Меню Закрыть

На что влияет динамическая вязкость – Расшифровка основных показателей характеристики моторного масла

Содержание

Динамическая вязкость — это… Что такое Динамическая вязкость?


Вя́зкость (вну́треннее тре́ние) — одно из трёх явлений переноса, свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой. Вязкость твёрдых тел обладает рядом специфических особенностей и рассматривается обычно отдельно.

Различают динамическую вязкость (единицы измерения: пуаз, Па·с) и кинематическую вязкость (единицы измерения: стокс, м²/с, внесистемная единица — градус Энглера). Кинематическая вязкость может быть получена как отношение динамической вязкости к плотности вещества и своим происхождением обязана классическим методам измерения вязкости, таким как измерение времени вытекания заданного объема через калиброванное отверстие под действием силы тяжести.

Прибор для измерения вязкости называется вискозиметром.

Вязкость газов

В кинетической теории газов коэффициент внутреннего трения вычисляется по формуле

\eta=\frac{1}{3}\langle u \rangle \langle\lambda \rangle \rho,

где \langle u \rangle

— средняя скорость теплового движения молекул, λ − средняя длина свободного пробега.

Вторая вязкость

Вторая вязкость — внутреннее трение при переносе импульса в направлении движения. Влияет только при учёте сжимаемости и/или при учёте неоднородности коэффициента второй вязкости по пространству.

Вязкость жидкостей

Внутреннее трение жидкостей, как и газов, возникает при движении жидкости вследствие переноса импульса в направлении, перпендикулярном к направлению движения. Общий закон внутреннего трения — закон Ньютона: \tau = - \eta \frac{\partial v}{\partial n}, Коэффициент вязкости η может быть получен на основе соображений о движениях молекул. Очевидно, что η будет тем меньше, чем меньше время t «оседлости» молекул. Эти соображения приводят к выражению для коэффициента вязкости, называемому уравнением Френкеля-Андраде: η =

Cew / kT

Иная формула, представляющая коэффициент вязкости, была предложена Бачинским. Как показано, коэффициент вязкости определяется межмолекулярными силами, зависящими от среднего расстояния между молекулами; последнее определяется молярным объёмом вещества VM. Многочисленные эксперименты показали, что между молярным объёмом и коэффициентом вязкости существует соотношение \eta = \frac{c}{V_{M}-b}, где с и b — константы. Это эмпирическое соотношение называется формулой Бачинского.

Ньютоновские и неньютоновские жидкости

Ньютоновскими называют жидкости, для которых вязкость не зависит от скорости деформации. Если вязкость падает при увеличении скорости, жидкость называется тиксотропной. Для неньютоновских жидкостей методика измерения вязкости получает первостепенное значение.

Вязкость аморфных материалов

Вязкость аморфных материалов (например, стекла или расплавов), это термически активизируемый процесс[1]:

\eta(T)=A\cdot\exp\left(\frac{Q}{R T}\right),

где Q — энергия активации вязкости (кДж/моль), T — температура (К), R — универсальная газовая постоянная (8,31 Дж/моль•К) и A — некоторая постоянная.

Вязкое течение в аморфных материалах характеризуется отклонением от закона Аррениуса: энергия активации вязкости Q изменяется от большой величины

QH при низких температурах (в стеклообразном состоянии) на малую величину QL при высоких температурах (в жидкообразном состоянии). В зависимости от этого изменения аморфные материалы классифицируются либо как сильные, когда \left(Q_H - Q_L\right)&amp;amp;lt;Q_L, или ломкие, когда \left(Q_H - Q_L\right)\geq Q_L. Ломкость аморфных материалов численно характеризуется параметром ломкости Доримуса R_D=\frac{Q_H}{Q_L}: сильные материалы имеют RD < 2, в то время как ломкие материалы имеют R_D\ge 2
.

Вязкость аморфных материалов весьма точно аппроксимируется двуэкспоненциальным уравнением:

\eta(T)=A_1\cdot T\cdot \left[1+A_2\cdot\exp\frac{B}{R T}\right]\cdot\left[1+C\exp\frac{D}{R T}\right]

с постоянными A1, A2, B, C и D, связанными с термодинамическими параметрами соединительных связей аморфных материалов.

В узких температурных интервалах недалеко от температуры стеклования Tg это уравнение аппроксимируется формулами типа VTF или сжатыми экспонентами Кольрауша.

\eta(T)=A_1\cdot T\cdot \left[1+A_2\cdot\exp\frac{B}{R T}\right]\cdot\left[1+C\exp\frac{D}{R T}\right]

Вязкость

Если температура существенно ниже температуры стеклования T < Tg, двуэкспоненциальное уравнение вязкости сводится к уравнению типа Аррениуса

\eta(T)=A_LT\cdot\exp\left(\frac{Q_H}{R T}\right),

с высокой энергией активации QH = Hd + Hm, где Hd — энтальпия разрыва соединительных связей, то есть создания конфигуронов, а Hm — энтальпия их движения. Это связано с тем, что при T < Tg аморфные материалы находятся в стеклообразном состоянии и имеют подавляющее большинство соединительных связей неразрушенными.

При T > > Tg двуэкспоненциальное уравнение вязкости также сводится к уравнению типа Аррениуса

\eta(T)=A_HT\cdot\exp\left(\frac{Q_L}{R T}\right),

но с низкой энергией активации QL = Hm. Это связано с тем, что при T\gg T_g аморфные материалы находятся в расправленном состоянии и имеют подавляющее большинство соединительных связей разрушенными, что облегчает текучесть материала.

Сила вязкого трения

Сила вязкого трения пропорциональна скорости относительного движения V тел, пропорциональна площади S и обратно пропорциональна расстоянию между плоскостями h.

\vec{F}\propto -\frac{\vec{v} \cdot S}{h}

Коэффициент пропорциональности, зависящий от сорта жидкости или газа, называют коэффициентом динамической вязкости. Самое важное в характере сил вязкого трения то, что тела придут в движение при наличии сколь угодно малой силы, то есть не существует трения покоя. Это отличает вязкое трение от сухого.

Примечания

  1. Я. И. Френкель. Кинетическая теория жидкостей. Ленинград, Наука, 1975.

См. также

Ссылки

  • Аринштейн А., Сравнительный вискозиметр Жуковского Квант, № 9, 1983.
  • Измерение вязкости нефтепродуктов — обзор методов и единиц измерения вязкости.
  • R.H. Doremus.
    J. Appl. Phys.
    , 92, 7619-7629 (2002).
  • M.I. Ojovan, W.E. Lee. J. Appl. Phys., 95, 3803-3810 (2004).
  • M.I. Ojovan, K.P. Travis, R.J. Hand. J. Phys.: Condensed Matter, 19, 415107 (2007).
  • Булкин П. С. Попова И. И.,Общий физический практикум. Молекулярная физика
  • Статья в энциклопедии Химик.ру

Литература

  • Я. И. Френкель. Кинетическая теория жидкостей. — Л.: «Наука», 1975.

Wikimedia Foundation. 2010.

dic.academic.ru

7 Вязкость жидкости. Динамический и кинематический коэффициенты вязкости

Вязкостью

называется способность жидкостей оказывать сопротивление усилиям, касательным к поверхности выделенного объёма, т. е. усилиям сдвига.

Пусть жидкость течёт вдоль плоской стенки (рисунок 1) слоями. Вследствие торможения со стороны стенки слои жидкости будут двигаться с разными скоростями, значения которых возрастают по мере удаления от стенки.

Рассмотрим два слоя, движущиеся на расстоянии друг от друга. Ввиду разности скоростей, слой B сдвигается относительно слоя A на величинуза единицу времени. Величинаабсолютный сдвиг слоя B по слою A, а

– градиент скорости (относительный сдвиг или скорость деформации). Касательное напряжение, поя

Рисунок — 1

вляющееся при этом движении (сила трения, приходящаяся на единицу площади) обозначают . Зависимость между касательным напряжением и скоростью деформации записывают по аналогии с явлением сдвига в твёрдых телах в виде

(10)

или если слои находятся бесконечно близко друг к другу, то получают закон вязкостного трения Ньютона

(11)

Величина , характеризующая сопротивляемость жидкости касательному сдвигу, называется динамическим коэффициентом вязкости. В зависимости от выбора направления отсчета расстояний по нормали (от стенки рассматриваемой трубы Илии ее оси) градиент скорости может быть положительным или отрицательным. Знакв формуле (11) принимается таким, чтобы касательное напряжение было положительным.

Сила внутреннего трения в жидкости

(12)

т. е. она прямо пропорциональна динамическому коэффициенту вязкости, площади трущихся слоёв

и градиенту скорости.

В системе СИ динамический коэффициент вязкости имеет размерность . В системе СГС за единицу динамического коэффициента вязкости принимаютпуаз (Пз). Размерностьпуаза Следовательно,или

При расчётах наиболее часто применяюткинематическийкоэффициент вязкости,

. (13)

Название «кинематический» этот коэффициент получил в связи с тем, что в его размерность входят единицы измерения только кинематических параметров и не входят единицы силы

В системе СИ кинематический коэффициент вязкости измеряется в (м2/с), в системе СГС – см2/с илистокс (Ст). Величину, в 100 раз меньшуюстокса, называютсантистоксом.

В практике, наряду с упомянутыми единицами измерения вязкости жидкости, используют условныйградус Энглера(0Е), определяемый одним из приборов для измерения вязкости – вискозиметром Энглера.

Под условным градусом Энглера понимают отношение времени истечениям3(200 см3) испытуемой жидкости, при данной температуре из латунного цилиндрического сосуда с коническим дном через калиброванное отверстие диаметром 2,8 мм, к времени истечения из этого же сосудам3дистиллированной воды при температуре 200С.

По известному значению вязкости в условных градусах Энглера, кинематический коэффициент вязкости,, определяют по формуле

. (14)

Вязкость жидкостей в значительной степени зависит от температуры. При этом вязкость капельных жидкостей с увеличением температуры уменьшается (таблица 2), а вязкость газов возрастает. Это объясняется тем, что природа вязкости капельных жидкостей и газов различна. В газах средняя скорость теплового движения и длина свободного пробега молекул возрастает с повышением температуры, что приводит к увеличению вязкости. В капельных жидкостях молекулы могут лишь колебаться относительно среднего положения. Cростом температуры скорости колебательных движений молекул увеличиваются. Это облегчает возможность преодоления удерживающих их связей, и жидкость становится более подвижной и менее вязкой.

Таблица 2 — Коэффициент кинематической вязкости воды при различных температурах

t, °C

ν, см2

t, °C

ν, см2

t, °C

ν, см2

t, °C

ν, см2

t, °C

ν, см2

t, °C

ν, см2

0

0,0179

6

0,0147

12

0,0124

18

0,0106

30

0,0080

45

0,0060

2

0,0167

8

0,0139

14

0,0118

20

0,0101

35

0,0072

50

0,0055

4

0,0157

10

0,0131

16

0,0112

25

0,0090

40

0,0065

60

0,0048

Кинематический коэффициент вязкости капельных жидкостей при давленияхслабо зависит от давления. В таблице 3 приведены значения коэффициента кинематической вязкости для некоторых жидкостей.

Таблица 3 – Коэффициент кинематической вязкости для некоторых жидкостей

Жидкость

t, °C

ν, см2

Жидкость

t, °C

ν, см2

Цельное молоко

20

0,00174

Безводный

глицерин

20

20

Патока

18

60

Керосин

15

0,027

Легкая нефть

18

0,025

Мазут

18

2,0

Тяжелая нефть

18

0,14

Масло АМГ-10

50

0,01

ртуть

15

0,00011

Кинематический коэффициент вязкости газов при увеличении давления уменьшается.

studfile.net

Вязкость — это… Что такое Вязкость?

Question book-2.svg Эта статья нуждается в дополнительных источниках для улучшения проверяемости.
Вы можете помочь улучшить эту статью, добавив ссылки на авторитетные источники.
Не подтверждённая источниками информация может быть поставлена под сомнение и удалена.
Характер падения тела в жидкости с малой (сверху) и с большой (снизу) вязкостью

Вя́зкость (вну́треннее тре́ние) — одно из явлений переноса, свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой. В результате происходит рассеяние в виде тепла работы, затрачиваемой на это перемещение.

Механизм внутреннего трения в жидкостях и газах заключается в том, что хаотически движущиеся молекулы переносят импульс из одного слоя в другой, что приводит к выравниванию скоростей — это описывается введением силы трения. Вязкость твёрдых тел обладает рядом специфических особенностей и рассматривается обычно отдельно.

Различают динамическую вязкость (единицы измерения: Па·с = 10 пуаз) и кинематическую вязкость (единицы измерения: стокс, м²/с, внесистемная единица — градус Энглера). Кинематическая вязкость может быть получена как отношение динамической вязкости к плотности вещества и своим происхождением обязана классическим методам измерения вязкости, таким как измерение времени вытекания заданного объёма через калиброванное отверстие под действием силы тяжести.

Переход вещества из жидкого состояния в стеклообразное обычно связывают с достижением вязкости порядка 1011−1012 Па·с

Прибор для измерения вязкости называется вискозиметром.

Сила вязкого трения

Сила вязкого трения F пропорциональна скорости относительного движения V тел, пропорциональна площади S и обратно пропорциональна расстоянию между плоскостями h:

Коэффициент пропорциональности, зависящий от сорта жидкости или газа, называют коэффициентом динамической вязкости.

Качественно существенное отличие сил вязкого трения от сухого трения, кроме прочего, то, что тело при наличии только вязкого трения и сколь угодно малой внешней силы обязательно придет в движение, то есть для вязкого трения не существует трения покоя, и наоборот — под действием только вязкого трения тело, вначале двигавшееся, никогда (в рамках макроскопического приближения, пренебрегающего броуновским движением) полностью не остановится, хотя движение и будет бесконечно замедляться.

Вторая вязкость

Вторая вязкость, или объёмная вязкость — внутреннее трение при переносе импульса в направлении движения. Влияет только при учёте сжимаемости и/или при учёте неоднородности коэффициента второй вязкости по пространству.

Если динамическая (и кинематическая) вязкость характеризует деформацию чистого сдвига, то вторая вязкость характеризует деформацию объёмного сжатия.

Объёмная вязкость играет большую роль в затухании звука и ударных волн, и экспериментально определяется путём измерения этого затухания.

Вязкость газов

В кинетической теории газов коэффициент внутреннего трения вычисляется по формуле

,

где  — средняя скорость теплового движения молекул, − средняя длина свободного пробега. Из этого выражения в частности следует, что вязкость не очень разреженных газов практически не зависит от давления, поскольку плотность прямо пропорциональна давлению, а  — обратно пропорциональна. Такой же вывод следует и для других кинетических коэффициентов для газов, например, для коэффициента теплопроводности. Однако этот вывод справедлив только до тех пор, пока разрежение газа не становится столь малым, что отношение длины свободного пробега к линейным размерам сосуда (число Кнудсена) не становится по порядку величины равным единице; в частности, это имеет место в сосудах Дьюара (термосах).

С повышением температуры вязкость большинства газов увеличивается, это объясняется увеличением средней скорости молекул газа , растущей с температурой как

Влияние температуры на вязкость газов

В отличие от жидкостей, вязкость газов увеличивается с увеличением температуры (у жидкостей она уменьшается при увеличении температуры).

Формула Сазерленда может быть использована для определения вязкости идеального газа в зависимости от температуры:[1]

где:

  • μ = динамическая вязкость в (Па·с) при заданной температуре T,
  • μ0 = контрольная вязкость в (Па·с) при некоторой контрольной температуре T0,
  • T = заданная температура в Кельвинах,
  • T0 = контрольная температура в Кельвинах,
  • C = постоянная Сазерленда для того газа, вязкость которого требуется определить.

Эту формулу можно применять для температур в диапазоне 0 < T < 555 K и при давлениях менее 3,45 МПа с ошибкой менее 10 %, обусловленной зависимостью вязкости от давления.

Постоянная Сазерленда и контрольные вязкости газов при различных температурах приведены в таблице ниже

См. также [1] (англ.).

Вязкость жидкостей

Динамический коэффициент вязкости

Внутреннее трение жидкостей, как и газов, возникает при движении жидкости вследствие переноса импульса в направлении, перпендикулярном к направлению движения. Справедлив общий закон внутреннего трения — закон Ньютона:

Коэффициент вязкости (динамическая вязкость) может быть получен на основе соображений о движениях молекул. Очевидно, что будет тем меньше, чем меньше время t «оседлости» молекул. Эти соображения приводят к выражению для коэффициента вязкости, называемому уравнением Френкеля-Андраде:

Иная формула, представляющая коэффициент вязкости, была предложена Бачинским. Как показано, коэффициент вязкости определяется межмолекулярными силами, зависящими от среднего расстояния между молекулами; последнее определяется молярным объёмом вещества . Многочисленные эксперименты показали, что между молярным объёмом и коэффициентом вязкости существует соотношение

где с и b — константы. Это эмпирическое соотношение называется формулой Бачинского.

Динамическая вязкость жидкостей уменьшается с увеличением температуры, и растёт с увеличением давления.

Кинематическая вязкость

В технике, в частности, при расчёте гидроприводов и в триботехнике, часто приходится иметь дело с величиной

и эта величина получила название кинематической вязкости. Здесь  — плотность жидкости;  — динамическая вязкость (см. выше).

Кинематическая вязкость в старых источниках часто указана в сантистоксах (сСт). В СИ эта величина переводится следующим образом:

1 сСт = 1мм21c = 10−6 м2c

Ньютоновские и неньютоновские жидкости

Ньютоновскими называют жидкости, для которых вязкость не зависит от скорости деформации. В уравнении Навье — Стокса для ньютоновской жидкости имеет место аналогичный вышеприведённому закон вязкости (по сути, обобщение закона Ньютона, или закон Навье):

где  — тензор вязких напряжений.

Среди неньютоновских жидкостей, по зависимости вязкости от скорости деформации различают псевдопластики и дилатантные жидкости. Моделью с ненулевым напряжением сдвига (действие вязкости подобно сухому трению) является модель Бингама. Если вязкость меняется с течением времени, жидкость называется тиксотропной. Для неньютоновских жидкостей методика измерения вязкости получает первостепенное значение.

С повышением температуры вязкость многих жидкостей падает. Это объясняется тем, что кинетическая энергия каждой молекулы возрастает быстрее, чем потенциальная энергия взаимодействия между ними. Поэтому все смазки всегда стараются охладить, иначе это грозит простой утечкой через узлы.

Вязкость аморфных материалов

Вязкость аморфных материалов (например, стекла или расплавов) — это термически активизируемый процесс[4]:

где  — энергия активации вязкости (кДж/моль),  — температура (К),  — универсальная газовая постоянная (8,31 Дж/моль·К) и  — некоторая постоянная.

Вязкое течение в аморфных материалах характеризуется отклонением от закона Аррениуса: энергия активации вязкости изменяется от большой величины при низких температурах (в стеклообразном состоянии) на малую величину при высоких температурах (в жидкообразном состоянии). В зависимости от этого изменения аморфные материалы классифицируются либо как сильные, когда , или ломкие, когда . Ломкость аморфных материалов численно характеризуется параметром ломкости Доримуса : сильные материалы имеют , в то время как ломкие материалы имеют .

Вязкость аморфных материалов весьма точно аппроксимируется двуэкспоненциальным уравнением:

с постоянными , , , и , связанными с термодинамическими параметрами соединительных связей аморфных материалов.

В узких температурных интервалах недалеко от температуры стеклования это уравнение аппроксимируется формулами типа VTF или сжатыми экспонентами Кольрауша.

T_g Вязкость

Если температура существенно ниже температуры стеклования , двуэкспоненциальное уравнение вязкости сводится к уравнению типа Аррениуса

с высокой энергией активации , где  — энтальпия разрыва соединительных связей, то есть создания конфигуронов, а  — энтальпия их движения. Это связано с тем, что при аморфные материалы находятся в стеклообразном состоянии и имеют подавляющее большинство соединительных связей неразрушенными.

При двуэкспоненциальное уравнение вязкости также сводится к уравнению типа Аррениуса

но с низкой энергией активации . Это связано с тем, что при аморфные материалы находятся в расправленном состоянии и имеют подавляющее большинство соединительных связей разрушенными, что облегчает текучесть материала.

Относительная вязкость

В технических науках часто пользуются понятием относительной вязкости, под которой понимают отношение коэффициента динамической вязкости (см. выше) раствора к коэффициенту динамической вязкости чистого растворителя:

где μ — динамическая вязкость раствора; μ0 — динамическая вязкость растворителя.

Вязкость некоторых веществ

Для авиастроения и судостроения наиболее важно знать вязкости воздуха и воды.

Вязкость воздуха

 \mu_r = \frac{\mu}{\mu_0}, Зависимость вязкости сухого воздуха от давления при температурах 300, 400 и 500 K

Вязкость воздуха зависит, в основном, от температуры. При 15.0 °C вязкость воздуха составляет 1.78·10−5 кг/(м·с), 17.8 мкПа.с или 1.78·10−5 Па.с.. Можно найти вязкость воздуха как функцию температуры с помощью Программы расчёта вязкостей газов

Вязкость воды

 \mu_r = \frac{\mu}{\mu_0}, Зависимость динамической вязкости воды от температуры в жидком состоянии (Liquid Water) и в виде пара (Vapor)

Динамическая вязкость воды составляет 8,90 × 10−4Па·с при температуре около 25 °C.
Как функция температуры T (K): (Па·с) = A × 10B/(TC)
где A=2.414 × 10−5 Па·с; B = 247.8 K ; и C = 140 K.

Значения вязкостей жидкой воды при разных температурах вплоть до точки кипения приведена ниже.

Температура

[°C]

Вязкость

[мПа·с]

10 1.308
20 1.002
30 0.7978
40 0.6531
50 0.5471
60 0.4668
70 0.4044
80 0.3550
90 0.3150
100 0.2822

Динамическая вязкость разных веществ

Ниже приведены значения коэффициента динамической вязкости некоторых ньютоновских жидкостей:

Примечания

См. также

Ссылки

  • Аринштейн А., Сравнительный вискозиметр Жуковского Квант, № 9, 1983.
  • Измерение вязкости нефтепродуктов — обзор методов и единиц измерения вязкости.
  • R.H. Doremus. J. Appl. Phys., 92, 7619-7629 (2002).
  • M.I. Ojovan, W.E. Lee. J. Appl. Phys., 95, 3803-3810 (2004).
  • M.I. Ojovan, K.P. Travis, R.J. Hand. J. Phys.: Condensed Matter, 19, 415107 (2007).
  • Булкин П. С. Попова И. И.,Общий физический практикум. Молекулярная физика
  • Статья в энциклопедии Химик.ру
  • Седов Л. И. Механика сплошной среды, том 1

Литература

dal.academic.ru

Вязкость жидкости

Содержание

Вязкость жидкости – это свойство реальных жидкостей оказывать сопротивление касательным усилиям (внутреннему трению) в потоке. Вязкость жидкости не может быть обнаружена при покое жидкости, так как она проявляется только при её движении. Для правильной оценки таких гидравлических сопротивлений, возникающих при движении жидкости, необходимо прежде всего установить законы внутреннего трения жидкости и составить ясное представление о механизме самого движения.

Физический смысл вязкости

Для понятия физической сущности такого понятия как вязкость жидкости рассмотрим пример. Пусть есть две параллельные пластинки А и В. В пространство между ними заключена жидкость: нижняя пластинка неподвижна, а верхняя пластинка движется с некоторой постоянной скоростью υ1

Как при этом показывает опыт, слои жидкости, непосредственно прилегающие к пластинкам (так называемые прилипшие слои), будут иметь одинаковые с ним скорости, т.е. слой, прилегающий к нижней пластинке А, будет находиться в покое, а слой, примыкающий к верхней пластинке В, будет двигаться со скоростью υ1.

Промежуточные слои жидкости будут скользить друг по другу, причем их скорости будут пропорциональны расстояниям от нижней пластинки.

Ещё Ньютоном было высказано предположение, которое вскоре подтвердилось опытом, что силы сопротивления, возникающие при таком скольжении слоев, пропорциональны площади соприкосновения слоев и скорости скольжения. Если взять площадь соприкосновения равной единице, это положение можно записать в виде

где τ – сила сопротивления, отнесенная к единице площади, или напряжение трения

μ – коэффициент пропорциональности, зависящий от рода жидкости и называемый коэффициентом абсолютной вязкости или просто абсолютной вязкостью жидкости.

Величину dυ/dy – изменение скорости в направлении, нормальном к направлению самой скорости, называют скоростью скольжения.

Таким образом вязкость жидкости – это физическое свойство жидкости, характеризующее их сопротивление скольжению или сдвигу

Вязкость кинематическая, динамическая и абсолютная

Теперь определимся с различными понятиям вязкости:

Динамическая вязкость. Единицей измерения этой вязкости является паскаль в секунду (Па*с). Физический смысл состоит в снижении давления в единицу времени. Динамическая вязкость характеризует сопротивление жидкости (или газа) смещению одного слоя относительно другого.

Динамическая вязкость зависит от температуры. Она уменьшается при повышении температуры и увеличивается при повышении давления.

Кинематическая вязкость. Единицей измерения является Стокс. Кинематическая вязкость получается как отношение динамической вязкости к плотности конкретного вещества.

Определение кинематической вязкости производится в классическом случае измерением времени вытекания определенного объема жидкости через калиброванное отверстие при воздействии силы тяжести

Абсолютная вязкость получается при умножении кинематической вязкости на плотность. В международной системе единиц абсолютная вязкость измеряется в Н*с/м2 – эту единицу называют Пуазейлем.

Коэффициент вязкости жидкости

В гидравлике часто используют величину, получаемую в результате деления абсолютной вязкости на плотность. Эту величину называют коэффициентом кинематической вязкости жидкости или просто кинематической вязкостью и обозначают буквой ν. Таким образом кинематическая вязкость жидкости

ν = μ / ρ,

где ρ – плотность жидкости.

Единицей измерения кинематической вязкости жидкости в международной и технической системах единиц служит величина м2/с.

В физической системе единиц кинематическая вязкость имеет единицу измерения см2/с и называется Стоксом(Ст).

Вязкость некоторых жидкостей

Жидкость t, °С ν, Ст
Вода 0 0,0178
Вода 20 0,0101
Вода 100 0,0028
Бензин 18 0,0065
Спирт винный 18 0,0133
Керосин 18 0,0250
Глицерин 20 8,7
Ртуть 0 0,00125

Величину, обратную коэффициенту абсолютной вязкости жидкости, называют текучестью

ξ = 1/μ

Как показывают многочисленные эксперименты и наблюдения, вязкость жидкости уменьшается с увеличением температуры. Для различных жидкостей зависимость вязкости от температуры получается различной.

Поэтому, при практических расчетах к выбору значения коэффициента вязкости следует подходить очень осторожно. В каждом отдельном случае целесообразно брать за основу специальные лабораторные исследования.

Вязкость жидкостей, как установлено из опытов, зависит так же и от давления. Вязкость возрастает при увеличении давления. Исключение в этом случае является вода, для которой при температуре до 32 градусов Цельсия с увеличением давления вязкость уменьшается.

Что касается газов, то зависимость вязкости от давления, так же как и от температуры, очень существенна. С увеличением давления кинематическая вязкость газов уменьшается, а с увеличением температуры, наоборот, увеличивается.

Методы измерения вязкости. Метод Стокса.

Область, посвященная измерению вязкости жидкости, называется вискозиметрия, а прибор для измерения вязкости называется вискозиметр.

Современные вискозиметры изготавливаются из прочных материалов, а при их производстве используются самые современные технологии, для обеспечение работы с высокой температурой и давлением без вреда для оборудования.

Существует следующие методы определения вязкости жидкости.

Капиллярный метод.

Сущность этого метода заключается в использовании сообщающихся сосудов. Два сосуда соединяются стеклянной трубкой известного диаметра и длины. Жидкость помещается в стеклянный канал и за определенный промежуток времени перетекает из одного сосуда в другой. Далее зная давление в первом сосуде и воспользовавшись для расчетов формулой Пуазейля определяется коэффициент вязкости.

Метод по Гессе.

Этот метод несколько сложнее предыдущего. Для его выполнения необходимо иметь две идентичные капиллярные установки. В первую помещают среду с заранее известным значением внутреннего трения, а во вторую – исследуемую жидкость. Затем замеряют время по первому методу на каждой из установок и составляя пропорцию между опытами находят интересующую вязкость.

Ротационный метод.

Для выполнения этого метода необходимо иметь конструкцию из двух цилиндров, причем один из них должен быть расположен внутри другого. В промежуток между сосудами помещают исследуемую жидкость, а затем придают скорость внутреннему цилиндру.

Жидкость вращается вместе с цилиндром со своей угловой скоростью. Разница в силе момента цилиндра и жидкости позволяет определить вязкость последней.

Метод Стокса

Для выполнения этого опыта потребуется вискозиметр Гепплера, который представляет из себя цилиндр, заполненный жидкостью.

Вначале делаются две пометки по высоте цилиндра и замеряют расстояние между ними. Затем шарик определенного радиуса помещается в жидкость. Шарик начинает погружаться в жидкость и проходит расстояние от одной метки до другой. Это время фиксируется. Определив скорость движения шарика затем вычисляют вязкость жидкости.

Видео по теме вязкости

Определение вязкости играет большую роль в промышленности, поскольку определяет конструкцию оборудования для различных сред. Например, оборудование для добычи, переработки и транспортировки нефти.

www.nektonnasos.ru

Динамическая и кинематическая вязкость жидкости. Что это такое? :: SYL.ru

В быту очень часто понятие «вязкая жидкость» отождествляется с чем-то липучим, скользким, в чём можно испачкаться. Отчасти так оно есть. Давайте подробнее разберемся в ситуации.

Вещества

Где бы мы с вами ни находились, нас всегда окружают вещества и физические тела, находящиеся в трёх агрегатных состояниях: в твёрдом, жидком и газообразном. Четвертое агрегатное состояние вещества — плазма — неспособно существовать в так называемых нормальных условиях. Для его поддержания необходимы искусственно созданные режимы. Жидкие и газообразные вещества занимают более 85 % объёма нашего жизненного пространства. Достаточно лишь упомянуть воздух, которым мы дышим, и воду, которую мы пьём. И любое из этих веществ можно охарактеризовать с точки зрения их вязкости.

кинематическая вязкость

В чём измеряют

По определению вязкость — это свойство текучих тел оказывать сопротивление их перемещению относительно неподвижной системы координат или друг друга. Существует динамическая и кинематическая вязкость. Динамическая вязкость в международной системе СИ измеряется в [Па*с] (Паскаль в секунду). С физической точки зрения эта величина показывает изменение потерь давления в единицу времени. В системе СГС (сантиметр — грамм — секунда) она измеряется в пуазах (1 Па*с = 10 пуаз) и названа в честь знаменитого французского физика и врача Жана Луи Мари Пуазёйля.

Кинематическая вязкость измеряется в м2/с (в системе СИ) и в стоксах (чаще в сантистоксах). 1 сСт = 1 мм2/с. Это основополагающее значение данного свойства текучих сред. Через специальный прибор, вискозиметр, можно измерить вязкость любой жидкости. Её определённый (тарированный) объём пропускают через калиброванное отверстие без механического побуждения, лишь под действием силы тяжести.

единица кинематической вязкости

Способ определения

Единица кинематической вязкости была определена ещё в конце сороковых годов двадцатого века советским ученым Я. И. Френкелем. В своих уравнениях он описывал механизм скатывания капель различных жидкостей с различных наклонных поверхностей (формула 2.1, см. рисунок выше), где r и m — радиус и масса капли, α — критический угол скатывания капли, θ — угол отекания капли, σ — коэффициент трения. Из теории о движении молекул и обосновании времени их «осёдлости» Френкелем (и, независимо от него, на два года позже, французским физиком Андраде) было получено соотношение для расчета динамической вязкости (формула 2.2). Такая зависимость носит название «уравнение Френкеля — Андраде», хотя в зарубежной литературе имя советского физика часто опускают, называя её формулой Андраде.

Коэффициенты

В абсолютных величинах единица кинематической вязкости может быть получена из соотношения кинематической к динамической вязкости, через плотность среды (формула 2.3). Следует помнить, что сама вязкая среда не подразделяется на кинетическую или динамическую. Оба значения могут быть рассчитаны для любого вещества. Учитывая тот факт, что при протекании среды создается сопротивление движению, можно построить вектор силы вязкого трения. В абсолютных величинах он прямо пропорционален площади движения среды S и ее скорости v, и обратно пропорционален расстоянию между плоскостями h (формула 2.4). Это значение называют коэффициентом динамической вязкости или коэффициентом пропорциональности. Знак минус указывает на противоположность приложения силы (направления вектора). Коэффициент кинематической вязкости, как правило, не рассчитывают. В редких случаях им называют уравнение соотношения (формула 2.3).

коэффициент кинематической вязкости

Зависимости

Вязкость играет довольно существенную роль при движении жидкостей. В результате действия сил прилипания (особенно у сильно вязких жидкостей) слой потока жидкости, находящийся непосредственно у твёрдой поверхности, остается неподвижным. Скорость остальных слоёв увеличивается при удалении от плоскости стенки. Кинематическая вязкость и динамическая растут с увеличением давления и уменьшаются с ростом температуры среды.

Газы и неньютоновские жидкости

Вязкость газообразных сред определяется в зависимости от их температуры. Для идеального газа можно воспользоваться формулой Сазерленда (формула 2.5). Эта формула применима в диапазоне температур от абсолютного нуля до 555 К и в диапазоне давлений не более 3,45 МПа.

Кинематическая вязкость неньютоновских жидкостей вычисляется по приведённому закону Навье — Стокса (формула 2.6), где σij — тензор вязких напряжений. К неньютоновским жидкостям относят псевдопластики (кровь, краска, кетчуп, лава и др.), а также дилатантные жидкости (жидкости с плотно перемешанными частичками, у которых вязкость резко возрастает при росте деформации сдвига).

кинематическая вязкость при температуре

В цифрах

Критический предел перехода в иное агрегатное состояние (твердое тело) у жидкостей достигается при значениях вязкости около 1011 — 1012 [Па*с]. При этом жидкость приобретает свойство стеклообразной массы (например, моноэтиленгликоль при концентрациях более 75 % в водном растворе). У чистой воды без примесей кинематическая вязкость при температуре 20 оС и атмосферном давлении составляет 1,006 * 106 м2/с.

www.syl.ru

Вязкость — это… Что такое Вязкость?

        внутреннее трение, свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой. В. твёрдых тел обладает рядом специфических особенностей и рассматривается обычно отдельно (см. Внутреннее трение в твёрдых телах).          Основной закон вязкого течения был установлен И. Ньютоном (1687):         

        где F — тангенциальная (касательная) сила, вызывающая сдвиг слоёв жидкости (газа) относительно друг друга; S — площадь слоя, по которому происходит сдвиг; (v2vl)/(z2 z1) — градиент скорости течения (быстрота изменения её от слоя к слою), иначе — скорость сдвига (см. рис. 1). Коэффициент пропорциональности η называется коэффициентом динамической вязкости или просто В. Он количественно характеризует сопротивление жидкости (газа) смещению её слоёв. Величина, обратная В., φ =1/η называется текучестью.

         Согласно формуле (1), В. численно равна тангенциальной силе PS = F/S (на единицу площади), необходимой для поддержания разности скоростей, равной единице, между двумя параллельными слоями жидкости (газа), расстояние между которыми равно единице. Из этого определения следует, что в Международной системе единиц (См. Международная система единиц) единица В. имеет размер н·сек/м2, а в СГС системе единиц (См. СГС система единиц) — г/(см2·сек) (пуаз). 1 пз = 0,1 н·сек/м2. Наряду с динамической В. η часто рассматривают так называемую кинематическую В. ν = η/ρ, где ρ — плотность жидкости или газа. Единицами кинематической В. служат, соответственно, м2/сек и см2/сек (Стокс). В. жидкостей и газов определяют Вискозиметрами.          В условиях установившегося слоистого течения (см. Ламинарное течение) при постоянной температуре В. газов и нормальных жидкостей (так называемых ньютоновских жидкостей (См. Ньютоновская жидкость)) — постоянная величина, не зависящая от градиента скорости. В таблице приведены значения В. некоторых жидкостей и газов:

        

        ——————————————————————————

        | Вещество                              | η при 20°С, 10-3 н· |

        |                                              сек/мили спз      |

        |—————————————————————————-|

        | Водород . . . . . . . . . . . .        | 0,0088                  |

        |—————————————————————————-|

        | Азот . . . . . . . . . . . . . . .        | 0,0175                  |

        |—————————————————————————-|

        | Кислород . . . . . . . . . . .        | 0,0202                  |

        |—————————————————————————-|

        | Вода . . . . . . . . . . . . . . .       | 1,002                    |

        |—————————————————————————-|

        | Этиловый спирт . . . . . .         | 1,200                    |

        |—————————————————————————-|

        | Ртуть . . . . . . . . . . . . . . .      | 1,554                    |

        |—————————————————————————-|

        | Глицерин . . . . . . . . . . .         | Вязкость1500                   |

        ——————————————————————————

        

        

         Расплавленные металлы имеют В. того же порядка, что и обычные жидкости (рис. 2). Особыми вязкостными свойствами обладает жидкий гелий. При температуре 2,172 К он переходит в сверхтекучее состояние, в котором В. равна нулю (см. Гелий, Сверхтекучесть).

         В. — важная физико-химическая характеристика веществ. Значение В. приходится учитывать при перекачивании жидкостей и газов по трубам (нефтепроводы, газопроводы). В. расплавленных шлаков весьма существенна в доменном и мартеновском процессах. В. расплавленного стекла определяет процесс его выработки. По В. во многих случаях судят о готовности или качестве продуктов или полупродуктов производства, поскольку В. тесно связана со структурой вещества и отражает те физико-химические изменения материала, которые происходят во время технологических процессов. В. масел имеет большое значение для расчёта смазки машин и механизмов и т.д.

         Молекулярно-кинетическая теория объясняет В. движением и взаимодействием молекул. В газах расстояния между молекулами существенно больше радиуса действия молекулярных сил, поэтому В. газов определяется главным образом молекулярным движением. Между движущимися относительно друг друга слоями газа происходит постоянный обмен молекулами, обусловленный их непрерывным хаотическим (тепловым) движением. Переход молекул из одного слоя в соседний, движущийся с иной скоростью, приводит к переносу от слоя к слою определённого количества движения. В результате медленные слои ускоряются, а более быстрые замедляются. Работа внешней силы F, уравновешивающей вязкое сопротивление и поддерживающей установившееся течение, полностью переходит в теплоту.

         В. газа не зависит от его плотности (давления), так как при сжатии газа общее количество молекул, переходящих из слоя в слой, увеличивается, но зато каждая молекула менее глубоко проникает в соседний слой и переносит меньшее количество движения (закон Максвелла). Для В. идеальных газов в молекулярно-кинетической теории даётся следующее соотношение:

                 где m — масса молекулы, n — число молекул в единице объёма, Длина свободного пробега молекулы между двумя соударениями её с другими молекулами. Так как Т (несколько возрастает также и λ), то В. газов увеличивается при нагревании (пропорционально          В жидкостях, где расстояния между молекулами много меньше, чем в газах, В. обусловлена в первую очередь межмолекулярным взаимодействием (См. Межмолекулярное взаимодействие), ограничивающим подвижность молекул. В жидкости молекула может проникнуть в соседний слой лишь при образовании в нём полости, достаточной для перескакивания туда молекулы. На образование полости (на «рыхление» жидкости) расходуется так называемая энергия активации вязкого течения. Энергия активации уменьшается с ростом температуры и понижением давления. В этом состоит одна из причин резкого снижения В. жидкостей с повышением температуры (рис. 3) и роста её при высоких давлениях. При повышении давления до нескольких тыс. атмосфер η увеличивается в десятки и сотни раз. Строгая теория В. жидкостей, в связи с недостаточной разработанностью теории жидкого состояния, ещё не создана. На практике широко применяют ряд эмпирических и полуэмпирических формул В., достаточно хорошо отражающих зависимость В. отдельных классов жидкостей и растворов от температуры, давления и химического состава.          В. жидкостей зависит от химической структуры их молекул. В рядах сходных химических соединений (насыщенные углеводороды, спирты, органические кислоты и т.д.) В. изменяется закономерно — возрастает с возрастанием молекулярной массы. Высокая В. смазочных масел объясняется наличием в их молекулах циклов (см. Циклические соединения, Нафтены). Две жидкости различной В., которые не реагируют друг с другом при смешивании, обладают в смеси средним значением В. Если же при смешивании образуется химическое соединение, то В. смеси может быть в десятки раз больше, чем В. исходных жидкостей. На этом основано применение измерений В. в качестве метода физико-химического анализа (См. Физико-химический анализ).          Возникновение в жидкостях (дисперсных системах (См. Дисперсные системы) или растворах полимеров (См. Полимеры)) пространственных структур, образуемых сцеплением частиц или макромолекул, вызывает резкое повышение В. При течении «структурированной» жидкости работа внешней силы затрачивается не только на преодоление истинной (ньютоновской) В., но и на разрушение структуры (см. Реология).          Для нормальных вязких жидкостей между количеством жидкости Q, протекающей в единицу времени через капилляр, и давлением p существует прямая пропорциональность (см. Пуазёйля закон). Течение структурированных жидкостей не подчиняется этому закону, для них кривые зависимости Q от р выпуклы к оси давления (рис. 4), что объясняется непостоянством η. Аномальной В., характерной для структурированных жидких систем, обладают важнейшие биологические среды — Цитоплазма и Кровь.

         М. П. Воларович.

         Вязкость биологических сред определяется в большинстве случаев структурной вязкостью. В. жидкого содержимого клетки-цитоплазмы связана со структурой составляющих её биополимеров (См. Биополимеры) и субклеточных образований, что вызывает отклонения (характера тиксотропии (См. Тиксотропия)) вязкого течения от ньютоновского закона нормальных жидкостей. Методы измерения В. биологических сред — наблюдение скорости перемещения гранул при центрифугировании или железных опилок в магнитном поле, измерение среднего смещения броуновских частиц (см. Броуновское движение). Абсолютная вязкость цитоплазмы колеблется от 2 до 50 спз (1 спз = 10-3н·сек/м2), она меняется в различных частях клетки и в разные периоды клеточного цикла. С понижением температуры ниже 12—15°С и при повышении её свыше 40—50°С вязкость цитоплазмы увеличивается. При воздействии облучения наблюдается сначала уменьшение вязкости, а затем, при увеличении дозы, — её возрастание.          Вязкость ликвора, лимфы и плазмы крови достаточно точно описывается ньютоновским законом вязкого течения, она исследуется в капиллярных или цилиндрических Вискозиметрах. Кровь — неньютоновская жидкость, так как содержит структурированные компоненты — белки и клетки крови, её вязкость у человека в норме 4—5 спз, при патологии колеблется от 1,7 до 22,9 спз, что отражается в реакции оседания эритроцитов (РОЭ).

         Лит.: Гaтчек Э., Вязкость жидкостей, пер. с англ., 2 изд., М. — Л., 1935; Труды совещания по вязкости жидкостей и коллоидных растворов, т. 1—3, М. — Л., 1941—45; Френкель Я. И., Кинетическая теория жидкостей, М. — Л., 1945; Фукс Г. И., Вязкость и пластичность нефтепродуктов, М., 1956; Голубев И. Ф., Вязкость газов и газовых смесей, М., 1959; Справочник химика, 2 изд., т. 1, Л. — М.,1963; Руководство по цитологии, т. 1—2, М. — Л., 1965—66; Heilbrunn L. V. The viscosity of protoplasm, W., 1958.

         Н. Н. Фирсов.

        

        Рис. 1. Схема однородного сдвига (вязкого течения) слоя жидкости, заключенного между двумя твердыми пластинками площадью S, из которых нижняя (А) неподвижна, а верхняя (В) под действием тангенциальной силы F движется с постоянной скоростью v0; v(z) — зависимость скорости слоя от его расстояния z от неподвижной пластинки; Δx0 — величина начального сдвига жидкости.

        

        Рис. 2. Вязкость некоторых расплавленных металлов в спз.

        

        Рис. 3. Измерение вязкости некоторых смазочных масел в зависимости от температуры (η дана в пз).

        

        Рис. 4. Зависимость количества жидкости Q, протекающей через капилляр в 1 сек, от давления p для нормальных (ньютоновских) и аномальных (неньютоновских) жидкостей.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Синонимы:

Антонимы:

  • Вязкостный вакуумметр
  • Вязкость магнитная

Смотреть что такое «Вязкость» в других словарях:

  • ВЯЗКОСТЬ — ВЯЗКОСТЬ, или внутреннее трение, сопротивление, обнаруживающееся при перемещении одних частиц вещества по отношению к остальным. Понятие «внутреннее трение» приложимо как к жидким, так и к твердым и газообразным веществам, термин же В …   Большая медицинская энциклопедия

  • Вязкость — (внутреннее трение) свойство растворов, характеризующее сопротивление действию внешних сил, вызывающих их течение. Источник: СП 82 101 98: Приготовление и применение растворов строительных 3.2 вязкость: Свойство текучих тел (жидкостей и газов)… …   Словарь-справочник терминов нормативно-технической документации

  • ВЯЗКОСТЬ — ВЯЗКОСТЬ, внутреннее трение свойство текучих тел оказывать сопротивление движению. Чем больше вязкость жидкости, тем медленнее она течет. Вязкость жидкостей велика, вязкость газов чрезвычайно мала. У многих жидкостей вязкость возрастает с… …   Научно-технический энциклопедический словарь

  • ВЯЗКОСТЬ — (внутреннее трение), свойство текучих тел газов и жидкостей оказывать сопротивление перемещению одной их части относительно другой. Основной закон вязкого течения установил И. Ньютон в 1647. Вязкость количественно характеризуется коэффициентом… …   Современная энциклопедия

  • вязкость — (viscosity) – это внутреннее трение или сопротивление течению жидкости. Вязкость масла выступает важнейшим физико химическим свойством, оказывающим влияние на силу трения. Вязкость масла характеризуется двумя показателями: кинематической… …   Автомобильный словарь

  • Вязкость — (внутреннее трение), свойство текучих тел газов и жидкостей оказывать сопротивление перемещению одной их части относительно другой. Основной закон вязкого течения установил И. Ньютон в 1647. Вязкость количественно характеризуется коэффициентом… …   Иллюстрированный энциклопедический словарь

  • ВЯЗКОСТЬ — ВЯЗКОСТЬ, вязкости, мн. нет, жен. отвлеч. сущ. к вязкий. Вязкость свойство некоторых жидкостей. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 …   Толковый словарь Ушакова

  • ВЯЗКОСТЬ — (внутреннее трение), свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно Другой. В. тв. тел обладает рядом специфич. особенностей и рассматривается обычно отдельно (см. ВНУТРЕННЕЕ ТРЕНИЕ). Осн …   Физическая энциклопедия

  • вязкость — ковкость; топкость, терпкость. Ant. жесткость Словарь русских синонимов. вязкость сущ., кол во синонимов: 6 • вибровязкость (1) • …   Словарь синонимов

  • Вязкость — сопротивление, оказываемое телом движению отдельной егочасти без нарушения связи целого. Такое движение составляетхарактеристику жидкостей, как капельных , так и упругих , т.е. газов.Малейшая Сила приводит в движение часть жидкого тела и вызывает …   Энциклопедия Брокгауза и Ефрона

  • Вязкость — – свойство жидкостей и дисперсных систем сопротивляться перемещению одного слоя относительно другого, обусловленное силами межмолекулярного взаимодействия вследствие проявления сил внутреннего сцепления (трения). [Ушеров Маршак А. В.… …   Энциклопедия терминов, определений и пояснений строительных материалов


dic.academic.ru

«убиваем» импортные синтетические масла российским бензином

Пытку российским двигателем и российским топливом прошли четыре образца импортных масел вязкостью SAE 5W‑30 от ведущих производителей, занимающих львиную долю отечественного рынка. Исследуем, на какие приоритеты ориентируются производители моторных масел. А главное – как уживаются импортные моторные масла с отечественным бензином и как этот симбиоз сказывается на состоянии двигателя?

Принято считать, что без маловязкого масла современный мотор станет кушать много бензина, а из выхлопной трубы будет дурно пахнуть. Но говорят, что для России всё должно быть другим, в том числе и масло.

Мы взяли три полностью синтетических импортных моторных масла с вязкостью SAE 5W‑30 от ведущих производителей, занимающих львиную долю отечественного рынка, – ExxonMobil, Shell и Castrol. К этой троице присовокупили не столь распространенное, но не менее известное масло Motul.

Как испытывали? На каждом из масел специально подготовленный стендовый двигатель крутился в заданных режимах сто двадцать часов, при этом сравнивались его характеристики на различных стадиях испытаний. Мотор – отечественный восьмиклапанник ВАЗ‑21114 со впрыском, с измененной программой управления и системой масляного охлаждения поршней.

Почему двигатель не иномарочный? Условия испытаний не позволяют. Методика требует до начала испытаний и после них вскрывать мотор, обмерять, дефектовать, фотографировать и взвешивать детали. А современные ненашенские моторы разборке-сборке не подлежат – коленчатый вал там снять нельзя. Точнее, снять можно, а вот ставить обратно уже запрещено.

Через фиксированное время мы отбирали – три раза – пробы масла для оценки темпа его старения. Отслеживали изменение физико-химических показателей масла, а также содержание в нем продуктов износа. А вскрытие мотора уточняло представление об отложениях и износе.

Чтобы отсеять сомнения насчет возможных подделок, свежие пробы масел мы отдали в лабораторию для определения базовых физико-химических показателей и сравнили их с указанными производителями. Если совпадают – стало быть, масла настоящие, не поддельные. Удивило другое: начальные параметры всех четырех масел практически одинаковые. Уж не из одной ли они бочки? Из разных! Это выяснилось после измерений динамической вязкости во всем диапазоне температур. Но сначала вспомним, какие вообще бывают вязкости.

КИНЕМАТИЧЕСКАЯ, ДИНАМИЧЕСКАЯ И HTHS

Имеется прямая связь между вязкостью масла, потерями на трение и скоростью износа узла трения. В классической гидродинамике различают две характеристики вязкости – динамическую и кинематическую. Для мотора важна именно динамическая вязкость масла, поскольку она учитывает изменение плотности в зависимости от температуры. А кинематическая вязкость важна для масленщиков; она может быть точно определена капиллярным вискозиметром. Ранее параметры вязкости, предписанные классом SAE, ограничивали лишь возможный диапазон изменения кинематической вязкости масла при температуре 100 °C. Диапазон этот для масел SAE 30 составляет 9,3–12,6 сСт; для масел SAE 40 он шире12,6–16,3 сСт.

Сейчас классификация по SAE дополнена ограничениями по динамической вязкости при 150 °C. Это так называемая высокотемпературная вязкость HTHS (High-Temperature, High- Shear).

Прежде считалось, что для подбора масла достаточно классификации по SAE, а потом выяснилось, что ее мало. Масла из одной группы при рабочих температурах могут различаться по вязкости на десятки процентов, а это существенно для работы мотора. Потому и ввели дополнительное ограничение.

Динамика изменения кинематической вязкости в процессе испытаний отражает темп старения масла. Это один из основных браковочных параметров масла.

Производители современных масел ориентируются на противоположные приоритеты. Так, фирма Shell заявляет о малой вязкости масла Helix Ultra, которая предопределяет низкие потери на трение. А компания Motul специально разработала масло 8100 X‑сlean FE, у которого заявлено высокое значение HTHS. Кто же прав?

Для полноты картины пройдем по всем температурам – от зимнего холодного пуска до вполне рабочих режимов, как у полностью прогретого мотора. Наивысшие значения высокотемпературной вязкости HTHS при первой пробе – у масла Motul 8100 X‑сlean FE, как и было обещано производителем: 3,2 мПа·с против 2,7 мПа·с у Mobil. Разбег – почти под 20%! Значит, это масло снизит на 20% нагрузку на подшипник – либо позволит увеличить давление на подшипник на те же 20% без ухудшения условий его работы. Плата за это – самые высокие значения динамической вязкости при отрицательных температурах: 8330 мПа·с у масла Motul против 6220 мПа·с у масла Mobil. Значит, в арктиках и антарктиках запустить мотор с маслом Motul будет сложнее.

Содержание продуктов износа в образце масла, отобранном после цикла испытаний, хорошо иллюстрирует защитные свойства масла.

Впрочем, интереснее проследить динамику изменения этого параметра в течение всего срока проведения испытаний. Масла Mobil 1 ESP Formula и Motul 8100 X‑clean FE за 120 часов пытки российским двигателем и российским же (не самым лучшим, как все говорят) топливом изменили свои параметры несильно и вполне предсказуемо. В ходе испытаний динамическая вязкость во всем диапазоне температур увеличилась лишь на 3–5%.

А вот масла Castrol Edge FST и Shell Helix Ultra изменили свою вязкость на 21–28%! Причем рост вязкости у масла Castrol начался практически сразу – такая динамика нехарактерна для обычного поведения масла. А масло Shell до середины испытаний держалось молодцом, но сдалось во второй половине цикла. В итоге к концу испытаний то преимущество, которое было у этих масел перед маслом Motul по вязкости при отрицательных температурах, полностью растаяло. Тем, кто планирует использовать эти масла в суровых северных условиях, есть о чем задуматься.

Еще более выразительную картину, отражающую темпы старения масел, дает анализ динамики изменения кинематической вязкости при 100 °C.

И снова: у масла Motul вязкость практически не изменяется. У масла Mobil изменение вязкости более заметно, причем к концу срока испытаний она вышла на пороговое значение. А вот Castrol выдал очень существенное увеличение вязкости при 100 °C, далеко выскочив за допустимые пределы. Самое интересное, что вязкость при 40 °C к концу испытаний стала уменьшаться – это можно увидеть из данных в итоговой таблице. Индекс вязкости улетел аж за 210!

Индекс вязкости – это важный параметр моторного масла, который характеризует темп изменения вязкости при росте температуры. Чем он выше, тем меньше разница между вязкостями при высокой температуре и при низкой. Для полных синтетик он обычно лежит в диапазоне 160–180.

И еще одна странность масла Castrol. Обычно щелочное число постепенно снижается: срабатывается комплекс моющих присадок. А тут наоборот – рост!

Возможно, из отложений, формируемых в двигателе, в масло возвращается кальций или другой элемент, на который и реагирует прибор. Кстати, для остальных трех масел тот же метод дал ожидаемый результат.

Энергосбережение масел мы оценивали дважды, сопоставив расход топлива в режимах нашего цикла как со свежим маслом, так и с отработавшим 120 моточасов. Эти результаты также сведены в таблицах.

Здесь вновь уместно вернуться в разговору об HTHS. Масло с самым высоким значением HTHS – Motul 8100 X‑clean FE – и здесь показало лучший результат. Впрочем, все испытанные масла, судя по результатам, вполне могут быть отнесены к энергосберегающим. Но те, у которых темп роста вязкости ниже, в наименьшей степени изменили расход топлива и мощность мотора после цикла длительных испытаний. Наиболее наглядно влияние высокотемпературной вязкости проявилось при анализе защитных функций масла. Анализ содержания продуктов износа в пробах масел, отобранных на итоговой стадии испытаний, четко выявляет безоговорочное лидерство масла с высоким HTHS. Это Motul 8100 X‑clean FE. Вполне объяснимо: выше вязкость – больше толщина разделяющего слоя и меньше износ деталей двигателя.

Вскрытие мотора после циклов испытаний показало примерно одинаковый итоговый уровень высоко- и низкотемпературных отложений, при этом более стабильные масла дали чуть лучший результат. Но в целом все масла по этим параметрам показали высокий результат, характерный для высококачественных синтетик.

Высокотемпературные отложения на боковых поверхностях поршней, оставленные современными синтетическими маслами, не должны выходить за 1,5 балла шкалы ПЗВ. И не вышли. Шкала ПЗВ – это шкала экспертных оценок уровня отложений: абсолютно чистый поршень – 0 баллов, черный и грязный – 6 баллов.

НЕ ДЛЯ РОССИИ?

Почему масла по-разному проявили себя в ходе испытаний? Два из них – Motul 8100 X‑сlean FE и Mobil 1 ESP Formula – отработали без замечаний, а два других показали не столь оптимистичный результат. Сам характер старения масла, когда вязкость начинает гулять, а другие параметры в целом остаются в норме, чаще всего свидетельствует о том, что полимерные загустители масла, входящие в использованный пакет присадок, с чем-то конфликтуют.

Затевая эту экспертизу, мы хотели продолжить поднятую нами три года назад тему «масляной чумы» – непредсказуемого разложения масла, при котором образуется черный гудрон в каналах системы смазывания, масляном поддоне, клапанном механизме. Эта болезнь убила не одну сотню моторов. И масленщики в качестве одного из возможных виновников этой беды называли российский бензин. Тогда мы нашли и другие причины «чумы», причем подтвержденные экспериментом. Но надо было проверить и версию о влиянии плохого бензина.

Решение нашлось после нашей экспертизы дешевых 95‑х бензинов (ЗР, 2015, № 5), в ходе которой выяснилось, что большинство из них содержит запрещенный метанол. Именно такой бензин мы и использовали для наших испытаний

Испытанные синтетики дали сравнительно тонкие слои (в целом – близкой толщины) низкотемпературных отложений.

Таким образом, наши исследования подтвердили, что плохой бензин реально способен испортить масло, а вместе с ним и мотор. Да, но ведь масла Motul 8100 X‑сlean FE и Mobil 1 ESP Formula, работая на таком же бензине, никаких претензий к нему не высказали! Значит, пакет присадок можно скорректировать таким образом, чтобы и в наших условиях масло работало нормально. Другое дело, что не всем это удается.

А пока повторяем: широким кругом объезжайте непроверенные АЗС! Что касается выбора моторного масла, то мы советуем отдавать предпочтение продуктам с более высоким значением HTHS.

Целее будут мотор, нервы и кошелек!

Как оценивали

Полученные нами результаты носят относительный характер, применимый только к сопоставлению четырех испытанных синтетик. При сравнении моторных характеристик двигателя в тест включали еще одно масло – относительно простую анонимную полусинтетику того же класса вязкости, взятую как базу для сравнения. Стендовые испытания полностью исключают неопределенность, неизбежную при проверке на реальном моторе в обычных условиях эксплуатации. В последнем случае многое зависит от режимов работы двигателя, его технического состояния, стиля вождения, качества топлива, погоды за бортом и ряда случайных факторов.

Примененная методика позволяет оценить сравнительное качество моторного масла по признакам, которые обычно учитываются при их допуске к применению различными автопроизводителями. Перечислим эти признаки.

Энергосбережение определяется по изменению среднего удельного расхода топлива при работе на испытывающемся масле по сопоставлению с базовым.

Защита от износа определяется по изменению массы контрольных деталей (вкладыши подшипников коленчатого вала и поршневые кольца), изменению размера деталей, содержанию продуктов износа в пробе моторного масла, отобранной после испытаний.

Склонность к образованию высокотемпературных отложений определяется визуальной оценкой уровня загрязненности боковых поверхностей поршней. Склонность к образованию низкотемпературных отложений определяется по изменению массы контрольных весовых элементов – деталей двигателя, устанавливаемых в клапанной крышке (сетка маслоотделителя) и в масляном поддоне (приемный грибок масляного фильтра).

Экологические показатели определяются по изменению токсичности отработавших газов при работе двигателя по стандартному циклу испытаний на испытывающемся масле по сравнению с базовым.

Кроме того, оценивали сравнительный темп старения моторного масла и его влияние на показатели двигателя. Ресурсные показатели масла характеризовались динамикой изменения его вязкости, щелочного и кислотного чисел, изменением диспергирующей способности.

В качестве браковочных параметров, на основании которых производилась оценка сохранения работоспособности масла, применяли границы вязкости, определяемые его классом по SAE. Для масла класса SAE 5W‑30: кинематическая вязкость, замеренная при температуре 100 °C, должна быть в диапазоне 9,3–12,6 сСт. Кроме того, масло выбраковывали в том случае, если на каком-то этапе испытаний его щелочное число падало более чем на 50% от начального значения.

Высокотемпературная вязкость масла

В современных двигателях температура масла в рабочей зоне может доходить до 180–200 °C, особенно в паре трения поршневое кольцо – цилиндр двигателя. Вязкость масел даже одной группы по SAE при таких температурах может существенно различаться. Так, ранее проведенные нами экспертизы показали, что для масел группы «сороковок» при 150 °C кинематическая вяз‑ кость может меняться в диапазоне 5,4–6,8 сСт, то есть разбег достигает 25%! Для «тридцаток» относительная разница может быть еще больше.

Именно поэтому в редакциях правил SAE J300 начиная с 2001 года появилось понятие высокотемпературной вязкости HTHS. Это динамическая вязкость масла, определяемая на ротационном вискозиметре при фиксированных условиях – при скорости сдвига 106 1/с.

У производителей современных масел одинаковая цель – оптимизация работы двигателя, но для ее достижения они выбирают взаимоисключающие способы. Так, например, в описании масла Shell Helix Ultra говорится, что благодаря малой вязкости оно снижает потери на трение. А фирма Motul специально разработала масло 8100 X‑clean FE с высоким значением HTHS.

Кто же прав? Обратимся к теории. Любая пара трения в двигателе – это своеобразный подшипник: цилиндрический, если это подшипник коленчатого вала, или плоский (ползун), если это, допустим, пара трения поршневое кольцо – цилиндр. Так вот, одним из важнейших показателей качества работы подшипника является коэффициент нагруженности. Он определяется как отношение средней нагрузки на подшипник к рабочей вязкости масла, умноженной на скорость сдвига, и всё это умножается на квадрат отношения величины рабочего зазора к диаметру подшипника. Значение коэффициента нагруженности должно лежать в определенных пределах. Превышение влечет за собой резкое увеличение скорости износа и потерь на трение, но и слишком низкий коэффициент нагруженности приводит к росту потерь на трение.

Нагрузка и скорость в подшипнике – параметры режимные, их не трогаем. Если уменьшаем HTHS, то автоматически увеличиваем нагруженность подшипника. И компенсировать это можем только величиной рабочего зазора – его надо уменьшать. Но и тут есть свой лимит! Значит, для каждого мотора, с его особенностями конструкции и режимов работы, есть своя оптимальная высокотемпературная вязкость HTHS.

Более того, даже в случае одного мотора для каждого из режимов его работы будет своя оптимальная HTHS. И закон простой – чем выше нагрузка, тем выше должна быть вязкость.

А что говорят правила SAE J300? В них оговорена лишь зависимость от класса вязкости. Для «двадцаток» – не менее 2,6 мПа·с, для «тридцаток» и части «сороковок» – не менее 2,9 мПа·с, для остальных – не менее 3,7 мПа·с. Заметьте – не менее! А потому, в свете современных тенденций создания моторов, позиция бренда Motul нам все-таки ближе. Результаты проведенных испытаний укрепляют нас в этом мнении.

Редакция благодарит сотрудников лаборатории фирмы ВМПАВТО

и лично ее директора В.Н. Кузьмина за техническую помощь в подготовке материала.

Свежие новости:

social.zr.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о