Меню Закрыть

Кинематическая вязкость формула: Кинематическая вязкость: что такое, в чем отличие от динамической вязкости

Содержание

Кинематическая вязкость: что такое, в чем отличие от динамической вязкости

Вязкость – важная характеристика среды, которая присуща каждому телу, обладающему текучестью. Свойство имеет связь с сопротивлением вещества к его перемещению. Вязкость является одним из решающих показателей при выборе объемного насоса, игнорировать который недопустимо. На свойства вязкости влияют такие внешние факторы: температура, нагрузка, скорость сдвига, поэтому вместе с конкретным значением вязкости указывается, в каких условиях проводились испытания. Различают динамическую и кинематическую вязкость. Для измерения показателя используется вискозиметр.

В чем разница между динамической и кинематической вязкостью?

Динамическая вязкость (m) показывает отношение напряжения сдвига, которые возникает, когда слои жидкости перемещаются в отношении один к другому, и скорости, с которой происходит это движение (скорость деформации). Динамическая вязкость – это мера сопротивления течению жидкости или ее деформации. Для выражения динамической вязкости чаще всего используется Пуаз и сантипуаз, в международной системе единиц – Паскаль х с. Кроме этого, для измерения показателя могут использоваться такие единицы: дин·с/см2 и кгс·с/м2 и производных от них.

Соотношение единиц:

  • 1 Пуаз = 1 дин·с/см2 = 0.010197162 кгс·с/м2 = 0.0000010197162 кгс·с/см2 = 0.1 Па·с = 0.1 Н·с/м2
  • 1 Сантипуаз = 0.0001010197162 кгс·с/м2 = 0.01 П = 0.001 Па·с
  • 1 кгс·с/м2 = 98.0665 П = 9806.65 сП = 9.80665 Па·с.

Кинематической вязкостью (ν) называют отношение вязкости динамической к плотности жидкости. Для выражения показателя используется следующая формула: ν = μ / ρ, где μ – динамическая вязкость, ρ – плотность жидкости, кг/м3.

Для выражения показателя чаще всего используются стокс и производное от него сантистокс. В международной системе единиц для измерения кинематической вязкости применяется м2/с.

Соотношение единиц:

  • 1 Ст = 0.0001 м2/с = 1 см2
  • 1 сСт = 1 мм2/с = 0.000001 м2
  • 1 м2/с = 10000 Ст = 1000000 сСт.

Кинематическая вязкость показывает текучесть при нормальной и высокой температуре. Измеряется стеклянным вискозиметром. Для этого засекается время стекания смазки по капилляру при заданном температурном режиме.

Для измерения динамической вязкости используется ротационный вискозиметр, который воссоздает условия, наиболее приближенные к естественным.

Кинематическая вязкость – один из важнейших параметров при выборе промышленного теплоносителя. Чем выше этот показатель, тем большая нагрузка приходится на насосной оборудование инженерной системы. В сравнении с глицерином и иными традиционными антифризами гликолевые теплоносители обладает меньшей вязкостью. Это увеличивает эксплуатационный ресурс оборудования, снижая затраты на техническое обслуживание.

Вам могут быть интересны следующие товары

Вам могут быть интересны услуги

Определение вязкости

ООО «ЯрТехСервис»

Яртехсервис осуществляет продажу насосного оборудования, поставляет насосы и насосное оборудование: Argal; Seko; AlphaDynamic; Gruen Pumpen; Tsurumi, гарантийное, постгарантийное обслуживание.

Приглашаем к сотрудничеству дилеров и представителей насосного оборудования.

Работая с нами Вы приобретёте надёжного партнера с большим опытом работы на рынке насосного оборудования для химического производства.

Реквизиты ООО «ЯрТехСервис»

ИНН 7606059929;
КПП 760601001;
ОГРН 1067606021669;
ОКПО 96991662;
ОКАТО 78401380000
Р/С 40702810677030103503;
БИК 042908612;
К/С 30101810100000000612

Доставка оборудования по России

Оборудование доставляется по указанному заказчиком адресу собственным транспортом или отправляется транспортной компанией по адресу нахождения терминалов в следующих городах:

Абакан, Адлер, Архангельск, Астрахань, Барнаул, Белгород, Благовещенск, Братск, Брянск, Великие Луки, Великий Новгород, Владивосток, Владимир, Волгоград, Волгодонск, Волжский, Вологда, Воронеж, Дзержинск, Димитровград, Екатеринбург, Забайкальск, Иваново, Ижевск, Иркутск, Йошкар-Ола, Казань, Калининград, Калуга, Кемерово, Киров, Коломна, Кострома, Котлас, Краснодар, Красноярск, Курган, Курск, Липецк, Магнитогорск, Москва, Мурманск, Набережные Челны, Нижневартовск, Нижний Новгород, Нижний Тагил, Новокузнецк, Новомосковск, Новороссийск, Новосибирск, Ногинск, Омск, Орел, Оренбург, Орск, Пенза, Пермь, Петрозаводск, Подольск, Псков, Пушкино, Фрязино, Ростов-на-Дону, Рыбинск, Рязань, Самара, Санкт-Петербург, Саранск, Саратов, Северодвинск, Серпухов, Смоленск, Солнечногорск, Сочи, Ставрополь, Старый Оскол, Стерлитамак, Сургут, Сызрань, Сыктывкар, Тамбов, Тверь, Тольятти, Томилино, Томск, Тула, Тюмень, Улан-Удэ, Ульяновск, Уфа, Ухта, Хабаровск, Чебоксары, Челябинск, Череповец, Чита, Энгельс, Ярославль.

Стоимость, срок поставки уточняйте у менеджеров.

Кинематический коэффициент вязкости

Определение и формула кинематического коэффициента вязкости

В состоянии равновесия разные фазы вещества находятся в покое относительно друг друга. При их относительном движении появляются силы торможения (вязкость), которые стремятся уменьшить относительную скорость. Механизм вязкости можно свести к обмену импульсом упорядоченного перемещения молекул между разными слоями в газах и жидкостях. Возникновение сил вязкого трения в газах и жидкостях относят к процессам переноса. Вязкость твердых тел имеет ряд существенных особенностей и рассматривается отдельно.

Так как в выражении (1) плотность вещества находится в знаменателе, то, например, разреженный воздух при давлении 7,6 мм рт. ст. и температуре 0oC имеет кинематическую вязкость в два раза большую, чем глицерин.

Кинематическая вязкость воздуха при нормальных условиях часто считается равной , поэтому при движении в атмосфере применяют закон Стокса, когда произведение радиуса тела (см) на его скорость () не превышает 0,01.

Кинематическая вязкость воды при нормальных условиях часто считается порядка , поэтому при движении в воде применяют закон Стокса, когда произведение радиуса тела (см) на его скорость () не превышает 0,001.

Кинематическая вязкость и числа Рейнольдса

Числа Рейнольдса (Re) выражают при помощи кинематической вязкости:

   

где — линейные размеры тела, движущегося в веществе, — скорость движения тела.

В соответствии с выражением (2) для тела, движущегося с неизменной скоростью число убывает, если кинематическая вязкость растет. Если число Re небольшое, то в лобовом сопротивлении силы вязкого трения преобладают над силами инерции. И наоборот, большие числа Рейнольдса, которые наблюдаются при малых кинематических вязкостях, указывают на приоритет сил инерции над трением.

Число Рейнольдса мало при заданном значении кинематической вязкости, когда малы размеры тела и скорость его движения.

Единицы измерения кинематического коэффициента вязкости

Основной единицей измерения кинематической вязкости в системе СИ является:

   

В СГС:

=стокс

1ст=0,0001

Примеры решения задач

Метод определения кинематической вязкости и расчет динамической вязкости прозрачных и непрозрачных жидкостей – РТС-тендер


ГОСТ 33768-2015

МКС 75.080

Дата введения 2017-02-01

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Сведения о стандарте

1 РАЗРАБОТАН Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт расходометрии» (ФГУП «ВНИИР»)

2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 10 декабря 2015 г. N 48)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Код страны по
 МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Армения

AM

Минэкономики Республики Армения

Беларусь

BY

Госстандарт Республики Беларусь

Казахстан

KZ

Госстандарт Республики Казахстан

Киргизия

KG

Кыргызстандарт

Россия

RU

Росстандарт

Таджикистан

TJ

Таджикстандарт

Узбекистан

UZ

Узстандарт

(Поправка, ИУС N 2-2019)

4 Приказом Федерального агентства по техническому регулированию и метрологии от 17 ноября 2016 г. N 1704-ст межгосударственный стандарт ГОСТ 33768-2015 введен в действиев качестве национального стандарта Российской Федерации с 1 февраля 2017 г.

5 ВВЕДЕН ВПЕРВЫЕ

6 ИЗДАНИЕ (август 2019 г.) с Поправкой (ИУС 2-2019)

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге «Межгосударственные стандарты»

Настоящий стандарт распространяется на прозрачные и непрозрачные нефтепродукты, жидкие при температуре испытания, у которых напряжение сдвига пропорционально скорости деформации (ньютоновские жидкости).

Стандарт устанавливает метод определения кинематической вязкости нефтепродуктов стеклянным капиллярным вискозиметром, а также расчет динамической вязкости.

Настоящий стандарт не распространяется на битумы.

Примечание — В стандарт также включена процедура испытания и показатели точности для остаточных котельных топлив (мазутов), которые в определенных условиях проявляют свойства неньютоновских жидкостей.

В настоящем стандарте использованы ссылки на следующие межгосударственные стандарты:

ГОСТ 400-80 Термометры стеклянные для испытания нефтепродуктов. Технические условия

ГОСТ 2517-2012 Нефть и нефтепродукты. Методы отбора проб

ГОСТ 2603-79 Реактивы. Ацетон. Технические условия

ГОСТ 3118-77 Реактивы. Кислота соляная. Технические условия

ГОСТ 4095-75 Изооктан технический. Технические условия

ГОСТ 4204-77 Реактивы. Кислота серная. Технические условия

ГОСТ 4220-75 Реактивы. Калий двухромовокислый. Технические условия

ГОСТ 5789-78 Реактивы. Толуол. Технические условия

ГОСТ 6709-72 Вода дистиллированная. Технические условия

ГОСТ 6824-96 Глицерин дистиллированный. Общие технические условия

ГОСТ 8505-80 Нефрас-С 50/170. Технические условия

ГОСТ 12026-76 Бумага фильтровальная лабораторная. Технические условия

ГОСТ 10028-81 Вискозиметры капиллярные стеклянные. Технические условия

ГОСТ 13646-68 Термометры стеклянные ртутные для точных измерений. Технические условия

ГОСТ 14710-78 Толуол нефтяной. Технические условия

ГОСТ 17299-78 Спирт этиловый технический. Технические условия

ГОСТ 18300-87 Спирт этиловый ректификованный технический. Технические условия

________________

В Российской Федерации действует ГОСТ Р 55878-2013 «Спирт этиловый технический гидролизный ректификованный. Технические условия».

ГОСТ 22867-77 Реактивы. Аммоний азотнокислый. Технические условия

ГОСТ 25336-82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов и классификаторов на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации (www.easc.by) или по указателям национальных стандартов, издаваемым в государствах, указанных в предисловии, или на официальных сайтах соответствующих национальных органов по стандартизации. Если на документ дана недатированная ссылка, то следует использовать документ, действующий на текущий момент, с учетом всех внесенных в него изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то следует использовать указанную версию этого документа. Если после принятия настоящего стандарта в ссылочный документ, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение применяется без учета данного изменения. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

В настоящем стандарте применены следующие термины с соответствующими определениями:

3.1 динамическая вязкость (коэффициент динамической вязкости): Отношение напряжения сдвига, возникающего при движении слоев жидкости относительно друг друга, к скорости деформации (скорость, с которой слои движутся друг относительно друга). Динамическая вязкость является мерой сопротивления течению или деформируемости жидкости.

3.2 кинематическая вязкость: Отношение динамической вязкости жидкости к ее плотности при той же температуре. Кинематическая вязкость является мерой сопротивления течению жидкости под влиянием силы тяжести (силы гравитации).

3.3 ньютоновская жидкость: Жидкость, для которой динамическая вязкость не зависит от напряжения сдвига и скорости деформации. Если отношение напряжения сдвига к скорости деформации не постоянно, жидкость не является ньютоновской.

Примечание — Для проверки свойств жидкости следует измерить кинематическую вязкость жидкости при одной и той же температуре в двух капиллярных однотипных вискозиметрах, постоянные которых отличаются не менее чем в два раза. При соответствии результатов определения вязкости в пределах величины повторяемости, приведенной в таблице 1, следует считать испытуемую жидкость ньютоновской.

Сущность метода заключается в измерении стеклянным капиллярным вискозиметром времени истечения определенного объема испытуемого нефтепродукта под влиянием силы тяжести. Кинематическая вязкость вычисляется как произведение измеренного времени истечения нефтепродукта и постоянной вискозиметра. Динамическая вязкость вычисляется как произведение кинематической вязкости и плотности нефтепродукта при одной и той же температуре.

5.1 Повторяемость d

Расхождение результатов двух последовательных измерений времени истечения, полученных одним и тем же исполнителем, работающим в одной и той же лаборатории на одном и том же оборудовании, при постоянных условиях и на идентичных образцах одной и той же пробы нефтепродукта, не должно превышать (с доверительной вероятностью 95%) значений, приведенных в таблице 1.

5.2 Повторяемость (сходимость) r

Расхождение результатов двух последовательных значений кинематической вязкости, полученных одним и тем же исполнителем, работающим в одной и той же лаборатории на одном и том же оборудовании, при постоянных условиях и на идентичных образцах одной и той же пробы нефтепродукта, не должно превышать (с доверительной вероятностью 95%) значений повторяемости, приведенных в таблице 1.

5.3 Воспроизводимость R

Расхождение результатов двух единичных и независимых значений кинематической вязкости, полученных разными исполнителями, работающими в разных лабораториях на идентичных образцах одной и той же пробы нефтепродукта, не должно превышать (с доверительной вероятностью 95%) значений, приведенных в таблице 1.

Таблица 1 — Показатели точности метода

Испытуемый продукт

Повторяемость d

Повторяемость r

Воспроиз-
водимость R

Базовые масла при 40°C и 100°C

0,0020y

0,0011x

0,0065x

(0,20%)

(0,11%)

(0,65%)

Компаундированные масла при 40°C и 100°C

0,0013y

0,0026x

0,0076x

(0,13%)

(0,26%)

(0,76%)

Компаундированные масла при 150°C

0,015y

0,0056x

0,018x

(1,5%)

(0,56%)

(1,8%)

Нефтяные парафины при 100°C

0,0080y

(0,80%)

0,0141x

0,0366x

Остаточные котельные топлива (мазуты) при 80°C и 100°C

0,011(y+8)

0,013(x+8)

0,04(x+8)

Остаточные котельные топлива (мазуты) при 50°C

0,017y

0,015x

0,074x

(1,7%)

(1,5%)

(7,4%)

Добавка к смазочному маслу при 100°C

0,00106·y

0,00192·y

0,00862·x

Среднедистиллятное топливо при 40°C

0,0013(y+1)

0,0043(x+1)

0,0082(x+1)

Авиационное топливо для газотурбинных двигателей при минус 20°C

0,0018y

0,007x

0,019x

(0,18%)

(0,7%)

(1,9%)

Прочие нефтепродукты


0,0035x

0,0072x

(0,35%)

(0,72%)

Обозначения:

y — среднеарифметическое значение двух сравниваемых результатов измерений времени истечения, с;

x — среднеарифметическое значение двух сравниваемых результатов измерений вязкости, мм/с.

6.1 Вискозиметры стеклянные капиллярные, обеспечивающие измерение кинематической вязкости с точностью, указанной в таблице 1.

Примечания

1 Типы наиболее часто применяемых вискозиметров, со спецификацией удовлетворяющей требованиям, указанным в [1]* и обеспечивающие измерение кинематической вязкости с точностью, указанной в таблице 1, приведены в таблице А.1 (приложение А).

________________

* Поз. [1] см. раздел Библиография, здесь и далее по тексту. — Примечание изготовителя базы данных.

2 Для каждого диапазона вязкости необходимо иметь набор однотипных вискозиметров.

6.2 Держатели, обеспечивающие строго вертикальное крепление вискозиметра.

6.3 Отвес для проверки вертикальности расположения вискозиметра.

6.4 Штативы или другие устройства для крепления термометра в вертикальном направлении.

6.5 Термостат, криостат или баня с регулируемой температурой.

Глубина термостата должна быть такой, чтобы расстояния от нефтепродукта в вискозиметре до уровня термостатирующей жидкости в термостате и от нефтепродукта до дна термостата были не менее 20 мм.

Регулирование температуры термостатирующей жидкости в термостате должна быть такой, чтобы во время проведения измерений времени истечения температура жидкости в термостате не отклонялась от заданного значения и не менялась по всей высоте вискозиметров, а также в пространстве между вискозиметрами и местом расположения термометра, более чем на ±0,02°C при температуре от 15°C до 100°C и ±0,05°C при температуре вне этого диапазона.

Примечания

1 Для охлаждения термостатирующей жидкости допускается использовать лед, твердую углекислоту (сухой лед), жидкий азот.

2 Для определения вязкости при температуре ниже 15°C допускается применять прозрачные сосуды Дьюара соответствующей вместимости.

6.6 Термостатирующие жидкости.

В качестве термостатирующих жидкостей применяют жидкости, остающиеся жидкими и прозрачными при температуре испытания. В зависимости от температуры испытания нефтепродукта для заполнения термостата используют следующие жидкости:

— от минус 60°C до 15°C — спирт этиловый технический по ГОСТ 17299, спирт этиловый ректификованный технический по ГОСТ 18300, или изооктан технический по ГОСТ 4095;

— свыше 15°C до плюс 60°C — вода дистиллированная;

— свыше 60°C до плюс 90°C — глицерин по ГОСТ 6824, разбавленный водой в соотношении 1:1, или светлое нефтяное масло;

— свыше 90°C — 25%-ный раствор азотнокислого аммония по ГОСТ 22867.

6.7 Жидкостные стеклянные термометры типов I и II по ГОСТ 13646, типа ТИН-10 по ГОСТ 400 и типа ASTM, IP и ASTM/IP, соответствующие приложению Б.

Для диапазона измерений от 0°C до 100°C применяют жидкостные стеклянные термометры с точностью после корректировки (введения поправок на показания, указанных в свидетельстве о поверке) не менее ±0,02°C, при применении двух термометров в одном и том же термостате их показания не должны отличаться более чем на ±0,04°C.

Для измерения температур вне диапазона от 0°C до 100°C следует использовать жидкостные стеклянные термометры с точностью после корректировки не менее ±0,05°C, при применении двух термометров в одном и том же термостате их показания не должны отличаться более чем на ±0,1°C.

Примечание — Допускается применять другие термометрические устройства равноценной или более высокой точности.

6.8 Устройства, обеспечивающие отсчет времени с дискретностью до 0,1 с и имеющие погрешность не более ±0,07%.

Примечания

1 Допускается применять секундомеры, обеспечивающие отсчет времени до 0,2 с. При применении секундомеров, обеспечивающих отсчет времени до 0,2 с, расхождения между последовательными определениями времени истечения продукта в одном и том же вискозиметре не должны превышать значений, указанных в таблице 1.

2 Допускается применять электрические устройства для измерения времени, если частота тока контролируется с точностью не ниже 0,05%.

6.9 Шкаф сушильный, обеспечивающий температуру от 100°C до 200°C.

6.10 Фильтры с размером отверстий 75 мкм, воронки или тигли фильтрующие по ГОСТ 25336.

Примечание — Для фильтрования жидкостей с вязкостью более 2000 мм/с допускается применять фильтры с размером ячейки не превышающим 0,6 мм.

6.11 Бумага фильтровальная лабораторная по ГОСТ 12026.

6.12 Соль поваренная крупнокристаллическая или сульфат натрия безводный, или кальций хлористый прокаленный, или любой другой осушитель.

6.13 Нефрас по ГОСТ 8505.

6.14 Ацетон по ГОСТ 2603.

6.15 Толуол по ГОСТ 5789.

6.16 Спирт этиловый технический по ГОСТ 17299, спирт этиловый ректификованный технический по ГОСТ 18300.

6.17 Эфир петролейный.

6.18 Смесь хромовая для мойки стекла: калий двухромовый кислый по ГОСТ 4220, кислота серная по ГОСТ 4204 или сильно окисляющая кислота, не содержащая хрома.

Примечание — Хромовая кислота и растворы сильных кислот опасны для здоровья (токсичны, чрезвычайно коррозионно-агресивны и потенциально опасны при контакте с органическими веществами). При их применении необходимо защитить все лицо и надеть защитную одежду, не вдыхать пары, отходы разложить в соответствии со стандартными методиками.

6.19 Кислота соляная по ГОСТ 3118.

6.20 Вода дистиллированная по ГОСТ 6709.

6.21 Сертифицированные стандартные образцы вязкости, используемые для контроля точности измерений.

Примечание — Допускается применять реактивы и растворители с квалификацией не ниже указанной в настоящем стандарте.

7.1 Устанавливают и поддерживают в термостате необходимую температуру испытания нефтепродукта с учетом требований указанных в 6.5.

Примечание — Температура испытания образца нефтепродукта должна обеспечивать свободное истечение нефтепродукта через капилляр вискозиметра и получение идентичных результатов при использовании вискозиметров с различными диаметрами капилляров.

Температуру жидкости в термостате измеряют жидкостными стеклянными термометрами, погруженными в жидкость. Термометры должны крепиться вертикально при той же глубине погружения, что и при калибровке.

Примечание — Для получения наиболее достоверных результатов измерения температуры жидкости рекомендуется одновременно использовать два термометра с учетом поправок из свидетельства о поверке. За результат измерения температуры жидкости принимается среднеарифметическое значение показаний двух термометров с учетом всех поправок.

При частичном погружении в жидкость термометра, градуированного на полное погружение, в показания термометра вводят поправку на выступающий над поверхностью жидкости столбик термометрической жидкости, вычисляемую по формуле

,                                                             (1)

где — поправка на выступающий столбик термометрической жидкости, °С;

— коэффициент, равный для ртутного термометра 0,00016, для спиртового термометра — 0,001;

— высота выступающего столбика термометрической жидкости, выраженная в градусных делениях шкалы термометра;

— показание термометра, °С;

— температура окружающего воздуха вблизи середины выступающего столбика термометрической жидкости (определяется вспомогательным термометром, резервуар которого находится на середине высоты выступающего столбика), °С.

Рассчитанную по формуле (1) поправку алгебраически прибавляют к показаниям термометра.

7.2 Отобранную по ГОСТ 2517 пробу нефтепродукта подготавливают к проведению испытаний.

7.2.1 Нефтепродукты, содержащие твердые частицы, фильтруют через фильтр с отверстиями размером 75 мкм. При наличии в нефтепродукте воды его сушат безводным сульфатом натрия или прокаленной крупнокристаллической поваренной солью, или прокаленным хлористым кальцием и фильтруют через бумажный фильтр.

Примечание — Вязкие нефтепродукты допускается перед фильтрованием подогреть от 50°C до 100°C.

7.2.2 Остаточные цилиндровые масла, темные смазочные масла, остаточные котельные топлива (мазуты) и аналогичные парафинистые продукты, вязкость которых может быть обусловлена предыдущей тепловой обработкой, подготавливают в соответствии с 7.2.2.1-7.2.2.6.

7.2.2.1 Исследуемый образец нагревают в контейнере в течение 1 ч при температуре (60±2)°C тщательно перемешивая с помощью стержня до тех пор, пока не растворятся все парафиновые вещества.

Примечания

1 Для образцов с высоким содержанием парафинов или высокой вязкостью необходимо увеличить температуру нагрева выше 60°C. Образец должен быть жидким, чтобы его было удобно перемешивать.

2 Определение вязкости должно быть выполнено не позже чем через 1 ч после подогревания.

7.2.2.2 Контейнер плотно закрывают и энергично встряхивают в течение 1 мин.

7.2.2.3 Открывают контейнер и переливают 100 см исследуемого образца в стеклянную колбу.

7.2.2.4 Колбу неплотно закупоривают корковой или резиновой пробкой, и погружают на 30 мин в кипящую воду.

7.2.2.5 Вынимают колбу из кипящей воды, плотно закупоривают и встряхивают в течение 1 мин.

7.2.2.6 Фильтруют пробу в сушильном шкафу, не понижая температуры.

Примечание — Фильтр предварительно подогревают в сушильном шкафу до температуры испытания образца.

7.3 Из набора вискозиметров отбирают чистые сухие однотипные вискозиметры с пределами измерения, соответствующими ожидаемой вязкости испытуемого образца нефтепродукта и подготавливают их в соответствии с описанием работы с вискозиметрами, приведенным в приложении В.

Примечания

1 Для прозрачных жидкостей используют вискозиметры типов А и Б, для непрозрачных жидкостей используют вискозиметры типа В, приведенные в таблице А.1 (приложение А).

2 Диаметр капилляра вискозиметра должен обеспечивать время истечения не менее 200 с и не более 1000 с.

3 При температурах испытания ниже точки росы (температура, при которой образуется конденсат), на открытые колена вискозиметра надевают осушивающие трубки с наполнителем, чтобы предотвратить конденсацию воды из воздуха. Осушивающие трубки должны соответствовать конструкции вискозиметра и не должны препятствовать истечению исследуемого нефтепродукта под действием изменения давления в вискозиметре. Перед помещением вискозиметра в баню заполняют образцом рабочий капилляр и расширительную часть вискозиметра, сливают его еще раз в целях дополнительного предотвращения конденсации влаги или замерзания ее на стенках.

8.1 Вискозиметр заполняют испытуемым нефтепродуктом в соответствии с описанием работы с вискозиметрами приведенным в приложении В. Наполненный вискозиметр помещают в термостат и закрепляют в держателе.

Примечания

1 При проведении определения вязкости прозрачного нефтепродукта заполняют и помещают в термостат один вискозиметр, при проведении определения вязкости непрозрачного нефтепродукта заполняют и помещают в термостат сразу два однотипных вискозиметра.

2 При проведении определения вязкости нефтепродукта, подготовленного в соответствии с 7.2.2.1-7.2.2.6, вискозиметры перед заполнением предварительно подогревают в сушильном шкафу до температуры испытания.

Вискозиметр закрепляют таким образом, чтобы капилляры были расположены вертикально, за исключением таких типов вискозиметров, для которых установлено другое положение. Вертикальность оценивают с помощью отвеса по верхней половине широкого колена вискозиметра. Величина отклонения оценивается на глаз.

Примечания

1 Уровень нефтепродукта, находящегося в вискозиметре, должен быть не менее чем на 20 мм ниже уровня жидкости в термостате.

2 Для вискозиметров, у которых верхняя метка расположена непосредственно над нижней, отклонение от вертикали по всем направлениям не должно превышать 1°. Для вискозиметров, у которых верхняя метка отклонена относительно нижней, отклонение от вертикали по всем направлениям не должно превышать 0,3°.

8.2 Вискозиметр термостатируют в течение времени, указанном в приложении В для конкретного типа вискозиметра. По истечении 10 мин термостатирования доводят объем нефтепродукта до требуемого уровня, если этого требует конструкция вискозиметра.

Примечания

1 Если время термостатирования в приложение Б не указано, то вискозиметр термостатируют 30 мин. Для высоковязких нефтепродуктов время термостатирования необходимо увеличить.

2 Погружать в термостат или вынимать из термостата вискозиметры или термометры, в то время когда хотя бы один вискозиметр находится в рабочем состоянии (во время измерения времени истечения), не допускается.

8.3 Используя подсос (если образец не содержит летучих веществ) или давление, устанавливают высоту столбика нефтепродукта в капилляре вискозиметра до уровня, находящегося приблизительно на 7 мм выше первой метки, если в инструкции по эксплуатации вискозиметра не установлено другое значение. При этом необходимо следить, чтобы в нефтепродукте не образовались пузырьки воздуха.

При свободном течении нефтепродукта через капилляр определяют время истечения (время перемещения мениска жидкости между метками, для которых определена постоянная вискозиметра).

Записывают значение времени истечения нефтепродукта с точностью до 0,1 с, температуру испытания (с учетом всех поправок) — до 0,01°C.

Примечания

1 При наличии возможности, показания термометров рекомендуется рассматривать с помощью оптических устройств, дающих примерно пятикратное увеличение, установленных так, чтобы исключить ошибки углового смещения между видимым и реальным направлением изображения.

2 Если время истечения менее 200 с, подбирают вискозиметр с меньшим диаметром капилляра и повторяют определение.

При определении вязкости прозрачного нефтепродукта проводят два последовательных измерения времени истечения нефтепродукта через один вискозиметр. Если разность между двумя значениями времени истечения жидкости не превышает величины определяемости (см. 5.1), то рассчитывают среднее арифметическое значение измерений времени истечения, которое используется для вычисления кинематической вязкости по формуле (2). Если разность между двумя значениями времени истечения жидкости превышает величины определяемости (см. 5.1), то определение необходимо повторить после тщательной очистки и сушки вискозиметра и фильтрации образца.

При определении вязкости непрозрачного нефтепродукта проводят по одному измерению времени истечения через оба вискозиметра (два параллельных определения времени истечения нефтепродукта). По параллельным значениям времени истечения нефтепродукта рассчитывают два значения кинематической вязкости по формуле (2). По двум значениям кинематической вязкости рассчитывают среднее значение кинематической вязкости.

Для остаточных котельных топлив (мазутов), рассчитывают разность между двумя значениями кинематической вязкости, если разность между двумя значениями не превышает величины повторяемости (см. 5.2), то рассчитывают среднее арифметическое значение кинематической вязкости, в противном случае операции необходимо повторить после тщательной очистки и сушки вискозиметра и фильтрации образца.

Примечание — Для других непрозрачных нефтепродуктов данные показатели точности не применяют.

9.1 Кинематическую вязкость , мм/с, вычисляют по формуле

,                                                         (2)

где — постоянная вискозиметра, мм/с;

— время истечения, с;

— ускорение свободного падения в месте определения кинематической вязкости, м/с;

— нормальное ускорение свободного падения (9,80665), м/с;

— поправка на кинетическую энергию, мм/с.

Ускорение свободного падения в месте определения кинематической вязкости, , м/с, вычисляют по формуле

=9,780318 (1+0,0053024 sin-0,0000059 sin 2)-2·10,                      (3)

где — географическая широта места, градус;

— высота над уровнем моря, м.

Примечания

1 Если ускорение свободного падения отличается от не более чем на 0,1%, то при расчете кинематической вязкости по формуле (2) отношение () можно принять равным единице.

2 Поправку на кинетическую энергию учитывают только в случаях определения кинематической вязкости менее 10 мм/с или времени истечения менее 200 с, в остальных случаях поправка на кинетическую энергию пренебрежительно мала и ее принимают равной нулю.

,                                                                     (4)

где — коэффициент кинетической энергии, мм·с.

Коэффициент кинетической энергии , мм·с, вычисляют по формуле

,                                                             (5)

где — вместимость измерительного резервуара, мм;

— длина капилляра, мм;

— диаметр капилляра, мм.

9.2 Динамическую вязкость , мПа·с, вычисляют по формуле

,                                                                 (6)

где — кинематическая вязкость нефтепродукта при температуре испытания, мм/с;

— плотность нефтепродукта при той же температуре, при которой определялась кинематическая вязкость, кг/м.

Примечание — Плотность нефтепродукта определяют по ГОСТ 3900.

Рассчитанное значение кинематической и/или динамической вязкости нефтепродукта округляют до 0,01% измеренной или расчетной величины, и записывают в протокол испытаний, указывая температуру испытания.

Протокол испытания должен содержать:

1) тип и марку испытуемого продукта;

2) ссылку на настоящий стандарт;

3) результаты испытаний;

4) любые отклонения, по соглашению или другим документам, от предписанной процедуры испытания;

5) дату проведения испытаний;

6) наименование испытательной лаборатории.

Примечание — При наличии разногласий испытания проводят без отступления от настоящего стандарта.

11.1 Между проведениями измерений вискозиметр тщательно промывают несколько раз растворителем, полностью смешивающимся с исследуемым нефтепродуктом, затем промывают осушающим растворителем, полностью испаряющимся и смешивающимся как с растворителем для нефтепродукта, так и с водой. Сушат вискозиметр, пропуская через него слабую струю чистого сухого воздуха в течение 2 мин или до полного удаления следов растворителя.

Примечания

1 Для большинства образцов в качестве растворителя, полностью смешивающегося с образцом, применяют петролейный эфир или нефрас. Вискозиметр после испытания остаточных котельных топлив (мазутов) необходимо предварительно промыть толуолом по ГОСТ 5789 или толуолом нефтяным по ГОСТ 14710, или ксилолом, чтобы удалить асфальтеновые вещества. В качестве осушающего растворителя, как правило, применяют ацетон.

2 Перед применением растворители следует отфильтровать.

11.2 Вискозиметр периодически промывают хромовой смесью или сильно окисляющей кислотой (отмачивают несколько часов, соблюдая меры предосторожности (см. 6.18), чтобы удалить остаточные следы органических отложений, затем тщательно ополаскивают последовательно дистиллированной водой и ацетоном, и сушат чистым сухим воздухом. Отложения неорганических веществ удаляют соляной кислотой перед промывкой хромовой смесью, особенно если предполагается присутствие солей бария.

Примечания

1 Применение щелочных очищающих растворов не допускается.

2 Перед применением воду и ацетон следует отфильтровать.

Контроль точности проводят в условиях испытательной лаборатории по указанной в стандарте процедуре измерений, используя утвержденные в установленном порядке стандартные образцы вязкости. Если разность измеренной кинематической вязкости стандартного образца вязкости и значения, приведенного в сертификате на него, превышает ±0,35%, необходимо проверить каждый этап испытания для выявления причины ошибок.

Примечание — Самыми частыми причинами ошибок являются следы отложений нефтепродуктов в отверстии капилляра и погрешность в измерении температуры. Правильный результат, полученный на сертифицированном стандартном образце, не исключает возможных источников ошибок.

Приложение А


(обязательное)

Типы капиллярных вискозиметров, обычно применяемых для определения вязкости нефтепродуктов, приведены в таблице А.1. Спецификации и инструкции по эксплуатации капиллярных вискозиметров  приведены в [1].

Таблица А.1

Тип вискозиметра

Наименование вискозиметра

Диапазон измерения кинематической вязкости набором вискозиметров, мм/с

Для прозрачных жидкостей

А
(Вискозиметры Оствальда)

Каннон-Фенске обычный

0,5-20000

Цайтфукс

0,6-3000

BS с U-образной трубкой

0,9-10000

BS/U/M-миниатюрный

0,2-100

SIL

0,6-10000

Каннон-Маннинг, полумикро

0,4-20000

Пинкевич

0,6-17000

ВПЖ-4, ВПЖТ (ГОСТ 10028)

0,6-10000

ВПЖ-2, ВПЖТ-2 (ГОСТ 10028)

0,6-10000

Б
(Вискозиметры с висячим уровнем)

BS/IP/SL

3,5-100000

BS/IP/SL (S)

1,05-10000

BS/IP/MSL

0,6-3000

Убеллоде

0,3-100000

Фитцсиманс

0,6-1200

Атлантик

0,75-5000

Каннон-Убеллоде (А), Каннон-Убеллоде с разбавлением (В)

0,5-100000

Каннон-Убеллоде, полумикро

0,4-20000

ДИН Убеллоде

0,35-50000

ВПЖ-1 (ВПЖТ-1) (ГОСТ 10028)

0,6-30000

Для прозрачных и непрозрачных жидкостей

В
(Вискозиметры с обратным истечением)

Канон-Фенске-Опакв — для непрозрачных жидкостей

0,4-20000

Цайтфукс с перекрещивающимися трубками

0,6-100000

BS/IP/RF с U-образной трубкой с обратным истечением

0,6-300000

Ланц-Цайтфукс с обратным истечением

60-100000

ВНЖ, ВНЖТ (ГОСТ 10028)

0,6-30000

Каждый диапазон кинематической вязкости требует набора вискозиметров. Во избежание необходимости введения поправок на кинематическую энергию эти вискозиметры сконструированы таким образом, чтобы обеспечить время истечения более 200 с.

Для данных вискозиметров с минимальной постоянной время истечения превышает 200 с.

     

Приложение Б


(обязательное)

Б.1 Конструкция термометров и спецификация

Применяют специальные термометры с небольшим диапазоном измерения, соответствующим общей спецификации, приведенной в таблице Б.1, и по конструкции соответствующим чертежу, представленному на рисунке Б.1.

В таблице Б.2 приведены термометры ASTM, IP и ASTM/IP, соответствующие спецификации, изложенной в таблице Б.1, и температурам испытания.

Примечание — Разница в конструкции, главным образом, основывается на положении точки замерзания воды. В модели «a» точка замерзания воды находится в диапазоне шкалы, в модели «b» — ниже диапазона шкалы, в модели «c» — выше диапазона шкалы (см. рисунок Б.1).


Рисунок Б.1 Различные конструкции термометров

В таблице Б.1 приведены технические требования к термометрам, а также разъяснения к буквенным обозначениям чертежа, представленному на рисунке Б.1.

Таблица Б.1 — Технические требования к термометрам

Наименование параметра

Характеристика параметра

Глубина погружения

Разбиение шкалы:

Полная

— цена самого малого деления, °С

0,05

— цена длинного деления, °С

0,1 и 0,5

Цифровые обозначения через каждые, °С

1

Максимальная ширина деления, мм

0,1

Погрешность шкалы при температуре испытания, °С, не более

0,1

Камера расширения допускает нагревание до °С

105 для шкалы термометра до 90

120 между 90-95

130 между 95-105 и

170 выше 105

Общая длина B, мм

300-310

Наружный диаметр корпуса C, мм

6,0-8,0

Длина ртутного резервуара D, мм

45-55

Наружный диаметр ртутного резервуара E, мм

Не более чем наружный диаметр корпуса

Длина шкалы G, мм

40-90

Таблица Б.2 — Соответствие термометров по ГОСТ 400 термометрам по спецификациям ASTM и IP

Тип термометра по нормативной документации

Температура испытания, °C

ГОСТ 400

ASTM

IP


ASTM 74C

IP 69C

-53,9

ТИН 10-6

ASTM 73C

IP 68C

-40,0


ASTM 126C

IP 71C

-26,1


ASTM 127C

IP 99C

-20,0

ТИН 10-10

ASTM 72C

IP 67C

-17,8

ТИН 10-5

ASTM 128C

IP 33C

0,0

ТИН 10-1

ASTM 44C

IP 29C

20,0

ТИН 10-7

ASTM 45C

IP 30C

25,0


ASTM 118C


30,0

ТИН 10-2

ASTM 28C

IP 31C

37,8

ТИН 10-8

ASTM 120C

IP 92C

40,0

ТИН 10-3

ASTM 46C

IP 66C

50,0


ASTM 29C

IP 34C

54,4

ТИН 10-9

ASTM 47C

IP 35C

60,0



IP 100C

80,0


ASTM 48C

IP 90C

82,2


ASTM 129C

IP 36C

93,3

ТИН 10-4

ASTM 122C

IP 32C

98,9 и 100,0

ТИН 10-4

ASTM 121С


100,0


ASTM 110

IP 93C

135,0

     

Приложение B


(справочное)

B.1 Вискозиметр типа Канон-Фенске (см. рисунок B.1).

На трубку 2 надевают резиновую трубку, конец трубки 1 погружают в сосуд с нефтепродуктом и засасывают нефтепродукт (с помощью резиновой груши, водоструйного насоса или другим способом) до метки , при этом необходимо следить, чтобы в жидкости не образовались пузырьки воздуха. В момент, когда уровень жидкости достигает метки , вискозиметр вынимают из сосуда и быстро устанавливают в нормальное положение. Снимают с внешней стороны конца трубки 1 избыток жидкости и надевают на этот конец резиновую трубку. Вискозиметр помещают в термостат и выдерживают в нем 30 мин. Расширение 3 должно находиться ниже уровня жидкости в термостате. После выдержки в термостате жидкость засасывают в расширение 4 приблизительно на 3 мм выше метки . Определяют время перемещения мениска жидкости от метки до метки .

B.2 Вискозиметр типа Пинкевича (ВПЖ-4, ВПЖТ-4 и ВПЖ-2, ВПЖТ-2), (см. рисунки B.2.1 и B.2.2).

На отводную трубку 3 надевают резиновую трубку. Далее, зажав пальцем конец трубки 2 и перевернув вискозиметр, опускают конец трубки 1 в сосуд с нефтепродуктом и засасывают его (с помощью резиновой груши, водоструйного насоса или иным способом) до метки , следя за тем, чтобы в жидкости не образовались пузырьки воздуха. В момент, когда уровень жидкости достигает метки , вискозиметр вынимают из сосуда и быстро перевертывают в нормальное положение. Снимают с внешней стороны конца трубки 1 избыток жидкости и надевают на него резиновую трубку. Вискозиметр устанавливают в термостат так, чтобы расширение 4 было ниже уровня жидкости. После выдержки в термостате не менее 15 мин засасывают жидкость в трубку 1 примерно до 1/3 высоты расширения 4. Определяют время перемещения мениска жидкости от метки до .


Рисунок B.1 — Вискозиметр типа Канон-Фенске

Рисунок B.2.1 — Вискозиметр типа Пинкевича (ВПЖТ-4, ВПЖ-4)

Рисунок B.2.2 — Вискозиметр типов ВПЖТ-2, ВПЖ-2

B.3 Вискозиметры типов ВПЖТ-1, ВПЖ-1 (БС/ИП/СЛ) (см. рисунок B.3).

Испытуемый нефтепродукт наливают в чистый вискозиметр через трубку 1 так, чтобы уровень ее установился между метками и 2 и 3 надевают резиновые трубки, при этом первая из них должна быть снабжена краном, вторая — краном и резиновой грушей. Вискозиметр устанавливают вертикально в жидкостном термостате так, чтобы уровень термостатирующей жидкости находился на несколько сантиметров выше расширения 4. При температуре испытания вискозиметр выдерживают не менее 15 мин, после чего всасывают (грушей) при закрытой трубке 2 жидкость выше метки примерно до середины расширения 4 и перекрывают кран, соединенный с трубкой 3. Если вязкость нефтепродукта менее 500 сСт, открывают кран на трубке 3 и потом освобождают зажим на трубке 2. При более вязких нефтепродуктах сначала открывают трубку 2, затем трубку 3. Далее измеряют время перемещения мениска жидкости в трубке 2 от метки до . Необходимо при этом обращать внимание на то, чтобы к моменту подхода уровня жидкости к метке в расширении 5 образовался «висячий уровень», а в капилляре не было пузырьков воздуха.

B.4 Вискозиметр типа Убеллоде (см. рисунок B.4)

В чистый сухой вискозиметр вносят пробу нефтепродукта следующим образом. Вискозиметр отклоняют на 30° от вертикального положения так, чтобы сосуд 7 оказался под капилляром. С помощью заполнительной трубки 1 вносят пробу так, чтобы ее уровень достиг нижней метки . Потом вискозиметр возвращают в нормальное положение, следя за тем, чтобы уровень жидкости не превышал верхней метки . При заполнении вискозиметра пробой в жидкости не должны образовываться пузырьки воздуха. Вискозиметр с пробой помещают в термостат. Через 20 мин выдержки на трубку 3 надевают резиновую трубку, трубку 2 закрывают пальцем и пробу засасывают до половины расширения 4. Потом трубку 2 открывают, ждут, пока проба перетечет из трубки 2 в сосуд 6 и образуется «висячий уровень». Освобождают трубку 3 и измеряют время перемещения мениска жидкости от метки до .

B.5 Вискозиметры типов ВНЖ, ВНЖТ (Канон-Фенске-Опакв) (см. рисунок B.5)

На отводную трубку 3 надевают резиновую трубку. Зажав пальцем конец трубки 2, и перевернув вискозиметр, опускают конец трубки 1 в сосуд с нефтепродуктом и засасывают его (с помощью резиновой груши, водоструйного насоса или иным способом) до метки M, вискозиметр вынимают из сосуда и быстро перевертывают в нормальное положение. Снимают с внешней стороны конца трубки 1 избыток нефтепродукта и надевают кусочек резиновой трубки длиной 8-15 см с присоединенным закрытым краном или зажимом. Затем открывают кран для заполнения жидкостью резервуара 6 и вновь его закрывают, когда жидкость заполнит приблизительно половину резервуара 6. Вискозиметр устанавливают в термостат и после необходимой выдержки в нем (20 мин) открывают трубку 1 и, пользуясь двумя секундомерами, измеряют время течения жидкости от метки до и от метки до . По измеренному времени заполнения резервуара 5 вычисляют вязкость. Измеренное время заполнения резервуара 4 служит для контроля. Значения вязкости, вычисленные по времени заполнения резервуаров 5 и 4, могут отличаться до 2%, а при температуре ниже 15°C — до 3%.


Рисунок B.3 — Вискозиметры типов ВПЖТ-1, ВПЖ-1 (BS/IP/SL)


Рисунок B.4 — Вискозиметр типа Убеллоде


Рисунок B.5 — Вискозиметр типов ВНЖ, ВНЖТ (Канон-Фенске-Опакв)

B.6 Вискозиметр типа БС/ИП/РФ (см. рисунок B.6).

Вискозиметр помещают в термостат так, чтобы верхняя метка 1 пробу (проба может быть подогретой), следя за тем, чтобы не намочить стенки вискозиметра над меткой , закрывают трубку 2 и останавливают течение жидкости. Пробу доливают до метки 2 и доводят уровень пробы до метки . Трубку 2 снова закрывают. С помощью пипетки с предохранительным упором устанавливают пробу над меткой 1 и соприкосновении упора с краем трубки 1 конец пипетки был точно на метке

К пипетке присоединяют отсос и осторожно отсасывают избыток пробы, пока пипетка не начнет всасывать воздух, после чего пипетку вынимают. Потом трубку 2 освобождают и измеряют время прохождения мениска жидкости от метки до .

С одним заполнением вискозиметра производят только одно измерение времени течения.


Рисунок В.6 — Вискозиметр типа БС/ИП/РФ с U-образной трубкой

[1]

ISO 3105:1994*

Glass capillary kinematic viscometers — Specifications and operating instructions (Вискозиметры стеклянные капиллярные для определения кинематической вязкости. Технические требования и инструкция по эксплуатации)

________________

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. — Примечание изготовителя базы данных.

УДК 665.6:532.13:006.354

МКС 75.080

Ключевые слова: определение вязкости нефтепродуктов, кинематическая вязкость, динамическая вязкость, ньютоновские жидкости

Динамическая вязкость — это… Что такое Динамическая вязкость?


Вя́зкость (вну́треннее тре́ние) — одно из трёх явлений переноса, свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой. Вязкость твёрдых тел обладает рядом специфических особенностей и рассматривается обычно отдельно.

Различают динамическую вязкость (единицы измерения: пуаз, Па·с) и кинематическую вязкость (единицы измерения: стокс, м²/с, внесистемная единица — градус Энглера). Кинематическая вязкость может быть получена как отношение динамической вязкости к плотности вещества и своим происхождением обязана классическим методам измерения вязкости, таким как измерение времени вытекания заданного объема через калиброванное отверстие под действием силы тяжести.

Прибор для измерения вязкости называется вискозиметром.

Вязкость газов

В кинетической теории газов коэффициент внутреннего трения вычисляется по формуле

,

где — средняя скорость теплового движения молекул, λ − средняя длина свободного пробега.

Вторая вязкость

Вторая вязкость — внутреннее трение при переносе импульса в направлении движения. Влияет только при учёте сжимаемости и/или при учёте неоднородности коэффициента второй вязкости по пространству.

Вязкость жидкостей

Внутреннее трение жидкостей, как и газов, возникает при движении жидкости вследствие переноса импульса в направлении, перпендикулярном к направлению движения. Общий закон внутреннего трения — закон Ньютона: Коэффициент вязкости η может быть получен на основе соображений о движениях молекул. Очевидно, что η будет тем меньше, чем меньше время t «оседлости» молекул. Эти соображения приводят к выражению для коэффициента вязкости, называемому уравнением Френкеля-Андраде: η = Cew / kT

Иная формула, представляющая коэффициент вязкости, была предложена Бачинским. Как показано, коэффициент вязкости определяется межмолекулярными силами, зависящими от среднего расстояния между молекулами; последнее определяется молярным объёмом вещества VM. Многочисленные эксперименты показали, что между молярным объёмом и коэффициентом вязкости существует соотношение где с и b — константы. Это эмпирическое соотношение называется формулой Бачинского.

Ньютоновские и неньютоновские жидкости

Ньютоновскими называют жидкости, для которых вязкость не зависит от скорости деформации. Если вязкость падает при увеличении скорости, жидкость называется тиксотропной. Для неньютоновских жидкостей методика измерения вязкости получает первостепенное значение.

Вязкость аморфных материалов

Вязкость аморфных материалов (например, стекла или расплавов), это термически активизируемый процесс[1]:

где Q — энергия активации вязкости (кДж/моль), T — температура (К), R — универсальная газовая постоянная (8,31 Дж/моль•К) и A — некоторая постоянная.

Вязкое течение в аморфных материалах характеризуется отклонением от закона Аррениуса: энергия активации вязкости Q изменяется от большой величины QH при низких температурах (в стеклообразном состоянии) на малую величину QL при высоких температурах (в жидкообразном состоянии). В зависимости от этого изменения аморфные материалы классифицируются либо как сильные, когда , или ломкие, когда . Ломкость аморфных материалов численно характеризуется параметром ломкости Доримуса : сильные материалы имеют RD < 2, в то время как ломкие материалы имеют .

Вязкость аморфных материалов весьма точно аппроксимируется двуэкспоненциальным уравнением:

с постоянными A1, A2, B, C и D, связанными с термодинамическими параметрами соединительных связей аморфных материалов.

В узких температурных интервалах недалеко от температуры стеклования Tg это уравнение аппроксимируется формулами типа VTF или сжатыми экспонентами Кольрауша.

Вязкость

Если температура существенно ниже температуры стеклования T < Tg, двуэкспоненциальное уравнение вязкости сводится к уравнению типа Аррениуса

с высокой энергией активации QH = Hd + Hm, где Hd — энтальпия разрыва соединительных связей, то есть создания конфигуронов, а Hm — энтальпия их движения. Это связано с тем, что при T < Tg аморфные материалы находятся в стеклообразном состоянии и имеют подавляющее большинство соединительных связей неразрушенными.

При T > > Tg двуэкспоненциальное уравнение вязкости также сводится к уравнению типа Аррениуса

но с низкой энергией активации QL = Hm. Это связано с тем, что при аморфные материалы находятся в расправленном состоянии и имеют подавляющее большинство соединительных связей разрушенными, что облегчает текучесть материала.

Сила вязкого трения

Сила вязкого трения пропорциональна скорости относительного движения V тел, пропорциональна площади S и обратно пропорциональна расстоянию между плоскостями h.

Коэффициент пропорциональности, зависящий от сорта жидкости или газа, называют коэффициентом динамической вязкости. Самое важное в характере сил вязкого трения то, что тела придут в движение при наличии сколь угодно малой силы, то есть не существует трения покоя. Это отличает вязкое трение от сухого.

Примечания

  1. Я. И. Френкель. Кинетическая теория жидкостей. Ленинград, Наука, 1975.

См. также

Ссылки

  • Аринштейн А., Сравнительный вискозиметр Жуковского Квант, № 9, 1983.
  • Измерение вязкости нефтепродуктов — обзор методов и единиц измерения вязкости.
  • R.H. Doremus. J. Appl. Phys., 92, 7619-7629 (2002).
  • M.I. Ojovan, W.E. Lee. J. Appl. Phys., 95, 3803-3810 (2004).
  • M.I. Ojovan, K.P. Travis, R.J. Hand. J. Phys.: Condensed Matter, 19, 415107 (2007).
  • Булкин П. С. Попова И. И.,Общий физический практикум. Молекулярная физика
  • Статья в энциклопедии Химик.ру

Литература

  • Я. И. Френкель. Кинетическая теория жидкостей. — Л.: «Наука», 1975.

Wikimedia Foundation. 2010.

В каких единицах измеряется коэффициент вязкости

Силы вязкости являются тангенциальными силами, то есть имеют направление вдоль поверхности соприкосновения слоев жидкости.

Физический смысл коэффициента вязкости: коэффициент вязкости численно равен силе внутреннего трения, возникающей между двумя слоями жидкости, отнесенной к единице площади, необходимой для поддержания градиента скорости, равного единице.

При S = 1 ед.площади, = 1, h = F

Единицы измерения коэффициента вязкости:

СИ: (Паскаль-секунда)

1 Пас – это вязкость такой жидкости, в которой при градиенте скорости равном единице, на каждый квадратный метр площади соприкосновения слоев действует сила равная 1 Н.

В медицине вязкость выражают в пуазах.

1 Пас = 10 П (пуаз) = 10 3 сП (сантипуаз)

Коэффициент вязкости зависит:

1. от природы жидкости,

2. от температуры: с повышением температуры вязкость жидкости уменьшается, для газов – увеличивается.

1. Ньютоновские – это жидкости у которых коэффициент вязкости не зависит от градиента скорости (от скорости сдвига). Коэффициент вязкости ньютоновских жидкостей зависит только от её природы и температуры. Они подчиняются линейному закону Ньютона, то есть это сплошная, однородная и изотропная среда. Так вязкость лимфы и плазмы крови хорошо описывается уравнением Ньютона. Это нормальная вязкость.

2. Неньютоновские – реологически более сложные жидкости, у которых коэффициент вязкости зависит от градиента скорости (от скорости сдвига), т.е. от условий течения жидкости. Коэффициент вязкости в этом случае не является константой вещества. Они обладают нелинейными свойствами. К ним относятся высокомолекулярные соединения, такие как растворы, полимеры, суспензии, эмульсии, системы биологического происхождения: кровь, синовиальная жидкость. Вязкость неньютоновских жидкостей зависит от ряда кинематических и динамических параметров. Это аномальная вязкость. Неньютоновские реологические свойства крови изменяют профили скорости в каналах экстракорпоральных устройств.

2.ФОРМУЛА ПУАЗЕЙЛЯ выражает объем жидкости, протекающей через капилляр, который зависит от радиуса капилляра, коэффициента вязкости, градиента давления и времени протекания жидкости:

– формула справедлива для ламинарного течения жидкости, где r – радиус сечения капилляра

– длина капилляра

DР = Рвх – Рвых – разность давлений на концах капилляра

grad P = – градиент давления

t – время протекания жидкости

Для вычисления потока жидкости в сосуде важной характеристикой является объемная скорость течения, в частности крови.

Объемная скорость – это величина численно равная объему жидкости, протекающему за единицу времени через данное сечение трубы.

Объемная скорость жидкости выражается формулой Q =

Единица измерения м³/с

Для стационарного ламинарного течения реальной жидкости в цилиндрической трубе постоянного сечения формула Пуазейля приобретает вид:

Согласно этой формуле объемная скорость жидкости пропорциональна перепаду давления на единице длины трубы, четвертой степени радиуса трубы и обратно пропорциональна коэффициенту вязкости.

Для труб переменного сечения формула Пуазейля имеет вид

Гидравлическое сопротивление выражается формулой:

Тогда объемную скорость жидкости можно представить в виде:

Падение давления жидкости (в частности крови) зависит от объемной скорости и значительно от радиуса сосуда, выражается формулой: DР =Q∙Rгидр.

3. ФОРМУЛА СТОКСА выражает силу сопротивления при движении тела в жидкости, которая тормозит его движение, направлена в сторону противоположную скорости тела относительно среды.

Сила сопротивления при движении тел в жидкости зависит:

1) от формы тела

2) от размеров тела

3) от коэффициента вязкости

4) от скорости движения тела

Общая закономерность закона Стокса выражается формулой:

где p и k – численный коэффициент, определяющий геометрическую форму тела.

  • АлтГТУ 419
  • АлтГУ 113
  • АмПГУ 296
  • АГТУ 266
  • БИТТУ 794
  • БГТУ «Военмех» 1191
  • БГМУ 172
  • БГТУ 602
  • БГУ 153
  • БГУИР 391
  • БелГУТ 4908
  • БГЭУ 962
  • БНТУ 1070
  • БТЭУ ПК 689
  • БрГУ 179
  • ВНТУ 119
  • ВГУЭС 426
  • ВлГУ 645
  • ВМедА 611
  • ВолгГТУ 235
  • ВНУ им. Даля 166
  • ВЗФЭИ 245
  • ВятГСХА 101
  • ВятГГУ 139
  • ВятГУ 559
  • ГГДСК 171
  • ГомГМК 501
  • ГГМУ 1967
  • ГГТУ им. Сухого 4467
  • ГГУ им. Скорины 1590
  • ГМА им. Макарова 300
  • ДГПУ 159
  • ДальГАУ 279
  • ДВГГУ 134
  • ДВГМУ 409
  • ДВГТУ 936
  • ДВГУПС 305
  • ДВФУ 949
  • ДонГТУ 497
  • ДИТМ МНТУ 109
  • ИвГМА 488
  • ИГХТУ 130
  • ИжГТУ 143
  • КемГППК 171
  • КемГУ 507
  • КГМТУ 269
  • КировАТ 147
  • КГКСЭП 407
  • КГТА им. Дегтярева 174
  • КнАГТУ 2909
  • КрасГАУ 370
  • КрасГМУ 630
  • КГПУ им. Астафьева 133
  • КГТУ (СФУ) 567
  • КГТЭИ (СФУ) 112
  • КПК №2 177
  • КубГТУ 139
  • КубГУ 107
  • КузГПА 182
  • КузГТУ 789
  • МГТУ им. Носова 367
  • МГЭУ им. Сахарова 232
  • МГЭК 249
  • МГПУ 165
  • МАИ 144
  • МАДИ 151
  • МГИУ 1179
  • МГОУ 121
  • МГСУ 330
  • МГУ 273
  • МГУКИ 101
  • МГУПИ 225
  • МГУПС (МИИТ) 636
  • МГУТУ 122
  • МТУСИ 179
  • ХАИ 656
  • ТПУ 454
  • НИУ МЭИ 641
  • НМСУ «Горный» 1701
  • ХПИ 1534
  • НТУУ «КПИ» 212
  • НУК им. Макарова 542
  • НВ 777
  • НГАВТ 362
  • НГАУ 411
  • НГАСУ 817
  • НГМУ 665
  • НГПУ 214
  • НГТУ 4610
  • НГУ 1992
  • НГУЭУ 499
  • НИИ 201
  • ОмГТУ 301
  • ОмГУПС 230
  • СПбПК №4 115
  • ПГУПС 2489
  • ПГПУ им. Короленко 296
  • ПНТУ им. Кондратюка 119
  • РАНХиГС 186
  • РОАТ МИИТ 608
  • РТА 243
  • РГГМУ 118
  • РГПУ им. Герцена 124
  • РГППУ 142
  • РГСУ 162
  • «МАТИ» — РГТУ 121
  • РГУНиГ 260
  • РЭУ им. Плеханова 122
  • РГАТУ им. Соловьёва 219
  • РязГМУ 125
  • РГРТУ 666
  • СамГТУ 130
  • СПбГАСУ 318
  • ИНЖЭКОН 328
  • СПбГИПСР 136
  • СПбГЛТУ им. Кирова 227
  • СПбГМТУ 143
  • СПбГПМУ 147
  • СПбГПУ 1598
  • СПбГТИ (ТУ) 292
  • СПбГТУРП 235
  • СПбГУ 582
  • ГУАП 524
  • СПбГУНиПТ 291
  • СПбГУПТД 438
  • СПбГУСЭ 226
  • СПбГУТ 193
  • СПГУТД 151
  • СПбГУЭФ 145
  • СПбГЭТУ «ЛЭТИ» 380
  • ПИМаш 247
  • НИУ ИТМО 531
  • СГТУ им. Гагарина 114
  • СахГУ 278
  • СЗТУ 484
  • СибАГС 249
  • СибГАУ 462
  • СибГИУ 1655
  • СибГТУ 946
  • СГУПС 1513
  • СибГУТИ 2083
  • СибУПК 377
  • СФУ 2423
  • СНАУ 567
  • СумГУ 768
  • ТРТУ 149
  • ТОГУ 551
  • ТГЭУ 325
  • ТГУ (Томск) 276
  • ТГПУ 181
  • ТулГУ 553
  • УкрГАЖТ 234
  • УлГТУ 536
  • УИПКПРО 123
  • УрГПУ 195
  • УГТУ-УПИ 758
  • УГНТУ 570
  • УГТУ 134
  • ХГАЭП 138
  • ХГАФК 110
  • ХНАГХ 407
  • ХНУВД 512
  • ХНУ им. Каразина 305
  • ХНУРЭ 324
  • ХНЭУ 495
  • ЦПУ 157
  • ЧитГУ 220
  • ЮУрГУ 306

Полный список ВУЗов

Чтобы распечатать файл, скачайте его (в формате Word).

Вязкость – свойство газов и жидкостей оказывать сопротивление необратимому перемещению одной их части относительно другой при сдвиге, растяжении и других видах деформации.

Динамическая вязкость

Динамическая (абсолютная) вязкость µ – сила, действующая на единичную площадь плоской поверхности, которая перемещается с единичной скоростью относительно другой плоской поверхности, находящейся от первой на единичном расстоянии.

В международной системе единиц (СИ), динамическая вязкость измеряется в Паскаль – секундах [Па·с].

Существуют также внесистемные величины измерения динамической вязкости. Наиболее распространенная в системе СГС – пуаз [П] и ее производная сантипуаз [сП].

Также динамическая вязкость может измеряться в [дин·с/см²] и [кгс·с/м²] и производных от них единицах.

Соотношение между единицами динамической вязкости:

  • 1 Пуаз [П] = 1 дин·с/см² = 0.010197162 кгс·с/м² = 0.0000010197162 кгс·с/см² = 0.1 Па·с = 0.1 Н·с/м²
  • 1 Сантипуаз [сП] = 0.0001010197162 кгс·с/м² = 0.01 П = 0.001 Па·с
  • 1 кгс·с/м² = 98.0665 П = 9806.65 сП = 9.80665 Па·с

США и Британия

В виду того, что в некоторых англоязычных странах сила и площадь поверхности может измеряться в отличных от системы СИ единицах, могут применяться отличные единицы измерения динамической вязкости.

  • 1 Фунт сила секунда на дюйм² [lbf·s/in²] = 6894.75729316836 Па·с = 144 lbf·s/ft²
  • 1 Фунт сила секунда на фут² [lbf·s/ft²] = 47.88025898034 Па·с

Кинематическая вязкость

Кинематическая вязкость ν – отношение динамической вязкости µ к плотности жидкости ρ и определяется формулой:
ν = µ / ρ, где µ – динамическая вязкость, Па·с, ρ – плотность жидкости, кг/м³.

В международной системе единиц (СИ), кинематическая вязкость измеряется в квадратных метрах на секунду [м²/с].
Также широко используется внесистемная единица – cтокс [Ст] и ее производная – сантистокс [сСт].

Соотношение между единицами кинематической вязкости:

  • 1 Ст = 0.0001 м²/с = 1 см²/с
  • 1 сСт = 1 мм²/с = 0.000001 м²/с
  • 1 м²/с = 10000 Ст = 1000000 сСт

США и Британия

В виду того, что в некоторых англоязычных странах сила и площадь поверхности может измеряться в отличных от системы СИ единицах, могут применяться отличные единицы измерения кинематической вязкости.

  • 1 м²/с = 1550.0031000062 квадратных дюймов в секунду [in²/s]
  • 1 м²/с = 10.76391041670972 квадратных футов в секунду [ft²/s]

Содержание

Вязкость жидкости – это свойство реальных жидкостей оказывать сопротивление касательным усилиям (внутреннему трению) в потоке. Вязкость жидкости не может быть обнаружена при покое жидкости, так как она проявляется только при её движении. Для правильной оценки таких гидравлических сопротивлений, возникающих при движении жидкости, необходимо прежде всего установить законы внутреннего трения жидкости и составить ясное представление о механизме самого движения.

Физический смысл вязкости

Для понятия физической сущности такого понятия как вязкость жидкости рассмотрим пример. Пусть есть две параллельные пластинки А и В. В пространство между ними заключена жидкость: нижняя пластинка неподвижна, а верхняя пластинка движется с некоторой постоянной скоростью υ1

Как при этом показывает опыт, слои жидкости, непосредственно прилегающие к пластинкам (так называемые прилипшие слои), будут иметь одинаковые с ним скорости, т.е. слой, прилегающий к нижней пластинке А, будет находиться в покое, а слой, примыкающий к верхней пластинке В, будет двигаться со скоростью υ1.

Промежуточные слои жидкости будут скользить друг по другу, причем их скорости будут пропорциональны расстояниям от нижней пластинки.

Ещё Ньютоном было высказано предположение, которое вскоре подтвердилось опытом, что силы сопротивления, возникающие при таком скольжении слоев, пропорциональны площади соприкосновения слоев и скорости скольжения. Если взять площадь соприкосновения равной единице, это положение можно записать в виде

где τ – сила сопротивления, отнесенная к единице площади, или напряжение трения

μ – коэффициент пропорциональности, зависящий от рода жидкости и называемый коэффициентом абсолютной вязкости или просто абсолютной вязкостью жидкости.

Величину dυ/dy – изменение скорости в направлении, нормальном к направлению самой скорости, называют скоростью скольжения.

Таким образом вязкость жидкости – это физическое свойство жидкости, характеризующее их сопротивление скольжению или сдвигу

Вязкость кинематическая, динамическая и абсолютная

Теперь определимся с различными понятиям вязкости:

Динамическая вязкость. Единицей измерения этой вязкости является паскаль в секунду (Па*с). Физический смысл состоит в снижении давления в единицу времени. Динамическая вязкость характеризует сопротивление жидкости (или газа) смещению одного слоя относительно другого.

Динамическая вязкость зависит от температуры. Она уменьшается при повышении температуры и увеличивается при повышении давления.

Кинематическая вязкость. Единицей измерения является Стокс. Кинематическая вязкость получается как отношение динамической вязкости к плотности конкретного вещества.

Определение кинематической вязкости производится в классическом случае измерением времени вытекания определенного объема жидкости через калиброванное отверстие при воздействии силы тяжести

Абсолютная вязкость получается при умножении кинематической вязкости на плотность. В международной системе единиц абсолютная вязкость измеряется в Н*с/м2 – эту единицу называют Пуазейлем.

Коэффициент вязкости жидкости

В гидравлике часто используют величину, получаемую в результате деления абсолютной вязкости на плотность. Эту величину называют коэффициентом кинематической вязкости жидкости или просто кинематической вязкостью и обозначают буквой ν. Таким образом кинематическая вязкость жидкости

где ρ – плотность жидкости.

Единицей измерения кинематической вязкости жидкости в международной и технической системах единиц служит величина м2/с.

В физической системе единиц кинематическая вязкость имеет единицу измерения см 2 /с и называется Стоксом(Ст).

Вязкость некоторых жидкостей

Жидкость t, °С ν, Ст
Вода 0,0178
Вода 20 0,0101
Вода 100 0,0028
Бензин 18 0,0065
Спирт винный 18 0,0133
Керосин 18 0,0250
Глицерин 20 8,7
Ртуть 0,00125

Величину, обратную коэффициенту абсолютной вязкости жидкости, называют текучестью

Как показывают многочисленные эксперименты и наблюдения, вязкость жидкости уменьшается с увеличением температуры. Для различных жидкостей зависимость вязкости от температуры получается различной.

Поэтому, при практических расчетах к выбору значения коэффициента вязкости следует подходить очень осторожно. В каждом отдельном случае целесообразно брать за основу специальные лабораторные исследования.

Вязкость жидкостей, как установлено из опытов, зависит так же и от давления. Вязкость возрастает при увеличении давления. Исключение в этом случае является вода, для которой при температуре до 32 градусов Цельсия с увеличением давления вязкость уменьшается.

Что касается газов, то зависимость вязкости от давления, так же как и от температуры, очень существенна. С увеличением давления кинематическая вязкость газов уменьшается, а с увеличением температуры, наоборот, увеличивается.

Методы измерения вязкости. Метод Стокса.

Область, посвященная измерению вязкости жидкости, называется вискозиметрия, а прибор для измерения вязкости называется вискозиметр.

Современные вискозиметры изготавливаются из прочных материалов, а при их производстве используются самые современные технологии, для обеспечение работы с высокой температурой и давлением без вреда для оборудования.

Существует следующие методы определения вязкости жидкости.

Капиллярный метод.

Сущность этого метода заключается в использовании сообщающихся сосудов. Два сосуда соединяются стеклянной трубкой известного диаметра и длины. Жидкость помещается в стеклянный канал и за определенный промежуток времени перетекает из одного сосуда в другой. Далее зная давление в первом сосуде и воспользовавшись для расчетов формулой Пуазейля определяется коэффициент вязкости.

Метод по Гессе.

Этот метод несколько сложнее предыдущего. Для его выполнения необходимо иметь две идентичные капиллярные установки. В первую помещают среду с заранее известным значением внутреннего трения, а во вторую – исследуемую жидкость. Затем замеряют время по первому методу на каждой из установок и составляя пропорцию между опытами находят интересующую вязкость.

Ротационный метод.

Для выполнения этого метода необходимо иметь конструкцию из двух цилиндров, причем один из них должен быть расположен внутри другого. В промежуток между сосудами помещают исследуемую жидкость, а затем придают скорость внутреннему цилиндру.

Жидкость вращается вместе с цилиндром со своей угловой скоростью. Разница в силе момента цилиндра и жидкости позволяет определить вязкость последней.

Метод Стокса

Для выполнения этого опыта потребуется вискозиметр Гепплера, который представляет из себя цилиндр, заполненный жидкостью.

Вначале делаются две пометки по высоте цилиндра и замеряют расстояние между ними. Затем шарик определенного радиуса помещается в жидкость. Шарик начинает погружаться в жидкость и проходит расстояние от одной метки до другой. Это время фиксируется. Определив скорость движения шарика затем вычисляют вязкость жидкости.

Видео по теме вязкости

Определение вязкости играет большую роль в промышленности, поскольку определяет конструкцию оборудования для различных сред. Например, оборудование для добычи, переработки и транспортировки нефти.

кинематическая и условная вязкость нефтепродуктов

Вязкость, как характеристика качества нефти

Вязкость является одной из важнейших характеристик нефти, различных жидких топлив и других нефтепродуктов. Этот параметр вносится в паспорта качества и значительно влияет на эксплуатационные свойства вещества. Для определения вязкости нефтепродуктов используют специальные приборы – вискозиметры.

Какие свойства вещества описывает вязкость?

Через вязкость мы определяем величину внутреннего трения, то есть способность вещества сопротивляться перемещению при движении. Данная характеристика помогает сделать предположения о составе вещества, например, нефти: если проба слишком вязкая, то вещество содержит тяжелые углеводородные фракции. Также она влияет на прокачиваемость, важную для транспортировки, а также работы бензина, ДТ и другого топлива в топливных системах.

Исследования вязкости могут проводиться на местах добычи полезных ископаемых, на нефтеперерабатывающих заводах, нефтебазах и даже в мобильных лабораториях.

Как исследуется?

Условная вязкость нефтепродуктов (ее еще называют относительной) измеряется в градусах условной вязкости. Эта характеристика выражает отношение времени, за которое 200 мл исследуемого вещества при заданной температуре истечет через отверстие вискозиметра, ко времени истечения 200 мл дистиллированной воды при 20 °С.

Международной системой единиц физических величин различается динамическая и кинематическая вязкость нефтепродуктов.

  • Для того, чтобы получить кинематическую вязкость, необходим вискозиметр. Проба топлива под воздействием силы тяжести постепенно вытекает через специальное отверстие в этом приборе. Полученное время истечения нужно умножить на индивидуальную постоянную вискозиметра – так и проходит определение кинематической вязкости нефтепродуктов. Многие устройства проводят вычисления этой характеристики в автоматическом режиме, без участия человека.
  • Расчет вязкости нефтепродуктов необходим для получения динамической величины: плотность вещества × на полученную кинематическую вязкость.

Методы проведения исследований регулирует ГОСТ вязкости нефтепродуктов − 33-2000.

Где заказать нефтехимическое лабораторное оборудование?

ЗАО «БМЦ» предлагает купить устройство «Термостат А2М», которое выполняет измерение кинематической вязкости в соответствии с ГОСТ. Прибор сертифицирован и внесен в Государственный реестр средств измерения. Устройство подходит для лабораторий разных типов, в том числе и мобильных.

Наши специалисты доставят лабораторное оборудование на ваш объект, выполнят его наладку и пуск, расскажут о том, как пользоваться устройством! Точные результаты исследований, быстрый и комфортный процесс измерения – вместе с ЗАО «БМЦ». 

Кинематическая вязкость

— Calculator.org


Что такое кинематическая вязкость?

Сопротивление жидкости, которая деформируется под действием напряжения сдвига или напряжения растяжения, называется вязкостью. В общем, это «толщина» жидкости. Его можно рассматривать как трение жидкости или внутреннее сопротивление жидкости потоку, и, в частности, кинематическая вязкость измеряет сопротивление потоку жидкости под действием силы тяжести (или некоторой другой физической силы, действующей на массу жидкости).Обычно жидкая жидкость, такая как вода, имеет меньшую вязкость по сравнению с вязкой вязкой жидкостью, такой как мед. Кинематическая вязкость сильно зависит от температуры. Кинематическая вязкость жидкости обычно уменьшается с повышением температуры, тогда как кинематическая вязкость газа увеличивается.

Типы жидкостей

Ньютоновские жидкости

Жидкости, в которых напряжение сдвига линейно связано со скоростью деформации сдвига, называются ньютоновскими жидкостями или настоящими жидкостями, поскольку перемешивание или перекачивание при постоянной температуре не влияет на их вязкость или консистенцию.Наиболее распространенными жидкостями и газами являются ньютоновские жидкости, такие как вода, масло и воздух.

Тиксотропные жидкости

Жидкости, вязкость которых снижается при увеличении перемешивания или давления при постоянной температуре, известны как жидкости для разжижения при сдвиге или тиксотропные жидкости. Они кажутся густыми или вязкими, но их довольно легко перекачивать.

Дилатантные жидкости

Жидкости, вязкость которых увеличивается с увеличением перемешивания или давления при постоянной температуре, называются загущающими жидкостями при сдвиге или дилатантными жидкостями.Такие жидкости могут стать твердыми при протекании внутри трубы. Например, сливки при взбалтывании превращаются в масло.

Измерение кинематической вязкости

Кинематическую вязкость можно измерить с помощью устройства, называемого капиллярным вискозиметром, которое состоит из градуированной емкости с узкой трубкой на дне. Жидкость помещается в контейнер и стекает под действием силы тяжести. Чем выше вязкость, тем больше времени требуется для протекания через трубку (т. Е. Жидкости с меньшей вязкостью потребуется меньше времени для протекания, чем жидкости с более высокой вязкостью).Кинематическая вязкость — это отношение абсолютной или динамической вязкости к плотности — величина, в которой сила является внешней и не зависит от массы жидкости. Кинематическую вязкость можно получить, разделив динамическую вязкость жидкости на ее плотность.

ν = μ / ρ

где ν = кинематическая вязкость, μ = абсолютная или динамическая вязкость, ρ = плотность. В системе СИ единица измерения — м 2 / с

Стокса (St) — физическая единица измерения кинематической вязкости в с.г., названная в честь Джорджа Габриэля Стокса, где 1 St = 10 -4 м 2 / с.Он также выражается в сантистоксах (сСт или ctsk). 1 сток = 100 сантистокс = 1 см 2 • с -1 = 0,0001 м 2 • с -1 . 1 сантистокс = 1 мм 2 • с -1 = 10 -6 м 2 • с -1 .

Кинематическая вязкость также может быть названа коэффициентом диффузии импульса по импульсу , поскольку она имеет те же размеры, что и коэффициент диффузии тепла и коэффициент диффузии концентрации массы. Перенос количества движения аналогичен переносу других свойств жидкости.Это также означает, что его можно использовать во многих безразмерных числах для сравнения коэффициентов диффузии и, следовательно, относительной важности различных физических процессов.

Добавьте эту страницу в закладки в своем браузере, используя Ctrl и d или используя одну из следующих служб: (открывается в новом окне)

Программное обеспечение для расчета потерь давления в трубах


Pipe Flow Software также имеет веб-сайт www.pipeflow.com (в настоящее время имеется дополнительная информация)

Программа Pipe Flow Expert: Расчет расхода и падения давления в трубе Попробуйте Pipe Flow Expert прямо сейчас!
Pipe Flow Software Отзывы: «Отличное программное обеспечение», «Отличная поддержка» Купить и лицензировать в
Загрузите программное обеспечение Pipe Flow Expert для бесплатной пробной версии: узнайте, почему оно используется более чем в 100 странах мира


Pipe Flow Expert ™
Рассчитайте потерю давления и расход в трубопроводных системах.Программное обеспечение моделирует открытые / замкнутые контуры, компоненты и кривые насосов. Включает базу данных по жидкостям и трубам.

Расширенные вычисления
Улучшенный интерфейс

Решить трубопроводные сети
  • До 1000 труб
  • Расчет расхода
  • Падение давления в трубе
  • Системы рециркуляции
  • Характеристики насоса и NPSHa
  • Управление потоком и требования

  • Интерактивные результаты
    Изометрический 3D-чертеж
    Новые примеры систем



    Цены указаны в британских фунтах стерлингов: 1 фунт стерлингов.00 фунтов стерлингов составляет примерно 1,41 доллара США или примерно 1,19 евро.



    Программа Pipe Flow Wizard ™
    для «Что если?» расчеты расхода жидкости и газа в трубе. Найдите перепад давления в трубе, расход, диаметр или длину трубы. База данных жидкостей включена.
    Калькулятор потери давления
  • Жидкости и газы
  • Вкл.Сжатый воздух
  • Расчет расхода в трубе
  • Расчет падения давления
  • Расчет длины трубы
  • Расчет диаметра трубы



  • Программа Pipe Flow Advisor ™
    Flow Advisor рассчитывает время опорожнения резервуара и скорость потока воды в каналах, используя уравнение укомплектования персоналом.
    Расход в каналах …
    Для каналов и резервуаров
  • Частично заполненные трубы
  • Открытый канал потока
  • Расход воды
  • Время опорожнения резервуара
  • Объем и вместимость
  • Масса и расширение

  • Бесплатное программное обеспечение ИЛИ
    Купить фирменную версию

    Конвертировать 123
    Преобразование между множеством различных единиц и измерений, включая площадь, плотность, энергию, расход, силу, длину, массу и т. Д.
    Преобразование единиц …
    Продвигайте свое имя
    Получите фирменную версию
  • Наш логотип удален
  • Ваше имя добавлено
  • Ваш логотип добавлен
  • Ссылки на ваш веб-сайт
  • Отдайте свою версию
  • One Fee. Неограниченное использование.
  • Рекламное программное обеспечение

    Give-Away с вашим именем. Единовременная плата за брендирование и неограниченное использование.


    Все цены указаны без НДС (НДС)

    США : НДС НЕ ОБЯЗАН при покупке в США.

    За пределами Европейского Союза : НДС НЕ ВЗИМАЕТСЯ при покупках за пределами ЕС. (Европейский Союз).

    Европейский Союз : НДС НЕ ОБЯЗЫВАЕТСЯ при покупках, совершаемых предприятиями в Европейском Союзе.
    Необходимо предоставить VRN компании (регистрационный номер плательщика НДС) (или другое подтверждение хозяйственной деятельности).

    Великобритания : НДС взимается со всех покупок в Великобритании.

    Лицензии сайта : Если вам требуется несколько копий определенной программы, мы можем предоставить
    значительные скидки на дополнительные экземпляры. Свяжитесь с нами по электронной почте нам с вашими требованиями, чтобы получить ценовое предложение.

    Программное обеспечение Pipe Flow для профессиональных инженеров используется более чем в 100 странах мира, более чем 3000 компаниями и консультантами, везде, где есть необходимость в расчетах.


    его 9 отличий и формула

    Dynamic Vs. Кинематическая вязкость

    Динамическая и кинематическая вязкость — это тип вязкости. Вязкость помогает описать, насколько хорошо он растекается или насколько густой продукт. При анализе поведения жидкости и ее движения вблизи твердых границ вязкость является важным свойством жидкости.

    При анализе поведения жидкости и ее движения вблизи твердых границ вязкость является важным свойством жидкости.По напряжению сдвига или растягивающему напряжению вязкость жидкости является мерой ее сопротивления постепенной деформации. Когда слои жидкостей пытаются скользить друг относительно друга, сопротивление сдвигу в жидкости вызывается межмолекулярным трением.

    Отношение напряжения сдвига к деформации сдвига называется динамической вязкостью и обычно измеряется в сантипуазах (сП), а единицей измерения является Па · с.

    Отношение динамической вязкости жидкости к ее плотности называется кинематической вязкостью, а единица измерения — м2 / с.

    Любые две разные жидкости никогда не будут иметь одинаковую кинематическую вязкость из-за разницы в плотности, но могут иметь одинаковую динамическую вязкость.

    Кинематическая вязкость показывает, насколько быстро жидкость движется при приложении определенной силы, а динамическая вязкость дает вам информацию о силе, необходимой для того, чтобы жидкость текла с определенной скоростью. В единицах СИ единицами измерения динамической вязкости являются мПа-с, а наиболее распространенными единицами кинематической вязкости являются см2 / с.

    Динамическая вязкость:

    Тангенциальная сила, необходимая для перемещения одной горизонтальной плоскости жидкости в другую, называется динамической вязкостью.ИЛИ

    Мера сопротивления жидкости сдвиговому потоку при приложении некоторой внешней силы известна как динамическая вязкость.

    Это полезно для описания поведения жидкостей под напряжением, а также для описания неньютоновских жидкостей, наблюдая, как изменяется вязкость при изменении скорости сдвига, в основном используется.

    Формула:

    Динамическая вязкость = напряжение сдвига / изменение скорости сдвига.

    Уравнение:

    η = τ / γ

    Где,

    η — динамическая вязкость

    τ — напряжение сдвига и

    γ — изменение скорости сдвига.

    Измерение динамической вязкости:

    Для измерения динамической вязкости ротационные вискозиметры являются одним из наиболее популярных инструментов, а в жидкой пробе эти инструменты вращают зонд. Вязкость определяется путем измерения силы или крутящего момента.

    Этот вискозиметр может регулировать скорость вращения зонда при его движении в жидкости, а вискозиметр определяет изменение вязкости образца как скорость.

    Примеры:

    Жидкость, используемая в гидравлике, смазках для предотвращения скольжения подшипников качения, уплотнений и т. Д.

    Кинематическая вязкость:

    Отношение динамической вязкости к плотности жидкости называется кинематической вязкостью. ИЛИ

    Мера внутреннего сопротивления жидкости течению при отсутствии внешних сил, кроме силы тяжести, известна как кинематическая вязкость.

    Разделив абсолютную или динамическую вязкость жидкости на ее массовую плотность, можно получить кинематическую вязкость, а сантипуаз (сП) является единицей измерения динамической вязкости.

    Формула:

    Кинематическая вязкость = динамическая вязкость / массовая плотность жидкости.

    Уравнение:

    ν = η / ρ

    Где,

    η — кинематическая вязкость

    ρ — плотность жидкости &

    η — динамическая вязкость.

    Измерение кинематической вязкости:

    Существует несколько способов определения кинематической вязкости жидкости, но наиболее распространенным методом является вискозиметр с капиллярной трубкой.В этом методе определяется время, необходимое для протекания жидкости через капиллярную трубку. Используя калибровочную константу, предоставленную для конкретной трубки, время напрямую преобразуется в кинематическую вязкость.

    Сантистокс (CST) — это единица измерения кинематической вязкости.

    Примеры:

    Жидкости, текущие по трубам, и все, что связано с большим перемещением из одной точки в другую, являются примерами кинематической вязкости.

    Динамический vs.Кинематическая разница вязкости:

    Разница между динамической и кинематической вязкостью приведена ниже в таблице:

    Недвижимость

    Динамическая вязкость Кинематическая вязкость
    Определение Динамическая вязкость — это измерение внутреннего сопротивления жидкости потоку.

    Эта вязкость представляет собой отношение динамической вязкости к плотности.

    Также известен как

    Абсолютная вязкость Коэффициент диффузии количества движения
    Представляет Сила вязкости жидкости

    Сила инерции и вязкости

    Символ

    мкм

    В

    Коэффициент

    Отношение напряжения сдвига к деформации сдвига.

    Отношение динамической вязкости к плотности.

    Плотность

    Независимый Зависимый
    Блок Нс / м 2

    м 2 / с

    б / у

    Когда сила вязкости преобладает. Когда инерция, а также сила вязкости являются доминирующими.
    Формула η = τ / γ

    ν = η / ρ

    пожаловаться на это объявление

    Объяснение кинематической вязкости | Смазка машин

    Что такое кинематическая вязкость?

    Кинематическая вязкость — это мера внутреннего сопротивления жидкости потоку под действием гравитационных сил.Он определяется путем измерения времени в секундах, необходимого для того, чтобы фиксированный объем жидкости прошел известное расстояние под действием силы тяжести через капилляр в откалиброванном вискозиметре при строго контролируемой температуре.

    Это значение преобразуется в стандартные единицы, такие как сантистоксы (сСт) или квадратные миллиметры в секунду. Отчет о вязкости действителен только в том случае, если также указывается температура, при которой проводился тест — например, 23 сСт при 40 ° C.

    Из всех тестов, используемых для анализа отработанного масла, ни один не обеспечивает лучшей повторяемости или стабильности теста, чем вязкость.Точно так же нет свойства более критичного для эффективной смазки компонентов, чем вязкость базового масла. Однако вязкость — это нечто большее, чем кажется на первый взгляд. Вязкость может быть измерена и представлена ​​как динамическая (абсолютная) вязкость или как кинематическая вязкость. Их легко спутать, но они существенно отличаются.

    Большинство лабораторий по анализу используемых масел измеряют и сообщают кинематическую вязкость. Напротив, большинство локальных вискозиметров измеряют динамическую вязкость, но запрограммированы на оценку и отображение кинематической вязкости, так что сообщаемые измерения вязкости отражают кинематические числа, сообщаемые большинством лабораторий и поставщиков смазочного масла.

    Учитывая важность анализа вязкости в сочетании с растущей популярностью инструментов для анализа нефти на месте, используемых для проверки и дополнения анализа нефти в лаборатории за пределами площадки, важно, чтобы аналитики нефти понимали разницу между динамическими и кинематическими измерениями вязкости.

    Вообще говоря, вязкость — это сопротивление жидкости течению (напряжение сдвига) при заданной температуре. Иногда вязкость ошибочно называют толщиной (или массой).Вязкость — это не измерение размеров, поэтому называть высоковязкое масло густым, а менее вязкое — тонким — ошибочно.

    Точно так же бессмысленно сообщать о вязкости для определения тенденций без ссылки на температуру. Для интерпретации показаний вязкости необходимо определить температуру. Обычно вязкость указывается при 40 ° C и / или 100 ° C или при обоих значениях, если требуется индекс вязкости.

    Уравнение кинематической вязкости

    Для выражения вязкости используются несколько технических единиц, но наиболее распространенными являются сантисток (сСт) для кинематической вязкости и сантипуаз (сП) для динамической (абсолютной) вязкости.Кинематическая вязкость в сСт при 40 ° C является основой для системы классификации кинематической вязкости ISO 3448, что делает ее международным стандартом. Другие распространенные системы кинематической вязкости, такие как Saybolt Universal Seconds (SUS) и система классификации SAE, могут быть связаны с измерением вязкости в сСт при 40 ° C или 100 ° C.

    Измерение кинематической вязкости

    Кинематическая вязкость измеряется путем учета времени, за которое масло проходит через отверстие капилляра под действием силы тяжести (рис. 1).Отверстие трубки кинематического вискозиметра создает постоянное сопротивление потоку. Доступны капилляры разного размера для поддержки жидкостей различной вязкости.

    Время, необходимое для прохождения жидкости через капиллярную трубку, можно преобразовать в кинематическую вязкость, используя простую калибровочную константу, предусмотренную для каждой трубки. Основной процедурой для измерения кинематической вязкости является стандарт ASTM D445, который часто изменяется в лаборатории анализа отработанного масла для экономии времени и повышения эффективности измерения.

    Рис. 1. Капиллярный вискозиметр с U-образной трубкой

    Измерение динамической вязкости (абсолютной вязкости)

    Динамическая вязкость измеряется как сопротивление потоку, когда внешняя и контролируемая сила (насос, сжатый воздух и т. Д.) Заставляет масло проходить через капилляр (ASTM D4624) или тело проталкивается через жидкость под действием внешней контролируемой силы, такой как шпиндель с приводом от двигателя.В любом случае измеряется сопротивление потоку (или сдвигу) как функция входящей силы, которая отражает внутреннее сопротивление образца приложенной силе или его динамическую вязкость.

    Существует несколько типов и исполнений абсолютных вискозиметров. Роторный метод Брукфилда, изображенный на рисунке 2, является наиболее распространенным. Измерение абсолютной вязкости используется для исследовательских целей, контроля качества и анализа пластичных смазок в области смазывания оборудования.

    Рис. 2. Ротационный вискозиметр ASTM D2983

    Процедуры тестирования динамической вязкости в лаборатории традиционным методом Брукфилда определены ASTM D2983, D6080 и другими. Тем не менее, динамическая вязкость становится обычным явлением в области анализа отработанного масла, поскольку большинство продаваемых сегодня на рынке вискозиметров измеряют динамическую, а не кинематическую вязкость.Поставщиками локальных динамических вискозиметров являются Anton Paar, Kittiwake и Spectro Scientific.

    Вообще говоря, кинематическая вязкость (сСт) относится к абсолютной вязкости (сП) как функции удельного веса (SG) жидкости в соответствии с уравнениями на рисунке 3.

    Рис. 3. Уравнения вязкости

    Какими бы простыми и элегантными ни казались эти уравнения, они верны только для так называемых ньютоновских жидкостей.Кроме того, удельный вес жидкости должен оставаться постоянным в течение периода тренда. Ни одно из этих условий не может считаться постоянным при анализе отработанного масла, поэтому аналитик должен знать условия, при которых могут возникать отклонения.

    Кинематическая вязкость: ньютоновские и неньютоновские жидкости

    Ньютоновская жидкость — это жидкость, которая поддерживает постоянную вязкость при всех скоростях сдвига (напряжение сдвига изменяется линейно со скоростью сдвига). Эти жидкости называются ньютоновскими, потому что они следуют исходной формуле, установленной сэром Исааком Ньютоном в его Законе механики жидкостей.Однако некоторые жидкости так себя не ведут. В общем, их называют неньютоновскими жидкостями. Ньютоновские жидкости включают газы, воду, масло, бензин и спирт.

    Группа неньютоновских жидкостей, называемых тиксотропными, представляет особый интерес при анализе отработанных масел, поскольку вязкость тиксотропных жидкостей уменьшается с увеличением скорости сдвига. Вязкость тиксотропной жидкости увеличивается с уменьшением скорости сдвига. В случае тиксотропных жидкостей время схватывания может увеличить кажущуюся вязкость, как и в случае пластичной смазки.Примеры неньютоновских жидкостей включают:

    • Загустители при сдвиге: вязкость увеличивается с увеличением скорости сдвига. Например, кукурузный крахмал, помещенный в воду и перемешанный, со временем становится гуще.
    • Жидкости, разжижающие сдвиг: вязкость уменьшается с увеличением скорости сдвига. Краска для стен — хороший тому пример. По мере перемешивания краска становится более жидкой.
    • Тиксотропные жидкости: становятся менее вязкими при перемешивании.Типичные примеры этого — томатный кетчуп и йогурт. После встряхивания они становятся более жидкими. Оставленные в покое, они возвращаются в гелеобразное состояние.
    • Реопектические жидкости: становятся более вязкими при взбалтывании. Типичный пример этого — чернила для принтера.
    Кинематическая вязкость: ньютоновские и неньютоновские жидкости
    Ньютоновские жидкости Неньютоновские жидкости
    Газы Жидкости, загущающие при сдвиге (более высокая скорость сдвига, более высокая вязкость)
    Вода Жидкости, разжижающие сдвиг (более высокая скорость сдвига, более низкая вязкость)
    Масло Тиксотропные жидкости (становятся менее вязкими при перемешивании)
    Бензин Реопектические жидкости (становятся более вязкими при взбалтывании)
    Алкоголь

    Кинематическая вязкость: практический пример

    Представьте, что перед вами две банки: одна наполнена майонезом, другая — медом.Когда обе банки прикреплены к поверхности стола с помощью липучки, представьте, что вы погружаете одинаковые ножи для масла в каждую из жидкостей под одинаковым углом и на одинаковую глубину. Представьте, что вы перемешиваете две жидкости, вращая ножи с одинаковой частотой вращения, сохраняя при этом одинаковый угол атаки.

    Какую из двух жидкостей было сложнее перемешать? Вашим ответом должен быть мед, который намного сложнее размешать, чем майонез. Теперь представьте, что вы снимаете банки с застежки-липучки на столе и переворачиваете банки на бок.Что быстрее вытекает из банки, мед или майонез? Ваш ответ должен быть мед; майонез совсем не потечет, если перевернуть банку на бок.

    Какая жидкость более вязкая, мед или майонез? Если вы сказали майонез, вы правы … по крайней мере, частично. Точно так же, если вы сказали мед, вы частично правы. Причина очевидной аномалии заключается в том, что при вращении ножа в обоих веществах скорость сдвига меняется, а при повороте каждой банки на бок просто измеряется статическое сопротивление потоку.

    Поскольку мед — это ньютоновская жидкость, а майонез — неньютоновский, вязкость майонеза падает при увеличении скорости сдвига или при вращении ножа. При перемешивании майонез подвергается сильному сдвиговому напряжению, что приводит к его податливости. И наоборот, просто поставив банку на бок, майонез подвергнется низкому сдвиговому напряжению, в результате чего вязкость практически не изменится, поэтому он, как правило, остается в банке.

    Невозможно условно измерить вязкость неньютоновской жидкости.Скорее, необходимо измерить кажущуюся вязкость, которая принимает во внимание скорость сдвига, при которой проводилось измерение вязкости. (См. Рисунок 4). Подобно тому, как измерения вязкости не имеют смысла, если не указана температура испытания, измерения кажущейся вязкости не имеют смысла, если не указаны температура испытания и скорость сдвига.

    Например, вязкость консистентной смазки никогда не указывается, скорее, кажущаяся вязкость консистентной смазки указывается в сантипуазах (сП).(Примечание: вязкость может указываться для базового масла, используемого для изготовления смазки, но не для готового продукта.)

    Вообще говоря, жидкость является неньютоновской, если она состоит из одного вещества, взвешенного (но не растворенного химически) в жидкости хозяина. Для этого есть две основные категории: эмульсии и коллоидные суспензии. Эмульсия — это стабильное физическое сосуществование двух несмешивающихся жидкостей. Майонез — это обычная неньютоновская жидкость, состоящая из яиц, эмульгированных в масле, жидкости хозяина.Поскольку майонез не является ньютоновским, его вязкость уменьшается с приложенной силой, что облегчает его намазывание.

    Коллоидная суспензия состоит из твердых частиц, стабильно взвешенных в жидкости хозяина. Многие краски представляют собой коллоидную суспензию. Если бы краска была ньютоновской, она либо легко растекалась бы, но растекалась при низкой вязкости, либо растекалась бы с большим трудом и оставляла следы кисти, но не растекалась бы при высокой вязкости.

    Поскольку краска неньютоновская, ее вязкость уменьшается под действием силы кисти, но возвращается, когда кисть убирается.В результате краска растекается относительно легко, но не оставляет следов кисти и не растекается.

    Динамическая и кинематическая вязкость: в чем разница

    Динамическая вязкость определяет толщину пленки масла. Кинематическая вязкость — это просто удобная попытка оценить степень толщины пленки, которую может обеспечить масло, но имеет меньшее значение, если масло неньютоновское.

    Многие смазочные составы и условия дают неньютоновскую жидкость, в том числе:

    • Присадки, улучшающие индекс вязкости (VI) — Всесезонное Моторные масла на минеральной основе (кроме естественных базовых масел с высоким индексом вязкости) содержат упругую присадку, которая уплотняется при низких температурах и расширяется при высоких температурах в ответ на повышение растворимости жидкости.Поскольку эта добавочная молекула отличается от молекул масла-хозяина, она ведет себя неньютоновским образом.

    • Загрязнение воды — Нефть и свободная вода не смешиваются, во всяком случае химически. Но при определенных обстоятельствах они будут объединяться в эмульсию, как и майонез, о котором говорилось ранее. Это подтвердит любой, кто видел масло, похожее на кофе со сливками. Хотя это может показаться нелогичным, загрязнение воды при эмульгировании в масло на самом деле увеличивает кинематическую вязкость.

    • Побочные продукты термического и окислительного разложения — Многие побочные продукты термического и окислительного разложения нерастворимы, но переносятся маслом в стабильной суспензии. Эти приостановки создают неньютоновское поведение.

    • Сажа — Сажа, обычно встречающаяся в дизельных двигателях, представляет собой частицу, которая приводит к образованию коллоидной суспензии в масле. Диспергирующая добавка к маслу, предназначенная для предотвращения агломерации и роста частиц сажи, способствует образованию коллоидной суспензии.

    Если бы нужно было измерить абсолютную вязкость одной из этих часто встречающихся эмульсий или коллоидов, описанных выше, с помощью абсолютного вискозиметра с переменной скоростью сдвига (например, ASTM D4741), измерение уменьшилось бы по мере увеличения скорости сдвига до точки стабилизации. .

    Если бы эту стабилизированную абсолютную вязкость разделить на удельный вес жидкости для оценки кинематической вязкости, расчетное значение будет отличаться от измеренной кинематической вязкости.Опять же, уравнения на рисунке 3 применимы только к ньютоновским жидкостям, а не к неньютоновским жидкостям, описанным выше, поэтому возникает это несоответствие.

    Влияние кинематической вязкости и удельного веса

    Посмотрите еще раз на уравнения на рисунке 3. Абсолютная и кинематическая вязкости ньютоновской жидкости связаны как функция удельного веса жидкости. Рассмотрим устройство на Рисунке 1: колба, содержащая пробу масла, которая высвобождается, когда вакуум устраняется, затем создает напор, который прогоняет масло через капиллярную трубку.

    Можно ли предположить, что все жидкости будут создавать одинаковый напор? Нет, давление зависит от удельного веса жидкости или веса относительно веса идентичного объема воды. Большинство смазочных масел на углеводородной основе имеют удельный вес от 0,85 до 0,90. Однако это может измениться со временем, поскольку масло ухудшается или становится загрязненным (например, гликоль, вода и металлы износа), что приводит к разнице между измерениями абсолютной и кинематической вязкости.

    Рассмотрим данные, представленные в таблице 2. Каждый из новых сценариев использования нефти идентичен, и в обоих случаях абсолютная вязкость увеличивается на 10 процентов, что обычно является критическим пределом для изменения вязкости. В сценарии А небольшое изменение удельного веса приводит к небольшой разнице между измеренной абсолютной вязкостью и кинематической вязкостью.

    Этот дифференциал может немного задержать звучание сигнала о замене масла, но не вызовет большой ошибки.Однако в сценарии B разница намного больше. Здесь удельный вес значительно увеличивается, что приводит к измеренному увеличению кинематической вязкости на 1,5 процента по сравнению с увеличением на 10 процентов, измеренным с помощью абсолютного вискозиметра.

    Это существенное различие, которое может привести к тому, что аналитик определит ситуацию как не подлежащую отчетности. Сделанная ошибка заключается в предположении в обоих сценариях, что флюиды остаются ньютоновскими.

    Из-за множества возможностей образования неньютоновских жидкостей, истинным параметром, представляющим интерес для аналитика нефти и специалиста по смазочным материалам, должна быть абсолютная вязкость.Это то, что определяет толщину пленки жидкости и степень защиты поверхностей компонентов. В интересах экономии, простоты и того факта, что новые процедуры испытаний смазочных материалов обычно используются для анализа отработанного масла, кинематическая вязкость масла является измеряемым параметром, используемым для определения тенденций и принятия решений по управлению смазочными материалами. Однако в некоторых случаях это может вносить ненужные ошибки в определение вязкости масла.

    Проблема сводится к простой математике.Как показывают уравнения на Рисунке 3, абсолютная и кинематическая вязкость связаны как функция удельного веса масла. Если и вязкость, и удельный вес являются динамическими, но измеряется только одна, произойдет ошибка, и кинематическая вязкость не даст точной оценки изменения абсолютной вязкости жидкости, представляющего интерес параметра. Величина ошибки зависит от величины изменения неизмеряемого параметра, удельного веса.

    Важные выводы относительно кинематической вязкости

    Из этой дискуссии об измерении вязкости можно сделать следующие выводы:

    • Предполагая, что лаборатория измеряет вязкость кинематическими методами, добавление измерения удельного веса к стандартной программе лабораторного анализа масла поможет исключить его как переменную при оценке абсолютной вязкости по измеренной кинематической вязкости.

    • При использовании вискозиметра на месте не ищите полного согласия между кинематическим вискозиметром лаборатории и приборами, установленными на месте. Большинство этих устройств измеряют абсолютную вязкость (сП) и применяют алгоритм для оценки кинематической вязкости (сСт), часто сохраняя постоянный удельный вес. Рассмотрите возможность анализа тенденций результатов местного вискозиметра в сП.

      Это измеряемый параметр, который помогает отличить тенденцию на месте от тенденции данных, полученных в лаборатории с помощью кинематического вискозиметра.Не пытайтесь достичь идеального согласия между измерениями вязкости на месте и в лаборатории. Это бесполезно и мало ценно. В лучшем случае ищите слабую корреляцию. Всегда устанавливайте базовый уровень нового масла с тем же вискозиметром, который вы используете с рабочим маслом.

    • Помните, что неньютоновские жидкости не обеспечивают такой же пленочной защиты для данной кинематической вязкости, как ньютоновские жидкости той же кинематической вязкости. Поскольку вязкость неньютоновской жидкости зависит от скорости сдвига, прочность пленки снижается под действием рабочей нагрузки и скорости.Это одна из причин, по которым эмульгированная вода увеличивает скорость износа таких компонентов, как подшипники качения, где прочность пленки жидкости имеет решающее значение (конечно, вода также вызывает другие механизмы износа, такие как паровая кавитация, ржавчина и водородное охрупчивание и образование пузырей).

    Вязкость — критическое свойство жидкости, и мониторинг вязкости необходим для анализа масла. Методы измерения динамической и кинематической вязкости могут давать очень разные результаты при испытании отработанных масел.Убедитесь, что все тонкости измерения вязкости и поведения вязкой жидкости понятны, чтобы можно было принимать точные решения о смазке.

    Общие единицы измерения динамической и кинематической вязкости

    Какие единицы измерения вязкости следует использовать?

    Нас постоянно спрашивают об единицах вязкости. Иногда это может сбивать с толку, поскольку существует несколько типов вязкости, каждый со своими единицами измерения.Чтобы еще больше усложнить ситуацию, разные приложения могут использовать разные системы единиц, такие как СИ, СГС …. На этой странице мы кратко обсуждаем наиболее распространенные единицы для двух основных типов вязкости: динамической и кинематической.

    Единицы динамической вязкости

    Наиболее часто используемой единицей динамической вязкости является единица CGS сантипуаз (сП), что эквивалентно 0,01 Пуаз (P). Эта единица используется в честь французского физика Жана Леонара Мари Пуазейля (1797-1869), который работал с Готтильфом Хагеном над широко известным законом Хагена-Пуазейля, который применяется к ламинарному потоку в трубах.Не случайно, что вязкость дистиллированной воды при 20 ° C использовалась для определения 1 сП! Чтобы дать вам представление о вязкости некоторых обычных жидкостей, мы собрали их вязкости в Таблице 1 . Вы всегда можете проверить нашу библиотеку приложений, чтобы найти примеры различных жидкостей и их вязкости. Единица СИ для динамической вязкости η — это Паскаль-секунда (Па-с), что соответствует силе (Н) на единицу площади (м 2 ), деленной на скорость сдвига (с -1 ). .Прямо как в определении вязкости!

    Однако, поскольку вязкость большинства жидкостей ниже 1 Па-с (см. Таблицу 1 ), вместо этого часто используется миллипаскаль-секунда (мПа-с). Обратите внимание, что 1 мПа-с эквивалентно 1 сП.

    Таблица 1. Вязкость обычных жидкостей

    Единицы кинематической вязкости

    Кинематическая вязкость часто измеряется в единицах CGS сантистоксов (сСт), что эквивалентно 0.01 сток (ст). Ты угадал! Он назван в честь ирландского математика сэра Джорджа Габриэля Стоукса (1819–1903), который, помимо других вкладов в механику жидкости, помог разработать уравнение Навье-Стокса для сохранения количества движения. Один сток эквивалентен одному пуазу, деленному на плотность жидкости в г / см 3 .

    Единица СИ для кинематической вязкости — квадратных метров в секунду 2 / с). Однако из-за значений вязкости наиболее распространенных жидкостей квадратных сантиметров в секунду используется чаще ( 2 см / с).Обратите внимание, что 1 см 2 / с эквивалентно 100 сСт. В Табл. 2 мы представляем наиболее распространенные единицы для вязкости и коэффициенты пересчета между ними.

    Таблица 2. Перевод общепринятых единиц вязкости.

    Это самые основные единицы измерения вязкости, но существует большое количество единиц, специфичных для определенной системы измерения или приложения. Если у вас есть дополнительные вопросы о том, какие единицы измерения использовать для измерения вязкости, свяжитесь с нами!

    Если вы хотите узнать больше о вязкости, ознакомьтесь с ДОПОЛНИТЕЛЬНЫМИ ОСНОВАМИ ВЯЗКОСТИ:

    Калькулятор вязкости воды

    Этот калькулятор вязкости воды поможет вам определить вязкость воды при комнатной температуре или при любой температуре, даже при температуре выше 300 ° C! С помощью этого калькулятора вы узнаете, что такое абсолютная вязкость воды (обычно известная как динамическая вязкость воды), и научитесь преобразовывать ее в кинематическую вязкость.Вы также узнаете, как рассчитать вязкость воды и влияние температуры на вязкость воды с помощью различных методов.

    Этот калькулятор вязкости воды предоставляет вам диаграмму зависимости вязкости воды от температуры и таблицу, чтобы вы могли ссылаться на влияние температуры на вязкость и плотность воды. Хотя наши диаграммы и таблицы представлены в единицах СИ, с помощью этого калькулятора вы также узнаете, как мы можем выразить вязкость воды в английских единицах.Продолжайте читать, чтобы узнать больше!

    Что такое вязкость?

    Вязкость — это мера сопротивления жидкости течению. Чем выше вязкость жидкости (жидкости или газа), тем медленнее она движется по поверхности. Представьте, что на вафли на завтрак капают кленовый сироп. Кленовый сироп, очень вязкая жидкость , будет течь медленнее, чем когда вы наливаете молоко на хлопья, поскольку вязкость молока намного ниже. Мы также можем выразить вязкость как внутреннее трение движущейся жидкости.Притяжение между молекулами вязкой жидкости намного выше, чем притяжение менее вязкой жидкости.

    Однако, когда мы применяем тепло или дополнительную тепловую энергию к нашим жидкостям, их молекулы начинают двигаться быстрее. В результате в газах молекулы испытывают большее трение друг о друга, из-за чего они текут медленнее и становятся вязкими. В жидкостях, когда молекулы начинают двигаться быстрее, их притяжение друг к другу ослабевает. Это ослабление приводит к тому, что молекулы жидкости движутся более свободно и, следовательно, с меньшей вязкостью.

    В этой статье мы сосредоточимся больше на вязкости жидкостей, особенно на кинематической вязкости и динамической вязкости воды. Когда мы говорим о вязкости, когда мы упоминаем «вязкость», мы фактически имеем в виду динамическую вязкость . Динамическая вязкость, или абсолютная вязкость воды или любой жидкости, пропорциональна касательному касательному напряжению сдвига на единицу площади, необходимому для перемещения одной пластины с постоянной скоростью по другой пластине при постоянной толщине жидкости между этими двумя пластинами, как в . Расход Куэтта , как показано ниже:

    Чем больше сила или напряжение, необходимое для перемещения пластины, тем более вязкая жидкость.При выборе между двумя вязкостями стоит отметить, что динамическая вязкость говорит нам о силе , необходимой для перемещения жидкости с определенной скоростью . С другой стороны, кинематическая вязкость говорит о скорости , которой достигает жидкость, когда к жидкости прикладывается определенная сила.

    Мы можем измерить динамическую вязкость в миллипаскалях-секундах (мПа⋅с), или более причудливом эквиваленте, называемом «сантипуаз». С другой стороны, мы можем выразить кинематическую вязкость в квадратных миллиметрах в секунду ( мм 2 / с) , что также имеет эквивалентную единицу, называемую сантистоксами.»Для простоты этого текста мы будем использовать только миллиПаскали-секунды и квадратные миллиметры в секунду для динамической вязкости и кинематической вязкости соответственно.

    Однако, если вам нужно выразить вязкость воды в английских единицах, вы всегда можете преобразовать часть миллиПаскалей в фунт-сила на квадратный фут и квадратные миллиметры в квадратные дюймы для динамической вязкости и кинематической вязкости соответственно. Вы можете использовать наш конвертер давления и конвертер площадей для этих процедур, особенно если вам нужно преобразовать много значений.

    Какая вязкость воды?

    Вода, будучи наиболее изученной жидкостью, является лучшей жидкостью для начала изучения вязкости. Динамическая вязкость воды при комнатной температуре составляет около 1,0 мПа⋅с и уменьшается с повышением температуры. Это значение вязкости воды при 20 ° C. Ниже представлена ​​диаграмма зависимости вязкости воды от температуры, которая показывает влияние температуры на динамическую вязкость и кинематическую вязкость воды.

    Приведенная выше диаграмма зависимости вязкости воды от температуры представляет собой визуальное представление данных, записанных ниже.Для получения этих данных были проведены эксперименты при различных температурах. В приведенной ниже таблице мы также включили плотность воды, поскольку она играет решающую роль в преобразовании динамической вязкости в кинематическую вязкость, как вы увидите в следующем разделе этого текста.

    Температура (° C) Динамическая вязкость (мПа⋅с) Кинематическая вязкость (мм² / с) Плотность (г / см³)
    0 1.7880 1.7890 0,9999
    1 1,7308 1,7313 0,9999
    2 1.6735 1,6736 0,9999
    3 1,6190 1,6191 1,0000
    4 1,5673 1,5674 1.0000
    5 1,5182 1,5182 1,0000
    6 1.4715 1.4716 0,9999
    7 1,4271 1,4272 0,9999
    8 1,3847 1,3849 0,9999
    9 1.3444 1,3447 0,9998
    10 1,3059 1,3063 0,9997
    20 1,0016 1,0034 0,9982
    30 0,7972 0,8007 0,9956
    40 0,6527 0,6579 0.9922
    50 0,5465 0,5531 0,9880
    60 0,4660 0,4740 0,9832
    70 0,4035 0,4127 0,9778
    80 0,3540 0,3643 0,9718
    90 0.3149 0,3260 0,9653
    100 0,2825 0,2950 0,9584

    Как пользоваться нашим калькулятором вязкости воды?

    Чтобы использовать наш калькулятор, введите температуру , для которой вы хотите узнать вязкость воды. Вы также можете навести указатель мыши (для компьютеров) или перетащить (для мобильных телефонов) диаграмму в нашем калькуляторе, чтобы увидеть значения вязкости при любой температуре.

    В качестве бонуса мы также включили в наш калькулятор вязкости воды значения плотности воды при любой температуре.

    Как рассчитать вязкость воды?

    Чтобы определить вязкость воды при любой температуре, мы можем использовать таблицу или диаграмму зависимости вязкости воды от температуры, приведенную в разделе «Влияние температуры на вязкость воды» этого текста, и использовать метод интерполяции для других температур, не указанных в таблице. . Используя диаграмму, мы можем приблизительно определить желаемую температуру, а затем (1) провести вертикальную линию от оси x до пересечения с кривой .Если (2) проведет горизонтальную линию от этого пересечения , мы теперь можем увидеть приблизительную вязкость воды при определенной температуре, как показано ниже для 125 ° C:

    В зависимости от метода, который вы решите выбрать (используйте калькулятор вязкости воды с методом интерполяции или проведите линии), вы можете получить значения вязкости воды (динамическую и кинематическую). Однако в таком случае рекомендуется выбирать только один метод при сравнении нескольких значений вязкости при разных температурах.Таким образом, концепции, лежащие в основе получаемых вами значений, будут согласованными и подходящими для сравнений. В любом случае, мы бы выбрали первый метод (метод интерполяции), потому что он более точен, чем рисование вертикальных и горизонтальных линий на графике.

    Как рассчитать кинематическую вязкость воды?

    Помимо расчета динамической вязкости воды, нам может также потребоваться определение кинематической вязкости воды при любой температуре. Мы также можем использовать диаграмму вязкости-температура воды или таблицу, представленную в этом тексте, и следовать тем же инструкциям, данным выше.Мы также можем рассчитать кинематическую вязкость воды по динамической вязкости, разделив динамическую вязкость на плотность воды, как показано ниже:

    ν T = η T / ρ T

    где:

    • ν T обозначает кинематическую вязкость при температуре T;
    • η T — динамическая вязкость при температуре T; и
    • ρ T — плотность воды при температуре T.

    Обратите внимание, что температура также влияет на плотность воды и что перед расчетом необходимо выполнить всю необходимую линейную интерполяцию. Допустим, мы ранее рассчитали, что плотность воды при 78 ° C приблизительно равна 0,973 г / см 3 . Кроме того, используя метод интерполяции, мы обнаружили, что динамическая вязкость воды при 78 ° C составляет около 0,36336 мПа · с . Затем мы конвертируем это значение динамической вязкости в кинематическую вязкость следующим образом:

    ν 78 ° C = η 78 ° C / ρ 78 ° C

    ν 78 ° C = 0.36336 мПа⋅с / 0,973 г / см 3

    ν 78 ° C = 0,3734429599 мм 2 / с ≈ 0,37344 мм 2 / с

    Используя метод преобразования, показанный выше, теперь мы можем сказать, что кинематическая вязкость воды при 78 ° C составляет приблизительно 0,37344 мм 2 / с .

    FAQ

    Что такое вязкость?

    Вязкость — это мера сопротивления жидкости потоку .Чем выше вязкость жидкости, тем медленнее она течет по поверхности. Например, кленовый сироп и мед — жидкости с высокой вязкостью, поскольку они текут медленно. Для сравнения, жидкости, такие как вода и спирт, имеют низкую вязкость, поскольку они очень свободно текут.

    Что такое единица вязкости?

    Мы можем выразить динамическую вязкость в миллипаскалей⋅секунду (мПа⋅с) или сантипуаз (сП) , где 1 мПа⋅с = 1 сП. С другой стороны, мы можем выразить кинематическую вязкость в квадратных миллиметрах в секунду (мм 2 / с) или сантистокс (сСт) , где 1 мм 2 / с = 1 сСт.

    Какая вязкость воды?

    Вязкость воды составляет 1,0016 миллипаскаль⋅секунду при 20 ° C. Это из-за его динамической вязкости. Вязкость воды меняется в зависимости от ее температуры, и чем выше температура, тем менее вязкая вода. Вязкость воды, скажем, при 80 ° C составляет 0,354 миллипаскаля в секунду.

    Влияет ли температура на вязкость воды?

    Да, вязкость воды меняется в зависимости от температуры . Вода имеет тенденцию иметь более высокую вязкость при более низких температурах и более низкую вязкость при более высоких температурах.Подумайте о помещении воды в морозильную камеру. Молекулы воды при более низкой температуре начинают терять свою энергию, больше притягиваются друг к другу и движутся довольно медленно, пока вода не превратится в лед.

    Как определить вязкость воды?

    Вы можете определить вязкость воды при определенной температуре с помощью диаграммы зависимости вязкости воды от температуры или методом интерполяции с использованием таблицы зависимости вязкости воды от температуры. Используя график, просто:

    1. Найдите нужную температуру по оси X;
    2. Проведите вертикальную линию от оси X вверх, пока она не дойдет до графика вязкости воды;
    3. На пересечении нарисуйте горизонтальную линию , идущую к оси Y, чтобы найти искомую вязкость.

    У газов есть вязкость?

    Да, газы тоже имеют вязкость . Однако, в отличие от жидкостей, температура влияет на вязкость газов, поэтому при более высоких температурах вязкость газов также становится высокой. Другими словами, по мере того, как становится жарче, газы, такие как воздух, кажутся немного застоявшимися, чем когда он холоднее.

    Как преобразовать кинематическую вязкость в динамическую вязкость?

    Просто умножьте кинематическую вязкость жидкости при определенной температуре на ее плотность при той же температуре .Например, кинематическая вязкость и плотность воды при 78 ° C составляет около 0,37344 мм 2 в секунду и 0,973 грамма на см 3 соответственно. Умножая их вместе, мы получаем 0,37344 мм 2 в секунду x 0,973 грамма на см 3 = 0,36336 миллипаскалей в секунду , что является динамической вязкостью воды при 78 ° C.

    Как увеличить вязкость воды?

    Нагрейте воду до очень низкой температуры, чтобы повысить ее вязкость.При более низких температурах молекулы воды имеют тенденцию терять энергию, заставляя их тесно накапливаться друг в друге. Это скопление приводит к тому, что молекулы воды испытывают большее трение друг о друга, из-за чего они текут медленнее или становятся вязкими.

    Какая кинематическая вязкость воды?

    Около 1 мм 2 в секунду. При 20 ° C кинематическая вязкость воды составляет около 1 мм. 2 в секунду и повышается при более низких температурах. При 10 ° C кинематическая вязкость воды составляет около 1.3 мм 2 в секунду, а при 30 ° C она составляет около 0,8 мм 2 в секунду. Повышение температуры снижает вязкость воды.

    У воды низкая вязкость?

    Вода имеет низкую вязкость, так как вода легко течет. С другой стороны, жидкости, которым требуется время для вытекания, такие как мед и глицерин, имеют высокую вязкость. Также стоит отметить, что температура также влияет на вязкость жидкостей. Холодный мед будет течь даже медленнее, чем мед при комнатной температуре.Напротив, теплый мед будет течь быстрее, чем обычно. То же самое и с водой.

    Как сахар влияет на вязкость воды?

    Добавление веществ, которые делают воду густой, например, сахара, увеличивает вязкость воды. Чем больше добавлено сахара, тем более вязкой становится вода и тем гуще она становится. Добавление тепла поможет добавить в воду больше сахара. Когда смесь остынет до комнатной температуры, она станет более вязкой, чем когда она еще горячая.

    Влияет ли соль на вязкость воды?

    Да, добавление соли в воду увеличивает вязкость воды. Поскольку добавление соли в воду делает раствор более густым и плотным, его вязкость также увеличивается. Хотя это может быть нелегко почувствовать при сравнении соленой воды с пресной, это уже будет заметно при более высоких концентрациях соли.

    Как измерить вязкость воды?

    Можно использовать вискозиметр. Существует много типов вискозиметров, но одним из самых простых и простых в использовании является вискозиметр Оствальда.Вискозиметр Оствальда представляет собой U-образную стеклянную трубку с обозначенными колбами и двумя отметками, через которые должна проходить тестируемая жидкость. Во время наблюдения время, необходимое для прохождения уровня жидкости через две отметки, будет представлять кинематическую вязкость жидкости. Эта процедура должна выполняться при известной температуре.

    ·

    Свойства жидкости

    Любая характеристика системы называется свойством .Это может быть интенсивный (не зависящий от массы) или экстенсивный (это зависит от размера системы). Состояние системы описывается ее свойствами. Количество свойств, необходимых для фиксации состояния системы, определяется постулатами состояния . Наиболее распространенные свойства жидкости:

    1. Давление (p): это нормальная сила, оказываемая жидкостью на единицу площади. Более подробная информация будет представлена ​​в следующем разделе (Лекция 02).В системе СИ единица измерения давления может быть записана как Н / м 2 и ML -1 T -2 соответственно.

    2. Плотность : Плотность вещества — это количество вещества, содержащегося в единице объема вещества. Это выражается тремя разными способами; массовая плотность, удельный вес (ρg) и относительная плотность / удельный вес. Единицы измерения и размеры указаны как

    .

    По массовой плотности; Размер: ML -3 Единица измерения: кг / м 3

    По удельному весу; Размер: ML -2 T -2 Единица измерения: Н / м 3

    Стандартные значения плотности воды и воздуха равны 1000 кг / м. 3 и 1.2 кг / м 3 соответственно. Часто величина, обратная массовой плотности, называется удельным объемом.

    3. Температура (T): это мера тепла и холода системы. В термодинамическом смысле это мера внутренней энергии системы. Часто температура выражается по шкале Цельсия (° C), где точки замерзания и кипения воды принимаются равными 0 ° C и 100 ° C соответственно. В системе СИ температура выражается в абсолютных величинах по шкале Кельвина (K = ° C + 273).

    4. Вязкость (u): Когда два твердых тела в контакте движутся относительно друг друга, на контактной поверхности возникает сила трения в направлении, противоположном движению. Ситуация аналогична, когда жидкость движется относительно твердого тела или когда две жидкости движутся относительно друг друга. Свойство, которое представляет внутреннее сопротивление жидкости движению (т. Е. Текучесть ), называется вязкостью . Жидкости, для которых скорость деформации пропорциональна напряжению сдвига, называются ньютоновскими жидкостями, и линейная зависимость для одномерной системы показана на рис.1.1.2. Напряжение сдвига (τ) тогда выражается как,

    (1.1.2)

    где, — скорость деформации сдвига, а μ — динамическая (или абсолютная) вязкость жидкости.

    Динамическая вязкость имеет размер ML -1 T -1 и единицы измерения кг / м.с (или, Н.с / м 2 или Па.с). Обычная единица динамической вязкости — пуаз , что эквивалентно 0,1 Па · с. Часто отношение динамической вязкости к плотности появляется часто, и это соотношение называется кинематической вязкостью.Имеет габариты L 2 T -1 и агрегат сток (1 сток = 0,0001 м 2 / с). Типичные значения кинематической вязкости воздуха и воды при температуре окружающей среды составляют 1,46 x 10 -5 м 2 / с и 1,14 x 10 -6 м 2 / с, соответственно.

    Рис. 1.

    Добавить комментарий

    Ваш адрес email не будет опубликован.