Меню Закрыть

Кардан равных угловых скоростей: Карданная передача с шарниром равных угловых скоростей

Содержание

Карданная передача с шарниром равных угловых скоростей


Синхронные карданные передачи




Карданные передачи с шарнирами


равных угловых скоростей

Передние ведущие колеса полноприводных и переднеприводных автомобилей являются одновременно и управляемыми, т. е. должны поворачиваться, что требует применения между колесом и полуосью шарнирного соединения.
Карданные шарниры неравных угловых скоростей передают вращение циклически и приемлемо работают лишь при небольших значениях углов между валами, поэтому не могут удовлетворять требованиям равномерности передаваемого вращательного движения. В приводе ведущих управляемых колес крутящий момент должен передаваться с равномерной скоростью к колесам, поворачивающимся относительно продольной оси автомобиля на угол 40…45˚.
Выполнение таких условий могут обеспечить карданные передачи с шарнирами равных угловых скоростей (ШРУС). Иногда их называют синхронными карданными передачами.

В переднеприводном автомобиле обычно используются два внутренних шарнира равных угловых скоростей, кинематически связанные с коробкой передач, и два внешних шарнира, которые крепятся к колесам. В обиходе такие шарниры обычно называют «гранатами».

До середины прошлого века в конструкциях автомобилей часто встречались спаренные карданные шарниры неравных угловых скоростей. Такая конструкция получила название сдвоенного карданного шарнира. Сдвоенный шарнир отличался громозкостью и усиленным износом игольчатых подшипников, поскольку при прямолинейном движении автомобиля иглы подшипников не проворачивались и линии их контакта с обоймой и крестовиной подвергались воздействию значительных контактных напряжений, что приводило к износу и даже сплющиванию игл.

В настоящее время такие подшипники в конструкциях автомобилей встречаются редко.

Равенство угловых скоростей ведущего и ведомого валов будет соблюдено только в том случае, если точки контакта в шарнире, через которые пересекаются окружные силы, будут находиться в биссекторной плоскости, делящей угол между валами пополам. Конструкции всех карданных шарниров равных угловых скоростей основаны на этом принципе.

***

Шариковые шарниры равных угловых скоростей

Наибольшее применение получили шариковые карданные шарниры равных угловых скоростей. Среди них наиболее часто в конструкциях отечественных автомобилей можно встретить шарниры с делительными канавками типа «Вейс».
Эту конструкцию в 1923 году запатентовал немецкий изобретатель Карл Вейс. Шарниры Вейса широко применяются в разборном и неразборном вариантах на отечественных автомобилях марок «УАЗ», «ГАЗ», «ЗиЛ», «МАЗ» и некоторых других. Шарнирные сочленения типа «Вейс» технологичны и дешевы в производстве, позволяют получать угол между валами до

32°, однако срок их службы ограничен 30…40 тыс. км пробега из-за высоких контактных напряжений, возникающих при работе.

Разборный шарнир (рис. 1) устроен следующим образом. Валы 1 выполнены заодно с кулаками 2 и 5, в которых вырезаны четыре канавки 3. В собранном виде кулаки располагаются в перпендикулярных плоскостях, а между ними в канавки

3 устанавливаются четыре шарика 7.
Для центрирования кулаков в отверстие, выполненное в одном из них, устанавливается штифт 6 с центрирующим шариком 4. От осевого перемещения штифт фиксируется другим штифтом 6, расположенным радиально.
Средние линии канавок 3 нарезаны так, что шарики 7, передающие усилия, располагаются в биссекторной (биссекториальной) плоскости между валами. В передаче усилия участвуют только два шарика, что создает высокие контактные напряжения и сокращает срок службы шарнира. Два других шарика передают крутящий момент при движении автомобиля задним ходом.

В других конструкциях контактные напряжения уменьшаются путем увеличения числа шариков, одновременно участвующих в работе, что неизбежно приводит к усложнению шарниров.

Детали шарикового шарнира «Рцеппа» (рис. 1, б) располагаются в чашке 8, которая во внутренней части имеет шесть сферических канавок для установки шести шариков 7. Такие же канавки имеет и сферический кулак 10, в шлицевое отверстие которого входит ведущий вал карданной передачи. Шарики в одной биссекторной плоскости устанавливаются делительным устройством, состоящим из сепаратора 9, направляющей чашки 11 и делительного рычажка 12.
Рычажок имеет три сферические поверхности: концевые входят в гнезда ведущего и ведомого валов, а средняя – в отверстие направляющей чашки

11. Рычажок к ведущему валу прижимается пружиной 13. Длины плеч рычажка таковы, что при передаче момента под углом он поворачивает направляющую чашку 11 и сепаратор 9 так, что все шесть шариков 7 устанавливаются в биссекторной плоскости и все они воспринимают и передают усилия. Это позволяет уменьшить габаритные размеры шарнира и увеличить срок его службы.

Шарнир типа «Рцеппа» технологически сложен, однако он компактнее шарнира с делительными канавками, и может работать при углах между валами до 40°. Поскольку усилие в этом шарнире передается всеми шестью шариками, он обеспечивает передачу большого крутящего момента при малых размерах. Долговечность шарнира «Рцеппа» достигает

100–200 тыс. км.

Еще один шариковый карданный шарнир типа «Бирфильд» представлен на рисунке 1, в. Он состоит из чашки 8, сферического кулака 10 и шести шариков 7, размещенных в сепараторе 9. Сферический кулак 10 надевается на шлицованную часть ведущего вала 16 и стопорится кольцом 14. От попадания грязи во внутреннюю полость шарнир защищен защитным резиновым чехлом 15.
Все сферические поверхности деталей шарнира выполнены по разным радиусам, а канавки имеют переменную глубину. Благодаря этому при наклоне одного из валов шарики выталкиваются из среднего положения и устанавливаются в биссекторной плоскости, что обеспечивает синхронное вращение валов.

Шарниры типа «Бирфильд» имеют высокий КПД, долговечны, и могут работать при углах до 45˚. Поэтому они широко применяются в приводе управляемых колес многих переднеприводных легковых автомобилей в качестве наружного шарнира, или, как его еще называют — наружной «гранаты».
Основной причиной преждевременного разрушения шарнира является повреждение эластичного защитного чехла. По этой причине автомобили высокой проходимости часто имеют уплотнение в виде стального колпака. Однако это приводит к увеличению габаритов шарнира и ограничивает угол между валами до

40°.

При использовании шарнира типа «Бирфильд» на внутреннем конце карданной передачи необходимо устанавливать шарнир равных угловых скоростей, способный компенсировать изменение длины карданного вала при деформации упругого элемента подвески.

Такие функции совмещает в себе универсальный шестишариковый карданный шарнир типа «ГКН» (GKN).
Осевое перемещение в шарнирах типа GKN обеспечивается перемещением шариков по продольным канавкам корпуса, при этом, требуемая величина перемещения определяет длину рабочей поверхности, что влияет на размеры шарнира. Максимальный допустимый угол наклона вала в данной конструкции ограничивается

20°.
При осевых перемещениях шарики не перекатываются, а скользят в канавках, что снижает КПД шарнира.

В конструкциях современных легковых автомобилей иногда встречаются карданные шарниры типа «Лебро» (Loebro), которые, как и шарниры GKN обычно устанавливаются на внутреннем конце карданной передачи, поскольку способны компенсировать изменение длины карданного вала.

Шарниры «Лебро» отличаются от шарниров GKN тем, что канавки в чашке и кулаке нарезаны под углом 15-16° к образующей цилиндра, а геометрия сепаратора правильная — без конусов и с параллельными наружной и внутренней сторонами.
Такой шарнир имеет меньшие габариты, чем другие шестишариковые шарниры, кроме того, сепаратор его менее нагружен, поскольку не выполняет функции перемещения шариков в кулаках.

Принципиальное устройство этих шариковых шарниров представлено на рисунке 2.


Привод передних колес автомобиля ВАЗ-2110

Привод передних колес автомобиля ВАЗ-2110 (рис. 3) состоит из вала 3 и двух карданных шарниров 1 и 4 равных угловых скоростей. Вал 3 привода правого колеса выполнен из трубы, а левого колеса – из прутка. Кроме того, валы имеют разную длину. На вал надевается защитный чехол 6, а затем шарнир в собранном виде со смазочным материалом фиксируется от осевого перемещения стопорным кольцом 5. Защитные чехлы крепятся хомутами 2.

Внутренний шарнир (внутренняя «граната)

1, который вязан с дифференциалом, является универсальным, т. е. кроме обеспечения равномерного вращения валов под изменяющимся углом он позволяет увеличивать общую длину привода, что необходимо для перемещения передней подвески и силового агрегата. Происходит это потому, что внутренняя поверхность корпуса шарнира 1 имеет цилиндрическую форму, и канавки в ней нарезаны продольно, это позволяет внутренним деталям шарнира перемещаться по продольным канавкам в осевом направлении.

***



Кулачковые шарниры равных угловых скоростей

На автомобилях средней и большой грузоподъемности марок «КамАЗ», «Урал», «КрАЗ» карданные передачи в приводе передних колес работают под большим крутящим моментом. Шариковые шарниры не могут передавать больших крутящих моментов из-за возникновения значительных контактных напряжений и ограничения по удельному давлению шариков на канавки. Поэтому в них применяют кулачковые карданные шарниры (

рис. 1, г). Аналогичные шарниры иногда устанавливают на переднеприводные автомобили марки «УАЗ».

Кулачковый карданный шарнир равных угловых скоростей (рис. 1, г) состоит из двух вилок 18 и 20, которые вставлены в кулаки 2 и 5 с пазами; в эти пазы входит диск 19. При передаче крутящего момента и вращения от ведущего вала 17 на ведомый вал при повернутом колесе каждый из кулаков 2 и 5 поворачивается одновременно относительно оси паза вилки в горизонтальной плоскости и относительно диска 19 в вертикальной плоскости.
Оси пазов вилок лежат в одной плоскости, которая проходит через среднюю плоскость диска. Эти оси расположены на равных расстояниях от точки пересечения осей валов и всегда перпендикулярны осям валов, поэтому точка их пересечения всегда располагается в биссекторной плоскости.

Такой карданный шарнир требует повышенного внимания к смазыванию, так как для его деталей характерно трение скольжения, вызывающее значительный нагрев и изнашивание трущихся поверхностей. Трение скольжения между контактирующими поверхностями приводит к тому, что кулачковый шарнир имеет самый низкий КПД из всех шарниров равных угловых скоростей. Однако он способен передавать значительный крутящий момент.

Еще один тип кулачкового шарнира равных угловых скоростей — шарнир «Тракта» (на рисунке), состоящий из четырех штампованных деталей: двух втулок и двух фасонных кулаков, трущиеся поверхности которых подвергаются шлифованию.
Если разделить по оси симметрии кулачковый карданный шарнир, то каждая часть будет представлять собой карданный шарнир неравных угловых скоростей с фиксированными осями качания. В такой конструкции тоже возникают значительные силы трения скольжения, снижающие КПД шарнира.

***

Трехшиповые шарниры равных угловых скоростей

В трехшиповом шарнире (на рисунке) крутящий момент от ведущего вала передают три сферических ролика, которые установлены на радиальных шипах, жестко связанных с корпусом шарнира ведомого вала. Шипы относительно друг друга располагаются под углом 120˚. Сферические ролики чаще всего устанавливаются на шипы посредством игольчатых подшипников.

Ведущий вал имеет трехвальцевую вилку, в цилиндрические пазы которой входят ролики. При передаче крутящего момента между несоосными валами ролики перекатываются со скольжением вдоль пазов и одновременно скользят в радиальном направлении относительно шипов. Предельный угол между осями валов до 40˚.

Особенностью трехшипового шарнира является то, что в отличие от шариковых шарниров передача момента от ведущих элементов на ведомые происходит не в биссекторной плоскости, а в плоскости, проходящей через оси шипов. Равенство частот вращения ведущего и ведомого валов обеспечивается при любом взаиморасположении их осей.

***

Мосты автомобилей


Главная страница


Дистанционное образование

Специальности

Учебные дисциплины

Олимпиады и тесты

Шарниры равных угловых скоростей

Шарниры равных угловых скоростей применяются для передачи крутящего момента от дифференциала на ведущие управляемые колеса. При соединении валов шарнирами равных угловых скоростей ведомый вал вращается равномерно с постоянной угловой скоростью, соответствующей угловой скорости ведущего вала. Чаще применяют шариковые, кулачковые и трехшиповые шарниры.

Шариковый шарнир равных угловых скоростей (шарнир Вейса) состоит из следующих элементов:

• ведущего вала со шлицами, входящими в зацепление с полуосевым зубчатым колесом дифференциала и вилкой с делительными канавками;
• ведомого вала со шлицами, входящими в зацепление с ведущим фланцем ступицы колеса и вилкой с делительными канавками;
• четырех ведущих шариков, расположенных в делительных канавках вилок;
• центрирующего шарика вилок, помещенного в сферические углубления на торцах вилок.


 

 

 

Привод передних колес: 1 — корпус внутреннего шарнира; 2 — фиксатор внутреннего шарнира; 3 — кольцо крепления чехла; 4 — вал привода передних колес; 5 — защитный кожух чехла; 6 — защитный чехол; 7— упорное кольцо обоймы; 8— сепаратор; 9 — хомут; 10— шарик; 11 — обойма; 12 — стопорное кольцо обоймы; 13 — корпус наружного шарнира.

 

 

Детали наружного шарнира привода передних колес: 1 — корпус шарнира; 2 — сепаратор; 3 — обойма; 4 — шарики.

Центрирующий шарик имеет лыску, которая располагается при сборке против вставленного ведущего шарика. Шарик стопорят шпилькой, расположенной в осевом канале ведомой вилки, одним концом входящей в отверстие центрирующего шарика, таким образом запирая собранный карданный шарнир. Делительные канавки имеют специальную форму, при которой ведущие шарики независимо от угловых перемещений вилок всегда располагаются в плоскости, делящей пополам угол (биссекторная плоскость) между осями ведущей и ведомой вилок. Благодаря этому обе вилки имеют одинаковую частоту вращения. Предельный угол между осями валов 32—33°.

Шариковый шарнир равных угловых скоростей (шарнир Рцеппа) состоит из двух кулаков: внутреннего, связанного с ведущим валом, и наружного, связанного с ведомым валом. В обоих кулаках имеется по шесть тороидных канавок, расположенных в плоскостях, проходящих через оси валов, В канавках находятся шарики, положение которых задается сепаратором, взаимодействующим с валами через делительный рычажок. Один конец рычажка поджимается пружиной к гнезду внутреннего кулака, другой скользит в цилиндрическом отверстии ведомого вала. При изменении относительного положения валов рычажок наклоняется и поворачивает сепаратор, который в свою очередь, изменяя положение шариков, обеспечивает их расположение вбисекторной плоскости. В данном шарнире крутящий момент передается через все шесть шариков. Предельный угол между осями валов 35—38°.

Шариковый шарнир Рцеппа без делительного рычажка. Установка шариков в бисекторную плоскость происходит благодаря эксцентричности сфер, в которых располагаются оси тороидальных канавок кулаков. Центры сфер, в которых лежат оси канавок наружного (ведомого) и внутреннего (ведущего) кулаков, расположены так, что при повороте оси ведомого вала по часовой стрелке верхний шарик выталкивается из сужающегося пространства между кулаками, а нижний с помощью сепаратора перемещается в увеличивающееся пространство с другой стороны шарнира. Остальные шарики занимают промежуточное положение. Работа данного шарнира подобна работе шарнира Рцеппа, имеющего делительный рычажок, однако характеризуется менее точной кинематикой. Простота и надежность конструкций, высокая несущая способность при небольших габаритных размерах способствуют их широкому применению на передне приводных автомобилях.

Кулачково-дисковый шарнир равных угловых скоростей (шарнир Тракта) состоит из связанных с ведущим и ведомым валами полуцилиндрических вилок и вставленных в них цилиндрических кулаков, в пазы которых входит диск, передающий крутящий момент от ведущей вилки к ведомой. Максимальное значение угла между валами до 45° Большая контактная поверхность деталей, воспринимающая усилия, и высокая несущая способность обуславливают их применение на тяжелых грузовых автомобилях.

Трехшиповые шарниры. В трехшиповом шарнире крутящий момент от ведущего вала передают три сферических ролика, которые установлены на радиальных шипах, жестко связанных с корпусом шарнира ведомого вала. Шипы относительно друг друга располагаются под углом 120° Ведущий вал имеет трехпальцевую вилку, в цилиндрические пазы которой входят ролики. При передаче момента между несоосными валами ролики перекатываются со скольжением вдоль пазов и одновременно скользят в радиальном направлении относительно шипов. Предельный угол между осями валов до 40° Особенностью данного шарнира является то, что в отличие от шариковых шарниров передача момента от ведущих элементов на ведомые происходит не в бисекторной плоскости, а в полости, проходящей через оси шипов. Равенство частот вращения ведущего и ведомого валов обеспечивается при любом взаиморасположении их осей.

Шарнир равных угловых скоростей — это… Что такое Шарнир равных угловых скоростей?

Шарнир равных угловых скоростей. Принцип действия шарикового ШРУСа типа «Рцеппа»

Шарнир равных угловых скоростей (сокращённо ШРУС, в просторечии — «граната») обеспечивает передачу крутящего момента при углах поворота до 70 градусов относительно оси. ШРУСы изредка называют «гомокинетическими шарнирами» (от др.-греч. ὁμός — «равный, одинаковый» и κίνησις — «движение», «скорость»).

Используется в системах привода управляемых колёс легковых автомобилей с независимой подвеской и, реже, задних колёс.

Первые попытки реализовать передний привод осуществлялись при помощи обычных карданных шарниров. Однако, если колесо перемещается в вертикальной плоскости и одновременно является поворотным, наружному шарниру полуоси приходится работать в исключительно тяжелых условиях — с углами 30—35°. А уже при углах больших 10—12° в карданной передаче резко увеличиваются потери мощности, к тому же вращение передаётся неравномерно, растёт износ шарнира, быстро изнашиваются шины, а шестерни и валы трансмиссии начинают работать с большими перегрузками. Поэтому потребовался особый шарнир — шарнир равных угловых скоростей — лишённый таких недостатков, передающий вращение равномерно вне зависимости от угла между соединяемыми валами.

Типы шарниров равных угловых скоростей

Существуют различные конструкции ШРУСов. Различают обычно:

  • Шариковые («Бендикс-Вейс», «Рцеппа», «Бирфильд») — наиболее распространены сегодня, первые варианты были разработаны в 1920-е годы;
  • Триподные (типа «Tripod») — часто используются как внутренние, допускают бо́льшие осевые перемещения, но при этом — нелинейное изменение скорости при вращении под углом;
  • Сухариковые или кулачковые — были разработаны французом Грегуаром и запатентованы как «Тракта» в начале 1920-х, в наше время применяются в основном на грузовиках;
Спаренный кардан
  • Спаренные карданные — представляют собой состыкованные друг с другом два карданных шарнира, которые взаимно компенсируют неравномерность вращения друг друга; применялись редко, например, на ряде американских автомобилей 1920-х годов, вроде Miller 91 или Cord L29, а также французских «Панарах» пятидесятых-шестидесятых годов.

Наиболее распространённый сегодня шариковый ШРУС состоит из шести шариков, внешнего и внутреннего колец с прорезями под шарики, которые соединяются с приводным валом шлицевым соединением, и сепаратора, удерживающего шарики.

Эта система не терпит грязи и становится более хрупкой при больших углах поворота.

3D изображение ШРУСа типа «Рцеппа»

Шарниры равных угловых скоростей всегда герметизируются пыльником, так как расположение шарнира способствует попаданию в него пыли, которая быстро выводит его из строя.[1]

См. также

Примечания

В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 15 мая 2011.

Ссылки

Карданные шарниры неравных (асинхронный) и равных угловых скоростей (синхронный). Схема вращения, формула расчета

Одновальные и двухвальные карданные передачи, используемые для соединения коробки передач, раздаточной коробки и ведущих мостов автомобилей, имеют карданные шарниры неравных угловых скоростей. Карданные передачи с шарнирами равных угловых скоростей на автомобилях применяются для привода передних управляемых и одновременно ведущих колес.

Карданным шарниром, или карданом, называется подвижное соединение, обеспечивающее передачу вращения между валами, оси которых пересекаются под углом. В автомобилях применяются карданные шарниры неравных и равных угловых скоростей.

Карданный шарнир неравных угловых скоростей (асинхронный) состоит из вилки 1 (рисунок 1, а) ведущего вала, вилки 3 ведомого вала и крестовины 2, соединяющей вилки с помощью игольчатых подшипников. Вилка 3 может поворачиваться относительно оси ОО крестовины и одновременно с крестовиной поворачиваться относительно оси О1О1 при передаче вращения с ведущего вала на ведомый при изменяющемся угле γ между валами.

Рисунок 1 — Карданные шарниры

а — неравных угловых скоростей; б — равных угловых скоростей; 1, 3 — вилки; 2 — крестовина; 4, 5 — валы; 6, 7 — шарики; ω1, ω2 — угловые скорости ведущего и ведомого валов соответственно; γ, Θ — углы между валами

Если ведущий вал повернется на некоторый угол α, то ведомый вал за это время повернется на какой-то другой угол β и соотношение между углами поворота валов будет:

tg α = tg β cos γ.

Следовательно, валы вращаются с разными скоростями1 ≠ ω2), а ведомый вал — еще и неравномерно. Неравномерность вращения валов тем больше, чем больше угол γ между валами. При этом неравномерное вращение валов вызывает дополнительную динамическую нагрузку на детали трансмиссии и увеличивает их изнашивание.

Для устранения неравномерного вращения используют два карданных шарнира неравных угловых скоростей, которые устанавливают на концах карданного вала. При этом вилки карданных шарниров, соединенные с карданным валом, располагаются в одной плоскости. Тогда неравномерность вращения, создаваемая первым карданным шарниром, выравнивается вторым карданным шарниром, и ведомый вал вращается равномерно со скоростью ведущего вала.

Карданные шарниры неравных угловых скоростей допускают передачу вращения при углах γ между валами до 15…20º.

Карданный шарнир равных угловых скоростей (синхронный) состоит из фасонных вилок (рисунок 1, б), изготовленных за одно целое с ведущим 4 и ведомым 5 валами. Вилки имеют овальные делительные канавки, в которых находятся рабочие шарики 6. Центрирование вилок осуществляется шариком 7, размещенным в сферических углублениях внутренних торцов вилок.

Вращение с вала 4 на вал 5 передается через рабочие шарики 6. Канавки вилок имеют специальную форму, которая независимо от изменения угла γ между валами обеспечивает расположение рабочих шариков в плоскости АА, делящей угол Θ пополам. В результате этого оба вала вращаются с равными скоростями (ω1 = ω2).

Шариковый шарнир такого типа может передавать вращение при углах γ между валами, достигающих 30…32º.

Шарнир прост по конструкции и сравнительно недорог при изготовлении. Однако он имеет ускоренное изнашивание из-за наличия скольжения рабочих шариков относительно канавок и высокого давления между шариками и канавками.

Другие статьи по карданной передаче

Шарнир равных угловых скоростей (ШРУС)

Переднеприводные автомобили в конце 60-х привлекли внимание разработчиков всех крупнейших автомобильных концернов, так как компоновка их кузова позволяет отдать максимум места в автомобиле водителю и пассажирам. Чтобы обеспечить привод на передние управляемые колеса, и не лишать их возможности поворачивать, пришлось придумать сложный механизм под названием ШРУС.

История создания ШРУСа

Поскольку конструкций шарнира равных угловых скоростей существует несколько, установить, какая из них возникла первой, достаточно сложно.  Известно, что ШРУС шарикового типа, наиболее распространенный в наши дни, появился впервые в двадцатые годы прошлого века. Кулачковый ШРУС был разработан французским изобретателем по фамилии Грегуар. В начале двадцатых годов он запатентовал изобретение под именем «Тракта». Еще один тип — спаренный карданный ШРУС — применялся, в основном, в автомобилях производства США двадцатых годов, таких как Cord L29, а также в трансмиссии французских автомобилей «Панар-Левассор» 50-60-х годов. В наше время применяется в схемах транспортных средств, не развивающих высокую скорость, к примеру, на тракторах.  

Назначение ШРУСа

Шарнир равных угловых скоростей используется в независимой подвеске передних управляемых колес при условии, если они же являются ведущими. ШРУС — составная деталь, и помимо вращения обеспечивает угол поворота до 70 градусов, что позволяет применять его в конструкции ведущей оси.

Сходство ШРУСа с ручной гранатой обеспечило ему соответствующее прозвище, причем, не только в русском языке

Реже встречается в заднеприводных и полноприводных автомобилях, и только в том случае, если сзади также применена независимая подвеска. В этом случае каждое из задних колес имеет пусть ограниченную, но несинхронизированную с другим колесом возможность передвижения в горизонтальной и вертикальной плоскостях, что делает невозможным применение традиционных для задней ведущей оси приводных валов.

Если угол между сочленениями небольшой, с передачей крутящего момента легко справляются карданные шарниры неравных угловых скоростей. С увеличением значений этих углов валы начинают вращаться слишком неравномерно, что делает работу передачи проблематичной и ведет к потере мощности. Для решения таких проблем и существует ШРУС.

Внутренний и внешний ШРУС

Обычно в трансмиссии переднеприводных автомобилей применяются ШРУСы двух видов — внутренние и внешние. Такая конструкция придумана для обеспечения большей свободы передвижения вала, чем может обеспечить один шрус. Внутренний шрус устанавливается внутри корпуса коробки передач, а внешний устанавливается у самого колеса.

Устройство и принцип работы ШРУСа

В зависимости от типа (шариковый, триподный, кулачковый или спаренный карданный) конструкция ШРУСа может быть разной. Тем не менее, их роль в конструкции трансмиссии одинакова: ШРУС входит в состав приводного вала. Одна сторона вала вставляется в подшипник ступицы колеса, а другая – в дифференциал. Шарниры равных угловых скоростей передают энергию вращения от двигателя к ведущим колесам через подшипники ступиц.

Две основные составляющие ШРУСа – это корпус и обойма, находящаяся внутри него. Оба этих элемента имеют канавки, в которых расположены шарики. Они жестко соединяют обе детали, имеющие сферическую форму, и передают вращение.

Для наружных и внутренних ШРУСов используются различные типы шарниров: наружный конец приводного вала оснащают шаровыми, а внутренний – треножными

Диапазон рабочего угла наружного ШРУСа шире, чем у внутреннего, поскольку при повороте управляемого колеса угол поворота наружного ШРУСа может доходить до 50 градусов. Рабочий угол внутреннего ШРУСа не превышает 20 градусов. Поэтому для наружных и внутренних ШРУСов используются различные типы шарниров: наружный конец приводного вала оснащают шаровыми, а внутренний – треножными.

В конструкцию наружного ШРУСа входит обойма, установленная на валу, с шестью канавками, расположенных по радиусу. Корпус узла имеет такое же количество радиальных канавок. В них находятся шарики, которые и передают крутящий момент. Такая передача происходит от вала к корпусу ШРУСа и дальше, к ступице колеса.

Конструкция ШРУСа допускает изгиб, но не осевое перемещение. Внутренние ШРУСы, рассчитанные и на изгиб, и на осевое перемещение, имеют несколько иное устройство.

Внутренние шарниры равных угловых скоростей отличаются и между собой. Это зависит от модели автомобиля, на который они устанавливаются. К примеру, в ВАЗовских внутренних ШРУСах канавки корпуса прямые, а не радиальные.

А во внутреннем ШРУСе «Таврии» ролики установлены на трех шипах крестовины, которые вращаются на игольчатых подшипниках. Они помещаются во внутренние продольные пазы корпуса ШРУСа. Таким образом, сочленению обеспечивается как изгиб, так и осевое перемещение.

Пыльник ШРУСа удерживают на месте два хомута. Они продаются в комплекте с любым новым ШРУСом

Поскольку ШРУС располагается в проблемной зоне, где много грязи и пыли, он снабжен герметичной защитой. Эту роль выполняет пыльник – гофрированная резиновая накладка, закрепленная на корпусе ШРУСа хомутами.

Несмотря на разнообразие конструктивных решений ШРУСов, принцип их работы остается неизменным — точки контакта, передающие окружные силы, должны обязательно находиться в биссекторной полости, проходящей через биссектрису угла, образованного валами.

Достоинства и недостатки ШРУСа

К явным преимуществам ШРУСа можно отнести то, что при передаче при помощи этого шарнира потери мощности, по сравнению с другими аналогичными механизмами, почти не наблюдается. Другие плюсы — его легкий вес, относительная надежность и простота замены в случае поломки.

К недостаткам ШРУСов следует отнести наличие в конструкции пыльника, который одновременно является контейнером для смазки. Расположен ШРУС в таком месте, где его соприкосновение с посторонними предметами практически невозможно предотвратить. Пыльник может быть порван, к примеру, при езде по слишком глубокой колее, при переезде через препятствие и тп. Как правило, узнает об этом владелец автомобиля только тогда, когда грязь уже попала внутрь пыльника через трещину в пыльнике, спровоцировав интенсивный износ. Если есть уверенность, что это произошло недавно, можно снять шрус, промыть его, заменить пыльник и заполнить его новой смазкой. Если же неприятность случилась значительное время назад, ШРУС обязательно выйдет из строя раньше времени.

Карданная передача и карданный вал – в чём разница? — Информация о запчастях

«Карданная передача» многозначна. Так, часто в определенных каталожных номерах трансмиссии путают понятие механизма «карданная передача» и непосредственно автодетали «карданная передача». Например, трансмиссия 651669-2200000 обозначает «карданную передачу» в «установке карданных валов» а/м МАЗ-651669 и состоит из «карданной передачи привода среднего моста 651669-2205006-000 и также (!) карданного вала привода заднего моста 54341-2201010-10»

В общем смысле «карданная передача» — это один из механизмов (способов) передачи крутящего момента (трансмиссии), как правило, от силового агрегата (двигатель) на рабочий орган (движитель: колесо, шестерня, шнек, винт, муфта, …).

Карданная передача встречается также во всех случаях, где необходимо передать крутящий момент под углом (например, рулевые карданные валы от рулевого колеса водителя до рулевого или углового редуктора).

Иногда этот способ называют еще «шарнир Гука», «ШНРУС  (шарнир НЕравных угловых скоростей)» и даже «крестовина» (примечание: помимо «карданной передачи»  существуют также другие механизмы трансмиссии, например, «шарнир Рцеппа  — ШРУС  (шарнир равных угловых скоростей)», «трипод», «зубчатая муфта», «механизм Олдема (кулачково-дисковая муфта)» и другие).

В наиболее распространенном виде карданная передача как автодеталь (в народе «кардан«) представляет собой карданные шарниры с крестовинами, объединенные одним или несколькими валами (трубными либо беструбными, как неподвижными, так и с возможностью изменения длины).

В узком смысле «карданный вал» представляет собой два таких шарнира, соединенные между собой трубой и/или механизмом изменения длины («скользящая шлицевая»), часто также обозначается как «2-опорный». 

В свою очередь «карданная передача» (автодеталь) представляет собой совокупность двух и более карданных валов, дополнительно оборудованных подвесным подшипником на каждый дополнительный неподвижный вал, часто также обозначается как «3-опорная, 4-опорная, …». Разбиение «карданной передачи» обусловлено ограничением максимальной длины трубы одного карданного вала при необходимости передачи трансмиссии на большие расстояния.

ШРУСы: с чего все начиналось и к чему пришло

Задача передачи крутящего момента между подвижными валами на автомобилях начала XX века вполне успешно решалась применением сначала цепей, а затем и карданных соединений. Первые полноприводные машины довольствовались карданными соединениями с неравными угловыми скоростями,  поскольку преимущества полного привода перевешивали недостатки в виде вибраций и потери мощности. Например, Spyker HP 60/80 1903 года вполне обходился вовсе без ШРУСов. Однако сегодня представить автомобиль без этого узла невозможно. Вспоминаем, как модернизировался шарнир равных угловых скоростей и что он представляет собой сегодня.

 

На заре автомобильной эпохи в переднее- и полноприводных машинах использовались сдвоенные карданные шарниры в разных конструктивных вариантах. От простого двойного шарнира до специально разработанных конструкций с кинематикой двойного карданного шарнира, но имеющих принципиально другую конструкцию, например кулачково-карданного шарнира типа «Тракта» или кулачково-дискового шарнира, хорошо знакомого водителям отечественной грузовой техники с полным приводом. Именно эти специализированные конструкции часто называют первыми ШРУСами. К сожалению, ресурс и КПД таких конструкций были очень низкими и не позволяли реализовать массовые конструкции с передачей высокой мощности и большим ресурсом.

Настоящим шарниром с постоянной угловой скоростью стали шарниры типа Вейсс. Конструкция без сепаратора позволяла разместить всего два шара для реализации точек передачи момента, что ограничивало момент и ресурс, но зато КПД оказался значительно выше, чем у кулачково-карданных шарниров, а угол между валами превышал 30 градусов. Карл Вейсс запатентовал конструкцию в 1923 году, а в годы Второй мировой войны именно шарниры этого типа применялись на почти всех полноприводных легких автомобилях, от Willys, Dodge и ГАЗ до Kubelwagen. В настоящее время шарниры такого типа почти не встречаются, разве что на очень старых конструкциях или на грузовиках разработки 60-х годов.

В 1927 году инженер компании Ford Альфред Рцеппа запатентовал шарнир лучшей конструкции, с сепаратором и без вилок. Именно его идея лежит в основе конструкции современных шарниров. Положение шаров в этом шарнире задается отдельной деталью — сепаратором, который удерживает их в плоскости биссектрисы угла между валами. В оригинальной конструкции сам сепаратор был не самоустанавливающимся, его положение задавалось отдельным делительным рычажком.

Развитие этой конструкции можно увидеть в виде шарниров типа GKN — в них нет делительного рычажка, канавки простой формы, как и у Рцеппы, но сепаратор сложной формы позволяет шарикам держать нужное положение. К сожалению, рабочий угол такой конструкции невелик (до 20 градусов), и с увеличением угла между валами сильно снижается КПД, но зато у нее есть податливость в продольном направлении, что важно для компенсации геометрии соединения при рабочем ходе подвески. К тому же шарнир достаточно прост в изготовлении и недорог. По этой причине шарниры этого типа применяют в основном как внутренние в приводах передних колес или в приводе задних колес машин с независимой подвеской.

Очень удачным развитием шарнира Рцеппы является и шарнир Birfield. В этой конструкции также используется самоустанавливающийся сепаратор, точнее, самоустанавливаются сами шарики за счет разной глубины канавок в обойме и теле шарнира. Сепаратор воспринимает часть нагрузки по позиционированию. Такая конструкция позволяет увеличить угол между валами вплоть до 45 градусов, имеет высокий КПД при всех углах скрещивания и долговечна. Минусов только два: габариты самого шарнира и высокая стоимость, поскольку деталь требует сложной обработки поверхностей и стали высокой твердости для обеспечения долговечности. И конечно, шарниры такой конструкции не обладают податливостью в продольном направлении, требуют обязательного применения компенсирующей вставки на валу или работы в паре с шарниром, в котором предусмотрена возможность продольного сдвига валов.

Шарниры типа Loebro также наследуют конструкцию Рцеппы, но способ удержания шаров в нужной плоскости новый. На этот раз шары перемещаются в нужное положение, поскольку нарезка канавок в теле и обойме шарнира сделана под углом к плоскости оси вращения. Шарниры этого типа имеют минимальные возможности продольного перемещения валов, но они заметно дешевле шарниров Birfield и, что главное, компактнее, причем сохраняется вполне достаточный угол между валами, а также высокий КПД. Сепаратор в таких конструкциях почти полностью разгружен и в дешевых исполнениях может отсутствовать. Но износ обоймы и тела шарнира в этом случае достаточно большой, поэтому шарнир требует более качественных материалов.

Удивительно, но факт: все три производителя, создавшие свои конструкции шарниров равных угловых скоростей, на данный момент принадлежат компании GKN. Разумеется, под этой маркой можно встретить шарниры всех трех типов, а также карданные и трипоиды. Классическая конструкция подразумевала пять или шесть шаров для передачи момента, но сейчас на тяжелых и мощных машинах используется восемь и больше шаров. В остальном прогресс касается оптимизации материалов и профиля канавок, что позволяет компенсировать естественный износ или предотвратить его.

Еще в одном типе ШРУСа для передачи момента не используются шары. Конструкция «трипоид» (или «тришип», если вы читали советские книги) была запатентована Мишелем Орэном в 1963 году. В ней момент передается через крестовину и ролики на шарикоподшипниках. Конструкция оказалась очень удачной, если применяется «перевернутая» компоновка со свободным перемещением валов.

Высокий КПД и высокая долговечность обеспечиваются за счет применения шарикоподшипников, а приемлемая цена — за счет технологичности и простоты обработки всех деталей. Но в более дешевой и распространенной версии с нефиксируемыми валами рабочий угол у шарнира сравнительно небольшой, с его ростом растет износ, а значит, и требования к качеству материалов шарнира, особенно роликов и наружной обоймы. Сейчас шарниры этого типа применяются в основном в паре с шарнирами Loebro/Birfield как внутренние на приводах. Однако шарниры с внутренней вилкой и фиксированными валами могли применяться и как наружные шарниры управляемых колес.

Постепенный прогресс в этой области сильно изменил конструкцию такого шарнира. Обычный шарнир с прямой канавкой для ролика при больших углах скрещивания валов создавал вибрации из-за скольжения ролика по поверхности канавки при вращении. Использование арочного кольца на ролике позволило уменьшить вибрации и колебания момента. Следующим шагом стало применение эллиптического скользящего кольца на наружной поверхности ролика для оптимизации передачи момента и увеличение площади его контакта с внешней обоймой для увеличения ресурса.

 

История

В первых переднеприводных автомобилях, например Cord и Citroen TA, использовались двойные карданные шарниры для передачи момента на ведущие колеса. Уже известные к тому времени ШРУС Вейсса и кулачковые конструкции не обеспечивали нужной долговечности, а с местом на больших легковых машинах особых проблем не было. К концу 30-х годов конструкция типа Вейсс и кулачковые передачи получили реальную «прописку» на целом ряде конструкций за счет улучшения металлообработки. Достигнутый ресурс в 15–30 тыс. км под нагрузкой позволял иметь на машинах с подключаемым передним мостом общий ресурс узла, сравнимый со сроком службы автомобиля, при приемлемых габаритах и КПД.

Развитие конструкции переднеприводных автомобилей потребовало новых решений — и компания Hardy-Spicer профинансировала создание шарниров Birfield, имеющих высокие характеристики и разумную стоимость. Именно эти шарниры сделали возможным создание малолитражек Austin Mini и других машин BMC с передним приводом к 1959-м. В Японии на переднеприводных машинах Suzuki Suzulight в 1963 году применяли ШРУС производства NTN.

К 1965 году конструкцию оптимизировали. На машинах Subaru появились приводные валы, которые сочетали шарнир с жесткой фиксацией в осевом направлении типа Birfield, и шарнир типа GKN со свободным перемещением. Это решило последние проблемы с вибрациями и геометрией передней подвески переднеприводных машин, избавив их от сложных приводных валов составной конструкции.

Прогресс компоновочных схем автомобилей позволил применить ШРУС вместо карданных шарниров в приводе задней оси. К началу 80-х годов увеличение точности ШРУСов и уменьшение люфтов позволили применять их вместо карданных шарниров для валов с высокой скоростью вращения, например карданного.

Не стоит думать, что прогресс остановился. Так, переднеприводные машины с АКПП потребовали создания малошумных конструкций ШРУСа с минимальными люфтами при вращении в обоих направлениях, поскольку на заторможенной машине ШРУС классической конструкции создавал неприятные вибрации. Проблема выявилась с широким распространением переднеприводных машин с АКПП со второй половины 70-х.

С 1998 года стали внедряться были восьмишариковые шарниры для легковых автомобилей, что позволило уменьшить размеры узла. Оптимизация формы канавок дала возможность улучшить точность позиционирования шаров, а значит, улучшить КПД и снизить шумность конструкции.

Новые варианты шарниров уже не получают имена компаний в качестве наименования — разве что буквенные обозначения типа. Продолжается и оптимизация шарниров типа трипоид, в первую очередь с целью уменьшения колебаний угловой скорости при вращении и уменьшения шумности.

Постепенно увеличивался рабочий угол шарниров по сравнению с изначальными 43 градусами у шарниров NTN в 1963-м. К 1980 году они получили 44,5 градуса, а сейчас шариковые шарниры укороченной конструкции обеспечивают уже все 50 градусов поворота, что заметно улучшает эксплуатационные характеристики автомобилей. Даже не фиксированные шарниры типа GKN заметно улучшили рабочие углы, от 23 градусов у оригинальной патентованной конструкции до 30,5 у современных вариантов.

Рост продаж кроссоверов и внедорожников потребовал создания приводов с большим эффективным углом передачи, в том числе современных конструкций вала с двумя шарнирами с фиксируемыми от продольного перемещения валами и компенсатором.

Продолжается повышение КПД передачи, и достигнутые в 80-е годы 99% КПД уже не кажутся идеалом. Современные ШРУСы имеют более чем в два раза меньшие потери.

Что такое соединение с постоянной скоростью?

Практически каждый приводной вал и ведущая ось оснащены как минимум двумя гибкими шарнирами, которые позволяют двигателю и трансмиссии передавать крутящий момент под углом. В идеале крутящий момент должен передаваться по прямой, но это приведет к чрезвычайно жесткой поездке.

Вместо этого подвеска и рулевое управление обеспечивают комфортное вождение, равно как и передний привод и рулевое управление передними колесами. Однако эта система также требует гибких приводных валов для обеспечения движения.Без гибких шарниров карданные валы не прослужили бы долго, а передний привод был бы невозможен. Вот более пристальный взгляд на то, как работают шарниры, такие как шарнир равных угловых скоростей.

Постоянная скорость или переменная скорость

Есть несколько шарниров, которые могут помочь передавать крутящий момент под углом, но лишь немногие из них можно квалифицировать как шарниры равных угловых скоростей или CVJ. Универсальный шарнир или карданный шарнир, который вы обычно найдете на приводных валах, может передавать крутящий момент на небольшие углы, но большие углы и скорости быстро обнаруживают тот факт, что они не обеспечивают постоянную скорость.

Карданный шарнир передает среднюю скорость на противоположный конец, но колеблется через каждые 180 градусов вращения. Это циклическое изменение осевой скорости вызывает вибрацию, и чем больше угол, тем хуже вибрация. Удержание этих углов и использование второго универсального шарнира со смещением на 90 градусов обеспечивает более плавную работу, но не может полностью устранить колебания осевой скорости и вибрацию.

С другой стороны, шарнир равных угловых скоростей может передавать крутящий момент с нулевым изменением угловой скорости и почти нулевой вибрацией под большими углами, чем универсальные шарниры.Ранние конструкции CVJ включали двойной карданный шарнир (два комбинированных карданных шарнира), шарнир Weiss, шарнир треноги и шарнир Tracta. Шарнир Rzeppa чаще всего встречается в переднеприводных автомобилях на колесах, поскольку они допускают углы вала до 54 градусов. ШРУСы из-за слабой вибрации можно найти на карданных валах и ведущих мостах всех типов транспортных средств.

Общие проблемы шарниров постоянной скорости

Трение — самый большой враг, с которым должен столкнуться шарнир равных угловых скоростей, несмотря на его прочность и стабильность.Вот почему ШРУСы Rzeppa и треноги заполнены консистентной смазкой и запечатаны в гибких резиновых чехлах. Со временем воздействие элементов приводит к трещинам на башмаке CVJ, что может привести к утечке жизненно важной смазки. Что еще более важно, трещины могут позволить воде и грязи проникнуть в стык, что ускоряет коррозию и износ.

К сожалению, если не обращать внимания на изношенные ботинки или они внезапно порвутся, вся смазка может вытечь, что значительно увеличивает износ. Изношенные шарниры равных угловых скоростей чаще всего идентифицируются по щелчку, который усиливается при повороте.При сильном износе вы также можете почувствовать вибрацию, которая приходит и уходит с определенной скоростью.

К счастью, регулярные осмотры должны выявить утечку смазки CVJ, первый признак износа ботинок. На этом этапе простой замены старого пыльника и смазки должно быть достаточно для восстановления оси. Однако, если CVJ начал щелкать или вибрировать, единственное средство — замена. Вот совет по замене: обязательно используйте новую гайку оси и затяните ее должным образом, чтобы защитить колесный подшипник.

Ознакомьтесь со всеми деталями трансмиссии , доступными на NAPA Online, или доверьтесь одному из наших 17 000 пунктов обслуживания NAPA AutoCare для текущего обслуживания и ремонта. Для получения дополнительной информации о техническом обслуживании шарниров равных угловых скоростей поговорите со знающим экспертом в местном магазине NAPA AUTO PARTS.

Фото любезно предоставлено Wikimedia Commons.

Что такое карданный шарнир?

Универсальный шарнир может также называться универсальной муфтой, карданным шарниром, карданным шарниром, шарниром Spicer, шарниром Hardy-Spicer или шарниром Hooke.

Д-р Джоди Мюланер

Карданный шарнир — это соединение между двумя объектами, обычно валами, которое позволяет относительное вращение по двум осям. Он состоит из двух поворотных шарниров с перпендикулярными и пересекающимися осями.

Когда валы соединяются с помощью универсального шарнира, каждый вал заканчивается поворотным шарниром, ось которого перпендикулярна оси вращения вала. Это позволяет передавать вращательное движение между валами, допуская смещение в обеих оставшихся степенях свободы вращения.Ограничивается одна степень свободы вращения (вращение вала), а также все относительные перемещения, что дает универсальному шарниру две степени свободы (2-DOF).

Карданный шарнир не является шарниром равных угловых скоростей. Если входной вал вращается с постоянной скоростью, скорость выходного вала будет колебаться. Они будут иметь одинаковую среднюю скорость, но скорость выходного вала будет несколько выше или ниже этого среднего значения в любой момент времени. Величина колебаний выходного вала зависит от величины перекоса между валами. Если валы соосны, то выходной вал фактически будет иметь постоянную скорость.

Можно создать шарнир равных угловых скоростей, комбинируя несколько универсальных шарниров. Двойной карданный шарнир представляет собой конструкцию из двух универсальных шарниров с коротким соединительным валом между ними, сдвинутыми по фазе на 90 °. Если любой угол изгиба равномерно разделен между двумя универсальными шарнирами, то эти два шарнира компенсируют колебания скорости, так что конечный выходной вал имеет постоянную скорость. Однако колебания промежуточного вала вызовут вибрацию, и для поддержания равных углов требуются опоры.

Универсальные шарниры широко используются в трансмиссии транспортных средств, но их заменяют шарниры равных угловых скоростей. Карданные шарниры теперь редко используются для передачи мощности на передние колеса транспортных средств, за исключением некоторых тяжелых внедорожников. Они по-прежнему широко используются для приводных валов, хотя шарниры равных угловых скоростей даже начинают использоваться для этих приложений. Универсальные шарниры также находят множество других применений в механических системах управления и промышленном оборудовании. Универсальные шарниры допускают большие углы между валами.При небольшом перекосе валов альтернативой универсальному шарниру может быть гибкая муфта.

Как работают соединения с постоянной скоростью (CV)


Если вы когда-либо заглядывали под автомобиль Jeep, вы видели приводные валы и крестообразные устройства, которые соединяют их с осями или раздаточными коробками. Эти крестообразные объекты являются универсальными шарнирами или обычно называемыми простыми двутавровыми шарнирами. Этот тип соединения подходит для многих приложений, поскольку они просты и позволяют приводному валу работать под разными углами, чем та часть, которую они поворачивают, или от того, что их поворачивает.Тем не менее, у них есть свои недостатки, когда речь идет о рабочих углах и их способности тихо выполнять свою работу. Обычные универсальные шарниры карданного типа вызывают изменение скорости между ведущим и ведомым валами всякий раз, когда шарнир работает под углом. По мере увеличения рабочего угла шарнира скорость ведомого вала изменяется все больше и больше при каждом обороте валов. Если бы вы нарисовали это, это выглядело бы так, как если бы суставы двигались по двум разным овальным путям, а не по круглым путям, как можно было бы ожидать.Чем больше рабочий угол, тем больше изменяется скорость ведомого вала и тем больше вибрация, которую он производит. В джипах использование приводного вала типа Double Cardian часто устраняет
проблему вибраций трансмиссии, но только за счет уменьшения вдвое углов на одном конце вала. В новых моделях, где необходимо устранить вибрацию для более плавной езды и более комфортного вождения, используются другие типы шарниров равных угловых скоростей. Более подробно это объясняется в статье «Геометрия трансмиссии 101».

Чтобы вал передавал мощность без вибрации, работал под большим углом и обеспечивал одинаковую скорость на ведомом и ведущем валах, необходимо было бы использовать соединение с истинной постоянной скоростью. Они используются во многих приложениях, таких как передняя или задняя независимая подвеска или даже в некоторых приложениях с неразрезными мостами с постоянным полным приводом. CV могут работать под большими углами в течение большего времени без каких-либо проблем, однако обычно они должны быть погружены в специальную высокотемпературную смазку и окружены специальным чехлом.Многие CV выходят из строя из-за загрязнения водой и других примесей из-за поврежденной обуви.

Когда CV используется в приводном валу, они часто герметизируются внутри металлического кожуха в приложениях, где может быть замечено злоупотребление. В более новых автомобилях использование CV с приводным валом становится все более распространенным, поскольку ожидания клиентов растут, а их устойчивость к вибрациям и отвлекающим факторам при вождении уменьшается. Настоящее резюме — это дизайн шара и детеныша. Самым распространенным типом подвесных ШРУСов является тип «Рзеппа».Инженер Dana по имени Альфред Х. Рзеппа изобрел этот тип шарнира в 1920 году. Его конструкция позволяла передавать мощность через шесть сферических шариков, расположенных между внутренней и внешней обоймами. В этой конструкции шары удерживаются на месте небольшими окнами в узле клетки, которая помещается между внутренней и внешней обоймами. Конструкция соединения такова, что положение шариков всегда делит (разрезает пополам) рабочий угол соединения. Конструкция работает как коническая передача; но вместо того, чтобы зубья шестерни передают крутящий момент через шарнир, шарики нажимают на соответствующие дорожки во внутреннем и внешнем корпусах.Обратной стороной этого является то, что при перенапряжении шарнира шарики могут быть вытолкнуты
из своих направляющих и растянуты и расколоты корпус, вызывая отказ. Эта конструкция очень распространена и используется во многих различных вариантах, таких как шарниры Birfield и Marfield, во многих импортных полноприводных автомобилях. Существуют и другие конструкции, в которых используются различные конфигурации клеток и мячей, но все они практически одинаковы.

QU40835 Пружина растяжения для приводных валов CV с двойным карданом типа Spicer

QU40835 Пружина растяжения для ШРУСов типа Spicer — это деталь для замены поврежденных или потерянных пружин для всех приводных валов постоянной скорости с двойным карданом типа Spicer.

См. Также комплект шара QU40744 CV.

Нужна дополнительная информация? Используйте удобные ссылки ниже, чтобы получить доступ к более чем 40-летним техническим примечаниям Dan к продуктам и автомобилям, чтобы легко получить информацию, необходимую для ремонта, обслуживания или модернизации вашего автомобиля!

Dan the Gear Man® Технические примечания:
Обслуживание приводного вала
Соответствующие детали для 2005-2016 Ford Super Duty
Соответствующие детали для 2003-2018 Dodge Ram
Соответствующие детали сохранены для будущего использования

Соответствующие детали сохранены для будущего использования
Соответствующие детали сохранены для будущего использования
Приложения

Техническое примечание 1: Обслуживание приводного вала
Эти маленькие пружины иногда теряют свою прочность, а также их легко потерять или повредить при обслуживании Карданный вал CV.Пружина, которая частично входит в шаровую шпильку CV, создает напряжение на центрирующем шарике CV, позволяя валу вращаться под углом без ударов. Если шарик CV и иглы в порядке, но ваша пружина ненадежна, ЗАМЕНИТЕ ЕЕ!

Техническое примечание 2: Соответствующие детали для 2005-2016 Ford Super Duty
Покомпонентное изображение XV514 2005-2016 Ford Super Duty Передний приводной вал редуктора
QU20103 Болт ведущего вала
QU40805 Запасная вилка фланца CV
QU40524 OE Фланец CV829 QU4057 Уплотнение шара CV
QU40744 Комплект шара и уплотнения CV
QU40800 Центральная вилка CV
QU40704 Уплотнение шара CV
QU40825 Шариковая шпилька CV Приварная вилка
QU40863 Узел головки CV
TK40981 Premium 2.75 «x 0,083» DOM ​​Трубка приводного вала
QU20373U Б / у шлицевое гнездо скользящей вилки
QU50586 Пыльник
QU20138 Пыльник
QU20372 Шлицевой вал скользящей вилки
QU40874 Запасная втулка скольжения
QU40802 Винт навинчивающейся скользящей вилке
QU409 Ступень скольжения
QU408 Комплект болтов
TK40719 Premium U-Joint
QU40731 U-Joint
QU40873 EZ-Grease U-Joint

Tech Note 3: Соответствующие детали для 2003-2018 Dodge Ram
Покомпонентное изображение XV508 2003-2013 Ram 2500 и Ram 3500 Передний приводной вал CV
в разобранном виде XV509 2013-2018 Ram 2500 и Ram 3500 Передний приводной вал CV
QU40131 Узел передней фланцевой вилки CV серии 1330
QU40803 Узел передней вилки фланца CV серии 1350
QU40953 Узел головки CV с двойным карданом серии 1410
QU40829 CV Уплотнение шара
QU40744 CV Комплект шара и уплотнения

Техническое примечание 4: Соответствующие детали
Сохранено для будущего использования

Техническое примечание 5: Соответствующие детали
Сохранено для будущего использования

Техническое примечание 6: Соответствующие детали
Сохранено для будущего использования

Приложения

Chevy и GMC:
Full Sizemy K5 Blazer и Jim 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1977, 1977.5
1/2 тонны и 3/4 тонны Пригородные: 1966, 1967, 1968, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1977, 1977. 5
K10, K15, K1500 1/2 тонные грузовики 4×4 : 1966, 1967, 1968, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1977, 1977.5
K20, K25, K2500 3/4 тонные грузовые автомобили 4×4: 1966, 1967, 1968, 1969, 1970, 1971 , 1972, 1973, 1974, 1975, 1976, 1977, 1977.5
K30, K35, K3500, V3500 1-тонные грузовики 4×4: 1966, 1967, 1968, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1977 , 1977,5

Dodge:
All Ramcharger, Trailduster: 1974, 1975, 1975.5
Дакота: 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
Ram 1500: 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
Ram 2500, Ram 3500: 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 , 2018 (текущий)

Ford:
Bronco: 1966, 1967, 1968, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1977, 1978, 1979
Explorer: 1994, 1995, 1996, 1997
Рейнджер: 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997
F-100, F-250: 1974, 1975, 1976, 1977, 1978, 1979
F-350: 1979 и 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997
Экскурсия с CV-валом типа Spicer: 1999, 2000, 2001, 2002, 2003, 2004 , 2005
Super Duty с CV-валом типа Spicer: 1999, 2000, 2001, 2002, 2003, 2004
Super Duty: 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 201 5, 2016

Jeep:
CJ-7 с автоматической трансмиссией и Quadra-Trac: 1976, 1977, 1978, 1979
Серия J с двойным карданным валом: 1971, 1972, 1973
Полноразмерные серии J: 1974, 1975, 1976, 1977, 1978, 1979, 1980, 1981, 1982, 1983
Cherokee, Comanche и Wagoneer с двойным карданным валом CV: 1988
Grand Wagoneer: 1990, 1991

Применения заднего карданного вала:

Ford:
Bronco (после номера 670,000) Bronco: 1971, 1972, 1973, 1974, 1975, 1976, 1977, 1978, 1979, 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994
Bronco II: 1985, 1986, 1987, 1988, 1989, 1990
F-100, F150 (в основном модели с короткой колесной базой): 1974, 1975, 1976, 1977, 1978, 1979
F-150 с 120-дюймовой колесной базой: 1997, 1998
Super Duty F-250, F-350 с 137 до 141.8-дюймовые колесные базы: 1999, 2000, 2001, 2002, 2003, 2004

Автомобильные ШРУСы и комплекты

Чтобы трансмиссия могла работать с низким уровнем шума, вибрации и жесткости (NVH), передача крутящего момента и скорости должна осуществляться плавно и последовательно. Чтобы добиться этого за счет разницы рабочих углов, часто используются соединения постоянной скорости. Есть много типов шарниров постоянной скорости, используемых в автомобильных карданных валах.Общие два:

  • Двойной карданный шарнир постоянной скорости
  • Rzeppa или «Высокоскоростной» шарнир с постоянной скоростью

Pat’s Driveline имеет компоненты ШРУСа, запасные части и узлы, необходимые для обеспечения бесперебойной работы приводного вала постоянной скорости. У нас есть обширный инвентарь для отечественных и импортных автомобилей, а также запасных частей для многих областей применения.

  • ШРУС с двойным карданом
    • Универсальные шарниры
    • Комплекты центровочных шаров
    • Уплотнения и башмаки для центровки CV
    • Компоненты ШРУСа
      • Шариковая шпилька для сварных хомутов
      • Хомуты для сварных раструбов
      • Хомуты для фланцевых головок
      • Центральные хомуты
      • Узел центрирующей вилки
      • Хомут с центрирующим пальцем
      • Хомуты скольжения и концевые хомуты CV
    • Головки ШРУСа в сборе
      • Фланцевое исполнение
      • Конструкция с торцевой вилкой
    • Высокоскоростной ШРУС
      • Комплекты ботинок
      • Клетка и шарики ШРУСа
      • Стопорные кольца
      • ШРУС в сборе

Pat’s Driveline может модифицировать компоненты соединения с постоянной скоростью в соответствии с вашим индивидуальным приложением.Добавление ШРУСа — отличное решение для модифицированных трансмиссий 4X4, позволяющее выдерживать изменения рабочих углов из-за подъемных комплектов. Доступно множество компонентов для применения ШРУСов в популярных приложениях 4wd, а другие могут быть изготовлены по индивидуальному заказу.

Pat’s Driveline проводит инвентаризацию компонентов и узлов двойного кардана и высокоскоростного ШРУСа от таких качественных производителей, как Neapco, Spicer, Quality Gear, Rockford Drive Line, Powertrain Industries, GKN, Cornay и других OEM-производителей.

Детали постоянной скорости двойного кардана Denny’s CV для карданных валов грузовиков и легковых автомобилей 4×4

НАЖМИТЕ ССЫЛКИ НИЖЕ ДЛЯ ФИЛЬТРА ПОИСКА


ШРУС ДВОЙНОЙ КАРДАН — ОБЩИЕ ДВИГАТЕЛИ

Центрирующая вилка типа вилки скольжения

Центрирующая вилка с плоским фланцем

CV GM 3R Ремкомплект для шаровых головок серии

ШРУС ДВОЙНОЙ КАРДАН — FORD

Резиновый пыльник для НЕ смазываемого CV

ИНСТРУМЕНТ ДЛЯ УСТАНОВКИ резиновых чехлов для НЕ смазываемых CV

Центрирующая вилка с плоским фланцем

1210 Серия 3.Пилотный 5 x 2 дюйма

1310 Серия 3.Пилотный 5 x 2 дюйма

1330 Серия 3.125-дюймовый пилот

1330 Серия 4.Пилот 25 x 2 дюйма

1350 серии — 4.Пилот 25 x 2 дюйма

1350 серии — 4.Пилот 25 x 2,68 дюйма

Двойной кардан серии 3R CV

ШРУС ДВОЙНОЙ КАРДАН — DODGE

Резиновый пыльник для НЕ смазываемого CV

ИНСТРУМЕНТ ДЛЯ УСТАНОВКИ резиновых чехлов для НЕ смазываемых CV

ШРУС ДВОЙНОЙ КАРДАН — JEEP

Резиновый пыльник для НЕ смазываемого CV

ИНСТРУМЕНТ ДЛЯ УСТАНОВКИ резиновых чехлов для НЕ смазываемых CV

СЕРИЯ 1310 — ВСЕ МОДЕЛИ, кроме TJ RUBICON

СЕРИЯ 1330 — TJ RUBICON / НЕОГРАНИЧЕННЫЙ

Центрирующая вилка с плоским фланцем

743 Обновление исследования: U-образные соединения против постоянной скорости…

www.pami.ca Напечатано: март 2000 г.ISSN 1188-4770, группа 12 (h) Исследование Обновление 743 U- Соединения < / strong> против Постоянной скорости Суставы : какой лучший выбор для трансмиссии? Механизм отбора мощности (ВОМ) Трансмиссии передают высокие крутящие нагрузки от источника энергии, такого как трактор, на навесное орудие с приводом от ВОМ.Для обеспечения возможности прохождения поворотов, движения вверх и вниз вдоль трансмиссии и любых различий в вертикальном выравнивании между выходным валом трактора и входным валом агрегата используются гибкие шарниры, обеспечивающие непрерывную передачу мощности, даже когда трансмиссия от трактора к агрегату работает под углом. . Наиболее распространенными типами шарниров являются известные универсальный шарнир (карданный шарнир) и шарнир постоянной скорости (CV), угол карданного вала, на который он изначально не рассчитывался.В случае нового оборудования выбор соединения определяется общей конструкцией машины. Производители оригинального оборудования должны поставлять соответствующий шарнир с машиной. В чем разница? Выбор типа шарнира в трансмиссии зависит от скорости и угла, под которым шарнир должен работать. ШРУСы будут работать под гораздо большим углом, чем карданные шарниры, но стоят дороже. Оператор может выбрать переключение на трансмиссию с ШРУСами в ситуациях, когда оригинальное оборудование было модифицировано или эксплуатируется с большим. Всегда важно держать защитный экран над ВОМ.Это сделано для безопасности машиниста. Какой из них лучше? Выбор между карданным шарниром и ШРУСом не так уж и важно, какой из них лучше. Скорее, вопрос: «Какой мне нужен?» В общем, ШРУСы больше не считаются дополнительным оборудованием. В современных приложениях решение в значительной степени продиктовано конструкцией машины и, в частности, геометрией сцепного устройства. Шарниры постоянной скорости (CV) и карданные шарниры могут использоваться по отдельности или в комбинации.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *