двигателя максимальный крутящий момент удается не на всех оборотах. У разных двигателей пик максимального крутящего момента достигается на различных режимах – у одних он больше на малых оборотах (в диапазоне 1800-3000 об/мин), у других – на более высоких (в диапазоне 3000-4500 об/мин). Объясняется это тем, что в зависимости от конструкции впускного тракта и фаз газораспределения эффективное наполнение цилиндров топливно-воздушной смесью происходит только при определенных оборотах.

Кто сильнейший?

Большим крутящим моментом обладают многоцилиндровые двигатели, моторы с турбо- и механическим наддувом. А чемпионами по величине крутящего момента являются «дизели». Многие из них обеспечивают автомобилю высокую динамику уже при 800-1000 об/мин. Если же стать обладателем «дизеля», нет возможности, то подбирать машину лучше с двигателем, у которого максимальный крутящий момент развивается при более низких оборотах. Такой автомобиль легче разгонять. В противном случае двигатель придется «насиловать» высокими оборотами, при которых и расход топлива выше и детали изнашиваются более интенсивно.

Те, кто следит за тенденциями развития автомобилестроения, могли заметить, что создатели двигателей стремятся «выровнять» кривую крутящего момента, т.е. сделать его практически одинаковым во всем диапазоне оборотов. Делается это для того, чтобы исключить провалы на режимах, когда величина крутящего момента еще или уже не позволяет передать на колеса большую силу тяги.

Один из таких моторов – 2,7-литровый V-образный шестицилиндровый турбированный двигатель Audi. Этот 250-сильный двигатель развивает огромный крутящий момент 350 Н•м в широком диапазоне оборотов – от 1800 до 4500. Другой подобный, хотя и менее мощный двигатель предлагает концерн Volkswagen. Его 1,8-литровый 180-сильный турбированный мотор развивает крутящий момент 228 Н•м в диапазоне оборотов от 2000 до 5000. Ездить на машинах с такими двигателями сплошное удовольствие – независимо от оборотов при нажатии на педаль «газа» автомобиль одинаково динамичен (приемист) и не только позволяет любителям спортивной езды полностью реализовать свои желания, но и при спокойной езде способствует уверенным обгонам, перестроениям и движению при полной загрузке.

Повышение и «выравнивание» крутящего момента в современных двигателях обеспечивают различными путями: устанавливают по три, четыре и даже пять клапанов на цилиндр, механизмы изменений фаз газораспределения, впускные тракты делают с изменяемой длиной, крыльчатки турбин делают керамическими и регулируемыми с изменяемым углом наклона лопаток и т.д. Вся эта модернизация направлена на совершенствование процессов наполнения цилиндров свежим зарядом. Наибольшего результата в этом деле добились инженеры SAAB. В свой пока еще экспериментальный двигатель SAAB Variable Compression объемом всего 1,6 л они умудрились заложить мощность, равную 225 л.с. и крутящий момент 305 Н•м. Добиться столь высоких показателей шведским моторостроителям удалось благодаря возможности изменения объема камеры сгорания и соответственно степени сжатия (от 14:1 до 8:1) в зависимости от режимов работы двигателя. Получению этих характеристик способствует и система наддува воздуха под высоким давлением – 2,8 атм., четыре клапана на цилиндр и система промежуточного охлаждения воздуха (Intercooler) (см. «Автоцентр» №14 ‘2000).

Мощность

А как же обстоит дело с таким популярным показателем как мощность? Здесь ситуация складывается следующим образом. Наверное, многие замечали, что рядом с указываемой в характеристике мощностью всегда стоит значение оборотов коленчатого вала, при которых двигатель развивает эту мощность. Как правило, эти обороты приближены к максимальным. Во всех других режимах двигатель выдает только некоторую часть указанной мощности.

Почему так происходит, хорошо видно из формулы для вычисления мощности двигателя (кВт) – N=Mкрn/9549, где Mкр – средний крутящий момент двигателя (Н.м), n – обороты коленчатого вала двигателя (об/мин). Из формулы следует, что на значение мощности влияют величины крутящего момента и обороты двигателя. Но так как численные значения оборотов двигателя в десятки раз превышают величину крутящего момента (например, 3000 об/мин и 120 Н.м), то и на изменение мощности они будут влиять в большей степени. Это еще одно доказательство того, что силу мотора мощность отражает косвенно.

Вышесказанное подтверждается следующим примером. Когда мы едем по трассе с постоянной скоростью, приложенная к ведущим колесам автомобиля сила тяги расходуется на преодоление всевозможных сил сопротивления движению (аэродинамическую, качению колес и т.д.) и трение в различных механизмах. Но когда возникает потребность резко ускориться для обгона, сделать это удается не всегда, так как появляется необходимость преодолевать появившиеся силы инерции. В этом случае говорят, что у двигателя не хватает мощности. Но мощность здесь ни при чем, так как со всеми силами сопротивления движению борется сила тяги, зависящая от величины крутящего момента двигателя. Чтобы увеличить силу тяги, необходим запас крутящего момента. Величина этого запаса и влияет на то, как быстро сможет ускориться автомобиль.

Для получения более резкого ускорения можно, конечно, и переключиться на пониженную передачу, когда передаточное число трансмиссии станет большим и сила тяги на колесах увеличится. Однако при этом есть опасность «перекрутить» двигатель, да и дальнейшего ускорения мы можем не получить, так как режим работы двигателя может быть приближен к экстремальному. Аналогичная ситуация складывается и на подъемах, когда запас крутящего момента одних двигателей позволяет продолжить движение, а у других его отсутствие требует перехода на пониженную передачу.

Вывод отсюда напрашивается следующий: какой бы мощностью ни обладал двигатель, а способность разгонять автомобиль и «вытаскивать» его на подъем полностью возложена на крутящий момент. Возникает вполне справедливый вопрос: что же означает мощность? Это универсальный показатель, в который заложили целый ряд характеристик автомобильного двигателя – энергоемкость, потребление топлива, тяговая способность и т.д.

Юрий Дацык

Чем отличается мощность от крутящего момента?

Знаю, что многих мучает этот вопрос, многие даже не понимают, чем отличается мощность от крутящего момента. А ведь реально — что из них важнее? Мы привыкли выбирать машину по лошадиным силам, а вот крутящий момент как то не заслуженно опускается! Лично сам разговаривал со своими друзьями, многие даже не знают какой он на их автомобиле и при каких оборотах он максимальный!

Правильно ли это? Конечно же нет, нужно точно знать и понимать все технические характеристики своего авто, особенно такие важные. Вот поэтому решил написать эту статью и разъяснить все простыми словами, как обычно будет видео версия в конце …

Что же постараюсь рассказать простыми словами, как я умею, но тема не такая простая, как кажется на первый взгляд, в интернете есть описания, но они крайне запутаны. Я же в этой статье буду оперировать такими понятиями как мощность двигателя и крутящий момент. По сути эта два обозначения идут «бок о бок» и одна характеристика напрямую зависит от другой.

Мощность двигателя

Измеряется в «Лошадиных Силах (л.с.)» или Киловаттах (Ваттах, «Вт»), как становится понятно — ей занимался Джеймс Ватт. Да, именно в Ваттах мы измеряем мощность лампочки накаливания у нас в «люстрах» и светильниках, но оказывается и мощность двигателя тоже. Я не буду вдаваться в подробности, как и что он открыл, просто характеристика идет именно от его фамилии.

НО как же лошадиные силы? А все просто, Ватт «тренировался» на лошадях, а именно на переносимых грузах, одной лошадью в единицу времени и на определенное расстояние, так вот после определенных «терзаний» выяснилось — что одна лошадь (если ее заставить генерировать электрический ток, от динамомашины) способна выдавать 736 Ватт в секунду времени, либо 75 кгс м/с, что можно расшифровать так — 75 килограмм, на 1 метр высоты, за 1 секунду времени.

Чтобы перевести «ватты» в «лошадиные силы», существует достаточно большой расчет, но если утрировать, то получается 1кВт=1000Вт=1,36л.с.

Не все производители указывают мощность двигателя в «л.с.», например некоторые немецкие производители указывают именно в Ваттах.

Для того чтобы перевести «Л.С». в «Ватты», нужно их разделить на 1,36. Если нужно наоборот тогда мощность в «Вт» умножаем на 1,36, получаем «лошадиные силы».

Думаю это понятно, больше к этому возвращаться не будем.

Мощность двигателя внутреннего сгорания (будь то это бензин или дизель), величина не постоянная! ЭТО НУЖНО ПОНИМАТЬ! Меня просто умиляет то, как многие реагируют на эту величину: — у меня 150 л.с., я тебя сделаю как «два пальца», а у оппонента 145 л.с. и по теории он должен проиграть, но не учитывается крутящий момент и расстояние, на котором будут соревноваться автомобили.

Мощность изменяется от оборотов двигателя! Ваша номинальная величина, будет указана при определенных МАКСИМАЛЬНЫХ оборотах, у современных авто, обычно от 5000 до 6500 оборотов. ТО есть простыми словами, 150л.с. – выдаются при 6000 оборотов (для примера). Соответственно при 3000 или при 1500 оборотов, мощность будет уменьшаться в разы.

Мощность двигателя внутреннего сгорания, которая указана у вас в технических характеристиках, обычно выдается при максимальных оборотах двигателя. При 1500 – 2000 оборотах, она будет в 4 – 5 раз меньше (справедливо для бензиновых агрегатов).

ТО есть, для того чтобы получить весь «табун» силового агрегата, вам нужно активно «педалировать». Например — при обгонах или резких маневрах, вы должны держать почти вашу «полку» в 5000 – 6500 оборотов именно эти обороты вам помогут резко ускориться. Вот почему зачастую приходится понижать передачу, для того чтобы получить максимум мощности.

НО силовой агрегат не может мгновенно раскрутиться, ему на это нужно время, здесь то и приходит такое понятие как крутящий момент.

Крутящий момент двигателя

Стоит понимать, что мощность мотора – это энергия, которая вырабатывается двигателем. И именно эта энергия преобразуется в крутящий момент на выходном (коленчатом) валу двигателя, далее момент изменяется в трансмиссии (при помощи нужных передаточных чисел шестерен) и после передается на привода, или ведущие мосты и после на колеса.

ТО есть если утрировать – крутящий момент, это реально то, что толкает машину механически, а мощность – это то, что производит этот момент.

Тронуться и поехать, вы сможете даже на маломощном двигателе (причем для этого нам не нужно много мощности), здесь работают передаточные числа, которые точно подобраны в трансмиссии вашего авто.

НО мы же не хотим ездить со скоростью 20 – 40 км/ч, нам нужно ускорение, быстрое передвижение. А для этого просто необходим достаточный крутящий момент при всех диапазонах скоростей. Это достигается – достаточной мощностью двигателя и подбором шестерен в трансмиссии и приводах, мостах (если есть).

Если вывести определение:

Крутящий момент – это сила, которая умножена на плечо ее приложения, которую может предоставить мотор машине для преодоления тех или иных сопротивлений движению. Измерения производят в ньютонах, а рычаг измеряется в метрах.

Если разобрать, просто «на пальцах формулу», то 1 Н·м – это сила с которой 0,1 кг, давят на конец рычага (это поршень) длиной в 1 метр. Как становится понятно, в двигателе роль рычага выполняет кривошип коленчатого вала, через который и производится крутящий момент. Понятно, что кривошип, длинной не 1 метр, но момент вычисляется из приложенных характеристик.

Именно от этого показателя и зависит время достижения силовым агрегатом максимальной мощности, а значит и динамики разгона авто.

Если образно утрировать — то момент, собирает все лошадиные силы в «кулак» который и раскручивает мотор, и чем больше этот кулак, тем быстрее раскручивается мотор и ускоряется автомобиль.

Обороты двигателя

Также важный показатель, для различных типов двигателя. Ведь максимальный крутящий момент может образовываться при различных оборотах силового агрегата. Как я писал выше, на бензине это может быть и 5000 и 6000! Поэтому чтобы выйти на такой показатель мотору нужно затратить определенное время.

Конечно же лучше, когда мотор развивает максимальный момент, скажем на 1500 – 2000 оборотов, тогда время на раскрутку силового агрегата в разы меньше, машины быстрее набирает скорость.

Тогда получается что главное, не только в величине момента, но и в оборотах при которых он достигается. Чем они меньше, тем лучше.

И вот тут возникает дилемма – а какие двигатели реально обладают большим запасом момента?

Различные типы двигателей

Как мы с вами уяснили, чем на меньших оборотах наступает максимальный крутящий момент — тем лучше, но какие моторы могут под это подходить? И вообще у каких «большой запас» этого момента? Ведь обычный бензиновый четырехцилиндровый атмосферник, выходит на свой номинал примерно в 5000 – 6000 оборотов.

НО есть моторы, которые выдают достаточно большие моменты, причем наступают они при достаточно низких оборотах. Это многоцилиндровые моторы, а также  «V» – образные типы, начиная с V6 – V8. Турбированные агрегаты, имеют большой запас момента, даже при относительно малых объемах.

Однако абсолютным рекордсменом являются дизельные варианты, особенно те которые устанавливались на трактора, ведь здесь важна тяга именно на низах (скорость на трассах абсолютно не нужна). Такие варианты выходят на номинал, уже при 1500 оборотов, просто представьте! Такие агрегаты называют «тяговитыми» из-за быстрого набора крутящего момента.

Условно моторы можно разделить на четыре лагеря:

  • Это обычные атмосферники, 4 цилиндра.
  • Многоцилиндровые агрегаты, от 6 до 12 «горшков», сюда же можно записать и V – образные.
  • Это турбированные моторы
  • Дизельные агрегаты

Про «многоцилиндровые» (второй тип) сейчас особо заострять не буду, здесь понятно, что чем больше цилиндров – тем больше мощность и соответственно крутящий момент. Минус только в том что эти агрегаты тяжелые, прожорливые, и очень большие по размерам.

А вот остальные три типа стоит сравнить для полного понимания, возьмем три мотора от нового KIA SPORTAGE, смотрим таблицу.

Объем, двигателя Обороты в минуту(об/мин) Максимальная мощность(в л.с.) Крутящий момент(в Нм)
Бензиновый, 4 – цилиндровый рядный 2,0 литра 6200 150
  4000 192
Турбированный, 4 —  цилиндровый рядный 1,6 литра 5500 177
  2000 — 4500 265
Дизельный, 4 —  цилиндровый рядный 2,0 литра 4000 185
  1750 — 2750 400

Бензиновая атмосферная «четверка», развивает максимальную мощность только при 6200 оборотах в минуту, зато максимальный крутящий момент наступает уже при 4000 оборотов. Турбо вариант, 177 л.с при 5500 оборотов, но момент здесь намного выше 265 в диапазоне от 2000 до 4500 об. Но рекордсменом по л.с. и крутящему моменту идет дизель, 185 л.с. при 4000 об/мин, и крутящий момент 400! (просто вдумайтесь) в интервале 1750 – 2750 об/мин.

Как видите бензиновые агрегаты проигрывают дизелю в моменте (обычный атмосферник примерно в 2 с небольшим раза). Причем максимальной отдачи можно достичь только при 4000 об/мин. Зато бензиновый мотор легко крутится до 6200, а то и больше 7000 – 8500 об/мин, что позволит развить ему большую мощность. Дизель же не может похвастаться высокими оборотами, максимальная полка зачастую всего 4000 — 5000 об/мин, поэтому они могут проигрывать в максимальной мощности своим бензиновым собратьям.

Если сказать проще, то можно констатировать – мощность определяет максимальную скорость авто, а вот крутящий момент – как быстро агрегат достигнет этой мощности. Собственно все просто. НО если вспомнить законы механики, то здесь стоит помнить – выигрывая в крутящем моменте, проигрываем в частоте вращения.

НА старте бензиновый мотор выиграет у дизельного агрегата! Почему? ДА все просто, бензиновый агрегат можно крутить до 6500, а в редких случаях до 8000 об/мин, не переключая передачи. А вот дизель достигнет пик своего момента максимально быстро (уже при 1750 об/мин) и вам нужно будет тратить время на переключение, далее еще одна передача и т.д.

Конечно эта ситуация справедлива для механики, на многих современных автоматах переключения происходят максимально быстро. ДА и для того чтобы тягаться с дизелем бензину, всегда нужно будет держать повышенные обороты, чтобы сравняться в мощности. Например, при 90 км/ч на трассе, чтобы ускориться на бензиновом агрегате, нужно скинуть передачу пониже (увеличивая обороты — увеличиваем мощность), а вот дизелю делать этого не нужно!

Так что же важнее и лучше?

Здесь сложно сказать одно выходит из другого. С одной стороны момент, позволит развивать вам быстро максимальную мощность, в примере с дизелем, но он не сможет крутиться до таких оборотов как бензин, а значит его максимальная мощность в пике будет ниже.

Тут знаете, кому что нужно, может быть вы водитель коммерческого транспорта, и вам не нужна максимальная скорость но важна тяга «с низов». Или наоборот, вы любите турбо моторы, которые крутятся до 8000 – 9000 оборотов и выстреливают с места.

Лично мне нравятся новые бензиновые агрегаты, такие как скажем у МАЗДЫ, мотор Skyactiv  которые сейчас устанавливаются на многие модели. Здесь увеличили степень сжатия, немного приблизили мотор к дизелю, но он остался бензиновым с высокими оборотами. Здесь есть и мощность и крутящий момент, золотая середина! Думаю за такими моторами будущее (если не брать гибриды и электромобили).

И запомните: — крутящий момент толкает машину вперед, а вот мощность это то, что этот момент производит. Так что покупаем лошадиные силы, а ездим на моменте!

Смотрите также:
  • Двигатель V8 объемом 4,2 л в Jaguar XK Coupe
  • Шины для Opel Senator
  • Ремонт главного тормозного цилиндра
  • Заправка и диагностика автокондиционеров
  • Автомобиль Koenigsegg и семиступенчатая коробка передач
  • Покупка автомобиля через аукцион
  • Мощность двигателя или крутящий момент? Какая характеристика важнее?

    Материал подготовлен автором проекта АвтобурУм. Графики можно увидеть здесь: https://autoburum.com/user/stas90/blog/609-moshhnost-dvigate…

    Большинство автолюбителей судят о ходовых характеристиках авто по мощности двигателя. Обычно ее измеряют в киловаттах или лошадиных силах. Чем она больше, тем солиднее. Максимальную мощность двигатель внутреннего сгорания развивает на определенных оборотах. Обычно для бензиновых автомобилей это около 6000 оборотов в минуту, для дизельных – около 4000 об./мин. Именно поэтому дизельные движки относятся к классу низкооборотных, бензиновые – высокооборотные. Однако и среди бензиновых двигателей есть низкооборотные, и наоборот – есть дизельные высокооборотные.

    Часто водитель сталкивается с ситуацией, когда необходимо придать авто значительное ускорение для выполнения очередного маневра. Жмешь педалью акселератора в пол, а автомобиль практически не ускоряется. Вот тут-то и нужен мощный крутящий момент на тех оборотах, на которых работает в данный момент двигатель. Именно он характеризует приемистость автомобиля. Поэтому каждый автовладелец должен знать, на каких оборотах его авто имеет максимальный крутящий момент перед тем, как садить красивую девушку в свою машину и показывать чудеса пилотирования.

    Крутящий момент двигателя, что это?

    Из курса физики за 9 класс многие помнят, что крутящий момент М равен произведению силы F, прикладываемой к рычагу длиной плеча L. Формула:

    М = F * L

    Длина в системе СИ измеряется в метрах, сила – в ньютонах. Нетрудно определить, что момент измеряется в ньютон на метр.

    Основная сила в двигателе внутреннего сгорания вырабатывается в камере сгорания в момент воспламенения смеси. Она приводит в действие кривошипно-шатунный механизм коленвала. Рычагом здесь является длина кривошипа, то есть, если эта длина будет больше, то и крутящий момент тоже увеличивается. Однако, увеличивать кривошипный рычаг бесконечно нельзя. Во-первых, тогда надо увеличивать рабочий ход поршня, то есть размеры движка. Во-вторых, при этом уменьшаются обороты двигателя. Двигатели с большим рычагом кривошипного механизма применяют в крупномерных плавательных средствах. В легковых авто с небольшими размерами коленвала не поэкспериментируешь.

    В технических характеристиках, указанных на модель двигателя, параметр максимального крутящего момента указывается совместно с величиной оборотов (либо пределами величин оборотов), при которых такой крутящий момент может быть достигнут. Обычно считается: если максимальный крутящий момент может быть достигнут на оборотах до 4500 об./мин., то двигатель низкооборотный, более 4500 – высокооборотный.

    От величины крутящего момента напрямую зависит характеристика мощности двигателя автомобиля. Почему считается, что бензиновые движки заведомо могут обеспечить большую, чем дизельные, мощность. Дело в том, что в силу конструктивных особенностей и управляемости системы зажигания бензиновые двигатели могут длительное время работать на оборотах 8000 об./мин и более. Дизельные движки достигают максимального крутящего момента на более низких оборотах. В городском ритме движения, когда нет необходимости развивать предельные обороты, дизельные авто нисколько не уступают бензиновым, наоборот, на малых и средних оборотах спокойно можно двигаться в ритме от 30 до 60 км/час, не переключая третью либо 4-ю передачу.

    Пересчитать крутящий момент в мощность двигателя и наоборот можно, руководствуясь упрощенной физической формулой:

    Р=М*n/ 9549

    По этой формуле получится мощность Р в киловаттах. Вводить надо М – крутящий момент двигателя в ньютон на метр, n– величина оборотов двигателя. Здесь 9549 — число, которое получается после упрощения основной формулы в результате перемножения констант (ускорения свободного падения, числа Пи и т.п.).

    Для перевода киловатт в лошадиные силы следует результат умножить на 1,36. В некоторых случаях в технических характеристиках указывается крутящий момент на холостых оборотах.

    Зависимости мощности двигателя и крутящего момента от количества оборотов

    Типовые характеристики зависимости мощности и крутящего момента от оборотов двигателя приведены на рис.1

    Из графика видно, что крутящий момент стабильно увеличивается до 3000 оборотов, затем наступает относительно пологий участок. На оборотах около 4500 об/мин достигается максимум крутящего момента около 178 ньютон*метр. В то же время мощность двигателя продолжает расти до достижения оборотов около 5500 об/мин, и на этих оборотах достигает около 124 лошадиных сил. Это понятно, если обратиться к формуле, в которой видно, что мощность пропорциональна произведению крутящего момента на величину оборотов. После 5500 оборотов в минуту уменьшение крутящего момента превышает крутизну увеличения оборотов, и мощность начинает уменьшаться.

    Как это объяснить физически, то есть, без формул. На малых оборотах в область сгорания поступает небольшое количество воздушно-топливной смеси в единицу времени, соответственно, крутящий момент и мощность небольшие. Увеличивая обороты, количество смеси (а вслед за ним и мощность, крутящий момент) возрастает. Достигая больших значений, мощность уменьшается по следующим причинам:

    механические потери на трение механизмов;

    инерционные потери;

    недостаточное нагнетание воздуха (кислородное голодание).

    Из соображений обеспечения максимального количества поступающего воздуха (кислорода) в камеру сгорания даже на небольших оборотах двигателя применяют системы турбонаддува с электронным регулированием. Используя такие системы можно обеспечить равномерность характеристик крутящего момента в широком диапазоне оборотов двигателя, как показано на рис.2

    Уровень максимального крутящего момента около 242 ньютон на метр поддерживается в пределах от 2000 до 5000 об/мин коленвала. Это значит, что можно без волнений начинать обгон, двигаясь на относительно низких оборотах двигателя.

    Высокооборотные движки позволяют максимально увеличивать мощность за счет уверенной работы на предельно высоких оборотах вплоть да 8000 об/мин, как показано на рис.3

    Если вы серьезно подходите к динамическим характеристикам своего или вновь приобретаемого автомобиля, знать характеристики крутящего момента и мощности двигателя в зависимости от оборотов просто необходимо. Их можно найти, покопавшись на различных форумах, сайтах автодилеров и производителей.

    Для городского ритма движения лучше подойдут низкооборотные двигатели с турбонаддувом. Если вы любите попалить резину, посоперничать на трассе, лучше выбрать автомобиль с высокооборотным бензиновым движком.

    Можно ли увеличить крутящий момент двигателя

    Величину необходимого крутящего момента определяют конструкторы еще на предварительном этапе конструкторской разработки двигателя внутреннего сгорания. От нее зависят и другие элементы автомобиля: подвеска, тормозная и рулевая система, аэродинамика. Поэтому, прежде чем приступить к самостоятельному форсированию двигателя, убедитесь, что ваша машина не развалится или не улетит в космос на умощненном двигателе.

    Способов увеличения крутящего момента и, соответственно, мощности много:

    изменение геометрических свойств поршневой группы, увеличение компрессии;

    замена форсунок или инжекторов;

    внесение изменений в систему воздухозабора;

    чип-тюнинг путем перепрограммирования топливной карты блока управления двигателя.

    Опыт показывает, что принудительное увеличение крутящего момента и мощности двигателя на 20% уменьшает ресурс его работы приблизительно в два раза. Поэтому, если вы не фанат дрэг-рейсинга, дрифтинга и красивых девушек, лучше не экспериментировать.

    

    Основные показатели двигателя: мощность, крутящий момент, расход

    Даже тем людям, которые не очень интересуются автомобилями, у которых их никогда не было и которые не намереваются становиться их владельцами, отлично известно, что одной из основных характеристик этих транспортных средств является мощность двигателя. Ее принято измерять в лошадиных силах (несколько реже используют более «правильную» с технической точки зрения величину — киловатт), причем вполне справедливо считается, что чем выше значение этого показателя — тем лучше.

    С другой стороны такая важная характеристика как крутящий момент двигателя часто остается неизвестной даже некоторым автолюбителям. И это при том, что она является, на самом деле, ничуть не менее значимой характеристикой двигателя, чем его мощность и обороты, с которыми, кстати, находится в весьма тесной и даже неразрывной взаимосвязи.

    В данной статье мы попробуем объяснить, что такое крутящий момент двигателя, чем он отличается от мощности, от чего зависит и на что влияет.

    Содержание

    • Что такое крутящий момент двигателя автомобиля простыми словами
    • От чего зависит величина крутящего момента двигателя
    • На что влияет крутящий момент двигателя
    • Видео на тему

    Основные показатели двигателя

    Сгорание топлива происходит внутри ДВС, в специальной камере цилиндра. Это приводит в движение поршень, который, совершая циклические возвратно-поступательные движения, проворачивает коленчатый вал. Таков упрощенный принцип работы любого поршневого двигателя внутреннего сгорания.

    Основные характеристики ДВС можно оценить тремя основными показателями:

    • мощность двигателя;
    • крутящий момент;
    • расход топлива.

    Основные показатели ДВС

    Рассмотрим более подробно каждый из этих показателей.

    Что такое крутящий момент

    Крутящий момент представляет собой качественный показатель, выражающий силу вращения коленвала, и рассчитывается произведением силы, давящей на поршень, на плечо (расстояние между центром вращения оси коленчатого вала до места крепления поршня к шатуну). Измеряется в количестве ньютонов на метр (Нм).

    Сила крутящего момента зависит от давления на поршень при сгорании газов, рабочего объема камеры сгорания и двигателя в целом, степени сжатия горючей смеси в камере сгорания.

    Традиционно более высокий крутящий момент у дизелей, это объясняется степенью сжатия, превосходящей бензиновые двигатели практически вдвое.

    Сильный крутящий момент дает автомобилю повышенную динамику набора скорости даже при низких оборотах, и заметно повышает тяговые свойства двигателя. Максимальных значений данная характеристика достигает при определенной частоте вращения коленвала, причем у дизелей этот показатель ниже, чем у бензиновых.

    На что влияет крутящий момент двигателя

    Если производить аналогию с человеческим организмом, то можно условно определить, что крутящий момент — это аналог силы, а мощность — это аналог выносливости. Именно от мощности двигателя внутреннего сгорания в конечном итоге зависит то, какую максимальную скорость может развить автомобиль, а от крутящего момента — то, как быстро сможет он это сделать. Именно поэтому далеко не все мощные автомобили имеют хорошую динамику разгона, и далеко не все, у которых она находится на высоком уровне, располагают очень мощными моторами.

    Опытные автомобилисты отлично знают, что лучше всего выбирать для себя автомобиль с таким двигателем, показатель крутящего момента которого при работе на тех оборотах, на которых он обычно функционирует, является наилучшим. Дело в том, что это позволяет им использовать потенциал мощности ДВС в максимальной степени.

    Следует заметить, что производители двигателей внутреннего сгорания всячески стремятся увеличить их крутящие моменты, причем во всем диапазоне работы моторов. Чаще всего пытаются достичь этого (и, кстати говоря, достаточно успешно) с помощью турбонаддува, управляемых фаз газораспределения (это оптимизирует процесс сгорания топливной смеси), повышения степени сжатия, использованием особых конструкций впускного коллектора и целым рядом других способов. 

    Читайте также: Чем отличается задний привод от переднего.

    Внешняя скоростная характеристика (ВСХ)

    Внешняя скоростная характеристика двигателя показывает зависимость мощности, расхода топлива и крутящего момента от числа оборотов коленвала. Все эти параметры показываются графически в виде кривых.

    Читайте также:  Основные компоновочные схемы поршневых двигателей внутреннего сгорания

    Внешняя скоростная характеристика

    На рисунке можно видеть кривые с обозначениями Pe – мощность двигателя, – крутящий момент, ge – удельный расход топлива. Как видно, с ростом числа оборотов и мощности увеличивается расход топлива. Крутящий момент растет до определенного уровня, а затем идет на спад. В точке, где наиболее эффективный крутящий момент и мощность двигателя, будет самый оптимальный показатель расхода топлива.

    Производители моторов борются за то, чтобы максимальный крутящий момент двигатель развивал в как можно более широком диапазоне оборотов («полка крутящего момента была шире»), а максимальная мощность достигалась при оборотах, максимально приближенных к этой полке. Такой двигатель и из болота вытянет, и в городе позволяет быстро ускоряться.

    Внешняя скоростная характеристика дает оценку динамическим характеристикам автомобиля, определяет КПД и топливный расход при разных параметрах.

    Высокий крутящий момент на более низких оборотах увеличивает тяговую силу агрегата, грузоподъемность и проходимость.

    Максимальный крутящий момент некоторых популярных автомобилей

    Марка и модель автомобиля Объем двигателя, см³ Максимальная мощность, л.с./кВт при об/мин Максимальный крутящий момент, Н*м при об/мин
    Ford Focus III 1596 125 / 92 при 6000 159 при 4000
    Renault Logan II 1598 82 / 61 при 5000 134 при 2800
    Hyundai Solaris I 1396 107 / 79 при 6300 135 при 5000
    Toyota RAV 4 IV (CA40) 1987 146 / 107 при 6200 187 при 3600
    Opel Astra J (турбонаддув) 1364 140 / 103 при 4900 – 6000 200 при 1850 – 4900
    ВАЗ (Lada) Vesta 1596 106 / 78 при 5800 148 при 4200

    На что влияет крутящий момент в шуруповерте

    Ознакамливаясь с характеристиками любого шуруповерта, вы обязательно натолкнетесь на такой параметр, как крутящий момент, который измеряется в ньютон-метрах (Нм). Не все помнят из школьного курса физики, что это означает. И в этой статье я попробую разъяснить, что такое крутящий момент шуруповерта.

    Если говорить простым языком, то крутящий момент шуруповерта означает максимальную силу, которую он может передать на заворачиваемый шуруп или саморез. Понятно, что чем выше крутящий момент, тем и эта сила будет больше.

    На что это всё влияет? На то, насколько, например, большой саморез или шуруп по длине и диаметру вы сможете закрутить в тот или иной материал. Ну и кроме того, если взять два шуруповерта с разным крутящим моментом и выполнять ими одну и ту же работу, то механизм того шуруповерта, у которого крутящий момент больше, износится меньше. Поэтому можно сказать, что величина крутящего момента также влияет на срок службы инструмента.

    Что такое ньютон?

    Если писать «Ньютон» с большой буквы, то это фамилия ученого, в честь которого названа единица измерения, с помощью которой измеряют силу.

    Ну а когда речь идет о единице измерения, то «ньютон» пишется со строчной буквы, а обозначается как «Н».

    Как единица измерения, если говорить научно, 1 Н — это сила, изменяющая за 1 секунду скорость тела массой 1 кг на 1 м/с в направлении действия силы.

    Если несколько проще, то можно сказать так: чтобы тело массой 1 кг двигалось и с каждой секундой увеличивало свою скорость на 1 м/с, то к нему нужно приложить силу, равную 1 Н.

    Все равно не понятно? Тогда возьмите в руку предмет с массой 100 г. Вот та сила тяжести, которая притягивает этот предмет к земле и будет примерно равна одному ньютону. Почему примерно? Потому что сила притяжения на разных точках Земли несколько отличается и эталоном одного ньютона будет сила тяжести тела массой 102 г, находящегося на уровне моря на поверхности Земли на широте 40 градусов.

    А что такое ньютон-метр?

    Опять же, если воспользоваться цитатой из Википедии, то «один ньютон-метр равен моменту силы, создаваемому силой, равной 1 Н, относительно точки, расположенной на расстоянии 1 м от линии действия силы».

    Касаемо шуруповерта объясню это следующим образом. У патрона шуруповерта есть ось, вокруг которой он вращается. Возьмем шуруповерт и расположим его осью вращения горизонтально. Затем возьмем металлический пруток Г-образной формы, у которого одна из сторон имеет длину 1 м, а вторая (неважно какой длины) будет зажата в патроне. Так вот, если ту сторону прутка, которая равна 1м, расположить горизонтально и на ее противоположный от шуруповерта конец подвесить груз массой 100 г, то мы получим крутящий момент, воздействующий на патрон, примерно равный одному ньютон-метру. А если подвесить, например, груз в 4 кг, то получим 40 Нм.

    Поэтому если у шуруповерта заявлено, например, что его максимальный крутящий момент равен 40 Нм, то это означает, что двигатель шуруповерта через редуктор передает на патрон такую силу, как если бы мы действительно собрали указанную выше конструкцию и подвесили груз в 4 кг. Массу самого прутка не будем учитывать.

    Вот что такое крутящий момент шуруповерта.

    Ну и в завершение нужно сказать, что максимальный крутящий момент достигается при полном нажатии на кнопку пуска. Кроме того на двухскоростных шуруповертах на разных скоростях момент тоже будет разный — на первой больше, на второй меньше.

    Также у шуруповертов есть специальный регулятор, имеющий шкалу с метками от 1 до 15, 20 или другого числа (как решит производитель) и последней меткой в виде сверла (в этом положении можно и нужно сверлить), который ограничивает крутящий момент. То есть, если установить регулятор на одну из числовых меток, то при достижении определенного значения момента шуруповерт дальше не крутит, а прощелкивает. Но если регулятор поставить в положение «сверло», то шуруповерт прощелкивать не станет, а будет до последнего пытаться закрутить то, что он крутит. При этом указанные выше цифры не означают собственно сам момент, а просто показывают, насколько больше или меньше вы его делаете (просто, чтобы быстрее ориентироваться при работе)

    Надеюсь у меня получилось объяснить суть крутящего момента шуруповерта. На этом откланиваюсь — до новых встреч!

    Содержание:

    Ввинтить шуруп – одна из тех задач, которые возникают вроде ниоткуда, но с завидным постоянством. Поправить перекосившуюся дверце шкафа, повесить зеркало в прихожей, прикрепить полочку в ванной – мелкие бытовые проблемы, решать которые нужно ежедневно. Закрутить болт, шуруп или саморез с помощью отвертки – можно, но не всегда получается. Кто пробовал, знает: дело неблагодарное, длительное, а результат часто нулевой. А нужно быстро и эффективно.

    Купить электрический шуруповерт для повседневных бытовых работ по дому – лучший выход. Не говоря уже о том, что он – незаменим в работе профессионалов. Он используется на стройках, при ремонтах и в мебельных мастерских. С помощью шуруповерта производят монтаж гипсокартонных конструкций, установку окон и дверей, крепление плинтусов и сборку мебели.

    Выбрать шуруповерт, ориентируясь исключительно на его стоимость – грубейшая ошибка. Они отличаются по мощности и различным функциям. Чтобы не ошибиться при выборе, следует внимательно изучить его технические характеристики перед покупкой. Главные из них – скорость вращения, крутящий момент и тип батареи (в аккумуляторном инструменте). Но прочитать цифровые данные – полдела, нужно еще уметь ориентироваться, какие показатели нужны именно для вас и для планируемых работ.

    1. Не нужно переоценивать: покупка бытового шуруповерта для профессиональных работ

    Шуруповерт может работать от сети или же от встроенного аккумулятора. От типа питания зависит не только мобильность инструмента, но и его мощность. Маленький и удобный аккумуляторный инструмент – лучший помощник для домашнего мастера. У него есть все необходимые функции, а весит он совсем немного, и руки не утомляются. Но главный минус аккумуляторного шуруповерта – маломощность – сыграет злую шутку с теми, кто планирует использовать его как профессиональный инструмент. То есть, много и часто. Для профи – нужна совсем другая мощность. Цена профессионального выше. Чаще всего он привязан к розетке, но хорошо переносит интенсивные нагрузки.

    2. Неправильный подбор аккумулятора

    Аккумулятор – самая дорогая часть инструмента. Более половины цены вы платите именно за батарею. Чтобы не бегать каждые 20-30 минут с аккумуляторным шуруповертом к розетке для подзарядки, почитайте паспорт батареи. Рекомендуем внимательно отнестись к таким параметрам.

    • Напряжение (определяет мощность)
    • Емкость (влияет на длительность работы)
    • Эффекты памяти и саморазряда (намного лучше, когда их нет)

    3. Покупка малоемких аккумуляторов на продолжительные работы

    Емкость батареи напрямую влияет на продолжительность работы. Чем выше емкость – тем больше времени сможет работать без подзарядки. Емкость измеряется в ампер-часах и зависит от того, какой элемент установлен внутри батареи. Самая меньшая емкость у кадмиевых аккумуляторов, а самая большая – у литий-ионных. Поэтому для продолжительных работ выбирайте шуруповерт на литиевой основе. Он стоит в 2-3 раза дороже, но дает гарантию работы на несколько часов.

    4. Длительное время заряда аккумулятора

    Время подзарядки у разных моделей разное. Профессиональному инструменту нужно около часа. Любительскому – 5-7 часов. Купить шуруповерт, который больше времени заряжается, чем работает – простительная ошибка для домашнего мастера. Такой инструмент используется нечасто. И его длительная подзарядка не приносит неудобств. Для «профи» – длительное время заряда сводит на нет всю его работу. Время зарядки зависит от характеристик аккумулятора и зарядного устройства.

    5. Покупка односкоростного шуруповерта для сверления и завинчивания

    Шуруповерт – универсальный инструмент. Обычно, кроме «закрутить-выкрутить», он способен еще и сверлить. Но не все модели имеют такую функцию. Часто покупатель предполагает, что при покупке односкоростного инструмента он будет выполнять задачи по завинчиванию и сверлению. Это распространенная ошибка. Чтобы работать в режиме ввинчивания и в режиме сверления, он должен быть оснащен регулятором скорости. Сверление выполняется на иной скорости, чем закручивание. Работа с разными материалами подразумевает разные обороты.

    6. Покупка аккумуляторного шуруповерта для очень редких работ

    Если беретесь за шуруповерт раз ли два в год, то лучше купить электрический инструмент, работающий от розетки. Ведь каждая аккумуляторная батарея имеет свой срок хранения. Ее нужно заряжать и разряжать, если не постоянно, то часто. Иначе она сильно теряет емкость. При превышении срока хранения электролит расслаивается, металлические пластины внутри покрываются солью.

    7. Неправильный подбор типа аккумулятора

    Ошибившись с выбором батареи и не зная особенностей ее эксплуатации, вы со временем поймете, что она вам совсем не подходит. Поэтому учтите, что в шуруповертах применяются батареи трех разновидностей:

    • никель-кадмиевые (Ni-Cd). Недорогие. Но малоемкие и токсичные. Страдают саморазрядом и «эффектом памяти». Нельзя долго хранить без зарядки. А самый большой минус – не можно заряжать не полностью посаженый аккумулятор. То есть, исключается возможность дозаряда во время перекура.
    • никель-металл-гидридные (Ni-MH). Изначально разработаны на замену никель-кадмиевым аккумуляторам, но в силу тех же недостатков не смогли занять достойное место в ассортименте батарей для электроинструмента. Более мощные, при тех же габаритах, по сравнению с Ni-Cd аккумуляторами. Цикл заряда варируется в диапазоне 200-300 подзарядок. Разработчики устранили проблему эффекта памяти, поэтому их можно дозаряжать. Единственный минус – высокая степень саморазряда, сравнительно с другими типа аккумуляторов.
    • литий-ионнные (Li-Ion). Самые популярные. Большая емкость и мощность. Не теряют емкости на морозе. Количество полноценных подзарядок – 3000. Можно заряжать в любое время, не дожидаясь полной разрядки. Эффекта памяти нет. Саморазряда тоже. Но цена их намного выше.

    8. Самый мощный не всегда самый лучший

    Мощный шуруповерт нужен для длительных работ с нагрузкой по максимуму. Если таких не планируется, не стоит выбирать большую мощность. У мощного есть свои недостатки:

    • Он тяжелый. Неудобно работать на весу, устают руки.
    • Большие габариты. Вы не сможете работать в труднодоступных местах.

    Для домашних работ лучше взять шуруповерт менее мощный, компактный, но с хорошим крутящим моментом.

    9. Покупка ударного шуруповерта вместо перфоратора

    Если в нем есть ударный режим, то это отнюдь не означает, что он сможет долбить стену или камень. Шуруповерт – не перфоратор. Режим биения используется для более эффективного завинчивания болтов и шурупов.

    10. Неправильный подбор патрона

    Патроны бывают двух типов:

    • Быстрозажимные (quick патрон). Не требуют никаких инструментов для зажима.
    • Ключевые. Для их зажима нужен специальный ключ зубчатого типа.

    Быстрозажимный – гораздо проще и удобнее. Если предстоит работа с частой сменой расходника (например, сверло, бита), то рекомендуется брать шуруповерт с быстросьемным патроном. Ключевой патрон сильно замедляет работу.

    11. Один аккумулятор хорошо, а два лучше

    Если в комплекте есть еще одна батарея – это огромный плюс для вашего шуруповерта. Запасной аккумулятор дает дополнительные возможности. Во время работы на одной батарее, вторую можно заряжать, а потом – наоборот. Получается беспрерывная работа. Но для домашних дел вполне хватит и одного аккумулятора, не стоит переплачивать за расширенную комплектацию. А вот для профессиональных работ – это отличный вариант, в отдельных случаях можно запастись еще одной батареей впрок.

    12. Неправильный выбор упаковки

    Самый дешевый вариант упаковки – картон. Но он прослужит недолго. Упаковка порвется. Потом негде будет хранить шуруповерт. Для любителя, купившего инструмент для квартиры или дома, это не составит проблемы. А вот профессиональному мастеру нужен кейс. Следует выбрать его в пластиковом чемоданчике. Он удобен для хранения и транспортировки. Существуют и продуманные модульные кейсы. Они крепятся между собой, можно транспортировать на тачке. Это оптимальные пластиковые чемоданы для профессионалов типа L-boxx или MetaLoc . Кейсы с такой системой часто используют популярные производители инструментов: Metabo, Bosch.

    13. Выбор в пользу контрабанды

    Приобрести шуруповерт от непонятного производителя – остаться с поломанным инструментом один на один. Без гарантии, без сервиса, без запчастей. Никогда не соблазняйтесь слишком дешевой ценой электроинструментов из серии «китай-под китай». Учтите, что «серый товар» не имеет официальной гарантии, а надежные торговые марки дают и гарантию, и обслуживание в сервисных центрах.

    Очень часто на форумах люди задаются вопросом, какой мощности им следует выбрать шуруповерт, чтобы спокойно заворачивать саморезы или шурупы такого-то диаметра и длинны? Или, другими словами, какой у шуруповерта должен быть крутящий момент в Н·м для тех или иных задач?

    Ответы на эти вопросы люди получают разные. Чаще всего звучат предложения от «всезнающих спецов» купить дорогие полупрофессиональные 18-вольтовые модели. Мол, им точно все по плечу. Но стоит ли переплачивать вдвое, если вдруг окажется, что младшие модели на 10-14 вольт также хороши? А если есть разница, то какова?

    Постараемся кратко рассказать о теории и перейти к практике.

    Теория

    В нашей статье по «выбору лучшего шуруповерта» мы уже касались этой темы, но сейчас расскажем чуть подробнее, но так, чтобы ни у кого не закипела голова от формул.

    Основным показателем мощности шуруповерта является вращающий момент (крутящий момент), который измеряется в Н·м. Образно говоря, 10 Н·м будет эквивалентен вращающей силе, создаваемой гирей в один килограмм, закрепленной на рычаге в один метр, другой конец которого жестко прикреплен к вращаемому валу.

    Для полупрофессиональных моделей шуруповертов, а также предназначенных для домашних мастеров, типичное значение крутящего момента составляет от 10 до 60 Н·м. Если брать «среднюю температуру по больнице», то можно аккуратно предположить, что некий средний шуруповерт имеет характеристику крутящего момента в 25 Н·м.

    Однако тут не все так просто, поскольку на практике выдаваемое значение крутящего момента у электромоторов не постоянно и зависит, в первую очередь, от оборотов – чем выше обороты, тем ниже момент на валу. В идеале график линейный с небольшим наклоном – самый низкий момент будет на максимальных оборотах, самый высокий – при неподвижном вале. Но в последнем случае возникнет ситуация, фактически, короткого замыкания обмоток электромотора. За сколько секунд сгорит мотор, зависит от того, из чего сделаны его обмотки. Но будьте уверены, дым и запах гари будут вам обеспечены.

    Чтобы не доводить до «греха», дорогие модели имеют систему автоматического отключения при перегрузке, когда соотношение количества оборотов в секунду по отношению к потребляемому току вдруг превысит опасный порог. Однако у нас тут вопрос совсем в другом – какова грань, за которую переходить нельзя, т.е каковы минимальные обороты двигателя, а, следовательно, крутящий момент, при котором он будет работать без перегрева и дальнейшего ущерба для самого себя?

    Иными словами, мы уже оперируем двумя значениями крутящего момента. Как вы думаете, какой из них указывается производителем в технических характеристиках шуруповерта? Нет, не угадали. У каждого производителя своя методика измерения и свое понятие об этой характеристике. Деталей никто не раскрывает, и общего стандарта не существует. Потому очень часто можно наблюдать ситуацию, когда более слабый по характеристикам шуруповерт оказывается заметно мощнее более сильного.

    Выходом из этой ситуации могут быть только практические испытания в одинаковых условиях.

    Сколько Н·м нужно чтобы завернуть шуруп

    Прежде чем дать точный ответ, необходимо уточнить, какой шуруп/саморез и куда. В последнем случае имеет значение плотность и твердость материала. Табличка ниже даст вам представление о некоторой ориентировочной средней плотности и твердости отдельных пород древесины при влажности 12-15%. На самом деле, плотность одной и той же породы древесины может меняться в относительно широких пределах, потому обычно принимают к сведению некие типичные значения:

    Порода дереваПлотность, г/см 3Твердость по шкале Янка
    Пихта сибирская0,39420
    Ель0,45660
    Осина0,51420
    Сосна0,52380-1240
    Липа0,53400
    Береза0,651260
    Бук0,661300
    Лиственница0,661200
    Дуб0,691360
    Тис0,751200
    Ясень0,751320
    Слива0,8

    1200

    Яблоня0,9

    1200

    Самшит0,962100

    Это означает, что для работы с березой, например, понадобится усилие примерно вдвое выше, чем при работе с елью. Однако связь тут не совсем прямая. Более смолистая древесина будет легче подвергаться обработке.

    Теперь перейдем к шурупам. Для нас имеет значение диаметр, длинна, форма и характер резьбы. Например, для тонких саморезов при закручивании в средние по твердости породы дерева (сосна) мы имеем следующую картину:

    Размеры шурупа, ммМаксимальный крутящий момент, Н·м
    4х503,56
    4х904,92
    5х505,36
    5х907,24

    Глянув в таблицу, можно подумать, что для саморезов 5х90 подойдет любой из шуруповертов, имеющихся в продаже. Но это не совсем так, о чем в практической части материала.

    1. мы не знаем, с какого «потолка» взяты цифры характеристик крутящих моментов шуруповертов, указанных производителем;
    2. также Капитан Очевидность подсказывает, что используемый материал оказывает заметное влияние на весь процесс, равно как и параметры шурупов.

    Практика

    Для практических упражнений мы взяли три разных шуруповерта и два разных типа шурупов/саморезов и будем закручивать их в сухой сосновый брус, попутно фиксируя успешность операции и затраченное время.

    Вот названия моделей шуруповертов и их и краткие технические характеристики:

    DeFort DCD-12-6Bosch PSR 960Hitachi DS 14DCL
    крутящий момент, Н·м101231
    частота вращения, об/мин0-5000-5500-450
    0-1250
    аккумуляторNi-Cd, 12 В, 1,2 А·чNi-Cd, 9,6 В, 1,2 А·чLi-ion, 14,4 В, 1,5А·ч

    Два «старичка» (Bosch и DeFort) тут оказались неслучайно. Эти маломощные модели сразу дадут понять, насколько вся вышеизложенная теория была верна, и достаточно ли абсолютно любого шуруповерта, чтобы успешно работать с саморезами 5х90 мм и подобными. А середнячок Hitachi просто дополнит нам картину и выполнит роль некого современного инструмента.

    В отношении шурупов мы мелочиться не стали и взяли для пробы тонкий черный 4,8 х 127 мм и, для полноты ощущений, мощный белый 6 х 150 мм. Чтобы закрутить последний в сосновый брус, предположительно, необходим максимальный момент около 11 Н·м.

    Итак, в качестве итогов предлагаем вам посмотреть короткий видеоролик, на котором мы запечатлели весь процесс.

    Тонкий саморез (4,8 х 127 мм) оказался посильной задачей для всех шуруповертов без исключения, хотя было видно, что Bosch он дался не так легко. Затраченное шуруповертами время составило: 5,3 секунды для DeFort, 7 секунд Bosch и 2,9 секунд Hitachi. Мы не ставили задачу точного сравнения времени и повторяемости, нам был важен только конечный результат. Потому мы сделали лишь по одному дублю для каждой из моделей.

    Белый «крепыш» оказался по зубам уже не всем. Как и в предыдущем случае, DeFort начал очень бодро, но последний сантиметр ему так и не покорился.

    Bosch, хотя и решил поставленную задачу, но запах подгоревших обмоток дал однозначно понять, что такие нагрузки этому инструменту категорически противопоказаны.

    Ну а для мощного Hitachi оба самореза – как игрушки. Вот что показал секундомер: 13,3 секунд у DeFort (не довернул 1 см), 20,7 секунд Bosch и 4,3 секунды Hitachi. Вдобавок отметим, что работал Hitachi во время теста на второй скорости, где момент как минимум на треть ниже максимального заявленного в характеристиках.

    Есть у нас к практической части еще одно важное замечание: в нашем тесте участвовали шуруповерты старых моделей (Hitachi не в счет), у которых нет системы защиты от перегрузки. Большинство современных моделей такую систему имеют, потому не дадут так издеваться над инструментом, как это можно наблюдать на видеоролике с шуруповертом Bosch. Это также означает, что система защиты не даст завернуть такой шуруп до конца с первого раза. Вам придется еще несколько раз включать инструмент до момента очередного срабатывания защиты (обычно это 1-2 секунды), пока шуруп не будет закручен. Но чтобы так не издеваться над инструментом, разумеется, надо покупать шуруповерт с определенным запасом мощности!

    Выводы

    Что касается оптимальной мощности (крутящего момента) для работы с шурупами 6 х 150 мм, то, по нашему мнению, она находится в районе 20-30 Н·м. Также можно однозначно сказать, что домашнему мастеру, который шурупов 6 х 150 в глаза никогда не видел, нет никакого смысла тратить деньги на «монстров» с моментом в 40 и более Н·м. Ну разве что только вас привлечет в них большая емкость аккумулятора в ватт-часах (за счет более высокого вольтажа и большего количества «банок») или какие-либо другие особенности.

    На что влияет крутящий момент


    Крутящий момент двигателя и мощность, на что влияют эти показатели? — DRIVE2

    В данной статье мы рассмотрим влияние мощности и крутящего момента двигателя на динамику автомобиля, а так же принцип расчета крутящего момента.

    Итак, что представляет собой мощность двигателя и на что она влияет? Для большинства автолюбителей не секрет, что чем выше мощность автомобиля (принято измерять в лошадиных силах), тем большую максимальную скорость может развивать автомобиль. Но следует помнить, что мощность развиваемая двигателем автомобиля — величина непостоянная и имеет прямую зависимость от оборотов двигателя. Если понятным языком, то при обычной езде при оборотах двигателя до 3х-4х тысяч оборотов используются далеко не все лошадиные силы имеющиеся под капотом. Т.к. пик максимальной мощности (указанной в паспорте автомобиля), на большинстве бензиновых двигателей достигается при 5500-6500 оборотов/минуту а у дизельных двигателей и вовсе при 3000-4000 об/мин. И почему то так сложилось, что в авто мире стало принятым брать за основную величину характеризующую динамические показатели автомобиля именно лошадиные силы.

    И если с мощностью более менее понятно, то когда разговор заходит за крутящий момент двигателя, начинается полная неразбериха.

    Давайте представим простую дорожную ситуацию, когда на небольших оборотах двигателя (2000-2500об/мин) требуется резко ускориться, например для обгона. Вот здесь как раз и вступает в силу крутящий момент и если он невелик, то при нажатии на педаль газа мы… ждем, пока автомобиль не наберет нужные обороты для динамичного ускорения. В случае же с большим показателем крутящего момента (на большинстве дизельных двигателей) динамичное ускорение при нажатии на педаль происходит незамедлительно.

    Сам же крутящий момент двигателя представляет собой приложение силы на плечо рычага. Производимая сила измеряется в ньютонах, а рычаг в метрах. Отсюда и значение характеризующее крутящий момент – НюьтонМетры (Нм). Величина крутящего момента в 1Нм – означает, что сила в один Ньютон, приложена к рычагу имеющему плечо в 1 метр. В ДВС в роли рычага выступает кривошипно-шатунный механизм. Соответственно, чем более сильное толкающее воздействие оказывает на поршень воспламеняющая смесь в цилиндре, тем выше крутящий момент. В этом то как раз и кроется загадка более высокого крутящего момента дизельных двигателей в сравнении с бензиновыми. Т.к. бензиновые двигатели имеют степень сжатия в цилиндре – 9-12 Атмосфер, а дизельные 16-20 Атмосфер. Кстати моторы оснащенные нагнетателем (турбиной) обладают в первую очередь значительно более высоким крутящим моментом, т.к. турбина позволяет за счет нагнетания значительно большего количества смеси в цилиндр увеличить силу воздействия воспламеняющейся смеси на поршень.

    Итак мы выяснили, что момент рождается за счет толкающей силы воздействующей на поршень, который в свою очередь передавая силу через шатун на коленвал и преобразует эту силу в крутящий момент. Суть этого процесса такова, что чем выше крутящий момент двигателя, тем быстрее двигатель набирает обороты под нагрузкой. Исходя из этого несложно понять, что именно от крутящего момента зависит динамика разгона.

    Крутящий момент так же как и мощность имеет максимальные значения при конкретных оборотах двигателя. Но в данном случае более важным является не столько сама величина крутящего момента, сколько показатель оборотов, при которых момент достигается. Отсюда и разделение предпочтений автовладельцев между типами двигателей (бензиновый или дизельный).

    Важно помнить, что бОльший объем двигателя так же способствует бОльшему крутящему моменту и соответственно более уверенной динамике ускорения.

    Генри Форд говорил: «лошадиные силы продают автомобиль, а крутящий момент выигрывает гонки».

    Крутящий момент двигателя и мощность, на что влияют эти показатели?

    В данной статье мы рассмотрим влияние мощности и крутящего момента двигателя на динамику автомобиля, а так же принцип расчета крутящего момента.

    Итак, что представляет собой мощность двигателя и на что она влияет? Для большинства автолюбителей не секрет, что чем выше мощность автомобиля (принято измерять в лошадиных силах), тем большую максимальную скорость может развивать автомобиль. Но следует помнить, что мощность развиваемая двигателем автомобиля — величина непостоянная и имеет прямую зависимость от оборотов двигателя. Если понятным языком, то при обычной езде при оборотах двигателя до 3х-4х тысяч оборотов используются далеко не все лошадиные силы имеющиеся под капотом. Т.к. пик максимальной мощности (указанной в паспорте автомобиля), на большинстве бензиновых двигателей достигается при 5500-6500 оборотов/минуту а у дизельных двигателей и вовсе при 3000-4000 об/мин. И почему то так сложилось, что в автомире стало принятым брать за основную величину характеризующую динамические показатели автомобиля именно лошадиные силы.

    И если с мощностью более менее понятно, то когда разговор заходит за крутящий момент двигателя, начинается полная неразбериха.

    Давайте представим простую дорожную ситуацию, когда на небольших оборотах двигателя (2000-2500об/мин) требуется резко ускориться, например для обгона. Вот здесь как раз и вступает в силу крутящий момент и если он невелик, то при нажатии на педаль газа мы… ждем, пока автомобиль не наберет нужные обороты для динамичного ускорения. В случае же с большим показателем крутящего момента (на большинстве дизельных двигателей) динамичное ускорение при нажатии на педаль происходит незамедлительно.

    Сам же крутящий момент двигателя представляет собой приложение силы на плечо рычага. Производимая сила измеряется в ньютонах, а рычаг в метрах. Отсюда и значение характеризующее крутящий момент – НюьтонМетры (Нм). Величина крутящего момента в 1Нм – означает, что сила в один Ньютон, приложена к рычагу имеющему плечо в 1 метр. В ДВС в роли рычага выступает кривошипно-шатунный механизм. Соответственно, чем более сильное толкающее воздействие оказывает на поршень воспламеняющая смесь в цилиндре, тем выше крутящий момент. В этом то как раз и кроется загадка более высокого крутящего момента дизельных двигателей в сравнении с бензиновыми. Т.к. бензиновые двигатели имеют степень сжатия в цилиндре – 9-12 Атмосфер, а дизельные 16-20 Атмосфер. Кстати моторы оснащенные нагнетателем (турбиной) обладают в первую очередь значительно более высоким крутящим моментом, т.к. турбина позволяет за счет нагнетания значительно большего количества смеси в цилиндр увеличить силу воздействия воспламеняющейся смеси на поршень.

    Итак мы выяснили, что момент рождается за счет толкающей силы воздействующей на поршень, который в свою очередь передавая силу через шатун на коленвал и преобразует эту силу в крутящий момент. Суть этого процесса такова, что чем выше крутящий момент двигателя, тем быстрее двигатель набирает обороты под нагрузкой. Исходя из этого несложно понять, что именно от крутящего момента зависит динамика разгона.

    Крутящий момент так же как и мощность имеет максимальные значения при конкретных оборотах двигателя. Но в данном случае более важным является не столько сама величина крутящего момента, сколько показатель оборотов, при которых момент достигается. Отсюда и разделение предпочтений автовладельцев между типами двигателей (бензиновый или дизельный).

    Важно помнить, что бОльший объем двигателя так же способствует бОльшему крутящему моменту и соответственно более уверенной динамике ускорения.

    Генри Форд говорил: «лошадиные силы продают автомобиль, а крутящий момент выигрывает гонки». 

    На что влияет крутящий момент двигателя?

    • От чего может зависеть крутящий момент?

    Каждый автолюбитель когда-нибудь слышал о таком параметре, как крутящий момент мотора, но далеко не всем автовладельцам ясно, что это за показатель, на что он влияет и как правильно определяется. Отдельные водители даже не могут правильно сказать, какой параметр крутящего момента лучше (высокий или низкий). Мы попробуем максимально подробно рассказать о том, что собой представляет крутящий момент силового агрегата и на что он влияет.

    Значение крутящего момента непосредственно зависит от мощности мотора. Несомненно, в паспорте с характеристиками к машине вы неоднократно видели максимальное количество оборотов коленвала, которое движок может развивать.

    Помимо этого, рядом с оборотами имеется еще один параметр, который измеряется в ньютон-метрах. Он указывает на число оборотов, при котором достигается предельно возможный крутящий момент. На многих машинах данный крутящий момент (либо максимальное количество ньютон-метров) достигается на уровне 4,5-5 000 оборотов. Это означает, что как раз при таких оборотах мотор вашей машины производит полную отдачу.

    Другими словами, используется вся его мощность для предельно быстрого разгона. Однако даже при большом показателе нютон-метров (на отметке 5 000 оборотов) автотранспорт может разгоняться не так резво, как вы того хотите.

    Допустим, движок нашего авто имеет такие же характеристики (предельно возможный крутящий момент достигается на 5 000 оборотах). Возможно, на шоссе у вас и получится раскрутить мотор и добиться полного увеличения мощности, но на городских улицах (когда количество оборотов меньше 3 000) машина может казаться медленной.

    Вместе с тем, когда максимальный параметр крутящего момента достигался бы на отметке 3 000 оборотов, то силовой агрегат начинал бы быстрый разгон с самых низких оборотов. Но из-за того, что подавляющее большинство авто достигает максимума на уровне 4 500 оборотов, то приходится раскручивать мотор до 3-3,5 000 оборотов, затем переходить на большую передачу и снова раскручивать двигатель.

    От чего может зависеть крутящий момент?

    Разумеется, значение крутящего момента напрямую зависит от характеристик самого движка. Прежде всего, указанный параметр зависит от объема двигателя. Например, при небольшом объеме мотора (1,3-1,5 л) будет трудно стремительно разогнать машину, а вот с двухлитровым двигателем это можно будет сделать легко, потому что авто станет быстро разгоняться на низких оборотах (благодаря большему значению крутящего момента).

    Другой параметр – это мощность, которая измеряется в лошадиных силах. Для успешного преодоления различных сил сопротивления (встречного воздушного потока или при движении автомобиля вверх по склону) требуется хороший запас мощности. Как мы уже говорили, на низких оборотах у нас небольшое значение мощности, а вот при повышении числа оборотов большой крутящий момент помогает оперативно мобилизовать все возможности мотора и направить их на разгон автомобиля.

    В заключение нужно сказать, что опытные автомобилисты, кроме изучения объема движка и числа лошадиных сил, обращают внимание и на крутящий момент, потому что именно он показывает, как скоро мотор сможет разогнать машину, создан автомобиль для движения по шоссе или же это оптимальный вариант для городских улиц.

    Крутящий момент и лошадиные силы . — DRIVE2

    Интересная познaвательная статья для любителей ездить на автомобилях с дизельным двигателем.

    Лошадиные силы решают всё – такой вывод можно сделать, читая иные автомобильные издания, а также рекламные буклеты и техпаспорта. Так ли это? Зачем тогда в технических характеристиках указывают еще и крутящий момент?Что определяют ньютон-метры? Что важнее – «лошади» или «ньютоны»?

    ТЕОРИЯДля начала стоит разобраться с определениями. Вспоминаем школьный учебник физики. Крутящий момент– это произведение силы на плечо рычага, к которому она приложена, Мкр = F х L. Сила измеряется в ньютонах, рычаг – в метрах. 1 Нм – крутящий момент, который создает сила в 1 Н, приложенная к концу рычага длиной 1 м.В двигателе внутреннего сгорания роль рычага исполняет кривошип коленвала. Сила, рождаемая при сгорании топлива, действует на поршень, через который и создает крутящий момент. Выходит, что главная характеристика двигателя – величина крутящего момента на коленчатом валу. Понятно, что момент создается не постоянно, а только в период действия силы – то есть, только во время рабочего хода.Разберемся теперь с мощностью. Все там же – в школьном пособии и про нее сказано предельно ясно. Мощность – это работа, совершенная в единицу времени. Формула банальная – Р = A/t. А так как работу в двигателе совершает именно та сила, которая создает крутящий момент, то мощность, говоря простыми словами, показывает, сколько раз в единицу времени двигатель создает крутящий момент. Не надо быть семи пядей во лбу, чтобы понять – количество «крутящих моментов», то есть мощность, зависит от количества оборотов двигателя. Чтобы нам было уже совсем просто, физики-математики напряглись и вывели наглядную формулу: P = Mкр*n/9549, где Mкр – крутящий момент двигателя (Нм), n – обороты коленвала двигателя (об./мин.). (Мощность получается в киловаттах. Чтобы преобразить ее в «скакунов», умножаем результат на 1,36).Вроде бы с печкой все понятно. Попробуем от нее станцевать. На что влияет мощность, а на что – крутящий момент? Начнем с мощности. Мощность двигателя при движении автомобиля расходуется на преодоление различных сил сопротивления – это силы трения в трансмиссии и качения колес, силы аэродинамического сопротивления и т.д. Чем больше мощность, тем большее сопротивление автомобиль может преодолеть и большей скорости достичь. Повторимся, мощность мотора – величина не постоянная, а зависящая, прежде всего, от оборотов двигателя. Рядом со значениями максимальной мощности всегда указываются обороты, на которых она достигается. На других оборотах мощность иная – более низкая. Какая именно – можно узнать, взглянув на график внешних скоростных характеристик того или иного мотора. Важно другое – при разгоне двигатель не развивает оборотов максимальной мощности сразу (во всяком случае в обычных условиях). Машина стартует обычно с оборотов чуть выше холостого хода. Поэтому, чтобы мобилизовать весь «табун», мотору нужно время на раскрутку. Вот здесь-то и играет решающую роль крутящий момент. Именно от него зависит время достижения двигателем максимальной мощности, а значит и вожделенная динамика разгона. И получается, что забытые некоторыми ньютон-метры значат не меньше, чем хваленые лошадиные силы.

    Противостояние «л.с. – Нм»

    логично выливается в противостояние «бензин – дизель». Серийные бензиновые двигатели развивают не самый большой крутящий момент. К тому же максимального значения он достигает только на средних оборотах (обычно 3000-4000). Зато эти моторы могут раскручиваться до 7-8 тыс. об./мин., что позволяет им развивать довольно большую мощность. Ведь согласно приведенной выше формуле, мощность численно от оборотов зависит гораздо больше, чем от момента.По этой же причине тихоходные дизели (развивают не более 5 000 об./мин.), обладая внушительным моментом, доступным практически с самых «низов», в максимальной мощности проигрывают бензиновым.Однако мощность важна не только максимальная. Как уже было сказано, мощность, которую развивает двигатель на оборотах ниже предельных, как правило, так же далека от максимальной заявленной. Ключом к пониманию характера любого мотора являются кривые его характеристик: мощности и момента.Приводим графики двух двигателей марки Mercedes-Benz. Один – объемом 1,8 л, дизельный (с турбонаддувом). Другой – двухлитровый бензиновый. Заявленные мощности – 109 л.с. и 136 л.с. соответственно. Моменты – 250 и 185 Нм. Мы сравнили мощность этих моторов во всем диапазоне оборотов, а не только максимальную. И получилось, что от 1000 до 4000 об./мин. (а это практически весь «городской» спектр) дизель мощнее «бензина» максимум на 34 л.с., а в среднем – на 17. О превосходстве в моменте даже говорить не стоит.

    Ради интереса мы сравнили также характеристики аналогичных двухлитровых моторов Volkswagen: 2,0 TDI (140 л.с. и 320 Нм) и 2,0 FSI (150 л.с. и 200 Нм). Результат тот же – выигрыш в максимальной мощности оборачивается проигрышем до отметки в 4 500 об./мин. Интересная картина.

    Конь-огонь

    Измерение мощности в лошадиных силах широко распространено только в автомобильной сфере. Причина – неоднозначное определение этой единицы. Мерить мощь моторов по поголовью рысаков впервые предложил Джеймс Уатт (в специальной литературе для этих целей используют его фамилию). Он предположил, что лошадь может поднимать 33 000 фунтов груза (14 968,55 кг) со скоростью 1 фут (30 см) в минуту, что равняется 745,7 Вт. Именно эту единицу до сих пор применяют в Англии (обозначение BHP). В остальных европейских странах лошадиная сила определяется как 735,49875 Вт и обозначается pferdestarke – PS (нем.), cheval – ch (фр.) или просто – л.с.

    Цель и средства

    Наращивать мощность моторов можно по-разному. Самый «примитивный» способ – увеличение рабочего объема – слава богу, свое, похоже, отжил. Теперь в чести более продвинутые методы.Увеличение максимального числа оборотов позволяет поднять мощность без серьезного изменения крутящего момента. Пример – BMW M5/M6, двигатель которых крутится до 8250 об./мин.Турбо- и механический наддув резко повышают крутящий момент мотора. К примеру, двигатель 2,0 FSI (VW, Audi) выдает 150 л.с. и 200 Нм. Он же, но с турбиной (2,0 TFSI) – 200 л.с., 280 Нм.

    Изменение фаз газораспределения (VTEC, VVTi, bi-VANOS) позволяет поднять момент и сдвинуть его в зону «нужных» оборотов. Самый изощренный способ – возможность изменения степени сжатия. Так, на 1,6-литровом турбо-двигателе SAAB, благодаря подвижной головке блока, она варьируется от 8:1 до 14:1. Результат – 308 Нм и 225 л.с.

    ПРАКТИКА

    Понять, что значат на практике «лишние» ньютон-метры и лошадиные силы, мы решили на примере двух новейших Volkswagen Passat с упомянутыми двухлитровыми моторами – турбо-дизелем и бензиновым атмосферником. У первого – 140 л.с. и 320 Нм, у второго – 150 л.с. и 200 Нм. Для кристальной чистоты эксперимента обе машины были с шестиступенчатыми механическими коробками (разницу передаточных отношений главной пары в данном случае считаем несущественной).На дизельном Passat мы уже ездили, а потому хорошо знакомы с его неординарной натурой. На холостых и малых оборотах мотор не проявляет особого энтузиазма, но по достижении 1750 об./мин. (уже с этой отметки водителю доступны все 320 Нм момента) в корне преображается. На кривой хорошо видно, что амплитуда крутящего момента составляет 110 Нм, больше трети максимального значения! Эту разницу двигатель успевает преодолеть в промежутке между 1000 и 2000 об./мин. Уже под конец второй тысячи мотор мощно бросает Passat вперед. Ускорение не ослабевает вплоть до максимальных 4500 об./мин., следует переключение – и вновь изобилие тяги до самого верха. Еще переключение – все повторяется. Словно невидимый силач-великан тащит машину тросом, потом перехватывает руки и тащит снова – бурный разгон идет на каждой передаче, даже на пятой и шестой он остается впечатляющим. Если не мешкать при переключениях и не выпадать из диапазона 2000-4000 оборотов (а это не сложно благодаря исключительно точному приводу переключения), то дизельный Passat позволяет перемещаться в пространстве очень и очень интенсивно. Спортивно. Единственный минус, он же плюс – при разгоне «в пол» стрелка тахометра в мгновения пролетает короткую шкалу. Только успевай работать ручкой КПП.Пора пересаживаться в бензиновую машину. Ее характер спокойнее. Passat реагирует на действия акселератора точно и отзывчиво. Мотор тянет уверенно с самого низа и до максимальных оборотов, но без подхватов и волнующих ускорений. Посмотрите, разница между моментом на холостом ходу и максимальным – всего 50 Нм, так что подхватам взяться просто неоткуда. Но управляться с такой динамикой удобнее – передачи длинные, с прогнозируемой тягой во всем рабочем диапазоне. Пока мотор перегоняет стрелку тахометра из левого нижнего угла в правый нижний, можно немного передохнуть, не надо строчить рычагом коробки. Ага, есть 6 500 – переключаемся. Но эмоции, эмоции от разгона: Они есть, но не такие, как в случае с дизелем. Здесь уже не чудо-силач тянет машину, а какой-то механический робот-ускоритель, с постоянным, точно тарированным усилием. Теперь самое сладкое. Машины стоят бок о бок на одной линии. Напомним, что у бензинового Passat превосходство в максимальной мощности на 10 л.с. Но проявляется оно только после 4 500 оборотов. А у дизеля превосходство в моменте, которое проявляется во всем диапазоне. Ну, любители дрэг-рэйсинга, ваши ставки?Синхронный старт. Первые секунды машины идут ноздря в ноздрю. Затем дизель уступает четверть корпуса – мотор быстро выкрутился, надо менять передачу. Из-за более редких переключений бензиновый Passat выходит вперед почти на корпус. С набором скорости этот отрыв уменьшается. По паспорту в упражнении «до сотни» дизель проигрывает своему противнику всего 0,4 секунды. Это разница в пределах водительской погрешности. И максимальная скорость меньше лишь чуть-чуть – 209 км/ч против 213.Но это на зачетной прямой. Там водители бросают сцепление, уже раскрутив моторы. А в городе, чтобы угнаться за дизелем, «бензину» приходится постоянно держать обороты близко к красной зоне. Вспомните графики – там, где дизельный двигатель уже почти набрал свои 140 л.с. (3500 об./мин.), у бензинового под педалью пока только сотня. Чтобы набрать столько же, ему нужно еще 1 500 оборотов. При этом первый набирает обороты максимальной мощности почти моментально (вот оно, превосходство момента!), а второй – значительно дольше. И на шоссе, двигаясь со скоростью 120 км/ч, «дизелю» для ускорения не потребуется переключение, а бензиновый Passat попросит передачу пониже.В общем, на практике все получилось так, как предсказывала теория. Максимальная мощность двигателя прежде всего определяет максимальную скорость автомобиля. А крутящий момент – быстроту достижения мотором этой максимальной мощности. Таким образом, при сопоставимой мощности пресловутый разгон до «сотни» будет даваться более «моментному» двигателю меньшей кровью – он требует меньшей раскрутки перед стартом машины. В «мирных» условиях повседневного вождения это весомый фактор. Но и мощность крайне важна: момент не может разгонять автомобиль бесконечно – только до определенной скорости, которая, естественно, ограничивается мощностью. Вот и получается, что «лошади» и «ньютоны» тесно взаимосвязаны, и разить ими по отдельности оппонента в споре о моторах – дилетантство.Как бы то ни было, практический итог этого противостояния противоречит общепринятому автолюбительскому мировоззрению. Мы однозначно признаем победителем турбо-дизель. Именно он больше подойдет водителям, ценящим динамику и азарт разгона. К тому же на его стороне экономичность и дешевизна топлива. А педанты, оценивающие превосходство динамики по голым цифрам, и любители ровных характеристик найдут свою правду в более привычном пока для России «бензине». И еще – у него правильный звук, если для кого-то это имеет большое значение.

    Между прочим, результат нашего небольшого исследования отвечает мировым тенденциям автопрома – современные турбо-дизели, догнав бензиновые моторы по мощности, склонили чашу весов в свою сторону, благодаря большему моменту. Так что от солярки россиянам, похоже, все равно не уйти.

    В выводе напишим старую поговорку: Покупаем лошадиные силы, а ездим на моменте.

    Page 2

    Интересная познaвательная статья для любителей ездить на автомобилях с дизельным двигателем.

    Лошадиные силы решают всё – такой вывод можно сделать, читая иные автомобильные издания, а также рекламные буклеты и техпаспорта. Так ли это? Зачем тогда в технических характеристиках указывают еще и крутящий момент?Что определяют ньютон-метры? Что важнее – «лошади» или «ньютоны»?

    ТЕОРИЯДля начала стоит разобраться с определениями. Вспоминаем школьный учебник физики. Крутящий момент– это произведение силы на плечо рычага, к которому она приложена, Мкр = F х L. Сила измеряется в ньютонах, рычаг – в метрах. 1 Нм – крутящий момент, который создает сила в 1 Н, приложенная к концу рычага длиной 1 м.В двигателе внутреннего сгорания роль рычага исполняет кривошип коленвала. Сила, рождаемая при сгорании топлива, действует на поршень, через который и создает крутящий момент. Выходит, что главная характеристика двигателя – величина крутящего момента на коленчатом валу. Понятно, что момент создается не постоянно, а только в период действия силы – то есть, только во время рабочего хода.Разберемся теперь с мощностью. Все там же – в школьном пособии и про нее сказано предельно ясно. Мощность – это работа, совершенная в единицу времени. Формула банальная – Р = A/t. А так как работу в двигателе совершает именно та сила, которая создает крутящий момент, то мощность, говоря простыми словами, показывает, сколько раз в единицу времени двигатель создает крутящий момент. Не надо быть семи пядей во лбу, чтобы понять – количество «крутящих моментов», то есть мощность, зависит от количества оборотов двигателя. Чтобы нам было уже совсем просто, физики-математики напряглись и вывели наглядную формулу: P = Mкр*n/9549, где Mкр – крутящий момент двигателя (Нм), n – обороты коленвала двигателя (об./мин.). (Мощность получается в киловаттах. Чтобы преобразить ее в «скакунов», умножаем результат на 1,36).Вроде бы с печкой все понятно. Попробуем от нее станцевать. На что влияет мощность, а на что – крутящий момент? Начнем с мощности. Мощность двигателя при движении автомобиля расходуется на преодоление различных сил сопротивления – это силы трения в трансмиссии и качения колес, силы аэродинамического сопротивления и т.д. Чем больше мощность, тем большее сопротивление автомобиль может преодолеть и большей скорости достичь. Повторимся, мощность мотора – величина не постоянная, а зависящая, прежде всего, от оборотов двигателя. Рядом со значениями максимальной мощности всегда указываются обороты, на которых она достигается. На других оборотах мощность иная – более низкая. Какая именно – можно узнать, взглянув на график внешних скоростных характеристик того или иного мотора. Важно другое – при разгоне двигатель не развивает оборотов максимальной мощности сразу (во всяком случае в обычных условиях). Машина стартует обычно с оборотов чуть выше холостого хода. Поэтому, чтобы мобилизовать весь «табун», мотору нужно время на раскрутку. Вот здесь-то и играет решающую роль крутящий момент. Именно от него зависит время достижения двигателем максимальной мощности, а значит и вожделенная динамика разгона. И получается, что забытые некоторыми ньютон-метры значат не меньше, чем хваленые лошадиные силы.

    Противостояние «л.с. – Нм»

    логично выливается в противостояние «бензин – дизель». Серийные бензиновые двигатели развивают не самый большой крутящий момент. К тому же максимального значения он достигает только на средних оборотах (обычно 3000-4000). Зато эти моторы могут раскручиваться до 7-8 тыс. об./мин., что позволяет им развивать довольно большую мощность. Ведь согласно приведенной выше формуле, мощность численно от оборотов зависит гораздо больше, чем от момента.По этой же причине тихоходные дизели (развивают не более 5 000 об./мин.), обладая внушительным моментом, доступным практически с самых «низов», в максимальной мощности проигрывают бензиновым.Однако мощность важна не только максимальная. Как уже было сказано, мощность, которую развивает двигатель на оборотах ниже предельных, как правило, так же далека от максимальной заявленной. Ключом к пониманию характера любого мотора являются кривые его характеристик: мощности и момента.Приводим графики двух двигателей марки Mercedes-Benz. Один – объемом 1,8 л, дизельный (с турбонаддувом). Другой – двухлитровый бензиновый. Заявленные мощности – 109 л.с. и 136 л.с. соответственно. Моменты – 250 и 185 Нм. Мы сравнили мощность этих моторов во всем диапазоне оборотов, а не только максимальную. И получилось, что от 1000 до 4000 об./мин. (а это практически весь «городской» спектр) дизель мощнее «бензина» максимум на 34 л.с., а в среднем – на 17. О превосходстве в моменте даже говорить не стоит.

    Ради интереса мы сравнили также характеристики аналогичных двухлитровых моторов Volkswagen: 2,0 TDI (140 л.с. и 320 Нм) и 2,0 FSI (150 л.с. и 200 Нм). Результат тот же – выигрыш в максимальной мощности оборачивается проигрышем до отметки в 4 500 об./мин. Интересная картина.

    Конь-огонь

    Измерение мощности в лошадиных силах широко распространено только в автомобильной сфере. Причина – неоднозначное определение этой единицы. Мерить мощь моторов по поголовью рысаков впервые предложил Джеймс Уатт (в специальной литературе для этих целей используют его фамилию). Он предположил, что лошадь может поднимать 33 000 фунтов груза (14 968,55 кг) со скоростью 1 фут (30 см) в минуту, что равняется 745,7 Вт. Именно эту единицу до сих пор применяют в Англии (обозначение BHP). В остальных европейских странах лошадиная сила определяется как 735,49875 Вт и обозначается pferdestarke – PS (нем.), cheval – ch (фр.) или просто – л.с.

    Цель и средства

    Наращивать мощность моторов можно по-разному. Самый «примитивный» способ – увеличение рабочего объема – слава богу, свое, похоже, отжил. Теперь в чести более продвинутые методы.Увеличение максимального числа оборотов позволяет поднять мощность без серьезного изменения крутящего момента. Пример – BMW M5/M6, двигатель которых крутится до 8250 об./мин.Турбо- и механический наддув резко повышают крутящий момент мотора. К примеру, двигатель 2,0 FSI (VW, Audi) выдает 150 л.с. и 200 Нм. Он же, но с турбиной (2,0 TFSI) – 200 л.с., 280 Нм.

    Изменение фаз газораспределения (VTEC, VVTi, bi-VANOS) позволяет поднять момент и сдвинуть его в зону «нужных» оборотов. Самый изощренный способ – возможность изменения степени сжатия. Так, на 1,6-литровом турбо-двигателе SAAB, благодаря подвижной головке блока, она варьируется от 8:1 до 14:1. Результат – 308 Нм и 225 л.с.

    ПРАКТИКА

    Понять, что значат на практике «лишние» ньютон-метры и лошадиные силы, мы решили на примере двух новейших Volkswagen Passat с упомянутыми двухлитровыми моторами – турбо-дизелем и бензиновым атмосферником. У первого – 140 л.с. и 320 Нм, у второго – 150 л.с. и 200 Нм. Для кристальной чистоты эксперимента обе машины были с шестиступенчатыми механическими коробками (разницу передаточных отношений главной пары в данном случае считаем несущественной).На дизельном Passat мы уже ездили, а потому хорошо знакомы с его неординарной натурой. На холостых и малых оборотах мотор не проявляет особого энтузиазма, но по достижении 1750 об./мин. (уже с этой отметки водителю доступны все 320 Нм момента) в корне преображается. На кривой хорошо видно, что амплитуда крутящего момента составляет 110 Нм, больше трети максимального значения! Эту разницу двигатель успевает преодолеть в промежутке между 1000 и 2000 об./мин. Уже под конец второй тысячи мотор мощно бросает Passat вперед. Ускорение не ослабевает вплоть до максимальных 4500 об./мин., следует переключение – и вновь изобилие тяги до самого верха. Еще переключение – все повторяется. Словно невидимый силач-великан тащит машину тросом, потом перехватывает руки и тащит снова – бурный разгон идет на каждой передаче, даже на пятой и шестой он остается впечатляющим. Если не мешкать при переключениях и не выпадать из диапазона 2000-4000 оборотов (а это не сложно благодаря исключительно точному приводу переключения), то дизельный Passat позволяет перемещаться в пространстве очень и очень интенсивно. Спортивно. Единственный минус, он же плюс – при разгоне «в пол» стрелка тахометра в мгновения пролетает короткую шкалу. Только успевай работать ручкой КПП.Пора пересаживаться в бензиновую машину. Ее характер спокойнее. Passat реагирует на действия акселератора точно и отзывчиво. Мотор тянет уверенно с самого низа и до максимальных оборотов, но без подхватов и волнующих ускорений. Посмотрите, разница между моментом на холостом ходу и максимальным – всего 50 Нм, так что подхватам взяться просто неоткуда. Но управляться с такой динамикой удобнее – передачи длинные, с прогнозируемой тягой во всем рабочем диапазоне. Пока мотор перегоняет стрелку тахометра из левого нижнего угла в правый нижний, можно немного передохнуть, не надо строчить рычагом коробки. Ага, есть 6 500 – переключаемся. Но эмоции, эмоции от разгона: Они есть, но не такие, как в случае с дизелем. Здесь уже не чудо-силач тянет машину, а какой-то механический робот-ускоритель, с постоянным, точно тарированным усилием. Теперь самое сладкое. Машины стоят бок о бок на одной линии. Напомним, что у бензинового Passat превосходство в максимальной мощности на 10 л.с. Но проявляется оно только после 4 500 оборотов. А у дизеля превосходство в моменте, которое проявляется во всем диапазоне. Ну, любители дрэг-рэйсинга, ваши ставки?Синхронный старт. Первые секунды машины идут ноздря в ноздрю. Затем дизель уступает четверть корпуса – мотор быстро выкрутился, надо менять передачу. Из-за более редких переключений бензиновый Passat выходит вперед почти на корпус. С набором скорости этот отрыв уменьшается. По паспорту в упражнении «до сотни» дизель проигрывает своему противнику всего 0,4 секунды. Это разница в пределах водительской погрешности. И максимальная скорость меньше лишь чуть-чуть – 209 км/ч против 213.Но это на зачетной прямой. Там водители бросают сцепление, уже раскрутив моторы. А в городе, чтобы угнаться за дизелем, «бензину» приходится постоянно держать обороты близко к красной зоне. Вспомните графики – там, где дизельный двигатель уже почти набрал свои 140 л.с. (3500 об./мин.), у бензинового под педалью пока только сотня. Чтобы набрать столько же, ему нужно еще 1 500 оборотов. При этом первый набирает обороты максимальной мощности почти моментально (вот оно, превосходство момента!), а второй – значительно дольше. И на шоссе, двигаясь со скоростью 120 км/ч, «дизелю» для ускорения не потребуется переключение, а бензиновый Passat попросит передачу пониже.В общем, на практике все получилось так, как предсказывала теория. Максимальная мощность двигателя прежде всего определяет максимальную скорость автомобиля. А крутящий момент – быстроту достижения мотором этой максимальной мощности. Таким образом, при сопоставимой мощности пресловутый разгон до «сотни» будет даваться более «моментному» двигателю меньшей кровью – он требует меньшей раскрутки перед стартом машины. В «мирных» условиях повседневного вождения это весомый фактор. Но и мощность крайне важна: момент не может разгонять автомобиль бесконечно – только до определенной скорости, которая, естественно, ограничивается мощностью. Вот и получается, что «лошади» и «ньютоны» тесно взаимосвязаны, и разить ими по отдельности оппонента в споре о моторах – дилетантство.Как бы то ни было, практический итог этого противостояния противоречит общепринятому автолюбительскому мировоззрению. Мы однозначно признаем победителем турбо-дизель. Именно он больше подойдет водителям, ценящим динамику и азарт разгона. К тому же на его стороне экономичность и дешевизна топлива. А педанты, оценивающие превосходство динамики по голым цифрам, и любители ровных характеристик найдут свою правду в более привычном пока для России «бензине». И еще – у него правильный звук, если для кого-то это имеет большое значение.

    Между прочим, результат нашего небольшого исследования отвечает мировым тенденциям автопрома – современные турбо-дизели, догнав бензиновые моторы по мощности, склонили чашу весов в свою сторону, благодаря большему моменту. Так что от солярки россиянам, похоже, все равно не уйти.

    В выводе напишим старую поговорку: Покупаем лошадиные силы, а ездим на моменте.

    6.2: Влияние крутящего момента — Physics LibreTexts

    Гироскопическая прецессия

    Назад в разделах 1.6 и 1.7 мы обсуждали круговое движение с постоянной скоростью как движение, которое происходит потому, что результирующая сила, притягивающая объект к центральной точке, заставляет вектор скорости объекта изменять только направление, а не величину. В то время мы еще не обсуждали импульс, но теперь ясно, что теперь мы можем заменить «вектор скорости» в предыдущем предложении на «вектор импульса». Мы можем написать второй закон Ньютона (Уравнение 4.1.4) с точки зрения изменения величины и направления импульса:

    \ [\ overrightarrow F_ {net} = \ dfrac {d} {dt} \ overrightarrow p = \ dfrac {d} {dt} \ left (p \ widehat p \ right) = \ dfrac {dp} {dt} \ широкая шляпа p + p \ dfrac {d \ widehat p} {dt} \]

    Круговое движение с постоянной скоростью не изменит величину количества движения (первый член в уравнении 6.2.1 равен нулю), в то время как вся сила пошла бы на изменение направления количества движения. Как мы видели в разделе 1.6, два члена в уравнении 6.2.1 всегда перпендикулярны друг другу, что означает, что результирующая сила, действующая на объект, движущийся по кругу с постоянной скоростью, всегда перпендикулярна вектору импульса.

    Для нас все это не ново, но, как мы делали в последних двух главах, теперь мы рассмотрим вращательный эквивалент этого поведения. Переключение уравнения 6.2.1 на эквивалент вращения дает:

    \ [\ overrightarrow \ tau_ {net} = \ dfrac {d} {dt} \ overrightarrow L = \ dfrac {d} {dt} \ left (L \ widehat L \ right) = \ dfrac {dL} {dt} \ widehat L + L \ dfrac {d \ widehat L} {dt} \]

    Мы уже знаем, как чистый крутящий момент может изменить величину углового момента объекта — ускорение и замедление вращения — это то, что мы уже подробно рассмотрели.Но что, если мы настаиваем на том, чтобы величина оставалась постоянной (объект сохраняет ту же инерцию вращения и продолжает вращаться с постоянной скоростью), в то время как изменяется только направление движения? То есть, что, если первый член в уравнении 6.2.2 равен нулю, а второй член — нет? Как мы можем построить физическую систему, которая ведет себя подобным образом? Ответ на этот последний вопрос потребует довольно много усилий с помощью правила правой руки, но вот …

    Начнем с вращающегося объекта.Мы будем использовать в качестве нашей модели колесо велосипеда, вращающееся вокруг оси. Вектор углового момента будет указывать вдоль оси колеса согласно правилу правой руки. Теперь нам нужен чистый крутящий момент, который указывает перпендикулярно угловому моменту. Мы можем добиться этого, поместив конец оси колеса на опору и позволив весу колеса тянуть его вниз, когда опора толкает вверх.

    Крутящий момент и угловое ускорение | Безграничная физика

    Взаимосвязь между крутящим моментом и угловым ускорением

    Крутящий момент равен моменту инерции, умноженному на угловое ускорение.

    Цели обучения

    Выразите взаимосвязь между крутящим моментом и угловым ускорением в форме уравнения

    Основные выводы

    Ключевые моменты
    • Когда к объекту прикладывается крутящий момент, он начинает вращаться с ускорением, обратно пропорциональным его моменту инерции.
    • Это соотношение можно рассматривать как второй закон Ньютона для вращения. Момент инерции — это вращательная масса, а крутящий момент — это вращательная сила.
    • Угловое движение подчиняется Первому закону Ньютона. Если на объект не действуют никакие внешние силы, объект в движении остается в движении, а объект в состоянии покоя остается в покое.
    Ключевые термины
    • угловое ускорение : Скорость изменения угловой скорости, часто обозначаемая α.
    • крутящий момент : вращательное или скручивающее действие силы; (Единица СИ ньютон-метр или Нм; британская единица измерения фут-фунт или фут-фунт)
    • инерция вращения : тенденция вращающегося объекта оставаться вращающимся, если к нему не приложен крутящий момент.

    Крутящий момент и угловое ускорение связаны следующей формулой, где — момент инерции объекта, а [latex] \ alpha [/ latex] — угловое ускорение.

    Крутящий момент, угловое ускорение и роль церкви во Французской революции : Почему вещи меняют свою угловую скорость? Скоро ты узнаешь.

    Так же, как Второй закон Ньютона, согласно которому сила равна массе, умноженной на ускорение, крутящий момент подчиняется аналогичному закону.Если вы замените крутящий момент силой, а инерцию вращения — массой, а угловое ускорение — линейным ускорением, вы получите второй закон Ньютона. Фактически, это уравнение является вторым законом Ньютона, примененным к системе частиц, вращающихся вокруг данной оси. Он не делает никаких предположений о постоянной скорости вращения.

    Чистый крутящий момент вокруг оси вращения равен произведению инерции вращения вокруг этой оси и углового ускорения, как показано на рисунке 1.

    Рисунок 1 : Взаимосвязь между векторами силы (F), крутящего момента (τ), импульса (p) и углового момента (L) во вращающейся системе

    Подобно Второму закону Ньютона, угловое движение также подчиняется Первому закону Ньютона.Если на объект не действуют никакие внешние силы, объект в движении остается в движении, а объект в состоянии покоя остается в покое. С вращающимися объектами мы можем сказать, что, если не будет приложен внешний крутящий момент, вращающийся объект будет продолжать вращаться, а неподвижный объект не начнет вращаться.

    Если бы поворотный стол вращался против часовой стрелки (если смотреть сверху), и вы приложили пальцы к противоположным сторонам, поворотный стол начал бы замедлять свое вращение. По крайней мере, с точки зрения поступательного движения, к поворотному столу не будет прилагаться результирующая сила.Сила, указывающая на одну сторону, будет отменена силой, указывающей на другую. Силы двух пальцев уравняются. Следовательно, поворотный стол будет в поступательном равновесии. Несмотря на это, скорость вращения будет уменьшена, что означает, что ускорение больше не будет нулевым. Из этого мы можем заключить, что только потому, что вращающийся объект находится в поступательном равновесии, он не обязательно находится в вращательном равновесии.

    Что такое крутящий момент рулевого управления (и как это происходит)?

    Возможно, лучший вопрос:

    Что такое крутящий момент?

    Крутящий момент — это мера силы, которая может заставить объект (в данном случае колесо) вращаться вокруг оси.Эта вращающая сила может затем создавать линейное ускорение.

    Для создания крутящего момента сила должна прилагаться к объекту на расстоянии, как гаечный ключ работает с болтом — сила прилагается к концу гаечного ключа, противоположному концу болта.

    Это расстояние имеет решающее значение, поскольку чем больше расстояние между ними, тем больше крутящий момент.

    Torque обеспечивает половину потенциальной мощности транспортного средства, а другая половина — это частота вращения двигателя. Умножьте крутящий момент на число оборотов в минуту, и вы получите мощность в лошадиных силах.

    Или, другими словами: чем больше крутящий момент и больше оборотов в минуту, тем больше линейное ускорение и тем быстрее вы можете ехать.

    В то время как математика, лежащая в основе расчета крутящего момента, заставит плакать среднестатистического участника дорожного движения, принцип можно сократить до:

    Чем больше двигатель, чем больше расстояние, тем больше крутящий момент.

    По крайней мере теоретически. Вес автомобиля является важным фактором, поэтому ведущие автомобильных шоу регулярно говорят о мощности на тонну, поскольку это влияет на крутящий момент, который можно снизить.

    Mercedes Benz SL65 AMG Black разбил сердца, банковские счета и барабанные перепонки в 2010 году своим ошеломляющим 6-литровым двигателем V12, который развивал 1000 лошадиных сил и 959 фунт-фут крутящего момента.

    В то время как это была дикая инженерная разработка, реальность такова, что если вы сильно нажмете на акселератор, машина не только раскрутит колеса, но и разорвет их в клочья.

    Установленная мощность была больше, чем сцепление колес с дорогой, заставляя их вращаться.

    Так что же такое Torque Steer?

    Установив, что крутящий момент — это сила вращения, которую автомобиль может оказывать на свои колеса; крутящий момент рулевого управления, что неудивительно, когда мощность прилагается неравномерно к ведущим колесам.

    Эта проблема в основном затрагивает автомобили с передним приводом, из-за чего рулевое управление тянет в ту или иную сторону. В зависимости от выходной мощности транспортного средства это может быть незначительное усилие или резкое отклонение от курса, которое требует согласованных усилий для исправления.

    Причины этого?

    Рулевое управление с крутящим моментом может быть вызвано рядом причин, в том числе разницей в тяговом усилии между двумя ведущими колесами. Протектор или даже давление в шинах могут повлиять на способность автомобиля трогаться с места по прямой.

    Самая частая причина в переднеприводных автомобилях — это поперечно расположенный двигатель. В автомобилях этого типа двигатель, трансмиссия и дифференциал монтируются в одном месте — в моторном отсеке.

    В этих случаях дифференциал и трансмиссия свешиваются с одной стороны двигателя. Это означает, что полуоси имеют неравную длину, поэтому одно колесо передает больше мощности, чем другое.

    Проблема может усугубиться во время резкого ускорения, когда автомобиль раскачивается назад, смещая вес с ведущих колес, уменьшая прижимную силу и заставляя колеса вращаться.

    Любой, у кого есть переднеприводный автомобиль, совершивший смелый маневр на Т-образном перекрестке, несомненно, испытал тошнотворное чувство, когда вы пытаетесь отъехать, а колеса борются за сцепление с дорогой в самый неподходящий момент.

    Автомобили с задним приводом редко испытывают крутящий момент, потому что конструкция двигателя, дифференциала и трансмиссии является линейной, что означает, что полуоси имеют одинаковую длину.

    Можно ли это исправить?

    Строго говоря, нет.

    Однако это можно компенсировать. Транспортные средства можно запрограммировать на ограничение мощности, передаваемой на ведущие колеса, до тех пор, пока автомобиль не обнаружит достаточную прижимную силу и тягу, используя различные типы дифференциалов.

    Еще одно распространенное решение — запрограммировать усилитель рулевого управления на обнаружение и компенсацию крутящего момента рулевого управления. Таким образом, пока проблема остается, водитель не делает тяжелой работы по ее устранению.

    Это устраняет концентрацию добавок и усталость, которые могут возникнуть при длительных поездках.

    В конечном счете, лучший способ ограничить управляемость по крутящему моменту — это проявлять сдержанность при ускорении на первые несколько футов.

    MAT FOUNDRY GROUP ЯВЛЯЕТСЯ ВЕДУЩИМ ПРОИЗВОДИТЕЛЕМ КОМПОНЕНТОВ ДЛЯ АВТОМОБИЛЕЙ СЕРЫЙ И ИЗ КРУГКОГО ЖЕЛЕЗА, в том числе распредвалов

    , , корпусов дифференциала , и компонентов активной безопасности для бытовых и коммерческих автомобилей.

    ЧТОБЫ УЗНАТЬ БОЛЬШЕ О НАС ПРОСМОТРЕТЬ НАШИ ПРОДУКТЫ ИЛИ СВЯЗАТЬСЯ С НАМИ СЕГОДНЯ

    Крутящий момент (момент)

    Силу можно рассматривать как толчок или тянуть в определенном направлении.Когда к объекту прикладывается сила, результирующее движение объекта зависит от того, где сила приложена и как объект ограничен. Если объект не ограничен и сила приложена через центр гравитации, объект движется в чистом виде перевод, как описано Ньютоном законы движения. Если объект ограничен (или закреплен) в каком-то месте, называемом стержень , объект вращается насчет стержня, но не переводит.Усилие передается через шарнир а детали вращения зависят от расстояния от приложенное усилие к оси. Если объект не ограничен и сила приложена в некоторой расстояние от центра тяжести, объект как переводит и вращается вокруг центра тяжести. Детали вращения зависят от расстояния от приложенная сила к центру тяжести. Движение летающих объектов описанный этим третьим типом движения; сочетание перевода и вращения.M называется крутящий момент или момент . Крутящий момент также является векторной величиной и производит вращение. так же, как сила производит перевод. А именно объект на покой или вращение с постоянной угловой скоростью, будет продолжать делать это пока он не подвергнется внешнему крутящему моменту. Крутящий момент вызывает изменение в угловой скорости, которая называется угловым ускорением.

    Расстояние L , используемое для определения крутящего момента T , является расстоянием от шарнир p к силе, но измеряется перпендикулярно к направление силы.На рисунке показаны четыре примера крутящих моментов, чтобы проиллюстрировать основные принципы, регулирующие крутящие моменты. В каждом примере синий груз W воздействует на красную полосу, которая называется рука.

    В примере 1 сила (вес) приложена перпендикулярно к руке. В этом случае перпендикулярное расстояние — это длина бар и крутящий момент равен произведению длины и силы.

    Т = F * L

    В примере 2 к руке приложено такое же усилие, но сила теперь действует прямо через вращаться.В этом случае расстояние от оси перпендикулярно силе равно нулю. Значит, и в этом случае крутящий момент также равен нулю. Представьте себе распашную дверь. Если вы нажмете край двери, в сторону петли, дверь не двигается потому что крутящий момент равен нулю.

    Пример 3 — общий случай, когда сила прилагается. под некоторым углом к рука. Перпендикулярное расстояние определяется выражением тригонометрия как длина плеча (L), умноженная на косинус (cos) угла.Тогда крутящий момент определяется по формуле:

    Т = F * L * cos (а)

    Примеры 1 и 2 могут быть получены из этой общей формулы, так как косинус 0 градусов составляет 1,0 (Пример 1), а косинус 90 градусов равен 0,0 (Пример 2).

    В примере 4 точка поворота была перемещена с конца полосы на место около середины бара. Вес добавлен с обеих сторон оси. Справа один груз W создает силу F1 , действующую на расстоянии L1 от оси.Это создает крутящий момент T1 , равный произведение силы и расстояния.

    Т1 = F1 * L1

    Слева от Поверните два груза W , создавая усилие F2 на расстоянии L2 . Это производит крутящий момент T2 в направлении, противоположном T1, потому что расстояние находится в противоположном направлении.

    Т2 = F2 * L2

    Если бы система находилась в состоянии равновесия , или сбалансирован, крутящие моменты будут равны, и никакой полезный крутящий момент не будет действовать на систему.

    T1 = T2 или T1 — T2 = 0

    F1 * L1 = F2 * L2

    Если система не находится в равновесии или неуравновешена, стержень вращается. вокруг оси в направлении большего крутящего момента. Если F2 = 2 * F1, какова связь между L1 и L2, чтобы сбалансировать систему? Если F2 = 2 * F1, и L1 = L2, в каком направлении будет вращаться система?

    Авиационные инженеры используют крутящий момент, создаваемый аэродинамическими поверхностями. для стабилизации и управления самолетом.В самолетах рули производят аэродинамические силы. Эти силы действуют на некотором расстоянии от самолет cg и поэтому заставить летательный аппарат вращаться. В лифты производят момент качки, руль направления момент рыскания, и элероны производят момент качения. Возможность варьировать количество сила и момент позволяют пилоту маневрировать или обрезать самолет. На модельных ракетах плавники используются для создания крутящего момента вокруг ракеты центр гравитации предоставлять стабильность во время полета с двигателем.На воздушных змеях аэродинамические и весовые силы производить крутящий момент вокруг уздечка. Расстояние от точки уздечки и величина сил оказывает сильное влияние на представление воздушного змея.


    Действия:

    Экскурсии

    Навигация ..


    Руководство для начинающих Домашняя страница

    Что важнее для ускорения: мощность или крутящий момент?

    Когда я купил свою первую настоящую машину, мне стало (впервые) умеренно любопытно ее характеристики.Я начал смотреть, как он по сравнению с моей предыдущей машиной с точки зрения производительности, и сразу же был поражен ключевым вопросом:

    Что является наиболее важным атрибутом для ускорения — мощность или крутящий момент?

    Мой первый подход состоял в том, чтобы сразу же спросить окружающих и позвонить друзьям, которые увлекались автомобилями и / или гонками. Результаты не были удовлетворительными. Я получил несколько приличных ответов, но никто не смог объяснить мне отношения так, как я мог понять.

    Большинство людей имеют твердое мнение по этой теме, но не имеют реального представления о науке.

    Все это меня смущало и заинтриговало. Одна вещь, которую я действительно выяснил, заключается в том, что никто из спорящих людей не использовал точную науку в качестве основы для своих аргументов; они ссылались на науку , но делали это очень небрежно. Что ж, этого для меня было недостаточно, поэтому я решил найти настоящие ответы.

    Основы

    Итак, для начала я, естественно, проконсультировался с Google. Большинство хитов в категории «крутящий момент против лошадиных сил» — отличные произведения; они очень методично разбирают математику, так что я не буду повторять здесь эту прекрасную работу.Вместо этого я просто резюмирую основы, которые все принимают как факт.

    1. Лошадиная сила : Джеймс Ватт придумал концепцию лошадиных сил, которая, что интересно, является мерой мощности . 1 л.с. эквивалентен 33 000 фут / фунт-сила в минуту. Причина создания сложной единицы состоит в том, что мы учитываем три вещи с этим числом: количество задействованного веса, расстояние, на которое он перемещается, и , сколько времени потребуется, чтобы это сделать (последнее важно).
    2. Крутящий момент : Крутящий момент — это не что иное, как измерение крутящего момента или вращательной силы. Самый простой способ представить это — представить себе длинный вал, похожий на ось автомобиля, и представить, что он находится в комнате, подвешенной в воздухе. Внизу одного конца висит веревка с прикрепленным к ней грузом — очень тяжелым грузом.

    Теперь представьте, что кто-то пытается руками повернуть вал, чтобы поднять груз. Думайте о них, как о том, что они, по сути, пытаются действовать как лебедка и наматывать ее.

    Обратите внимание, что здесь ничего не говорится о том, насколько быстро вы скручиваете.

    Величина силы, которую они могут создать при скручивании, — это крутящий момент, который они могут создать.

    Единицей измерения этого является фут-фунт. Фут-фунт — это вращательная «сила», создаваемая подвешиванием одного фунта груза на конце 1-футовой лебедки.

    Перестаньте думать о мощности и крутящем моменте как о полностью разделенных

    Почему мощность и крутящий момент пересекаются при 5252 оборотах в минуту

    Ошибка, которую делают большинство людей, участвуя в этих дебатах, заключается в том, что мощность и крутящий момент рассматриваются независимо друг от друга.Почти все утверждают, что это отдельные, не связанные между собой ценности, а это не так.

    Мощность в лошадиных силах = (крутящий момент x число оборотов в минуту) / 5252

    Это уравнение является вторым по важности параметром на этой странице, и это причина того, что любой, кто говорит вам, что мощность и крутящий момент следует рассматривать одинаково и по отдельности, значительно ошибается. Мощность в лошадиных силах — это произведение крутящего момента и другого значения (число оборотов в минуту, деленное на 5252). Это не несвязанные, отдельные или разные вещи.

    На самом деле не существует ни одного прибора, который измерял бы мощность автомобиля.Это число придумано руками человека. При проверке характеристик автомобиля его крутящий момент измеряется с помощью динамометра.

    Показателем производительности двигателя является крутящий момент. Лошадиная сила — это дополнительное число, которое достигается путем умножения крутящего момента на число оборотов в минуту.

    Физика разгона

    Итак, теперь для самое главное на странице . То, что определяет истинное ускорение транспортного средства, совсем не спорно — это силы, деленные на массу . Формула ускорения представлена ​​ниже.

     f = ma
     

    Что означает…

     a = f / m
     

    Путаница возникает только при определении , о какой силе мы на самом деле говорим .

    Итак, мы вычисляем ускорение, и у нас есть постоянная масса. Мы уже установили, что крутящий момент — это величина силы вращения, создаваемой двигателем, но нас не интересует сила, действующая в двигателе .

    Нас интересует сила на колесах .

    Радиус колеса тоже имеет значение.

    Усилие на колесах f in f = ma .

    Но помните, что трансмиссия в конечном итоге передает усилие на колеса, а не на двигатель. И вот в чем весь этот беспорядок!

    Зубчатая передача — это преобразователь между двигателем и колесами.

    Вот тут-то и вступает в дело передача — она ​​увеличивает ускорение, учитывая, какую мощность двигатель может выдавать.

    Зубчатая передача увеличивает крутящий момент, поэтому она так важна в гонках.

    Вот почему самые быстрые гоночные автомобили работают на чрезвычайно высоких оборотах.

    Крутящий момент на колесах — это крутящий момент в двигателе в сочетании с увеличением крутящего момента, создаваемым трансмиссией через зубчатую передачу. Таким образом, трансмиссия видит только то, что выходит из двигателя, в то время как колеса видят результирующую комбинацию сил двигателя и трансмиссии .

    Вот что такое лошадиные силы! Это комбинация преимуществ грубых возможностей двигателя в сочетании с числом оборотов в минуту.А частота вращения — это то, что позволяет нам эффективно использовать передачу, что дает нам больший крутящий момент на колесах.

    И крутящий момент на колесах f f = ma .

    Заключение

    Итак, технический ответ на вопрос: «Что делает ускорение: крутящий момент или лошадиные силы?» — это крутящий момент.

    Но крутящий момент на колесах, а не на двигателе.

    И поскольку ускорение — это крутящий момент на колесах, реальный ответ — это мощность в лошадиных силах, потому что мощность включает в себя не только крутящий момент двигателя, но и общий крутящий момент , который передается на колеса.

    Примечания

    1. 7 мая 2019 г. — Обновлено для удобочитаемости (типографика и форматирование), а также для ясности письма.
    2. Электродвигатели развивают огромный крутящий момент, что делает такие автомобили, как Tesla, такими быстрыми.
    3. Если у вас возникнут какие-либо комментарии, исправления, пламя или другие типы ввода, не стесняйтесь обращаться ко мне. Я готов ко всему, что поможет мне лучше понять этот интересный предмет.
    4. Зубчатая передача чрезвычайно важна, важна, потому что она контролирует обороты (и, следовательно, мощность в лошадиных силах).
    5. Шестерни увеличивают крутящий момент — следовательно, ускорение доступно на первой передаче.
    6. Еще один способ подтвердить, что мощность, а не крутящий момент имеет наибольшее значение для ускорения, — это взглянуть на автомобили с наибольшим ускорением, а именно автомобили F1. И угадай что? Низкий крутящий момент, высокая мощность.
    7. Еще одно прекрасное объяснение тем на allpar.com
    8. Еще один способ понять важность переключения передач — это заметить, насколько быстро некоторые автомобили низкого класса могут разгоняться на первой передаче.Сначала они чувствуют себя довольно быстрыми, потому что могут спрыгнуть с траектории, но на самом деле это просто сверхвысокая передача, которая передает большой крутящий момент на колеса. Но он быстро заканчивается.
    9. Гоночные автомобили обладают высокой мощностью из-за высоких оборотов, а не из-за высокого крутящего момента (см. Зубчатую передачу).
    10. «Ниже 5252 об / мин крутящий момент любого двигателя всегда будет выше, чем его мощность, а выше 5252 об / мин мощность любого двигателя всегда будет выше, чем его крутящий момент. При 5252 оборотах в минуту мощность и крутящий момент будут точно такими же.»- revsearch.com
    11. « Лучше создавать крутящий момент на высоких оборотах, чем на низких оборотах, потому что вы можете воспользоваться преимуществами передачи ». — vettenet.org

    Я провожу время, читая 3–6 книг в месяц о безопасности, технологиях и обществе, и думаю о том, что может быть дальше.

    Каждый понедельник утром я рассылаю список лучшего контента, который я нашел за последнюю неделю, примерно 50 000 человек.

    Выберите подписку

    7 месяцев бесплатно

    Еженедельный информационный бюллетень

    Доступ к сообществу Slack

    Доступ к книжному клубу

    Архив информационных бюллетеней

    Эссе, учебные пособия, подкасты

    Двухнедельный информационный бюллетень

    Подписка на новости Torque Motion

    Что такое крутящий момент?

    Крутящий момент — это мера того, какая сила, действующая на объект, заставляет этот объект вращаться.Объект вращается вокруг оси, которую мы назовем точкой поворота и обозначим «\ (O \)». Мы будем называть силу ‘\ (F \)’. Расстояние от точки поворота до точки, в которой действует сила, называется плечом момента и обозначается как ‘\ (r \)’. Обратите внимание, что это расстояние, ‘\ (r \)’, также является вектором и указывает от оси вращения до точки, в которой действует сила. (См. Рисунок 1 для графического представления этих определений.)

    Рисунок 1: Определения

    Крутящий момент определяется как \ (\ Gamma = r \ times F = rF \ sin (\ theta) \).

    Другими словами, крутящий момент — это перекрестное произведение между вектором расстояния (расстояние от точки поворота до точки приложения силы) и вектором силы, где ‘\ (a \)’ — угол между \ (г \) и \ (F. \)

    Перекрестное произведение, также называемое векторным произведением, представляет собой операцию над двумя векторами. Перекрестное произведение двух векторов дает третий вектор, перпендикулярный плоскости, в которой лежат первые два. То есть, для креста двух векторов, \ (A \) и \ (B \), мы помещаем \ (A \) и \ (B \) так, чтобы их хвосты находились в общей точке.Затем их перекрестное произведение \ (A \ times B \) дает третий вектор, скажем \ (C \), хвост которого также находится в той же точке, что и хвосты \ (A \) и \ (B. \). Вектор \ (C \) указывает в направлении, перпендикулярном (или перпендикулярном) как \ (A \), так и \ (B. \). Направление \ (C \) зависит от правила правой руки.

    Рисунок CP 1: \ (A \ times B = C \)

    Если мы допустим угол между \ (A \) и \ (B \) равным, тогда перекрестное произведение \ (A \) и \ (B \) можно выразить как

    \ (А \ раз В = А В \ грех (\ тета) \)

    Рисунок CP2: \ (B \ times A = D \)

    Если компоненты векторов \ (A \) и \ (B \) известны, то мы можем выразить компоненты их перекрестного произведения, \ (C = A \ раз B \) следующим образом

    \ (C_x = A_yB_z — A_zB_y \)
    \ (C_y = A_zB_x — A_xB_z \)
    \ (C_z = A_xB_y — A_yB_x \)

    . \ (A \ times B \), равно

    \ (A \ times B = \ Biggr | \ begin {matrix} i \ quad j \ quad k \\ A_x \; A_y \; A_z \\ B_x \; B_y \; B_z \ end {matrix} \ Biggr | \ )

    Сравнивая рисунки CP1 и CP2, мы замечаем, что
    \ (A \ times B = — B \ times A \)

    Очень хорошее моделирование, которое позволяет вам исследовать свойства перекрестного произведения, доступно, щелкнув ЗДЕСЬ.Используйте кнопку «назад», чтобы вернуться в это место.

    Используя правило правой руки , мы можем найти направление вектора крутящего момента. Если мы поместим пальцы в направлении \ (r, \) и согнем их в направлении \ (F, \), то большой палец будет указывать в направлении вектора крутящего момента.

    Вопрос

    В каком направлении крутящий момент на этой диаграмме относительно точки поворота, обозначенной \ (O \)?

    Рисунок RHR 1: Диаграмма проблемы Рисунок RHR 2: Диаграмма проблемы, сила была переведена для упрощения использования правила правой руки

    Решение

    Здесь мы предполагаем, что векторы силы \ (F, \) и плеча момента r изначально были размещены «голова к голове» (то есть \ (F \) указывал на стрелку \ (r, \) не в его точке поворота).Это показано на рисунке RHR 1. Однако, если перевести вектор силы в его положение на рисунке RHR 2, использование правила правой руки становится более очевидным.

    Без этого пояснения можно интерпретировать рисунок RHR 2 как имеющий вектор силы, проходящий через точку поворота, и в этом случае крутящего момента не будет. Это связано с определением плеча момента, который представляет собой расстояние между точкой поворота и точкой, в которой действует сила. Если сила действует прямо на точку поворота, то \ (r = 0, \), поэтому крутящего момента не будет.(Нулевое плечо момента — это все равно что пытаться открыть дверь, надавив на петли; ничего не происходит, потому что крутящий момент не возник в результате приложенной силы.)

    Вспомните использование правила правой руки при вычислении крутящего момента. Пальцы должны указывать в направлении первого вектора и загнуты в направлении второго вектора. В этом случае крутящий момент — это перекрестное произведение плеча момента и крутящего момента. Таким образом, пальцы будут указывать в том же направлении, что и плечо момента, и изогнуты в направлении силы (по часовой стрелке).Направление большого пальца — это направление крутящего момента; в этом случае крутящий момент находится в экране.

    При рисовании трехмерных диаграмм мы можем представлять «внутрь» и «выход» с помощью символов. Символ для «в» (предполагается, что это конец стрелки), а для «из» — (это кончик стрелки).

    Рисунок RHR 3: Диаграмма решенной задачи (результирующий крутящий момент отображается на экране)

    Представьте, что вы толкаете дверь, чтобы открыть ее. Сила вашего толчка (\ (F \)) заставляет дверь вращаться вокруг петель (точки поворота, \ (O \)).Насколько сильно вам нужно толкать, зависит от расстояния, на котором вы находитесь от петель (\ (r \)) (и некоторых других вещей, но давайте сейчас их проигнорируем). Чем ближе вы к петлям (т. Е. Чем меньше \ (r \)), тем сложнее их толкать. Вот что происходит, когда вы пытаетесь открыть дверь не с той стороны. Крутящий момент, который вы создали на двери, меньше, чем если бы вы толкнули правильную сторону (от петель).

    Обратите внимание, что приложенная сила \ (F, \) и плечо момента \ (r, \) не зависят от объекта.Кроме того, сила, приложенная к точке поворота, не вызовет крутящего момента, поскольку плечо момента будет равно нулю (\ (r = 0 \)).

    Другой способ выразить вышеприведенное уравнение состоит в том, что крутящий момент является произведением величины силы и перпендикулярного расстояния от силы до оси вращения (то есть точки поворота).

    Пусть сила, действующая на объект, разделена на тангенциальную (\ (F_ {tan} \)) и радиальную (\ (F_ {rad} \)) компоненты (см. Рисунок 2). (Обратите внимание, что тангенциальная составляющая перпендикулярна плечу момента, а радиальная составляющая параллельна плечу момента.) Радиальная составляющая силы не влияет на крутящий момент, поскольку проходит через точку поворота. Таким образом, только тангенциальная составляющая силы влияет на крутящий момент (поскольку она перпендикулярна линии между точкой действия силы и точкой поворота).

    Рисунок 2: Тангенциальная и радиальная составляющие силы F

    На объект может действовать более одной силы, и каждая из этих сил может воздействовать на разные точки на объекте. Тогда каждая сила вызовет крутящий момент. Чистый крутящий момент — это сумма отдельных крутящих моментов.

    Вращательное равновесие аналогично поступательному равновесию, где сумма сил равна нулю. При вращательном равновесии сумма крутящих моментов равна нулю. Другими словами, на объект отсутствует чистый крутящий момент.

    \ (\ сумма \ тау = 0 \)

    Обратите внимание, что единицы крутящего момента в системе СИ — это ньютон-метр , который также является способом выражения джоуля (единицы энергии).Однако крутящий момент — это не энергия. Итак, чтобы избежать путаницы, мы будем использовать единицы N.m, а не J. Различие возникает из-за того, что энергия — это скалярная величина, а крутящий момент — это вектор.

    Вот полезное и интересное интерактивное упражнение по вращательному равновесию.

    Крутящий момент и угловое ускорение

    В этом разделе мы разработаем взаимосвязь между крутящим моментом и угловым ускорением. Для этого раздела вам потребуется базовое понимание моментов инерции.

    Момент инерции — вращательный аналог массы. Просмотрите определения, как описано в вашем учебнике.

    В следующей таблице приведены моменты инерции для различных обычных тел. Буква M в каждом случае — это общая масса объекта.

    Рисунок 3: Радиальная и касательная составляющие силы, два измерения

    Представьте себе силу F, действующую на некоторый объект на расстоянии r от его оси вращения. Мы можем разбить силу на тангенциальную (\ (F_ {tan} \)), радиальную (\ (F_ {rad} \)) (см. Рисунок 3).(Это предполагает двумерный сценарий. Для трех измерений — более реалистичная, но также более сложная ситуация — у нас есть три компонента силы: тангенциальная составляющая \ (F_ {tan} \), радиальная составляющая \ ( F_ {rad} \) и z-компонент \ (F_z \). Все компоненты силы взаимно перпендикулярны или нормальны.)

    Из Второго закона Ньютона \ (F_ {tan} = m a_ {tan} \)

    Однако мы знаем, что угловое ускорение \ (\ alpha \) и тангенциальное ускорение atan связаны соотношением:
    \ (a_ {tan} = r \ alpha \)

    Затем,

    \ (F_ {tan} = m r \ alpha \)

    Если мы умножим обе части на r (плечо момента), уравнение станет

    \ (F_ {tan} r = m r ^ {2} \ alpha \)

    Обратите внимание, что радиальная составляющая силы проходит через ось вращения и поэтому не влияет на крутящий момент.2 \) умноженное на угловое ускорение \ (\ alpha \).

    \ (\ сумма \ тау = I \ cdot \ alpha \)

    Панель 4: Радиальная, тангенциальная и z-компоненты силы, три измерения

    Если мы проведем аналогию между поступательным и вращательным движением, то эта связь между крутящим моментом и угловым ускорением аналогична Второму закону Ньютона. А именно, если принять крутящий момент, аналогичный силе, момент инерции, аналогичный массе, и угловое ускорение, аналогичное ускорению, тогда мы получим уравнение, очень похожее на Второй закон.

    Пример проблемы: распашная дверь

    Вопрос

    Спеша поймать такси, вы выскакиваете через гладкую распашную дверь на тротуар. Сила, которую вы приложили к двери, была приложена перпендикулярно плоскости двери \ (50Н, \). Дверь имеет ширину \ (1.0 \; м \). Предполагая, что вы толкнули дверь за край, каков был крутящий момент на распашной двери (принимая петлю в качестве точки поворота)?

    Подсказки

    1. Где точка поворота?
    2. Какая сила была приложена?
    3. Как далеко от точки поворота была приложена сила?
    4. Какой угол между дверью и направлением силы?

    Точка поворота находится на петлях двери, напротив того места, где вы толкали дверь.Сила, которую вы использовали, составляла \ (50Н, \) на расстоянии \ (1,0 \; м \) от точки поворота. Вы попадаете в дверь перпендикулярно ее плоскости, поэтому угол между дверью и направлением силы составляет \ (90 \) градусов.

    Так как
    \ (\ tau = r \ times F = r F \ sin (\ theta) \)

    Схема примера задачи

    , то крутящий момент на двери был:
    \ (\ tau = (1.0m) (50N) \ sin (90) \)
    \ (\ tau = 50 Nm \)

    Обратите внимание, что это только величина крутящего момента; Чтобы получить ответ, нам нужно найти направление крутящего момента.Используя правило правой руки , мы видим, что направление крутящего момента выходит за пределы экрана.

    Ваш автомобиль и эффект крутящего момента!

    ‘Мощность — иллюзорное уравнение. Корень всего хорошего — крутящий момент ». По крайней мере, так звучит известная автомобильная цитата. Шопан Шарма увлекается делами и демистифицирует эту сумасшедшую крутящую силу, называемую крутящим моментом.

    Когда едешь по шоссе на своем новом комплекте колес, кажется, что двигатель не нагружен. Тахометр далек от упомянутых пиковых оборотов мощности, поэтому вы решаете открыть дроссельную заслонку.Ваш автомобиль стремительно мчится вперед — ваша голова запрокидывается назад, а дино-динамометрический стенд говорит, что это мощно. Однако то, что вы почувствовали прямо сейчас, было не мощностью двигателя. Это была движущая сила вашей силовой установки — физическая сущность, называемая крутящим моментом.

    The Physics


    Torque всегда менял мир. Фактически, это вращательный эквивалент силы — просто вместо того, чтобы толкать предметы по прямой линии, когда сила вращает объекты — другими словами, вращающее усилие — оно принимает название крутящий момент.

    Однако, в отличие от силы, крутящий момент имеет два аспекта: усилие, прилагаемое при повороте, и расстояние от оси вращения, на котором прилагается усилие. Следовательно, хотя вам всегда потребуется больше мускулов, чтобы толкать более тяжелую тележку для покупок по прямой, то, насколько легко ее можно повернуть, зависит от того, как далеко колеса находятся от опоры для рук — точки, в которой вы будете прилагать усилие поворота.

    В то время как сила всегда описывается в единицах, таких как фунты (фунт) или ньютон (Н), крутящий момент описывается с использованием двух разных величин — приложенной силы и расстояния от оси, к которой приложена сила.Следовательно, крутящий момент описывается с использованием таких единиц, как фунт-фут (фунт-фут) или ньютон-метр (Нм), которые включают меру силы и расстояния.

    Поскольку крутящий момент является произведением силы на расстояние, крутящий момент 100 Нм может означать силу в 100 ньютонов, приложенную на расстоянии 1 метра от оси вращения, или силу в 25 ньютонов, приложенную в 4 метрах от оси. Другими словами, допустима меньшая мышца — тот же крутящий момент все еще может быть получен с помощью более длинного рычага.

    Вот почему гайку легче затягивать гаечным ключом, чем пальцами — независимо от захвата — большее расстояние, на котором прилагается усилие поворота, приводит к большему крутящему моменту.Продолжайте, и вы увидите, как те же основы применимы к двигателю внутреннего сгорания.

    Двигатель

    Кривошип двигателя внутреннего сгорания преобразует возвратно-поступательное движение поршня во вращательное движение. В то время как крошечные взрывы в камере сгорания обеспечивают силу, именно длина шатуна между поршнем и кривошипом обеспечивает рычаг. Чтобы получить больший крутящий момент, вы можете либо иметь более крупные удары, либо просто увеличить ход поршня.

    В качестве примера можно привести такие же большие 6-литровые двигатели на Lamborghini Murcielago и Bentley Brooklands с совершенно разными значениями крутящего момента — 660 Нм для Lambo и огромные 1050 Нм для Bentley. Помимо множества других факторов, влияющих на достижение хорошего крутящего момента, основным фактором, влияющим на эту разницу, является длинный ход Bentley 99 мм по сравнению с ходом Murcielago 89 мм.

    Более длинный ход может означать больший крутящий момент, но это также означает более длительное время поворота кривошипа.Это приводит к более грубоватому, но более низкооборотистому двигателю. Поскольку производимая мощность — это не что иное, как крутящий момент, умноженный на число оборотов в минуту, более низкие обороты означают меньшую пиковую мощность при том же крутящем моменте. И хотя большой крутящий момент означает отличное ускорение, вам нужна мощность, чтобы поддерживать эту скорость. Как и везде, в мире движения тоже нет бесплатных обедов.

    Реальный мир

    Итак, как вся эта теория переносится на автомобили, которые мы используем каждый день? Крутящий момент является основным двигателем транспортного средства, но его нельзя рассматривать изолированно, поскольку разные транспортные средства требуют разных форм передачи мощности и совершенно разного крутящего момента.

    Как упоминалось ранее, на любую силу (включая крутящий момент) влияют две составляющие — масса и ускорение. Тяговое усилие, обеспечиваемое крутящим моментом, можно использовать для умопомрачительного ускорения или огромной грузоподъемности, в зависимости от ситуации.

    Известно, что спортивные мотоциклы с объемом двигателя 1000 куб. См являются одними из самых быстрорастущих дорожных машин. Honda CBR1000RR 2008 года выпуска, например, разгоняется от 0 до 100 км / ч за 3 секунды — этого достаточно, чтобы улететь с места на стартовой линии.А вот маниакальный крутящий момент вряд ли дает, покорные 107Нм. Разница в том, что заправленная и с наездником она весит всего около 250 килограммов.

    На другом конце дорожного спектра находятся грузовики большой грузоподъемности, такие как Volvo Fh26, чей высокотехнологичный турбодизельный двигатель развивает чудовищный максимальный крутящий момент в 2800 Нм. Поскольку он весит около 40 000 кг и способен нести еще 10 000 кг полезной нагрузки, мы бы не стали делать ставку на то, что он превзойдет многих на драг-полосе.

    Ключевым отличием в том, как крутящий момент преобразуется в ускорение или нагрузку, является передача.Шестерни — это не что иное, как преобразователи крутящего момента, изменяющие время, в течение которого крутящий момент, создаваемый двигателем, передается на колеса.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *