Меню Закрыть

Какая система смазки будет называться комбинированная: Часть 3 — Система смазки двигателя

Содержание

Самостоятельная работа «Система смазки двигателя»

Самостоятельная работа 10

Тема: Система смазки двигателя

  1. Для чего необходима смазочная система двигателя? ______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

  2. Какая система смазки будет называться «комбинированная»? ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

  3. Перечислите детали двигателя, которые будут смазываться:

Под давлением ______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Разбрызгиванием

________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

  1. Перечислите основные узлы системы смазки двигателя

1.________________________________________________________________________

2.________________________________________________________________________

3.________________________________________________________________________

4.________________________________________________________________________

5.________________________________________________________________________

  1. Куда удаляются картерные газы при закрытой вентиляции картера? ________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

  2. Напишите схему работы системы смазки ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

  3. Как называется узел системы смазки, указанный на рисунке? Напишите его назначение и устройство.

______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

  1. Какой клапан смонтирован в расточке корпуса насоса и для чего он нужен? ________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

  2. Для чего нужен перепускной клапан в насосе и на какое давление он отрегулирован? ________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

  3. Как называется узел системы смазки, указанный на рисунке? Напишите его назначение и устройство.

________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

  1. Из каких основных частей состоит фильтр со сменным фильтрующим элементом?_____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Перечислите функции моторного масла: _________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Решение ситуационного задания по теме система смазки двигателя

После остановки двигателя масляная центрифуга системы смазки двигателя КамАз-740 вращается 50 секунд. Назовите причины и способы устранения данной неисправности.

Ответ:

____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Решить тестовое задание

1. Когда рекомендуется проверять уровень масла в картере двигателя?

а) сразу после пуска двигателя

б) при работе двигателя под нагрузкой

в) через несколько минут после остановки двигателя

2. Может ли в системе смазки устанавливаться радиатор?

а) нет, устанавливается только в системе охлаждения

б) может, на автомобилях, работающих в тяжелых условиях

в) устанавливается на всех автомобильных двигателях

3. Какие из указанных причин приводят к понижению давления масла в системе смазки?

а) увеличение зазоров в подшипниках коленвала

б) увеличение зазоров между гильзой и поршнем

в) не герметичность клапанов ГРМ

4. Как проверяется работоспособность центробежного фильтра очистки масла в условиях эксплуатации?

a) По количеству отложений в колпаке ротора

б) сигнализатором аварийного давления масла

в) по шуму ротора после остановки двигателя

5. Какие из перечисленных деталей на современных двигателях смазываются под давлением?

а) коренные и шатунные подшипники коленвала, гильзы цилиндров

б) подшипники распределительного вала, оси коромысел, зубья распределительных шестерен

в) коренные и шатунные подшипники коленвала, подшипники распредвала, оси коромысел

6. Как ограничивается максимальное давление масла в системе смазки?

а) изменением числа оборотов шестерен насоса

б) редукционным клапаном

в) изменением уровня масла в поддоне

7. Как приводится в действие масляный центробежный очиститель(центрифуга)?

а) реактивными силами струи масла из сопла ротора

б) клиноременной передачей

в) шестеренчатым приводом

8. Какая система обеспечивает удаление из поддона двигателя паров топлива, конденсата, и отработавших газов?

а) декомпрессионная система

б) система вентиляции картера

в) система грязеуловителей

Эталон ответа

1

2

3

4

5

6

7

8

Ответ

в

в

а

в

в

б

а

б

Решете ситуационное задания .

После остановки двигателя масляная центрифуга системы смазки двигателя КамАз-740 вращается 50 секунд. Назовите причины и способы устранения данной неисправности.

Ответ:

_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Расшифруйте марки масел

10W40____________________________________________________________

5W30_____________________________________________________________

М-8В1_______________________________________________________________________________________________

М-10ДМ___________________________________________________________

Ответить на вопросы.

Какие детали двигателя смазываются под давлением?

______________________________________________________________________________________________________________________________________________________________________________________________________

Назовите составные части смазочной системы?

______________________________________________________________________________________________________________________________________________________________________________________________________

Объясните назначения паровоздушного клапана?

______________________________________________________________________________________________________________________________________________________________________________________________________

Принципиальная схема системы смазки — Справочник химика 21


    На фиг. 14 представлена принципиальная схема системы смазки с паровым подогревом масла и ротационно-поршневыми насосами. Системы с этими насосами в настоящее время получили весьма широкое распространение. [c.37]

    ПРИНЦИПИАЛЬНАЯ СХЕМА СИСТЕМЫ СМАЗКИ [c.160]

    Принципиальные схемы систем маслоснабжения компрессорных агрегатов. На рис. 1-2 приведена принципиальная схема системы циркуляционного маслоснабжения центробежной компрессорной машины с электроприводом. Компрессор / приводится электродвигателем 5 через редуктор 4. Валы двигателя редуктора и компрессора соединены муфтами 2. Масло на смазку подается главным зубчатым маслонасосом 3, приводимым от вала редуктора. Для обеспечения маслом подшипников в период пуска и останова компрессора служит пусковой насос 9 с электроприводом. Главный масляный насос забирает масло из маслобака 10 и прокачивает его через маслоохладители 8. [c.18]

    При циркуляционной системе смазки двигателей и промышленного оборудования получила распространение непрерывная очистка масла в процессе экоплуатации этих агрегатов. При этом применяют две принципиально различные схемы установки очистителей — их последовательное включение в систему смазки, когда все масло, циркулирующее в системе, проходит через все очистители, и параллельное, когда за один цикл циркуляции через каждый очиститель пропускается только часть масла. [c.287]

    Смазка турбин обычно осуществляется по циркуляционной системе. На рис. 13 показана принципиальная схема смазки паровой турбины. Масло из бака / забирается насосом 3 через фильтр [c.39]


    На рис. 12.9, б приведена принципиальная схема компрессорной установки 6ГМ40-16/100-420, предназначенной для удовлетворения потребности газовой промышленности в оборудовании для обустройства газоконденсатных месторождений с применением сайклинг-процесса. В состав компрессорной установки входят оппозитный поршневой компрессор приводной электродвигатель межступенчатые и вспомогательные газовые коммуникации и арматура системы охлаждения, смазки, управления и др. К вспомогательным газовым коммуникациям относятся байпасная линия, соединяющая нагнетание П-й ступени со всасыванием 1-й ступени и служащая для разгрузки компрессора при пуске линия аварийного сброса газа для продувки установки газом перед пуском трубопроводы отвода газа от уплотняющих устройств штока и линия подвода давления к уплотнениям штока. Вся вспомогательная газовая коммуникация вместе с запорной арматурой трубопровода всасывания 1-й ступени и трубопроводом нагнетания П-й ступени вынесена за пределы машинного зала и размещена на открытой площадке. [c.341]

    Принципиальная схема смазки турбокомпрессора ХТК-2,5/3,5 показана на рис. 15. Система смазки включает маслобак, пусковой и основной маслонасосы, фильтры тонкой и грубой очистки масла, маслоохладитель, маслоподводящие и маслоотводящие трубопроводы. [c.34]

    В зависимости от требований, предъявляемых к принципиальной схеме, на ней могут быть изображены часть или все основные коммуникации. В этих случаях схема будет называться коммуникационной. Целесообразно в проектах компрессорных станций на принципиальных-технологических схемах воздухопроводов приводить также схемы водоснабжения и централизованной системы смазки, если таковая [c.95]

    Смазка под давлением и комбинированная могут быть выполнены с мокрым и сухим картером. Во втором случае создается система внешней циркуляции масла. Принципиальная схема внешней циркуляции масла показана на рис. 101. [c.206]

    В воздушно-реактивных двигателях узлами, нуждающимися в смазке, являются шариковые и роликовые подшипники газовой турбины и компрессора, подшипники приводов и вспомогательные механизмы. Большинство реактивных двигателей снабжено циркуляционной системой смазки и только немногие имеют незамкнутую систему с выбросом отработанного масла в атмосферу. На фиг. 173 показана принципиальная схема масляной системы реактивного двигателя. [c.358]

    Общая схема моделирования и оптимизации функциональных свойств ПИНС представлена на рис. 2, а ее использование для разработки и оценки свойств этих продуктов-—на рис. 3. Эти схемы связывают три категории — производство, качество, применение — в единое целое и, с точки зрения авторов, принципиально могут быть использованы для разработки аналогичной системы применительно к топливам, маслам с присадками, пластичным смазкам, смазочно-охлаждающим и специальным жидкостям, лакокрасочным материалам и пр. [c.39]

    Системы регулирования паровых турбин НЗЛ типов АКВ-18, АКВ-9, К-9-35, ВКВ-18 и ВКВ-22, поставленных в качестве привода для турбокомпрессоров К-3000-61 и К-1500-61, принципиально аналогичны. Некоторые изменения вносили по мере усовершенствования системы регулирования в агрегатах последующих выпусков. Схема регулирования турбокомпрессора с паровым приводом представлена на рис. У1-6. В качестве рабочего тела в системе регулирования применяют турбинное масло Л22, используемое для смазки подшипников. [c.291]

    Двигатели семейства СМД-60 — четырехтактные, шестицилиндровые с У-образным расположением цилиндров, жидкостного охлаждения, с турбонаддувом. Эти двигатели предназначены для энергонасыщенных тракторов общего назначения, класса 3 тонны тяги и высокопроизводительных зерноуборочных и других комбайнов. Система смазки комбинированная с мокрым картером. Принципиальная схема системы смазки дизеля показана на рис. 20. [c.162]

    На рис. 11 показана принципиальная схема смазки авиационного двигателя. Из масляного бака 1 масло забирается насосом и под давлением в несколько атмосфер подается к подшипникам (коренным и шатунным), системам передач и другим узлам трения. Вытекающее из подшипников масло забрызгивается центробежной силой в область поршневой и цилиндровой грзгпн. [c.40]
    Рассмотрим принципиальную схему централизованной системы смазки валковых подщипников густой консистентной (солидол Т) смазкой (рис. 81). В системе использована ручная станция 2 густой смазки для централизованной периодической подачи смазки к смазываемым узлам машины через двухлинейные дозирующие автоматические питатели 6. Станция заправляется смазкой при помощи насоса 4. Производительность станции 8 см за цикл при ручной подкачке. Рабочее давление (до 100 кГ1см ) контролируется манометром 3. Густая смазка подается через маслофильтры 5 в магистраль I или II и затем через дозирующие автоматические питатели 6 поступает к подшипникам валков. [c.145]

    На рис. 11.18 показана принципиальная технологическая схема компримирования воздуха в компрессоре без масляной смазки цилиндров и сальников. Цилиндры и сальники компрессора уплотняют графитоплас-том марки АФГМ. Смазочное масло используют только для смазки системы механического движения компрессора (подшипников, крейцкопфа и др.). [c.84]


Газораспределительный механизм — Студопедия.Нет

1. Напишите назначение газораспределительного механизма ______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

2. Что такое фаза газораспределения? ________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

3. Перечислите устройство ГРМ

 

4. Напишите передаточные детали ГРМ двигателя ЗМЗ-53 ________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

5. Закончите предложение:

Распределительный вал предназначен для своевременного___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

6. Какие детали изготовлены заодно с распредвалом? __________________________________________________________________________________________________________________________________________________________________________________________________________________

7. Где устанавливается приводная шестерня распредвала и из какого материала она изготавливается?

______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

8. Почему диаметр распределительной шестерни коленчатого вала меньше шестерни распредвала? ________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

  

 

                                         Система охлаждения

1. Для чего служит система охлаждения? ________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

2. Система охлаждения бывает двух видов:

1.___________________________________________________________________________________________________________________________________________

2.___________________________________________________________________________________________________________________________________________

3. Какая должна быть температура охлаждающей жидкости для нормальной работы двигателя?

______________________________________________________________________

4.Какие узлы и агрегаты включает в себя жидкостная система охлаждения? ______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

5. По какому кругу циркулирует жидкость на этом рисунке?

________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

6.Какой узел системы охлаждения служит для ускорения прогрева холодного двигателя и автоматического регулирования его теплового режима в заданных пределах?

______________________________________________________________________

7. Что изображено на рисунке? Напишите назначение и устройство этого узла.

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

8. Напишите назначение и устройство радиатора системы охлаждения __________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

9. Из какого материала изготовлены баки и сердцевина радиатора? ____________________________________________________________________________________________________________________________________________

 

10. Как называется этот узел системы охлаждения? Напишите его устройство и работу.

.

11. Для чего в крышке радиатора устанавливают паровоздушный клапан? ________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

12. Где устанавливаются датчики указателя температуры охлаждающей жидкости? ____________________________________________________________________________________________________________________________________________

13. Для чего на некоторых автомобилях устанавливают предпусковые подогреватели? ____________________________________________________________________________________________________________________________________________

14. Какие три положения имеет переключатель предпускового подогревателя? ______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________\

15. Опишите схему работы предпускового подогревателя

________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

 

Смазочная система

1. Для чего необходима смазочная система двигателя? ______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

2. Какая система смазки будет называться «комбинированная»? __________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

3. Перечислите детали двигателя, которые будут смазываться

под давлением:____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

разбрызгиванием:

________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

4. Перечислите основные узлы системы смазки двигателя

 

1.______________________________________________________________________________________________________________________________________________

2.______________________________________________________________________________________________________________________________________________

3.______________________________________________________________________________________________________________________________________________

4.______________________________________________________________________________________________________________________________________________

5.______________________________________________________________________________________________________________________________________________

 

5. Куда удаляются картерные газы при закрытой вентиляции картера? ________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

 

6. Напишите схему работы системы смазки ______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

7. Как называется узел системы смазки, указанный на рисунке? Напишите его назначение и устройство.

________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

8. Какой клапан смонтирован в расточке корпуса насоса и для чего он нужен? ________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

9. Для чего нужен перепускной клапан в насосе и на какое давление он отрегулирован? ________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

10. Как называется узел системы смазки, указанный на рисунке? Напишите его назначение и устройство.

________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

11. Из каких основных частей состоит фильтр со сменным фильтрующим элементом?____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

12. Перечислите функции моторного масла: ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

 

 

КЛАССИФИКАЦИЯ И ОБЩЕЕ УСТРОЙСТВО АВТОМОБИЛЯ — Класификация автомобилей


Подборка по базе: 09.02.21 АСР 1 классификация ЧС.doc, Основы конституционного строя, государственная власть и государс, Аннотация_ЗПР классификация, особенности, специфика работы.docx, Назначение, виды, устройство и использование ручных пожарных лес, Понятие и классификация компьютерных сетей.pptx, БПЛА для целей тематического картографирования и их классификаци, Рул устройство.docx, Руководство общее.pdf, Модуль 2. Общее равновесие.docx, Характеристика грунтов. Классификация. Физико-механические свойс


1
КЛАССИФИКАЦИЯ И ОБЩЕЕ УСТРОЙСТВО АВТОМОБИЛЯ
1. Закончите предложение:
Автомобиль — это самоходное транспортное средство, предназначенное для перевозки грузов, людей или выполнять спец. операции.
2. Как классифицируется автомобильный транспорт по назначению подразделяются на пассажирские, грузовые и специальные.
3. Для чего служат специальные автомобили? Приведите примеры спец. автомобилей. Специальные автомобили перевозят только специальное оборудование, установленное на них. К спец. автомобилям относятся такие автомобили как пожарные, уборочные автомобили, автокраны, автовышки и т.п.
4. Как подразделяются автомобили по типу шасси?
С несущим кузовом и с использованием рамы
5. Как подразделяют автомобили по типу двигателя?
2х тактные и 4х тактные.
6. Расшифруйте марки отечественных автомобилей:
ЗИЛ-
4333 грузовой автомобиль с бортовой платформой с полной массой 8 – 14т. Модель 33
ГАЗ-3307 грузовой автомобиль с бортовой платформой с полной массой 2 – 8т. Модель 07
КАМАЗ-5320 грузовой автомобиль с бортовой платформой с полной массой 14 – 20т. Модель 20 7. Заполни таблицу «Классификация автомобилей»
Параметр
Вид
Класс
1 2
3 4
5 6
7
Литраж ,л
Индекс
Длина, м
Индекс
1
Легковые автомобили
До
1,2л
1,2 –
1,8л
1,8 –
3,5л
Больше
3,5л



2
Автобусы
До

6 –
7,5м
8 –
9,5м
10,5 –
12м
16,5 и более



2
Полная масса, т
Индекс автомобиля:
— С бортовой платформой
— седельный тягач
— самосвал
— цистерна
— фургон
Специальный
3
Грузовые автомобили
До
1,2т
13 14 15 16 17 18 19 1,2 – 2т
23 24 25 26 27 28 29 2 – 8т
33 34 35 36 37 38 39 8 – 14т
43 44 45 46 47 48 49 14 –
20т
53 54 55 56 57 58 59 20 –
40т
63 64 65 66 67 68 69
Больше
40т
73 74 75 76 77 78 79 8. Напишите общее устройство грузового автомобиля (три основные части) и для чего каждая часть необходима
А)
Двигатель – источник механической энергии, необходимый для движения автомобиля.
Б) Кузов – часть автомобиля, предназначенная для размещения груза или для размещения водителя и пассажиров.
В) Ходовая часть – предназначена для передвижения автомобиля.


3
ДВИГАТЕЛЬ
Основы работы и конструкции
1. Где сгорает топливо в поршневых двигателях?
В камере сгорания
2. Классификация автомобильных двигателей:
А) по способу смесеобразования:
С внешним (карбюраторные, инжекторные и газовые) и внутренним
(дизельные) смесеобразованием
Б) по виду применяемого топлива:
Бензиновые, газовые и дизельные.
В) по способу охлаждения
С жидкостным и воздушным охлаждением.
Г) по расположению цилиндров
Рядные, V – образные и оппозитные.
3. Напишите определения:
Ход поршня- это то расстояние, которое поршень проходит от своего нижнего положения до верхнего.
Камера сгорания-
Это пространство над поршнем, когда он находится в верхней мертвой точке.
В этом надпоршневом пространстве и происходит воспламенение, и сгорание топливно-воздушной смеси.


4
Рабочий объем цилиндра-
Это весь объем цилиндра без объема камеры сгорания
Литраж — это рабочий объем всех цилиндров двигателя.
Полный объем цилиндра- сумма объема камеры сгорания и рабочего объема цилиндра.
Степень сжатия- отношение объёма надпоршневого пространства цилиндра при положении поршня в НМТ (полный объем цилиндра) к объёму надпоршневого пространства цилиндра при положении поршня в ВМТ, то есть к объёму камеры сгорания.
Такт- Часть рабочего цикла многократно повторяющееся
4.Как протекает рабочий цикл четырехтактного карбюраторного двигателя?
1такт
Такт впуска. Поршень движется от В.М.Т. к Н.М.Т. При этом впускной клапан открыт, а выпускной закрыт. Вследствие разрежения, создаваемого при движении поршня, в цилиндр засасывается горючая смесь. По достижении поршнем Н.М.Т. впускной клапан закрывается.
2такт
Такт сжатия.
Поршень от Н.М.Т. движется к В.М.Т. Оба клапана закрыты, рабочая смесь сжимается поршнем.
По достижении поршнем В.М.Т. в конце такта сжатия рабочая смесь воспламеняется электрической искрой.
3такт
Рабочий ход
Поршень под давлением газов, образующихся при сгорании рабочей смеси, движется от В.М.Т. к Н.М.Т. Оба клапана закрыты.
4такт
Такт выпуска.
Поршень перемещается от Н.М.Т. к В.М.Т. и выталкивает отработавшие газы.


5 5.Напишите отличие рабочего цикла дизельного четырехцилиндрового двигателя от карбюраторного.
При такте в цилиндр двигателя засасывается из впускного трубопровода очищенный от пыли воздух, а не горючая смесь, как это было в карбюраторном двигателе.
6. Напишите порядок работы четырехцилиндрового двигателя
1-3-4-2 или 1-2-4-3 7. Напишите порядок работы восьмицилиндрового двигателя
1-5-4-2-6-3-7-8 8. Какие два механизма есть в ДВС и напишите их определение
1) Кривошипно-шатунный механизм преобразует возвратно- поступательное движение поршня во вращательное движение коленчатого вала.
2) Механизм газораспределения обеспечивает своевременный впуск в цилиндр свежей горючей смеси и выпуск из цилиндра отработавших газов.
9. Перечислите системы ДВС и напишите их определения.
1) Система питания в карбюраторном двигателе служит для приготовления горючей смеси необходимого состава.
2) Система зажигания служит для зажигания рабочей смеси в цилиндре двигателя.
3) Система смазки обеспечивает надежную смазку трущихся поверхностей деталей.
4) Система охлаждения предназначена для охлаждения нагревающихся деталей двигателя.
МЕХАНИЗМЫ ДВИГАТЕЛЯ
Кривошипно-шатунный механизм
1. Вставьте пропущенные слова:
Кривошипно-
шатунный
механизм
преобразует
возвратно-
поступательное движение поршня во вращение коленчатого вала.
2. Перечислите подвижные детали КШМ:
Поршни с поршневыми кольцами и пальцем, шатуны, коленчатый вал с маховиком, шатунные вкладыши.
Неподвижные детали КШМ:
Блок цилиндров, головка блока цилиндров, крышки коренных подшипников, гильзы цилиндров.


6 3. К каким деталям КШМ относятся эти детали и подпишите название каждой
Эти детали КШМ относятся к неподвижной группе.
4. Какую вентиляцию картера имеют большинство автомобильных двигателей?
Принудительную вентиляцию картера.
5. Какие гильзы называют «мокрыми»?
Мокрая гильза уплотняется резиновыми кольцами, либо медными кольцами.
6. Как называется эта деталь КШМ, напишите его назначение и устройство.
Поршень воспринимает и передает усилие на шатун, возникающие от давления газов, а также обеспечивает протекание всех тактов рабочего цикла.
7. Для чего в днище поршня дизельного двигателя делают выемку?
Эта выемка образует камеру сгорания в дизельном двигатели.
Блок цилиндров
Головка блока цилиндров
Масляный картер
Гильза блока цилиндров
Днище поршня
Головка поршня
Юбка поршня


7 8. Что изображено на рисунке, где они устанавливаются и как называются
Составное маслосъёмное кольцо, устанавливается в специальную канавку на головке поршня
9. Как называется эта деталь КШМ, напишите ее устройство и назначение.
Это шатун.
Соединяет поршень с коленчатым валом и служит для преобразования возвратно-поступательного движения поршня во вращение коленчатого вала, передавая ему то созданное давлением газов усилие.
10. Сколько шатунов устанавливается на шатунной шейке V- образного двигателя?
Два шатуна.
Плоское стальное кольцо
Осевой расширитель
Радиальный расширитель
1 – верхняя головка шатуна
2 – втулка верхней головки шатуна
3 – стержень шатуна
4 – нижняя головка шатуна
5 – вкладыш
6 – крышка нижней головки шатуна
7 – усик вкладыша для его фиксации
8 – болт шатуна


8 11. Напишите назначение и устройство коленчатого вала
Коленчатый вал воспринимает усилия, передающиеся от поршней через шатуны и преобразует их во вращающий момент, который, в свою очередь, передается агрегатам трансмиссии, а так же используется для привода в действие различных механизмов и деталей двигателя.
12. Для чего к шейкам коленчатого вала прикрепляются противовесы?
Они нужны для балансировки
13. В виде чего изготавливаются коренные и шатунные подшипники и из какого материала они изготовлены?
Они выполнены в виде вкладышей, изготовленных из сталеалюминевой ленты, внутренняя часть, которой покрыта антифрикционным материалом выдерживающий большие нагрузки
14. Вставьте пропущенные слова:
Маховик служит для равномерного вращения коленчатого вала
и преодоления двигателем повышенных нагрузок при трогании с места
и во время работы. Маховик представляет собой тяжелый чугунный диск.
15. Зачем на ободе маховика напрессован стальной зубчатый венец?
Он необходим для проворачивания коленчатого вала от стартера
Газораспределительный механизм
1. Напишите назначение газораспределительного механизма
Служит для своевременного выпуска в цилиндры двигателя горючей смеси или воздуха. Выпуска отработавших газов. И надежной герметизации камеры сгорания.
1

«носок» коленчатого вала;
2 – зубчатый венец;
3 – шатунная шейка;
4 – коренная шейка;
5 – противовес;


9 2. Что такое фаза газораспределения?
Моменты открытия и закрытия клапанов, выраженные в углах поворота коленчатого вала.
3. Перечислите устройство ГРМ
4. Закончите предложение:
Распределительный вал предназначен для своевременного открывания и закрывания клапанов в определенной последовательности.
5. Где устанавливается приводная шестерня распредвала и из какого материала она изготавливается?
Устанавливается на переднем конце распредвала и изготавливается из стали, чугуна и текстолита.
6. Почему диаметр распределительной шестерни коленчатого вала меньше шестерни распредвала?
За один рабочий цикл впускной и выпускной клапаны каждого цилиндра открываются только один раз. Поэтому за два оборота коленчатого вала распредвал делает один оборот.
Система охлаждения
1. Для чего служит система охлаждения?
Служит для поддержания нормального температурного режима двигателя.
2. Система охлаждения бывает двух видов: a) Воздушная b) Жидкостная
1.шестерня распредвала
2.кулачки впускного и выпускного клапана
3.распределительный вал
4.опорная шейка
5.впускной и выпускной клапан
6.гидротолкатель
7.зубчатый ремень грм
8.маховик
9.шестерня коленчатого вала


10 3. Какая должна быть температура охлаждающей жидкости для нормальной работы двигателя?
80-95°С.
4.Какие узлы и агрегаты включает в себя жидкостная система охлаждения?
Рубашка охлаждения, водяной насос, радиатор, термостат, вентилятор, расширительный бочок, заливная горловина, сливные краники или пробки, датчики и указатели температуры охлаждающей жидкости, трубопроводы и шланги, могут быть жалюзи.
5. По какому кругу циркулирует жидкость на этом рисунке?
По большому кругу
6.Какой узел системы охлаждения служит для ускорения прогрева холодного двигателя и автоматического регулирования его теплового режима в заданных пределах?
Термостат
7. Что изображено на рисунке?
Напишите назначение и устройство этого узла.
Для обеспечения циркуляции жидкости в систему охлаждения двигателя
ЗИЛ-130 включен укрепленный на переднем торце блока двигателя ЗИЛ-508 центробежный водяной насос с односторонним подводом жидкости.
Вал привода водяного насоса установлен в чугунном корпусе на двух шариковых подшипниках, между которыми находится распорная втулка.
На наружном конце вала на шпонке и разрезной конусной стальной втулке установлена ступица вентилятора, которая удерживается от осевых смещений
Это водяной насос автомобиля
ЗИЛ130


11 корончатой гайкой со шплинтом. Это крепление обеспечивает возможности надежного подтягивания ступицы вентиляторана разрезной конусной втулке.
На внутреннем конце вала на лыске посажена крыльчатка водяного смещения.
Крыльчатка размещается в алюминиевом корпусе водяного насоса. Раструбы корпуса двумя болтами каждый крепятся к блоку двигателя. Охлаждающая жидкость поступает в центр крыльчатки насоса от радиатора по патрубку, и далее от крыльчатки подаётся под паром 1,4 – 2,6 кГ/см. кв. через раструбы в правую и левую группы цилиндров двигателя. Для предохранения от вымывания смазки охлаждающей жидкости между корпусом и крыльчаткой установлен самоподвижный сальник с графитизированной упорной шайбой перед малым подшипником (со стороны крыльчатки) имеется водосбрасыватель, а в нижней части корпуса находится контрольный канал, через который выливается просачиваемая через сальник жидкость.
В случаи течи жидкости через канал нужно исправить или заменить сальник.
8.Напишите назначение и устройство радиатора системы охлаждения.
Радиатор служит для охлаждения жидкости, поступающей из водяной рубашки двигателя. Радиатор состоит из верхнего и нижнего баков, сердцевины и деталей крепления.
9.Из какого материала изготовлены баки и сердцевина радиатора?
Баки и сердцевина для лучшей проводимости теплоты изготовлены из латуни.
10.
Как называется этот узел системы охлаждения?
Напишите его устройство и работу.
Это термостат.
11. Для чего в крышке радиатора устанавливают паровоздушный клапан?
В пробке горловины радиатора смонтирован паровоздушный клапан.
Когда пробка установлена на горловине радиатора, корпус клапанов через резиновую прокладку прижимается пружиной к специальному выступу
1-шток
2- корпус
3 — клапан
4- термоэлемент
5 — резиновая полость
6 — пружины клапанов
7 — основание пружины клапана


12 горловины. Пространство между корпусом крышки и корпусом клапанов сообщается с атмосферой через пароотводную трубку. При повышении давления в системе охлаждения на 0,28—0,38 кг/см2 сверх атмосферного корпус клапанов перемещается по штоку вверх, преодолевая сопротивление пружины. Через образовавшуюся щель пар выходит в полость горловины, а оттуда по пароотводной трубке наружу. При создании в системе разрежения
(что может быть при конденсации пара в остывающем двигателе) воздух в радиатор из полости горловины поступает через воздушный клапан, прижимаемый пружиной к корпусу клапанов.
12. Где устанавливаются датчики указателя температуры охлаждающей жидкости?
Датчики могут быть в головке цилиндров, в водоотводящей трубе, впускном трубопроводе или в верхнем баке радиатора.
13. Для чего на некоторых автомобилях устанавливают предпусковые подогреватели?
Для прогрева двигателя зимой при температуре ниже — 20 °С
14. Какие три положения имеет переключатель предпускового подогревателя?
0 — все выключено
I — включен электродвигатель вентилятора
II — включены электродвигатель вентилятора и электромагнитный клапан
Смазочная система
1. Для чего необходима смазочная система двигателя?
Смазочная система двигателя необходима для непрерывной подачи масла к трущимся поверхностям деталей и отвода от них теплоты.
2. Какая система смазки будет называться «комбинированная»? комбинированная система смазки, в которой часть деталей смазывается под давлением, а другая часть – разбрызгиванием или самотеком
3. Перечислите детали двигателя, которые будут смазываться:
Под давлением
Под давлением смазываются коренные и шатунные подшипники, поршневые пальцы, подшипники распределительного вала, втулки толкателей, наконечники штанг толкателей, втулки коромысел, а также подшипник промежуточной шестерни привода масляного насоса.


13
Разбрызгиванием
Стенки цилиндров, поршней, поршневые пальцы, распределительные шестерни
4. Перечислите основные узлы системы смазки двигателя
5. Куда удаляются картерные газы при закрытой вентиляции картера?
При закрытой вентиляции картера, газы выходят через сапун в воздушный фильтр и смешиваются с топливовоздушной смесью, попадая обратно в цилиндры.
6. Напишите схему работы системы смазки
К наиболее нагруженным деталям масло подается под давлением, а к остальным — разбрызгиванием и самотеком. Под давлением смазываются коренные и шатунные подшипники коленчатого вала, клапанный механизм, втулки распределительного вала и распределительных шестерен.
7. Как называется узел системы смазки, указанный на рисунке?
Напишите его назначение и устройство.
На рисунке показан двухсекционный масляный насос.
Для нагнетания масла в магистральны каналы и подачи его под давлением к трущимся деталям узлов и механизмов двигателя служит масляный насос.
Двухсекционный, шестеренчатый масляный насос состоит из корпуса верхней и корпуса нижней
1.Датчик давления масла
2.Масляный фильтр
3.Масляный насос
4.Маслоприемник
5.Масляные каналы


14 секции насоса, разделенных между собой промежуточной крышкой. Ведущие шестерни соответственно верхней и нижней секции с помощью шпонок крепятся на валу насоса, который приводится в действие от распределительного вала. В корпусе каждой секции на осях свободно установлены ведомые зубчатые колеса.
8. Какой клапан смонтирован в расточке корпуса насоса и для чего он нужен? Редукционный клапан, предотвращает чрезмерное поднятие давления в системе.
9. Как называется узел системы смазки, указанный на рисунке?
Напишите его назначение и устройство.
Это центробежный маслоочиститель, служит для очистки масла.
Состоит из корпуса, который закрывается колпаком через уплотнительную прокладку и зажимается гайкой. В корпусе на пустотелой оси свободно установлен ротор, опирающийся на упорный шарикоподшипник.
Ротор закрывается кожухом через уплотнительное кольцо. Снизу в ротор ввернуты жиклеры с противоположно направленными отверстиями.
Сверху кожух закрепляется стопорным кольцом, упирается в опорную шайбу через прокладку и зажимается гайкой. Осевое перемещение ротора предотвращается гайкой с шайбой. На ось одета трубка и направляющий щиток с сеткой и пружиной, прижимающей щиток к ротору.
Масло от масляного насоса подводится в фильтр по каналу и очистившись, отводится по каналу. Масло, подаваемое масляным насосом по каналу, подводится в полость щитка. Здесь небольшая часть его проходит через сетку, очищается и направляется в жиклеры, представляющие собой калиброванные отверстия, направленные под углом к оси ротора. Благодаря этому масло, вытекающее из жиклеров, создает реактивный момент, который приводит во вращение ротор вместе с кожухом и маслом, поступающим под кожух от направляющего щитка. Так как частота вращения ротора 5-6 тыс. об/мин, то под действием центробежной силы из вращающегося масла удаляются механические примеси. Очищенное масло проходит в центральный стержень


15 и по каналу направляется в распределительную камеру и далее в главную масляную магистраль на смазку двигателя.
10. Перечислите функции моторного масла:
Обеспечивать чистоту деталей двигателя, способствовать легкому холодному пуску двигателя, отводить тепло от нагретых деталей двигателя, обеспечивать надежную смазку деталей двигателя при любых режимах его работы, нейтрализация коррозионно-агрессивных компонентов.
Система питания бензинового двигателя
1. Закончите предложение: Система питания автомобильных
двигателей обеспечивает подачу очищенного бензина и воздуха в определенных пропорциях и ее подачи в цилиндры.
2. Какое смесеобразование применяется в бензиновых двигателях?
Внешнее смесеобразование
3. Напишите соотношения количества бензина и воздуха, когда смесь….
Нормальная 1г бензина на 15г воздуха
Обедненная 15-17г воздуха на 1г бензина
Бедная свыше 17г воздуха
Обогащенная 13-15г воздуха на 1г бензина
4. При каком соотношении воздуха и бензина смесь не воспламеняется?
1г бензина на 21г воздуха
5. Напишите назначение системы питания двигателя, работающего на бензине
К системе относятся: воздушный фильтр, топливный бак, фильтр – отстойник для грубой очистки топлива, бензонасос, топливный фильтр тонкой очистки, карбюратор, выпускной трубопровод, глушитель.


16 6. Перечислите устройство системы питания, указанные на рисунке
1- заливная горловина бензобака
2- бензобак
3- поплавок датчика указателя уровня топлива
4- топливозаборник с фильтром
5- топливопроводы
6- фильтр тонкой очистки топлива
7- бензонасос
8- поплавковая камера
9- воздушный фильтр
10- смесительная камера
11- впускной клапан
12- впускной трубопровод
13- камера сгорания
7. Какой процесс называют карбюрацией? Как называется прибор, в котором этот процесс происходит?
Процесс приготовления горючей смеси из бензина и воздуха вне цилиндра двигателя называют карбюрацией. Прибор, в котором происходит этот процесс называется карбюратор.
8. Напишите устройство и работу простейшего карбюратора
Простейший карбюратор состоит из поплавковой камеры 7, распылителя 6, смесительной камеры 8, воздушной 1 и дроссельной 10 заслонок.
В простейшем карбюраторе различают две основные части: поплавковую и смесительную камеры. В поплавковой камере расположен запорный механизм, состоящий из поплавка и игольчатого клапана с седлом.
В смесительной камере, выполненной в виде трубы, располагается узкая


17 горловина — диффузор, в которую выведена трубка — распылитель из поплавковой камеры.В начале распылителя расположено отверстие строго определенного сечения и формы — жиклер. Ниже диффузора расположен дроссель. При заполнении поплавковой камеры уровень топлива повышается, поплавок, всплывая, давит на клапан и закрывает отверстие в седле.
Если топливо не расходуется, то подача его в поплавковую камеру прекращается и уровень топлива остается постоянным. Выходное отверстие распылителя расположено несколько выше уровня топлива в поплавковой камере (1—2 мм).
Смесительная камера соединена с цилиндром двигателя впускным трубопроводом, и при такте впуска (впускной клапан открыт) разрежение из цилиндра двигателя передается через впускное отверстие, открытое клапаном, в смесительную камеру. Скорость воздуха, проходящего в диффузоре карбюратора, увеличивается, создавая в нем разрежение.
За счет разности давлений в поплавковой (атмосферное) и смесительной
(ниже атмосферного) камерах топливо начнет вытекать через распылитель.
Проходящим воздухом струя этого топлива разбивается на капли и, испаряясь, интенсивно перемешивается с воздухом.
Количество подаваемой в цилиндр горючей смеси изменяется открытием дросселя или увеличением частоты вращения коленчатого вала двигателя. Уровень топлива в поплавковой камере понижается, поплавок опускается, открывая отверстие в седле запорного клапана, и топливо снова поступает в поплавковую камеру.
Поплавковая камера служит для поддержания необходимого уровня топлива при работе двигателя, а смесительная камера — для приготовления смеси из паров топлива и воздуха.
Простейший карбюратор может обеспечить приготовление смеси необходимого состава только при одном определенном установившемся режиме, т. е. при постоянной частоте вращения коленчатого вала двигателя и постоянно открытом дросселе. Практически работа двигателя все время происходит при переменных нагрузках и переменной частоте вращения коленчатого вала.
Для обеспечения работы двигателя карбюратор при каждом изменении нагрузки или частоты вращения коленчатого вала должен готовить строго определенный, наивыгоднейший для данного режима состав горючей смеси.


18 9. Из каких основных систем состоит главная дозирующая система?
Состоит из воздушного жиклера, а также из малого и большого диффузора.
10. Для чего служит система холостого хода карбюратора и из каких основных частей она состоит?
Система холостого хода обеспечивает работу двигателя с малой частотой вращения коленчатого вала. В нее входят топливный жиклер холостого хода, воздушный жиклер, каналы и регулировочный винт.
11. Напишите устройство и работу системы питания бензинового двигателя с электровпрыском
1 — топливный бак
2 — электробензонасос
3 — топливный фильтр
4 — регулятор давления топлива
5 — форсунка
6 — электронный блок управления (ЭБУ)
7 — датчик массового расхода воздуха
8 — датчик положения дроссельной заслонки
9 — датчик температуры ОЖ
10 — регулятор ХХ
11 — датчик положения коленвала
12 — датчик кислорода
13 — нейтрализатор
14 — датчик детонации
15 — клапан продувки адсорбера
16 — адсорбер
Количество топлива, подаваемого форсунками, регулируется электрическим импульсным сигналом от ЭБУ. Он отслеживает данные


19 о состоянии двигателя, рассчитывает потребность в топливе и определяет необходимую длительность подачи топлива форсунками (длительность импульса — скважность). Для увеличения количества подаваемого топлива
ЭБУ увеличивает длительность импульса, а для уменьшения подачи топлива
— сокращает.
12. Какие фильтры устанавливают на бензиновых двигателях и для чего?
Воздушный фильтр, при его использовании уменьшается износ деталей цилиндропоршневой группы в несколько раз.
Фильтр тонкой очистки топлива, очищает топливо от мелких механических частиц и воды.
Система питания дизельного двигателя
1. Какое смесеобразование применяется в дизельных двигателях?
Приготовление горючей смеси и воздуха происходит внутри цилиндров
2. Какой узел дизельного двигателя впрыскивает топливо в камеру сгорания и под каким давлением?
Форсунка впрыскивает топливо в камеру сгорания по большим давлением (около 17мПа)
3. Подпишите виды камер сгорания дизеля
I. Вихрекамера
II. Форкамера
III. Непосредственный впрыск


20 4. Напишите общее устройство системы питания дизеля
5. Напишите схему работы дизельного двигателя
Принцип работы дизельного двигателя основан на самопроизвольном
(компрессионном) воспламенении дизельного топлива, впрыскиваемого в камеру сгорания и смешиваемого со сжатым и нагретым до высокой температуры воздухом.
Воздух вводится в цилиндр. Форсунка впрыскивает в цилиндр горючее, а поршень при движении вверх сжимает смесь.
В этих условиях происходит спонтанное воспламенение горючего; продукты сгорания расширяются и толкают поршень вниз. Вращение коленвала толкает поршень вверх, и происходит выброс выхлопных газов.
В дизельном двигателе, турбовентилятор использует энергию выхлопных газов для нагнетания воздуха в цилиндр при помощи подсоединенных к нему крыльчаток, что позволяет достичь более сильного сжатия в цилиндре.
Топливные фильтры очищают топливо от грязи и мелких частиц, ТНВД создает давление для подачи топлива к форсункам, глушитель служит для отвода отработавших газов.
1 – топливный бак
2 – подкачивающий насос
3 – топливный фильтр
4 – ТНВД
5 – форсунка
6 – свеча накаливания


21 6. Что изображено на рисунке?
Четырехсекционный топливный насос высокого давления
7. Опишите устройство плунжерного секционного ТНВД?
Плунжерные пары установлены в корпусе ТНВД, в котором имеются каналы для подвода и отвода топлива. Каждый плунжер на боковой поверхности имеет специальную спиральную канавку — отсечную кромку.
В нижней части корпуса ТНВД на подшипниках качения установлен кулачковый вал, который приводится от коленчатого вала двигателя.
Все плунжеры с помощью пружин прижимаются к соответствующим кулачкам. При вращении кулачкового вала кулачки в определенной последовательности перемещают плунжеры внутри втулок. При движении плунжера вверх он сначала закрывает выпускное отверстие во втулке, а затем впускное.
8. Какие элементы включает в себя насосная секция топливного насоса?
Основной частью каждой насосной секции является плунжерная пара.
9. Из каких основных частей состоит плунжерная пара?
Плунжерная пара — состоит из плунжера и гильзы.
10. Из какого материала изготавливается плунжерная пара?
Плунжерную пару изготавливают из хромомолибденовой стали и подвергают закалке до высокой твердости.
11. Для чего к корпусу топливного насоса высокого давления прикреплен регулятор?
С помощью него осуществляется управление подачей топлива


22 12. Где и для чего устанавливают топливоподкачивающий насос дизеля?
В дизелях семейства
КамАЗ-740 устанавливают топливоподкачивающий насос низкого давления, для очистки топлива фильтрами грубой и тонкой очистки.
13. Напишите назначение, устройство и работу механической форсунки
Для впрыскивания и распыления топлива, а также для распределения его частиц по объему камеры сгорания служит форсунка.
Форсунка состоит из корпуса с щелевидным фильтром, проставки с наклонными отверстиями, корпуса распылителя с запорной иглой, гайки, штанги с тарелкойи пружиной, регулировочного винта.
Работа форсунки заключается в следующем: из насоса высокого давления топливо подается к штуцеру, пройдя сетчатый фильтр, топливо по наклонному каналу в корпусе поступает в кольцевую выточку, выполненную на торце распылителя.
Из кольцевой выточки топливо по трем боковым каналам поступает в кольцевую полость распылителя, расположенную под пояском утолщенной части иглы. Давление топлива передается на запорный конус и поясок утолщенной части иглы. Сопловые отверстия распылителя открываются в тот момент, когда давление топлива под пояском утолщенной части запорного конуса иглы превышает давление пружины. При этом игла перемещается вверх и происходит впрыскивание топлива. В момент, когда в секции насоса происходит отсечка подачи топлива, давление в топливопроводе падает и игла под действием пружины резко закрывает сопловые отверстия, что предотвращает подтекание топлива после завершения процесса впрыскивания. Под действием высокого давления часть топлива через плунжерную пару распылителя просачивается в верхнюю часть форсунки,


23 откуда оно отводится в бак через полый болт и сливной топливопровод.
14. Какие топливные фильтры устанавливаются на дизелях?
Топливные фильтры тонкой и грубой очистки.
15. Как называется этот механизм дизельного двигателя?
Опишите схему работы.
Это турбокомпрессор. Турбокомпрессор состоит из газовой турбины и центробежного компрессора. На роторном валу с одной стороны закреплено рабочее колесо газовой турбины, а с другой — рабочее колесо компрессора.
Отработавшие газы, движущиеся по выпускному газопроводу, вращают рабочее колесо турбины с большой частотой (30000…40000 об/мин), а затем они отводятся по газопроводу в трубу глушителя. Одновременно с рабочим колесом турбины вращается рабочее колесо компрессора, которое через воздухоочиститель засасывает воздух, сжимает его и под давлением нагнетает через впускной газопровод в цилиндры дизеля.
16. Напишите назначение глушителя автомобиля.
Автомобильный глушитель выполняет следующие основные функции:
• снижение уровня шума отработавших газов;
• преобразование энергии отработавших газов, снижение их скорости, температуры, пульсации.
Трансмиссия
Общее устройство трансмиссии
1. Закончите предложение: «Трансмиссия автомобиля — это ряд взаимодействующих между собой агрегатов и механизмов, передающих крутящий момент от двигателя к ведущим колесам.


24 2. Расшифруйте колесные формулы автомобилей и подпишите
(если знаете) марки автомобилей.
4х2 — четыре колеса из них два ведущих (ваз 2107)
4х4 — четыре колеса все четыре ведущих (ваз 2121)
6х4 — шесть колес из них четыре ведущих (КАМАЗ 6460)
6х6 — шесть колес все ведущие (КАМАЗ 5350)
3. Подпишите устройство трансмиссии автомобиля
I. Двигатель
II. Сцепление
III. Трансмиссия
IV. Карданная передача
1.Муфта
2.Шлицевое соединение
3.Передний вал
4.Подвестной подшипник
5.Крестовина кардана
6.Задний вал
7.Крестовина кардана
8.Полуоси
9.Ведущие колеса
V. Задний мост с главной передачей и дифференциалом
4. Какой агрегат трансмиссии устанавливается дополнительно для выключения привода переднего моста?
Раздаточная коробка передач
Сцепление
1. Напишите назначение сцепления:
Сцепление служит для кратковременного отсоединения двигателя от трансмиссии и плавного их соединения в моменты начала движения
(трогания с места) автомобиля и переключения передач в коробке передач в процессе движения.
Кроме того, сцепление предохраняет детали двигателя


25 и агрегатов трансмиссии от перегрузки, возникающей при резком торможении автомобиля с неотключенным двигателем.
2. Какая сила используется в работе фрикционного сцепления?
Сила трения
3. Напишите устройство сцепления
1 — коленчатый вал; 2 — маховик; 3 — ведомый диск; 4 — нажимной диск;
5 — кожух сцепления; 6 — нажимные пружины; 7 — отжимные рычаги;
8
— нажимной подшипник; 9 — вилка выключения сцепления;
10 — рабочий цилиндр; 11 — трубопровод; 12 — главный цилиндр;
13 — педаль сцепления;14 — картер сцепления; 15 — шестерня первичного вала;
16 — картер коробки передач; 17 — первичный вал коробки передач
4. Напишите отличие однодискового сцепления от двухдискового
Двухдисковое сцепление в отличие от однодискового имеет два ведомых и два ведущих диска: промежуточный и нажимной, установленных поочередно.
5. Перечислите виды механизмов выключения сцепления
Механизм выключения может иметь механический, гидравлический или пневматический привод.
6. Какие основные элементы гидропривода вы знаете?
Основные элементы гидропривода — бачок с тормозной жидкостью, рабочий и главный цилиндры, тяги, шланги и педаль. Педаль сцепления,


26 главный цилиндр с рычагами и тягами составляют отдельный блок, прикрепленный болтами к кабине автомобиля. Педаль удерживается в исходном положении пружиной. Главный цилиндр соединен питающим шлангом с бачком, а гибким соединительным шлангом с рабочим цилиндром.
7. Опишите работу гидравлического привода сцепления.
При нажатии на педаль сцепления усилие от нее передается толкателю главного цилиндра. Под действием толкателя поршень перемещается вперед и вытесняет жидкость в рабочий цилиндр.
8. Для чего служит пневматический усилитель привода сцепления?
Где его устанавливают?
Пневматический усилитель привода сцепления служит для уменьшения усилия на педаль сцепления при выключении.
Коробки передач и карданная передача
1. Напишите назначение коробки передач
Коробка передач служит для изменения по величине и направлению передаваемого крутящего момента, длительного разъединения двигателя и трансмиссии во время стоянки или при движении автомобиля по инерции, а также для движения автомобиля задним ходом.
2. На чем основано действие коробки передач?
По принципу действия коробки передач разделяют на бесступенчатые
(гидромеханические, фрикционные и т.д.) и ступенчатые (механические).
3. Какое число называют передаточным?
Значение, получаемое от деления числа зубьев ведомой шестерни на число зубьев ведущей шестерни, называется передаточным числом.
4. Найдите передаточное число, если:
Z
1=
90, 120, 84,110.
Z
2=
30, 40, 20, 50.
Р
1=_
3
Р
2=_
3
_____________________________
Р
3=_
4.2
____________________________
Р
4=_
2.2
_____________________________


27 5. Напишите устройство и опишите схему работы простейшей коробки передач
В картере расположены три вала. Первичный и вторичный валы расположены на одной оси, причем вторичный вал перед ним концом опирается на подшипник, помещенный внутри заднего конца первичного вала.
Передача вращения от первичного вала на вторичный происходит через промежуточный вал. С этой целью первичный вал находится в постоянном зацеплении с промежуточным валом через шестерни.
6. Перечислите устройство механизма переключения КП
Основу КП составляют картер и крышка, внутри корпуса вращаются три вала на подшипниках.
7. Какое устройство предотвращает одновременное включение двух передач?
Замковое устройство механизма переключения передач
8. Напишите назначение синхронизатора
Обеспечивает плавное переключения передач, снижает износ механического соединения, шумы при переключении и тем самым, увеличивает срок службы коробки передач.
9. Напишите назначение раздаточной коробки
Раздаточная коробка распределяет крутящий момент по осям автомобиля, а также увеличивает крутящий момент при движении по плохим дорогам и бездорожью.
10. Опишите работу раздаточной коробки
Перед включением понижающей передачи необходимо полностью остановить автомобиль и включить передний мост. Крутящий момент от КПП передается на раздаточную коробку через ведущий вал. Далее крутящий момент передается на межосевой дифференциал.
1 — первичный вал;
2 — рычаг переключения передач;
3 — механизм переключения передач;
4 — вторичный вал;
5 — сливная пробка;
6 — промежуточный вал;
7 — картер коробки передач


28 11. Что изображено на рисунке? Напишите назначение и устройство.
Ведущие мосты
1. Закончите предложение «Ведущим называют мост, механизмы
которого передают вращающий момент от коробки передач к колесам
автомобиля
2. Подпишите устройство ведущего моста
1 — фланец;
2 — вал ведущей шестерни;
3 — ведущая шестерня;
4 — ведомая шестерня;
5 — ведущие (задние) колеса;
6 — полуоси;
7 — картер главной передачи
Это карданная передача, устройство для передачи вращения от коробки передач к главной передаче. Устройство карданной передачи: на одном конце трубчатого карданного вала приварена вилка, на другом — шлицевая втулка. Карданные валы тщательно динамически балансируются.
Дисбаланс устраняют балансировочными пластинами, которые приваривают к концам трубы вала и шлицевой втулки.
Правильное взаимное положение вилки с шлицевым валом относительно карданного вала в сбалансированном комплексе отмечается выбитыми на них стрелками, которые надо совмещать при сборке карданной передачи.


29 3. Напишите назначение и виды главных передач
Главная передача увеличивает вращающий момент после коробки передач. Главная передача может быть одинарной (обычная и гипоидная) и двойной.
4. В чем преимущество гипоидной главной передачи от обычной?
Преимущество в том, что ось ее ведущей шестерни расположена ниже оси ведомой(оси заднего моста), поэтому центр масс автомобиля ниже и устойчивость его лучше.
5. Как называется этот механизм? Напишите его устройство.
6. Из каких основных частей состоит двухступенчатый ведущий мост?
Он состоит из главной передачи, включающей в себя две пары шестерни и дифференциала.
7. Закончите предложение: «Межосевой дифференциал служит
для распределения подводимого к нему вращающего момента между полуосями и позволяющий им вращаться с разными скоростями.
8. Напишите назначение механизма блокировки дифференциала.
Блокировка дифференциала – один из наиболее эффективных способов повышения проходимости колесных автомобилей.
Главная передача с дифференциалом 1 — полуоси;
2 — ведомая шестерня;
3 — ведущая шестерня;
4 — шестерни полуосей;
5 — шестерни-сателлиты


30 9. Где установлены полуоси и с чем они соединяются наружными концами?
В полости ведущего моста, с внутреннего конца шлицы, на которых сидит полуосевая шестерня, а с наружной — имеется специальный фланец для крепления ступицы с помощью шпилек.
10. Какие полуоси называют полуразгруженными и полностью разгруженными?
Полуразгруженной полуосью называется полуось, которая опирается на шарикоподшипник, расположенный внутри ее кожуха. Такая полуось не только передает крутящий момент, скручивающий ее, но и воспринимает изгибающие моменты.
Полностью разгруженной называется полуось, разгруженная от изгибающих моментов и передающая только крутящий момент.
ХОДОВАЯ ЧАСТЬ
1. Какой остов у грузовых автомобилей?
Рамный.
2. Закончите предложение: «Рама — это несущая часть автомобиля, она воспринимает воспринимает все нагрузки, возникающие при движении автомобиля, и служит основанием, на котором монтируют двигатель, агрегаты трансмиссии, механизмы органов управления, дополнительное оборудование, а также кабину и кузов.»
3. Какие рамы устанавливают на грузовых автомобилях?
Лонжеронные.
4. Для чего служат балки мостов?
Для установки на них рессор автомобиля.
5. Как делятся колеса по назначению?
Ведущие, управляемые, ведомые, комбинированные.


31 6. Напишите устройство колеса автомобиля
7. Какое расположение корда у этих шин? а
б а) диагональное, б) радиальное
8. Расшифруйте маркировку шины 175/70 R13.
Радиальная низкопрофильная шина с шириной профиля 175мм, посадочный диаметр 13 дюймов.
9. Что называют подвеской автомобиля?
совокупность деталей, узлов и механизмов, играющих роль соединительного звена между кузовом автомобиля и дорогой.
1 — диск колеса;
2 — обод;
3 — борт;
4 — камера;
5 — боковина;
6 — корд;
7 — протектор


32 10. Напишите, какая подвеска указана на рисунках?
А — зависимая Б- независимая
11. Напишите назначение амортизатора
Амортизаторы гасят колебания рессор, вызванные наездом колеса на препятствие.
12. Подпишите основные элементы амортизатора
13. Опишите принцип действия амортизатора
Принцип действия амортизатора основан на том, что в результате относительных перемещений подрессорных и неподрессорных масс автомобиля сопротивление жидкости при перетекании ее под действием поршня через малые отверстия из одной полости цилиндров другую тормозит перемещение движущихся частей амортизатора и вместе с ними подрессорных масс.
1 — верхняя проушина;
2 — защитный кожух;
3 — шток;
4 — цилиндр;
5 — поршень с клапанами сжатия и «отбоя»;
6 — нижняя проушина;
7 — ось колеса;
8 — кузов автомобиля


33
Рулевое управление
1. Закончите предложение: «Рулевое управление предназначено для обеспечения движения автомобиля по заданному направлению.
2. Для чего служит рулевой механизм?
Рулевой механизм служит для передачи усилия от рулевого колеса на рулевой привод и уменьшения усилия, необходимого для поворота автомобиля.
3. Перечислите типы рулевых механизмов: а) червячно -роликовые б)
винтореечные в)
червяк—сектор с большой поверхностью зацепления или механизм с двумя рабочими парами.
4. Как называется этот механизм? Напишите его устройство
Рулевой механизм типа червяк—трехгребневый ролик состоит из: картер, головка рулевой сошки, трехгребневый ролик, регулировочные прокладки, червяк, вал, ось, роликоподшипник, стопорная шайба, колпачковая гайка, регулировочный винт, вал сошки, сальник, сошка, гайка крепления сошки, бронзовая втулка.


34 5. Как называется этот механизм? Напишите его устройство
Это рулевой механизм с встроенным гидроусилителем, рулевой механизм имеет две рабочие пары: винт с гайкой на циркулирующих шариках и поршень рейку, входящую в зацепление с зубчатым сектором вала сошки.
6. Перечислите устройство рулевого управления с гидроусилителем: бачок насоса, кронштейн крепления насоса, сливной шланг низкого давления, корпус клапана управления, карданный вал, рулевая тяга, вал сошки, корпус рулевого механизма и гидроусилителя, трубка высокого давления, ремень привода насоса, насос гидроусилителя, рулевой механизм с гидроусилителем.
Тормозная система
1. Напишите назначение тормозной системы
Для снижения скорости движения, остановки и удержания в неподвижном состоянии автомобиля
2. Перечислите виды тормозных систем и для чего нужна каждая:
По месту установки различаю т тормоза колесные и центральные
(трансмиссионные). Первые действуют на ступицу колеса, а вторые на один из валов трансмиссии. Колесные тормоза используют в рабочей тормозной системе, центральные в стояночной.


35 3. Что такое тормозной механизм? Перечислите их виды.
Тормозные механизмы служат для создания искусственного сопротивления движению автомобиля. Виды: фрикционные (барабанные и дисковые).
4. Какие тормозные механизмы используют в стояночной системе?
В стояночных тормозах используют барабанные тормозные механизмы.
5. Как называется этот механизм? Напишите его устройство
Это барабанный тормозной механизм
6. Какой колесный тормоз изображен на рисунке?
Напишите его устройство.
Пневматический колесный тормоз
Состоит из опорного тормозного диска, жестко прикрепленного к поворотной цапфе передних колес или раструбам картера заднего моста.
1 — тормозной барабан;
2 — тормозной щит;
3 — рабочий тормозной цилиндр;
4 — поршни рабочего тормозного цилиндра;
5 — стяжная пружина;
6 — фрикционные накладки;
7 — тормозные колодки


36
На диске на опорных пальцах эксцентричной формы установлены тормозные колодки с фрикционными накладками. Вокруг колодок вращается тормозной барабан, жестко соединенный со ступицей колеса. Обе колодки стягиваются стяжной пружиной и прижимаются роликами к разжимному кулаку.
Ролики свободно устанавливаются на оси и при работе могут поворачиваться.
Разжимной кулак изготовлен вместе с валом. На конец вала со шлицами одевается поворотный рычаг с червячной шестерней и червяком.
7. Напишите назначение привода тормозов
Привод тормозов предназначен для управления тормозными механизмами в процессе торможения.
8. Перечислите виды приводов. Где используется каждая?
Тормозная система с гидроприводом, применяется на легковых и грузовых автомобилях.
Тормозная система с пневмоприводом, применяется на авто с большой грузоподъемностью, а также на прицепах и полуприцепах, автобусах.
9. С каким приводом тормозная система указана на рисунке?
Напишите схему работы.
На рисунке схема гидропривода тормозов
Рабочий контур соединяет между собой устройства гидропривода и тормозные механизмы. Главный тормозной цилиндр (ГТЦ) предназначен для преобразования усилия, прилагаемого к педали тормоза, в избыточное давление тормозной жидкости и распределения его по рабочим контурам.
Бачок с запасом тормозной жидкости может крепиться на ГТЦ или вне его.


37 10. С каким приводом тормозная система указана на рисунке?
На рисунке показана тормозная система с пневматическим приводом
11. Что указано на рисунке?
Напишите назначение, устройство и принцип работы.
Это схема вакуумного усилителя тормозов
Основным элементом усилителя является камера, разделенная резиновой перегородкой (диафрагмой) на два объема. Один объем связан с впускным трубопроводом двигателя, где создается разряжение, а другой с атмосферой. Из-за перепада давлений, благодаря большой площади диафрагмы, «помогающее» усилие при работе с педалью тормоза может достигать 30 — 40 кг и больше. Это значительно облегчает работу водителя при торможениях и позволяет сохранить его работоспособность длительное время.
1 — главный тормозной цилиндр;
2 — корпус вакуумного усилителя;
3 — диафрагма;
4 — пружина;
5 — педаль тормоза


38 12. Как называется этот механизм? В какой тормозной системе он устанавливается?
Компрессор, устанавливается в пневматической тормозной системе
13. Что такое тормозной кран? Где он устанавливается?
Тормозной кран комбинированного типа служит для управления колесным и тормозами автомобиля и прицепа.
Он установлен на лонжероне рамы.
14. Для чего служит вспомогательная тормозная система?
Вспомогательная тормозная система служит для длительного поддержания постоянной скорости (на затяжных спусках) за счет торможения двигателем.

Какую вентиляцию картера имеют большинство автомобильных двигателей

Главная » Разное » Какую вентиляцию картера имеют большинство автомобильных двигателей

Вентиляция картера | Двигатель автомобиля

Во время работы двигателя через зазоры между кольцами и поршнем и в стыках колец из цилиндров в картер проникают пары горючего и отработавшие газы, которые ухудшают качество масла, находящегося в поддоне. Для удаления газов и охлаждения масла применяется вентиляция картера.

Рис. Схема вентиляции картера двигателя автомобиля ГАЗ-63: 1 — воздушный фильтр; 2 — трубка; 3 — маслозаливная труба; 4 — полость клапанной коробки; 5 — трубка

На рисунке показана схема вентиляции картера двигателя автомобиля ГАЗ-63. Полость 4 клапанной коробки соединена трубкой 5 с нижней частью воздушного фильтра 1, а маслозаливная труба 3 соединена трубкой 2 с верхней частью, воздушного фильтра.

При работе двигателя вследствие разности разрежения в нижней и верхней частях воздушного фильтра газы отсасываются из картера через трубку 5 и одновременно в картер по трубе 3 засасывается свежий воздух.

По такому же принципу устроена система вентиляции картера и других карбюраторных двигателей отечественных автомобилей.

Рис. Схема вентиляции картера двигателя ЯАЗ-М-206Б: 1 — нагнетатель; 2 — корпус регулятора; 3 — вентиляционная трубка; 4 — маслоуловительная сетка; 5 — крышка головки блока; 6 — канал в подъемном кольце; 7 — воздушная камера; 8 — полость картера двигателя; 9 — полость картера маховика

На рисунке показана схема вентиляции картера двигателя ЯАЗ-М-206Б. Когда поршень находится около верхней мертвой точки, воздух из продувочных окон проникает между поршнем и стенками цилиндра, а также через отверстия в канавках для маслосъемных колец в картер и создает в картере избыточное давление.

Под действием избыточного давления воздух, смешанный с находившимися в картере отработавшими газами, проходит через полости картера маховика и верхней передней крышки по каналам 6 в подъемных кольцах (рымах) в полость под крышкой 5 головки блока цилиндров. Отсюда воздух с тазами уходит через вентиляционные трубки 3 крышки головки блока и регулятора.

ustroistvo-avtomobilya.ru

Принцип работы системы вентиляции картера двигателя

В столь сложном механизме, каковым является современный двигатель внутреннего сгорания, не может быть каких-то мелочей. Любая система, даже если она имеет простейшее устройство, выполняет строго определенную функцию, внося свой вклад в бесперебойную работу силового агрегата. О существовании многих из систем рядовой автолюбитель даже не подозревает, хотя нарушение их нормального функционирования самым серьезным образом оказывает влияние на работоспособность двигателя в целом. Важнейшая роль в ДВС отведена так называемой вентиляции картера.

О том, каковы ее назначение, принцип работы и состав компонентов, поговорим в данной статье. Не секрет, что между деталями цилиндро-поршневой группы существуют строго определенные зазоры, соответствующие установленным разработчиками допускам. Какими бы минимальными ни были эти зазоры, через них из камеры сгорания в картер проникают несгоревшие частицы, которые смешиваются с масляными парами, образуя так называемые картерные газы. Они оказывают негативное влияние на качество находящегося в картере моторного масла, которое с ростом пробега автомобиля неуклонно ухудшается, теряя смазывающие свойства. Стоит отметить, что подобный эффект проявляется как у масел бюджетного класса, так и у дорогих образцов от именитых брендов. Попадающие в картер двигателя пары топлива и воды неизбежно разжижают масло, превращая его в масляную эмульсию. Не стоит забывать и о том, что в процессе работы в цилиндрах мотора создается очень высокое давление. В связи с этим газы, вырывающиеся с огромной силой, попадают в картер, грозя выдавливанием сальников и последующим вытеканием масла.

Благодаря системе вентиляции картера выводятся прорвавшиеся отработавшие газы, а также обеспечивается и поддерживается нормальное рабочее давление, что благотворно влияет не только на состояние моторного масла, но и на надежность, продолжительность работы двигателя.

Виды систем вентиляции картера

На сегодняшний день принято выделять два типа систем вентиляции картера автомобильного двигателя: открытая, или эжекционная (отработанные газы выводятся наружу напрямую из картера при помощи специальной эжекционной трубки) и закрытая, или принудительная (PCV – positive crancase ventilation).

Система вентиляции картера открытого типа характерна для силовых агрегатов автомобилей, выпускавшихся в прошлом веке и снятых в настоящее время с производства. Особенностью такой системы является то, что прорвавшиеся из цилиндров газы выводятся за пределы двигателя, непосредственно в окружающую среду. Указанный способ вентилирования картера мотора отличает простота и дешевизна конструкции, что, впрочем, «компенсируется» загрязнением атмосферы.

Принцип работы принудительной системы вентиляции картера (PCV). Помимо указанного недостатка, открытая вентиляция картера имеет еще ряд отрицательных моментов. Подобная система малоэффективна при движении на малых скоростях и абсолютно бездейственна на неподвижном автомобиле с работающим на холостых оборотах двигателем. Кроме того, через открытую систему вентиляции картера при охлаждении сильно разогретого двигателя возможно подсасывание неотфильтрованного атмосферного воздуха. Нередки случаи, когда на автомобилях с большими пробегами система открытого типа становилась основной причиной возросшего расхода масла и, как следствие, замасливания силового агрегата.

Более современной и эффективной альтернативой открытой вентиляции картера является закрытая (принудительная) вентиляционная система. Одной из ключевых деталей такой системы является клапан, выводящий попавшие в картер двигателя газы во впускной коллектор. Разные автопроизводители по-разному реализуют идею закрытого вентилирования, но в большинстве случаев каждая из схем предусматривает наличие одних и тех же элементов: клапана вентиляции (клапан PCV), маслоотделителя (может быть несколько) и соединительных патрубков. Стоит отметить, что системы вентиляции картерных газов для бензиновых и дизельных моторов, хотя и обладают определенными особенностями, в целом имеют схожие конструкции.

Работа системы PCV

Принцип работы системы принудительной вентиляции довольно прост. При возникновении разрежения во впускном коллекторе под его воздействием открывается клапан PCV и картерные газы подаются на впуск, а затем, смешиваясь с воздухом, в цилиндры двигателя. Для препятствования проникновения паров масла в камеру сгорания система предусматривает установку маслоотделителя. Современные моторы оборудуются сложной системой маслоотделителей. Так, маслоотделитель лабиринтного типа способствует замедлению движения газов из картера. Это обеспечивает оседание маслянистых капелек на стенки и последующее их стекание в картер.

Дальнейшая очистка масла от картерных газов происходит при помощи центробежного маслоотделителя, который придает отработавшим газам вращение. Под влиянием центробежной силы частицы масла задерживаются на стенках и затем стекают в картер. Окончательная очистка масла от выхлопных газов производится в выходном лабиринтном успокоителе.

Клапан PCV – особенности конструкции

Ключевая роль клапана PCV в системе закрытой вентиляции картера заключается в функции регулировки давления газов в картере путем их перепуска во впускной коллектор. В режиме ХХ и при торможении двигателем разрежение в коллекторе максимально (дроссель лишь чуть приоткрыт), однако количество картерных газов не так велико, поэтому для полноценной вентиляции достаточно канала с небольшим проходным сечением. В таком режиме под действием большого разрежения золотник клапана полностью втягивается, но при этом канал перепуска картерных газов в значительной степени перекрывается, пропуская лишь небольшое их количество.

При нажатии на педаль акселератора и при высоких нагрузках количество отработавших газов в картере существенно возрастает. Золотник клапана занимает такое положение, чтобы обеспечить максимальную пропускную способность канала. Существует еще и так называемый режим обратной вспышки, при котором горящие газы из цилиндра прорываются во впускной коллектор. В этом случае клапан PCV находится под действием давления, а не разрежения, поэтому полностью закрывается, исключая возможность поджога находящихся в картере паров топлива.

Признаки неисправности системы вентиляции картерных газов

Неудовлетворительная работа системы PCV может являться одной из причин течи масла. Забившиеся патрубки системы вентиляции создают избыточное давление в картере двигателя, в результате чего отработавшие газы вместе с маслом будут искать альтернативные пути выхода. На начальных стадиях масло начнет гнать через отверстие для щупа, также возможно образование масляных пятен в местах уплотнений и соединений (прокладки, хомуты). Совсем неприятный вариант – выдавливание сальников.

Если перестанет нормально функционировать маслоотделитель системы вентиляции картера, то масляные отложения появятся на дроссельной заслонке и даже на воздушном фильтре. Некорректная работа самого клапана PCV может привести к неправильному учету поступающего воздуха, и, как следствие, приготовлению переобогащенной смеси.


avtoaziya.ru

Вентиляция картера двигателя – вы этого могли не знать

Сегодня поговорим о важной автомобильной системе – вентиляции картера двигателя. Некоторые ее называют «легкими двигателя», но для меня это попа. В том смысле, что если она начнет барахлить, то мотор раздует, так же как раздувает человека, когда происходит вздутие живота. Извините за такое нелепое сравнение.

Рассмотрим устройство и назначение этой системы, из чего она состоит. Неисправности и способы диагностики. Первые признаки выхода из строй клапана вентиляции картерных газов и многое другое – полный разбор технологии.

Что такое картерные газы

Они «прорываются» из камеры сгорания, во время вспышки воздушно-топливной смеси. Многие возразят: «А как же компрессионные кольца»? Да, они большую часть задерживают, но небольшое количество их проходит в картер.Чем больше износ цилиндро-поршневой группы, тем больше проходит через кольца.

Это не удивительно, зазоры меняются, геометрия цилиндров становится другая. Во время работы двигателя, большое количество этих газов увеличивает давление в картере мотора. Это неблагоприятно влияет на ресурс агрегата в целом и отдельных его компонентов – течь масла из-под прокладок и сальников и другие негативные последствия.

Что может произойти при выходе из строя системы

Повышение давления в двигателе. Течь через любые сальники и прокладки мотора, клапанной крышки. Везде, где будут слабые места, оттуда начнет выдавливать масло. При неисправностях в работе вентиляции картера можно наблюдать масляные запотевания в местах уплотнений силового агрегата, в худшем случае, откровенные течь масла.

Ухудшение физических и химических свойств масла. Это связано с тем, что, прорываясь, выхлопные газы смешиваются с маслом. В результате оно теряет свои характеристики. Значит, хуже смазываются трущиеся пары в моторе, увеличивается их износ.

Что такое система вентиляции картера

Чтобы уменьшить негативное влияние на ресурс мотора, была разработана система вентиляции. Она снижает давление, «высасывая» газы через систему патрубков, шланг и клапанов. Схематически она показана на рисунке.

Из чего состоит
  1. Патрубки, шланги;
  2. Маслоотделитель;
  3. Регулирующий клапан.

В классических моделях ВАЗ вентиляция картера двигателя упрощена, в ней нет клапана.

Схема работы
  1. Газы, через шланги попадают в маслоотделитель, где происходит отделения паров масла от газов;
  2. Далее они поступают в клапан вентиляции. Он соединен со впускным коллектором. Разряжение в нем «отсасывает» их обратно во впуск.

Таким образом, избавляемся от избыточного давления.

В отечественных машинах роль маслоотделителя играет сапун. Он напрямую связан с силовым агрегатом. Масло, проходя через него, оседает на его стенках. Он напрямую связан с впуском. Одна шланга подключена к корпусу воздушного фильтра, откачка происходит во время нагрузки двигателя. Вторая шланга подключена к карбюратору, ниже дросселя. Она нужна для вентиляции картера на холостых оборотах ДВС.

Маслоотделитель

Он бывает:

  1. Тангенциальный;
  2. Лабиринтовый.

В первом случае картерные газы под углом входят в корпус маслоотделителя. Они закручиваются, получают тангенциальное ускорение. За счет центробежной силы масляная эмульсия и пары остаются на стенках отделителя, стекают обратно в поддон ДВС. Газовый поток поступает дальше в клапан.

Второй тип имеет в своей конструкции лабиринт (логично предположить из названия). Картерные газы проходя по нему, ударяясь о его стенки стекает в отстойник.

Клапан вентиляции картера

Необходим для регулировки интенсивности «отсоса». Во впускном коллекторе двигателя на разных режимах работы может образовываться большое разряжение. Через систему вентиляции в картере может создаваться большой вакуум. Чем выше он будет, тем больше продуктов сгорания топливовоздушной смеси будет «пробиваться» через компрессионные кольца в объем мотора.

При создании избыточного давления клапан открывается, газы «засасываются» во впуск, давление снижается. При образовании вакуума, он закрывается, предотвращая создания большого разряжения. Таким образом, происходит регулировка высасывания остатков сгорания топлива, паров бензина и т.д. из ДВС.

Проверка

Работу вентиляции картера двигателя можно проверить двумя способами:

  1. Визуально. Если в местах уплотнений силового агрегата (сальников коленвала, прокладки клапанной крышки или поддона и т.д.) наблюдаются масляные подтеки, запотевания – верный признак нарушения работоспособности системы. Увеличивается давление при работе мотора, оно выдавливает слабые уплотнения.

  1. Через крышку маслозаливной горловины. Выкручиваем её, запускаем двигатель. Приложив ладонь к ней, наблюдается повышенное давление – система некорректно работает. В запущенных случаях можно видеть сизый дым, от высокого давления поднимается щуп измерения уровня масла в поддоне. Если ощущается вакуум или слышно шипение, клапан вентиляции «залег» в открытом положении, его нужно менять или ремонтировать.

Ремонт и обслуживание

В большинстве случаев причинами неправильной работы вентиляции картера мотора является её засорение, «зарастание» масляными отложениями. Забивается маслоотделитель, картерные газы не в состоянии проходить по системе.

Устраняется обычной чисткой. Маслоотделитель имеет простую конструкцию – пластиковая деталь цилиндрической формы с тремя патрубками. Снимаются с него шланги. Он чистится от масляных отложений и промывается бензином.

С лабиринтовыми маслоотделителями дело обстоит сложней. Они, в большинстве случаев, не разборные, встроенные в клапанную крышку. Это характерно для вентиляции картера дизельных двигателей. Поэтому чистка его невозможно, а замена его прокладок не целесообразна. Лучше раскошелиться и купить весь узел в сборе вместе с уплотнителями, это выйдет чуть дороже, но в результате будите иметь новую деталь.

То же самое происходит с клапаном. При большом пробеге и увеличенном износе цилиндро-поршневой группы картерные газы насыщены масляными парами. Они нарастают на поверхности клапана. Что приводит к его заклиниванию.

Достаточно его снять, разобрать. Он ремонтопригодный, почистить и установить его обратно. В худшем случае может порваться мембрана клапана. Это определяется визуальным осмотром при его разборке. Продаются ремкомплекты, меняем мембрану, собираем все до кучи и устанавливаем в систему – радуемся проделанной работе.

Вывод

Системы вентиляции картера очень важна для двигателя. Её неисправность может привести к печальным результатам. Начиная от простого масляного запотевания прокладок, до попадания масла во впускной коллектор. На дизельных моторах, турбонагнетатель может начать «гнать» масло во впускной тракт, интеркулер и дальше по схеме. Хотя турбина может быть исправной, но ее срок эксплуатации будет сокращаться.

Простое обслуживание и регулярный уход за ней избавит вас от головной боли и дорогостоящего, преждевременного ремонта компонентов силового агрегата. Тем более, ремонт и контроль над ней можно проводить самостоятельно. По первым признакам, о которых я рассказывал в этой статье, запросто определяется неисправность на ранних стадиях.

Если была полезна статья, делитесь ней с друзьями, оставляйте комментарии, если я что-то упустил. Всем удачи на дорогах!

avtoyoutubb.ru

Какую вентиляцию картера имеют большинство автомобильных двигателей

1.Вставьте пропушенные слова:

Кривошипно- шатунный механизм преобразует возвратно-поступательное движение ________________ во вращение _______________________________

2.Перечислите подвижные детали КШМ: __________________________________________________________________________________________________________________________________________________________________________________________________________________

Неподвижные детали КШМ: __________________________________________________________________________________________________________________________________________________________________________________________________________________

3. К каким деталям КШМ относятся эти детали и подпишите название каждой

Эти детали КШМ относятся к __________________________ ______________группе.

4. Сколько головок цилиндров устанавливается на автомобиле ЗИЛ-508?

5. Какую вентиляцию картера имеют большинство автомобильных двигателей?

6. Какие гильзы называют «мокрыми»? ____________________________________________________________________________________________________________________________________________________

7. Как называется эта деталь КШМ, напишите его назначение и устройство.

8. Для чего в днище поршня дизельного двигателя делают выемку? ____________________________________________________________________________________________________________________________________________________

9. Что изображено на рисунке, где они устанавливаются и как называются

10. Как называется эта деталь КШМ, напишите ее устройство и назначение

11. Сколько шатунов устанавливается на шатунной шейке V- образного двигателя? ____________________________________________________________________________________________________________________________________________

12. Напишите назначение и устройство коленчатого вала

____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

13. Для чего к шейкам коленчатого вала прикрепляются противовесы? ____________________________________________________________________________________________________________________________________________________

14. В виде чего изготавливаются коренные и шатунные подшипники и из какого материала они изготовлены? ______________________________________________________________________________________________________________________________________________________________________________________________________________________________

15. Вставьте пропущенные слова:

Маховик служит для равномерного вращения _______________________________

и преодоления двигателем___________________ нагрузок при трогании с места и во время работы. Маховик представляет собой ___________________________

16. Зачем на ободе маховика напрессован стальной зубчатый венец? ______________________________________________________________________________________________________________________________________________________________________________________________________________________________

Газораспределительный механизм

1. Напишите назначение газораспределительного механизма ______________________________________________________________________________________________________________________________________________________________________________________________________________________________

2. Что такое фаза газораспределения? ____________________________________________________________________________________________________________________________________________________

3. Перечислите устройство ГРМ

4. Напишите передаточные детали ГРМ двигателя ЗМЗ-53 ______________________________________________________________________________________________________________________________________________________________________________________________________________________________

5. Закончите предложение:

Распределительный вал предназначен для своевременного_________________________________________________________________________________________________________________________________________________________________________________________________________________

6. Какие детали изготовлены заодно с распредвалом? ____________________________________________________________________________________________________________________________________________________

7. Где устанавливается приводная шестерня распредвала и из какого материала она изготавливается?

8. Почему диаметр распределительной шестерни коленчатого вала меньше шестерни распредвала? ______________________________________________________________________________________________________________________________________________________________________________________________________________________________

Система охлаждения

1. Для чего служит система охлаждения? ______________________________________________________________________________________________________________________________________________________________________________________________________________________________

2. Система охлаждения бывает двух видов:

3. Какая должна быть температура охлаждающей жидкости для нормальной работы двигателя?

4.Какие узлы и агрегаты включает в себя жидкостная система охлаждения? ______________________________________________________________________________________________________________________________________________________________________________________________________________________________

5. По какому кругу циркулирует жидкость на этом рисунке?

6.Какой узел системы охлаждения служит для ускорения прогрева холодного двигателя и автоматического регулирования его теплового режима в заданных пределах?

7. Что изображено на рисунке? Напишите назначение и устройство этого узла.

8. Напишите назначение и устройство радиатора системы охлаждения ________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

9. Из какого материала изготовлены баки и сердцевина радиатора? ____________________________________________________________________________________________________________________________________________

10. Как называется этот узел системы охлаждения? Напишите его устройство и работу.

.

11. Для чего в крышке радиатора устанавливают паровоздушный клапан? ______________________________________________________________________________________________________________________________________________________________________________________________________________________________

12. Где устанавливаются датчики указателя температуры охлаждающей жидкости? ____________________________________________________________________________________________________________________________________________

13. Для чего на некоторых автомобилях устанавливают предпусковые подогреватели? ____________________________________________________________________________________________________________________________________________

14. Какие три положения имеет переключатель предпускового подогревателя? ______________________________________________________________________________________________________________________________________________________________________________________________________________________________

15. Опишите схему работы предпускового подогревателя

Смазочная система

1. Для чего необходима смазочная система двигателя? ______________________________________________________________________________________________________________________________________________________________________________________________________________________________

2. Какая система смазки будет называться «комбинированная»? ______________________________________________________________________________________________________________________________________________________________________________________________________________________________

3. Перечислите детали двигателя, которые будут смазываться

под давлением: ______________________________________________________________________________________________________________________________________________________________________________________________________________________________

4. Перечислите основные узлы системы смазки двигателя

1.___________________________________________________________________________

2.___________________________________________________________________________

3.___________________________________________________________________________

4.___________________________________________________________________________

5.___________________________________________________________________________

5.Куда удаляются картерные газы при закрытой вентиляции картера? ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________

6.Напишите схему работы системы смазки ________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

7.Как называется узел системы смазки, указанный на рисунке? Напишите его назначение и устройство.

8.Какой клапан смонтирован в расточке корпуса насоса и для чего он нужен? ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________

9.Для чего нужен перепускной клапан в насосе и на какое давление он отрегулирован? ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________

10.Как называется узел системы смазки, указанный на рисунке? Напишите его назначение и устройство.

________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

11. Из каких основных частей состоит фильтр со сменным фильтрующим элементом?____________________________________________________________________________________________________________________________________________________________________________________________________________________

12.Перечислите функции моторного масла:________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

  • Вентиляция картера двигателя автомобиля: как правильно организовать
  • Особенности системы вентиляции картера ДВС
  • Конструкция вентиляционной системы картера
  • Штуцер вентиляции картера

Известно, что в процессе своей работы, двигатель перерабатывает топливную смесь, излишки которой, смешиваясь с воздухом должны выходить в виде отработанных газов наружу. С помощью выхлопной трубы, так все и происходит, но что бы хоть как-то минимизировать вред для окружающей среды, применяют различные фильтры. Есть свои специфические фильтры и непосредственно в двигателе, применяющиеся в системе вентиляции картера.

Картер — главная корпусная деталь двигателя, имеющая самую большую полость, в которой находится коленчатый вал, а ее верхняя часть вмещает в себя блок цилиндров. Картер также можно назвать отдельной деталью (если речь идет об небольших двигателях), такой себе коробкой, объединивший в себе все детали мотора.

При работе двигателя, часть отработанных газов из камер сгорания могут просачиваться в картер и без того уже содержащий пары топлива, масла и воды. В итоге, слившись воедино, эта смесь носит название картерных газов, сильное скопление которых значительно понижает состав и положительные свойства моторного масла, разрушая при этом металлические части двигателя.

Кроме того, эти вредные вещества попадают в атмосферу, тем самым сильно загрязняя ее. Что бы этого не случилось, существует вентиляция картера. Об конструкции и особенностях этой системы, мы расскажем в этой статье.

Особенности системы вентиляции картера ДВС

В прилагающейся к автомобилю технической документации, касающееся его ремонта и обслуживания, не смотря на видимую существенную роль данной системы, ей уделяется мало внимания. А зря, ведь на современных двигателях выход из строя вентиляции картера грозит ему значительным понижением работоспособности.

Что бы система вентиляции исправно работала, необходимо учитывать такие важные моменты как наличие свежего воздуха и забор вредных газов. За способом подвода воздуха все картерные вентиляционные системы можно разделить на открытые и закрытые. Первый вариант базируется на заборе воздушных потоков непосредственно с внешней среды, а второй — использует части системы питания, такие как, например впускной такт.

Открытая вентиляционная система не работает при малых оборотах двигателя и на холостом ходу. Также, она не выполняет свое назначение на больших оборотах, а еще из-за нее возможно засасывание нефильтрированного атмосферного воздуха. Иногда, использование такой системы служит одной из причин слишком большого расхода масла и, соответственно, замасливания мотора.

Закрытая вентиляционная система картера используется в случае необходимости уменьшения степени загрязнения окружающей среды. С этой целью устанавливается специальный клапан, который выводит попавшие от принудительной вентиляции газы, во впускной коллектор мотора. Такая система имеет как плюсы, так и минусы. К первой группе следует отнести сравнительно меньший расход масла, стабильную работу двигателя зимой (входной воздух обогревается картерными газами), стойкость двигателя к детонации, так как топливно-воздушная консистенция разбавляется. Ко второй группе, включающей минусы использования относят: сильное загрязнение входных воздуховодов и карбюратора и возможность влияния на окисление масла.

Существует также классификация подобных систем в зависимости от способа отвода картерных газов. С этой точки зрения выделяют системы принудительного (подводят газы к впускному коллектору) и эжекционного (отводят газы в окружающую среду) действия.

До 1961 года все автомобилестроение применяло в выпускаемых транспортных средствах открытую систему с эжекционным принципом действия, в которых для вывода из картера газов использовали эжекционную трубку, проходящую вдоль всего двигателя к нижнему поддону картера. Когда машина двигалась, возле края трубки образовывалось незначительное разрежение, хорошо влияющее на вентиляцию картера.

Чуть позже результаты, проведенных компанией GENERAL MOTORS исследований доказали, что основное количество вредных веществ, образующиеся в следствии неполного сгорания углеводорода, выбрасывается в атмосферу именно через эжекционную трубку системы вентиляции. В следствии этого открытия, начиная с 1961 года, все автомобили, поступающие в продажу в штат Калифорния (Америка), были обязаны оборудоваться системой вентиляции принудительного действия, а с 1962 года, это требование начало действовать на всей территории США. С тех пор прошло не одно десятилетие, но двигатели именно с этой системой продолжают выпускаться и в наше время.

Конструкция вентиляционной системы картера

И так, мы уже выяснили, что в двигателях современных автомобилей применяется картерная система вентиляции принудительного действия, но разные производители, по разному подходят к вопросу ее конструкции. Наиболее сложной (но самой эффективной) является система в которой, воздух попадает в картер через отдельный воздушный фильтр.

В бензиновых двигателях, при условии, что нагрузки небольшие, одна часть разбавленных воздухом газов, попадает в воздушный фильтр, находящийся за фильтрующим эллементом, а вторая часть, через регулирующий жиклер поступает в задроссельное пространство.

Детально разбирать каждый вид вентиляционной системы картера, для отдельно взятых двигателей (бензиновых, дизельных, газовых и т.д.) очень долго, да и сейчас совершенно неуместно, поэтому сосредоточим свое внимание на основных, общих для всех компонентах: маслоотделителе, воздушных патрубках (для циркуляции газов) и вентиляционных клапанах.

Маслоотделитель создан для препятствования попаданию паров масла в полость камеры сгорания. Благодаря ему уменьшается количество образования сажи. Выделяют три способа разделения масла и газа: циклический, лабиринтный и комбинированный, который в настоящее время наиболее часто применяется. Лабиринтный маслоотделитель (успокоитель) нацелен на замедление движения картерных газов. В следствии этого, большие масляные капли стекая по стенкам попадают в картер двигателя.

Дальнейшее очищение масла от картерных газов выполняет центробежный маслоотделитель, проходя через который они начинают вращаться. В итоге, под воздействием центробежной силы, частички масла оседают на стенках, а затем также стекают в картер. Что бы предотвратить турбулентность газов, после прохождения ими центробежного маслоотделителя в ход пускают выходной лабиринтный успокоитель. Именно тут проходит окончательное разделение масла и газа.

Вентиляционный клапан картера нужен для регулировки давления картерных газов, попадающих в колектор. Если разряжение во впускном канале не очень существенное — клапан открыт, но если оно довольно ощутимое, то клапан самостоятельно закрывается.

Вся система вентиляционной работы картера базируется на разряжении, возникающем во впускном коллекторе двигателя. С помощью этого процесса переработанные газы выводятся из картера в маслоотделитель, где очищаются от масла и по специальным патрубкам переходят во впускной колектор. Там, смешавшись с воздухом, они ликвидируются в камерах сгорания. Если двигатель оснащен турбонадувом, то регуляция вентиляции картера может осуществляться с помощью дроссельной заслонки.

Штуцер вентиляции картера

Названием «Штуцер» обозначают патрубки с резьбовым соединением, помогающие объеденить части трубопровода, или соединить вентили, емкости и прочие детали жидкостных и газовых преобразующих систем. Что касается системы вентиляции картера, то тут штуцер просто незаменим, а система вентиляции карбюраторных двигателей «Солекс» без него вообще работать не будет.

Такая его незаменимость объясняется достаточно просто. Бывает, что в процессе качественного удаления газов возникают проблемы. Чаще всего, причина этого кроется в недостаточном разряжении картерных газов, находящихся в воздушном фильтре.

Для того, чтоб увеличить работоспособность системы вентиляции в нее внедряют еще одну, дополнительную ветвь (малая ветвь). Она имеет вид трубки, с помощью которой задроссельная зона соединяется со штуцером, отвечающий за отвод картерных газов от двигателя внутреннего сгорания. Диаметр этой ветви совсем маленький и составляет не больше пары миллиметров. Также, штуцер может помочь в диагностике некоторых причин сбоя в вентиляции картера. Для этого на него надевают трубку, а затем дуют в нее, если воздух не проходит — значит надо прочистить каналы системы, так как они, скорее всего, засорены.

Штуцер располагается в нижней части карбюратора, рядом с дроссельной заслонкой первичной камеры, под насосом ускорения. В случае необходимости, на эту деталь натягивают шланг, выполняющий вытяжную функцию.

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

Принудительная вентиляция — картер

Принудительная вентиляция картера имеется у большинства современных автомобильных двигателей. [1]

У двигателей с принудительной вентиляцией картера необходимо систематически очищать вентиляционные трубки. При очистке трубки промываются в керосине с продувкой сжатым воздухом, а при сильном загрязнении трубок — при помощи проволоки или прожиганием на огне. [2]

Двигатель автомобиля ЗИЛ-130 имеет принудительную вентиляцию картера . Картерные газы отсасываются во впускной трубопровод 2 ( рис. 49, а) по трубке 3 через клапан 4, расположенный между впускными трубопроводами правого и левого рядов цилиндров. Клапан регулирует проходное сечение для отсоса картерных газов в зависимости от разрежения во впускном трубопроводе, которое увеличивается при полном открытии дроссельной заслонки и уменьшается по мере ее прикры. [4]

На рис. 101 показана схема принудительной вентиляции картера восьмицилиндрового V-образного двигателя . Осуществляется она соединением картера с впускным трубопроводом. [6]

На рис. 102 показана схема принудительной вентиляции картера восьмицилиндрового V-образного двигателя . Осуществляется она соединением картера с впускным трубопроводом. Свежий воздух поступает в картер через воздушный фильтр / маслоналивной горловины. В систему вентиляции картера включен клапан 3, установленный на впускном трубопроводе. Перед клапаном расположен маслоуловитель 2, отделяющий частицы масла от газов, отсасываемых из картера. [8]

Поэтому большинство современных автомобильных двигателей имеет принудительную вентиляцию картера . [9]

Для улучшения условий работы смазки во всех двигателях применяют принудительную вентиляцию картера . [10]

На двигателе автомобиля ГАЗ-24 Волга ( рис. 63 6) применяется закрытая принудительная вентиляция картера . При работе двигателя на частичных нагрузках ( дроссельная заслонка открыта не полностью) за заслонкой создается высокое разрежение. К картерным газам, идущим по шлангу 14, добавляется чистый воздух, поступающий по шлангу 12 большого диаметра. Все эти газы и воздух смешиваются с горючей смесью, поступают через открытый впускной клапан в цилиндр двигателя и там сгорают. [11]

В современных двигателях от эффективности этих свойств масел зависит интенсивность закоксовыва-ния клапана принудительной вентиляции картера . [13]

В присутствии поверхностно-активных присадок уменьшается осадкообразование в двигателях, увеличивается срок службы систем с принудительной вентиляцией картера , общее количество отложений во всасывающей системе сводится к минимуму, причем эти отложения становятся мягче, растворяются в углеводородах, и порча двигателя при их откалывании менее вероятна. [14]

Испытание по этому методу проводят на шестицилиндровом рядном двигателе Ford модели 1963 г. Отличительная особенность испытания — выключена система принудительной вентиляции картера , двигатель оборудован системой конденсации прорывающихся в картер газов; поэтому кондевсат попадает в работающее масло, что интенсифицирует процесс ржавления деталей двигателя. [15]

l2rv.ru

Система вентиляции картера двигателя

Казалось бы, сама по себе работа ДВС служит источником, осуществляющим сильное загрязнение атмосферы, а мы пытаемся говорить тут про вентиляцию. Однако не все так просто, мотору, как и всем остальным, тоже нужен свежий воздух. Обеспечивает его и система вентиляции картера.

О назначении системы вентиляции

Все проблемы, как всегда, таятся в мелочах. В данном случае это касается имеющихся зазоров между поршнем и блоком цилиндров двигателя. Казалось бы, конструкцией предусмотрены специальные элементы, минимизирующие эти зазоры. И все же, несмотря на уплотняющие кольца, происходит попадание продуктов сгорания топлива, его несгоревших частиц, паров воды в объем картера двигателя. Следствием этого является ухудшение качества масла и потеря его смазывающих свойств. Проявляется подобный эффект в том, что обычное масло становится водно-масляной эмульсией, а также происходит его разжижение.


В цилиндрах двигателя, при его работе, создается повышенное давление, так что нет ничего удивительного, что газы вырываются оттуда с повышенным давлением. Следствием этого будет создание такого же повышенного давления в картере, что может привести к выдавливанию сальников и утечке масла.

Именно для предотвращения подобных явлений, описанных выше, предназначена система вентиляции картера. Она позволяет вывести из него прорвавшиеся отработанные газы, обеспечить нормальное давление, тем самым, повысить надёжность и долговечность двигателя.

Как происходит вентиляция картера

Как всегда в таких случаях, существует выбор.

Реализация данной системы может быть двух типов:

  • открытая;
  • закрытая.

В первом случае, когда система вентиляции картера двигателя открытая, прорвавшиеся выхлопные газы удаляются наружу, за пределы силового агрегата. Простота и дешевизна этого способа компенсируется загрязнением окружающей среды.

Кроме того, следует знать, что открытая вентиляция:

  1. не работает при малой скорости и на холостом ходу;
  2. не справляется со своими обязанностями при высоких оборотах;
  3. через нее возможно засасывание атмосферного нефильтрованного воздуха при остывании двигателя;
  4. может послужить одной из причин увеличенного расхода масла, а также причиной замасливания мотора.

Закрытую или принудительную вентиляцию картера осуществляют тогда, когда пытаются уменьшить степень загрязнения, оказываемую автомобилем. Для этого устанавливается специальный клапан, благодаря которому, при принудительной вентиляции картера, попавшие туда выхлопные газы, выводятся во впускной коллектор двигателя.


К недостаткам такой системы можно отнести:
  • усиленное загрязнение карбюратора и входных воздуховодов;
  • сильная тяга на высоких оборотах в системе отсоса отработанных газов, что может служить дополнительной причиной окисления масла.

К достоинствам следует отнести:

  1. уменьшенный расход масла;
  2. стабильную работу в зимний период за счет подогрева входного воздуха картерными газами;
  3. они же повышают детонационную стойкость двигателя за счет разбавления топливно-воздушной смеси.

Варианты создания принудительной очистки от картерных газов

Правда не все так просто, как кажется с первого взгляда. Существует два подхода, по которым может быть выполнена принудительная вентиляция картера. Из картера могут выводиться выхлопные газы, а возможно и обратное действие — приток воздуха снаружи.


Пример того, как построена система принудительной вентиляции картера, основанная на отводе выхлопных газов, приведен выше. При этом прорвавшиеся отработанные газы, оказываются под действием разрежения во впускном коллекторе и поступают через маслоотделитель (1), клапан (2) и по шлангам, очистившись от частиц масла, попадают опять в цилиндры двигателя.

Вариант, когда система вентиляции построена на притоке свежего воздуха, приведен на рисунке ниже. В этом случае наружный воздух попадает в картер мотора, смешивается с картерным газами, и через специальный клапан PCV поступает обратно в цилиндры мотора. Построенная таким образом система вентиляции, позволяет избежать попадания продуктов работы ДВС в атмосферу. Именно такой подход используется современными автопроизводителями, при проектировании и изготовлении автомобилей.


Для поддержания нормальной работы мотора на холостом ходу, клапан PCV запирает выход газов из картера, при глубоком разрежении в трубопроводе.

Непременным атрибутом современного ДВС является вентиляции картера, выполненная чаще всего как закрытая система. Она позволяет повысить надёжность работы мотора и уменьшить отрицательное воздействие выхлопа автомобиля на атмосферу.

znanieavto.ru

Вентиляция картера двигателя.


Вентиляция картера двигателя




Вентиляция картера предназначена для удаления картерных газов, образующихся в результате прорыва продуктов сгорания топлива через зазоры между гильзой и поршневыми кольцами и их взаимодействия с парами масла.

В газах содержатся загрязняющие масло серистые соединения и пары воды, которые образуют серную и сернистую кислоты, значительно ухудшающие качество масла. Пары воды вызывают вспенивание масла и образование эмульсии, что затрудняет поступление масла к трущимся поверхностям. Прорвавшиеся в картер газы повышают в нем давление, что может вызвать утечку масла через уплотнения картерного пространства.

Недопустимо также проникновение газов под капот двигателя, а затем в кузов и кабину автомобиля, так как содержащиеся в газах вредные вещества опасны для пассажиров и водителя. Отсос картерных газов уменьшает старение масла, а также, создавая разрежение в поддоне, предотвращает возможность утечки масла через уплотнения.

В автомобильных двигателях применяется вентиляция картера двух типов:

  • открытая – с отводом картерных газов в окружающую среду;
  • закрытая – с отсасыванием газов во впускную систему двигателя.

Открытая вентиляция (рис. 1) осуществляется под действием разрежения, возникающего в газоотводящей трубке вследствие относительного перемещения воздуха при движении автомобиля. Чтобы вместе с картерными газами не уносились частицы масла применяется специальный сапун лабиринтного типа, на стенках которого масляные капли оседают и стекают в поддон.

Недостатком открытой системы вентиляции картера является ее низкая эффективность, а также отравление окружающей среды вредными для здоровья человека и живой природы веществами.

В закрытых системах газы могут отводиться в воздухоочиститель до карбюратора или непосредственно во впускной трубопровод. Отвод газа через воздухоочиститель не создает требуемой интенсивности отсоса при минимальных частотах вращения коленчатого вала и полной нагрузке.
Кроме того, проход картерных газов через карбюратор вызывает осмоление его каналов, жиклеров и подвижных деталей. Поэтому более предпочтительной является система с отсосом газов непосредственно во впускной трубопровод двигателя, в котором всегда имеется разрежение.




Система вентиляции, показанная на рис. 2, работает следующим образом: под действием разрежения во впускном трубопроводе 10 картерные газы поднимаются вверх и через угольник 9 и шланг 5 попадают в корпус маслоотделителя, закрытый крышкой 1.
Между крышкой и корпусом находится резиновая мембрана 2, поджимаемая пружиной 3 к корпусу. Оседающие на дне корпуса маслоотделителя частицы масла по трубке 6 сливаются в картер двигателя.

С помощью мембраны 2, которая находится с одной стороны, под давлением атмосферного воздуха, а с другой – под давлением картерных газов и пружины, в картере поддерживается избыточное давление.

На рис. 3 показана схема вентиляции картера карбюраторного двигателя автомобилей марки «ВАЗ».
Здесь картерные газы отсасываются через маслоотделитель 7 и шланг 6 в вытяжной коллектор 4 воздушного фильтра 3. Из вытяжного коллектора на холостом ходу и при малых нагрузках двигателя (когда разрежение в воздушном фильтре невелико) картерные газы поступают через шланг 2 и золотник 1 под дроссельные заслонки карбюратора.

При остальных режимах работы двигателя картерные газы поступают в карбюратор через воздушный фильтр 3. В маслоотделителе 7 масло выделяется и по отводной трубке 8 стекает в масляный поддон.
Пламегаситель 5 предотвращает проникновение пламени в картер двигателя при возможных вспышках в карбюраторе.

***

Классификация и маркировка моторных масел


Главная страница
Дистанционное образование

Специальности

Учебные дисциплины

Олимпиады и тесты

k-a-t.ru

Strong2206 › Блог › Устройство и принцип действия системы вентиляции картерных газов на примере двигателя 1.8Т

Устройство и принцип действия системы вентиляции картерных газов на примере двигателя 1.8Т
Для начала, собственно, вопрос: А зачем она нужна?

Как бы нам не хотелось, но сделать пару трения; стенка цилиндра /поршневые кольца; абсолютно герметичной, невозможно. А это значит, что при работе двигателя, часть газов будет прорываться из камеры сгорания в картер, это так называемые Blow-By; газы. Естественно, в картере двигателя в этом случае начнет расти давление и масло, находящееся в картере закономерно будет искать выход, и таки найдет его в виде уплотнений, сальников и т.п. Внешний вид двигателя будет весьма и весьма неряшливым. Также не стоит забывать факт ускоренного старения масла находящегося в среде газов, да еще и под давлением.
Дабы прекратить все это безобразие газы надо куда-то девать, т.е. обеспечить в картере вентиляцию.
Замечательно, но зачем городить целую систему? Ведь можно обойтись простым шлангом в атмосферу, как на некоторых (жигах)
Можно, конечно, но совсем не этично по отношению к атмосфере, которой, мы собственно пользуемся.

Что же, приступим к рассмотрению системы вентиляции картерных газов на примере двигателя 1.8Т
Состав системы:
1) Маслоотделитель
2) Клапан принудительной вентиляции картера
3) Редукционный клапан вентиляции картерных газов
4) Трубопроводы и шланги

Система начинается от картера (логично, не правда ли?) в верхней точке которого закреплен маслоотделитель. Маслоотделитель представляет собой полую коробку, одна стенка которой сделана в виде решетки с пластинами, отогнутыми на угол примерно 20-40 градусов, и обращенными в сторону картера, в котором также имеется маслоотражатель (в самом деле, нам же надо газы из картера откачивать, а не масло). В верхней части коробки расположен штуцер, к которому присоединён трубопровод системы вентиляции картера.
Следом у нас имеется чуть ли не главный элемент системы, а именно клапан принудительной вентиляции картера (он же bleeder valve, pcv valve). Рассмотрим устройство и принцип работы клапана:

Собственно клапан представляет собой 2 цилиндрика и поршенек с пружинкой внутри. Однако не все так просто, известно, что разрежение в картере должно быть строго определенной величины, поэтому клапан имеет 3 положения:
1) Поршенек в положении. А — У источника разрежения очень низкое давление, пример: источником разрежения является задроссельное пространство, где на минимальных углах открытия дроссельной заслонки давление = -500 -700 mBar. Для системы вентиляции картера такое давление неприемлемо. Поэтому поршенек под воздействием разрежения, преодолевая сопротивление пружины, запирает клапан. Вот почему на режиме холостого хода прыгает крышка маслозаливной горловины.
2) Поршенек в положении Б — У источника разрежения очень высокое давление, пример: источником разрежения является задроссельное пространство, где на максимальных углах открытия дроссельной заслонки давление равное атмосферному, а так как у нас есть турбокомпрессор то давление может быть +500 +700 mBar. Для системы вентиляции картера такое давление неприемлемо. Поэтому поршенек под воздействием давления, распрямляя пружину, запирает клапан.
3) Поршенек в положении между А и Б — Источник разрежения имеет приемлемое давление (жесткости пружинки), поршенек смещается в промежуточное положение, и газы из системы вентиляции картерных газов проходя через наш клапан поступают к источнику разрежения. Вот почему крышка маслозаливной горловины присасывается при увеличении частоты вращения на режиме холостого хода до 2000 — 3000 об/мин.

Каким же образом происходит вентиляция при давлении в коллекторе равным и/или превышающим атмосферное?

В этом случае первостепенное значение играет статический перепад давлений перед дроссельной заслонкой (или турбокомпрессором) и после дроссельной заслонкой, именно из этих участков можно отбирать разрежение (источник(и) разрежения). Но в случае с турбокомпрессором разрежение на его входе может быть слишком велико, и его надо как-то регулировать. Эту задачу решает редукционный клапан.

Собственно сам клапан имеет также незамысловатую конструкцию. В пластиковом корпусе с двумя штуцерами, размещены: Диафрагма из маслостойкой резины, металлический колодец с двумя отверстиями и пружинка.

Работает клапан тоже очень просто:
1) При приемлемом давлении, у источника разрежения, пружинка распрямлена, вследствие чего диафрагма приподнята, канал «А» открыт для прохождения картерных газов.
2) При слишком низком давлении, у источника разрежения, диафрагма начинает смещаться вниз, преодолевая сопротивление пружины и тем самым запирая канал «А». Картерные газы начинают проходить через канал «Б» имеющий калиброванное отверстие.
3) Канал «В» предназначен для обеспечения плавного хода диафрагмы.

Так как редукционный клапан работает, как правило, при больших нагрузках двигателя, при которых количество картерных газов будет увеличиваться пропорционально, то помимо картера вентиляция также осуществляется и в головке блока цилиндров, там также установлен пластиковый маслоотражатель.

Супер! А что по отказоустойчивости системы?
При всей простоте системы, она бывает и преподносит сюрпризы, попробую систематизировать отказы:
1) Смещение поршенька с посадочного места в клапане принудительной вентиляции картера.
Симптомы: Нестабильный холостой ход, хаотичные пропуски воспламенения, зажигание лампы «Проверь двигатель». При работе двигателя на холостом ходу, открытая крышка маслозаливной горловины «присосана» разрежением

2) Ввиду неудачного расположения редукционного клапана (исправлено с 02.2002), при температурах окружающего воздуха ниже -20С, происходит замерзание влаги в клапане и последующее заклинивание диафрагмы
Симптомы: Расход масла достигает заоблачных высот и прямо пропорционален нагрузке двигателя.

3) Старение и разрыв шлангов системы вентиляции картера
Симптомы: «Потение» масляной пылью в радиусе разрыва шлага, потеря мощности, шипение при нагрузке.

Информация взята с пассатворлд.ру

Полный размер

Полный размер

Полный размер

www.drive2.ru

Вентиляции картера двигателя — устройство и принцип работы клапана

В двигателе любого автомобиля нет практически ни одной лишней системы. Работа всех деталей и узлов полностью взаимосвязана и выход из строя одного элемента, может привести к гибели другого. Этому суждению соответствует и система вентиляции картера двигателя. Рассмотрим, для чего она нужна, ее устройство и принцип работы. В конце, мы дадим вам небольшую справку по неисправностям системы.

Зачем нужна вентиляция картера двигателя?

Масло и топлива в двигателе отделяются двумя взаимодействующими деталями – цилиндр-поршень. Дело в том, что конструкция этих узлов не позволяет полностью герметизировать камеру сгорания и систему смазки двигателя. Часть газов через компрессионные и маслосъемные кольца все-таки прорываются в картер двигателя и нарушают состав масла. Такие газы называются картерными.

Проблема заключается в следующем. Дело в том, что газы в картере с маслом увеличивают давление внутри системы смазки. Повышенному давлению подвергается и масло, которое начинает давить на самые слабые участки двигателя – сальники и уплотнители. В конечном итоге происходит утечка масла, которая сопровождается масляным голоданием.

Кроме того, повышенное давление масла увеличивает скорость его старения, а значит, увеличивает износ смазывающего компонента, который придется менять раньше положенного срока.

Для борьбы с повышением давления в системе смазки предусмотрена специальная система, которая называется системой вентиляции картера двигателя. Многие задают вопросы, для чего необходимо создание целой системы вентиляции, когда можно попросту провести шланг из картера в подкапотное пространство, как делалось это на «Жигулях». Дело в том, что картерные газы являются недогоревшим остатком топлива, а потому содержат множество вредных веществ, которые оказывают неблагоприятное воздействие на окружающую среду.

Видео — Вентиляция картерных газов

Устройство и принцип работы системы вентиляции картера

Данная система состоит из множества узлов, основными из которых являются: специальный клапан с редукционным приводом, система различных шлангов и трубок, клапан для создания принудительной вентиляции и устройство, предназначенное для маслоотделения.

Самым основным элементом можно назвать устройство для маслоотделения. Оно располагается в самой верхней части картера и представляет собой полый короб, в котором одна стенка выполнена в виде решетки, которая согнута на 30 градусов. В нижней части картера устанавливается маслоотражатель. Последний нужен для того, чтобы отсеивать масло от газов, которое тоже будет стремиться попасть в систему вентиляции. Вверху маслоотделителя устанавливается штуцер, идущий в трубопровод системы вентиляции.

Далее идет самый основной компонент системы – это клапан принудительной вентиляции. Сам клапан имеет в своем составе два цилиндра и пружину с поршнем внутри. Так как принудительная вентиляция может происходить только при создании определенного разрежения внутри системы, то и положение поршня должно быть разным. Поэтому в клапане предусмотрено три положения, которые определяют основные режимы работы клапана.

  • Положение А. Источник, создающий разряжение имеет очень низкое давление. Соответственно, такое давление недопустимо для работы клапана и он под действием появившейся силы, преодолевая действие пружины, закрывается.
  • Положение Б. В этом случае разряжение довольно высокое, соответственно и давление газов тоже становится большим. Такой режим работы становится не нормальным, а соответственно и клапан под действием пружины также запирается. Такое бывает при повышении оборотов двигателя или применении турбокомпрессоров для ускоренной закачки больших объемов воздуха в цилиндры.
  • Положение А и Б. Для создания такого режима, источник разряжение должен создать оптимальное давление для жесткости пружины клапана. В этом случае, она смещает поршень в промежуточное положение и, таким образом, открывает клапан.

Основой для работы клапана вентиляции картера является обыкновенная разность между давлением за дроссельной заслонкой и после нее. Соответственно, перепад давлений может замеряться и возле турбокомпрессора. Однако, если с обычным мотором все понятно, то с турбированным возникают определенные трудности. Дело в том, что разность давлений в этом слишком высока, что потребует дополнительной регулировки. Для этой цели конструкторы разработали специальный редукционный клапан.

Редукционный клапан в своем составе имеет: диафрагму из специальной маслостойкой резины, колодец из металла, в котором имеются два отверстия, и пружину. Если давление, которое создается у источника разряжения, находится на нормальном уровне, то пружина распрямляется и поднимает диафрагму, открывая, при этом, клапан основного отверстия, давая проход для картерных газов.

В том случае, если же давление будет слишком низким, то диафрагма будет смещаться вниз и заставит пружину сжаться. Клапан основного клапана закроется, но при этом, откроется клапан второго отверстия с меньшим сечением. Картерные газы будут проходить именно через него.

Для обеспечения наиболее плавного хода диафрагмы применяется третий клапан, который установлен сверху корпуса клапана. Таким образом, достигается регулировка давления, воспринимаемого пружинами системы вентиляции.

Редукционный клапан помогает производить вентиляцию не только картера, но и блока цилиндров в целом. Это связано с его возможностью использоваться при повышенных нагрузках двигателя, когда давление увеличивается прямопропорционально.

Неисправности системы вентиляции

Несмотря на простоту системы, она может подвергнуться и банальным неисправностям, которые рано или поздно дадут о себе знать.

Прежде всего – это изменение положение поршня, относительно его посадочного места. Может проявиться в виде неустойчивого холостого хода и периодическими пропусками зажигания.

Другая проблема – это замерзание редукционного клапана в холодную погоду. Данная проблема касается не всех двигателей, но тоже имеет место быть. Может проявиться в виде повышенного расхода смазочного компонента. При увеличении нагрузки на мотор эта величина увеличивается.

Вот и все, что нужно знать о системе вентиляции картера двигателя. 

vipwash.ru

Вентиляция картера в двигателе

В процессе работы двигателя в его картер прорываются газы, состоящие из горючей смеси и продуктов полного и частичного сгорания смеси. Количество картерных газов увеличивается по мере износа поршней, поршневых колец и цилиндров. В газах содержатся загрязняющие масло-сернистые соединения и пары воды, что ухудшает качество масла, оказывает коррозирующее действие на подшипники. Весьма нежелательно проникновение картерных газов в кузов или кабину автомобиля, так как эти газы токсичны. Вентиляция картера двигателя  позволяет уменьшить вредное влияние картерных газов.

Вентиляция картера в двигателе может быть выполнена с отводом газов наружу — открытая система или в систему питания двигателя — закрытая система, для дожигания их в цилиндрах.

При открытой системе вентиляции картера двигателя устанавливается эжекционная трубка, конец которой имеет косой срез (направлен противоположно движению автомобиля).
При закрытой системе вентиляции пространство картера соединяется с впускным трубопроводом. Газы отводятся через маслоуловитель и перепускной клапан во впускной трубопровод. Свежий воздух поступает в картер через фильтр маслозаливной горловины.

Во время работы двигателя на режиме холостого хода разрежение во впускном трубопроводе сильно возрастает, что приводит к нарушению состава горючей смеси и неустойчивой работе двигателя. Для предотвращения этого устанавливается перепускной клапан.

Системы вентиляции картеров двигателей автомобилей: 1 — воздушный фильтр вентиляиии картера; 2 — воздухополводящий канал; 3 — клапан вентиляции; 4 — стакан пружины; 5 — пружина; 6 — шарик клапана; 7 — штуцер; 8 и 13 — маслоуловители; 9 — трубка вентиляции картера; 10 — впускной клапан; 11— воздушный фильтр; 12 — шланг большого диаметра; 14 шланг малого диаметра; 15 — сетчатый фильтрующий элемент; 16 — впускной трубопровод; 17 — карбюратор; 18 — щелевое отверстие.

www.autoezda.com

Система вентиляции картера турбо SR20 /Ликбез/ — Nissan Primera, 2.0 л., 1998 года на DRIVE2

Привет, друзья. Нашлось у меня время и желание еще пописать.

Эта статья является «сестрой» моей предыдущей Система вентиляции картера атмо SR20 /Ликбез/ и чтобы не перепечатывать второй раз, я настоятельно рекомендую сначала прочитать статью про атмо моторы, чтобы понимать основные принципы работы системы.

Основная разница между турбо- и атмо-двигателями в том, что во впуске турбо-мотора давление может превышать атмосферное. То есть в местах впускного тракта, где в атмо было низкое давление (ниже атмосферного), в турбо моторах уже будет более высокое давление. Это значит, что нужно вентилировать картерные газы используя другие источники низкого давления и одновременно не допустить попадание высокого давления в картер со впуска.

Еще одной важной особенностью есть то, что во многих турбо-системах система вентиляции картера включает в свой состав интеркуллер. Если газы проходят через интеркуллер, то он играет роль огромного масляного сепаратора. Масло покрывает внутренние стенки интеркуллера, уменьшая эффективность теплоотдачи. Масло также может в некоторых случаях задерживаться, стекаться в лужицы и в неподходящий момент попадать в двигатель.
Поэтому в случае с турбо некоторые варианты решения, которые в статье Система вентиляции картера атмо SR20 /Ликбез/ считались неподходящими и плохими, могут стать пригодными к использованию на турбо.

Также стоит помнить, что давление в камерах сгорания турбо-моторов гораздо выше, чем в атмо, что результирует высокой производительностью, но одновременно и большим количеством паразитных газов в системе.

Еще стоит помнить о повышенной чувствительности турбированных двигателей к детонации.

Так что на турбо система вентиляции картерных газов является более важной, чем на атмосферниках.

Начнем со схемы заводской системы вентиляции картера характерной для моторов SR20DET.

Отметим ключевые отличия схемы SR20DET от SR20DE. В этой схеме при открытой дроссельной заслонке газы больше не идут на впуск возле ДЗ. Теперь они выходят перед турбиной, но после МАФа. В этом изменении есть смысл. Если сделать, как в атмо системе, то в момент, когда двигатель «в бусте», воздух просто под давлением закачивался бы в картер. Разработчикам пришлось искать место для вентиляции картера и обеспечения низких выбросов в атмосферу. Вентилировать систему во впуск перед турбиной — по сути то же самое, что и в атмо схемах. Особого вакуума там все-таки нет, но это лучше, чем ничего. И «зеленые» спокойны за планету =)
Также важен факт, что газы выводятся уже после MAFа. Это сделано для того, чтобы масло не оседало на датчике и не засирало его. Кто хочет переносить МАФ — переносите туда, где он не будет контактировать с маслом.
Если двигатель использует MAP, то можно этот совет игнорировать.

Способы модернизации:

Удаление отдельного маслоуловителя и заглушение отверстий:

Влияние на характеристики:
— Лучший внешний вид подкапотного пространства — Да
— Упрощение системы вентиляции картера — Да
— Сохранение заводского предохранения от попадания высокого давления в картер — Да
— Прекращение использования интеркуллера в роли масляного сепаратора — Нет
— Удаление большего количества масла из вохдуха — Нет
— Улучшенная очистка картера — Нет
— Улучшенная или сохраненная пропускная способность — Нет
— Сохранение сальников и избежание паразитных газов — Нет
— Избежание масляного дыма в выхлопе — Нет
— Избежание «выплевывания» масляного щупа — Нет
— Избежание масляных подтеков из-за высокого давления — Нет
— Сохранение впускного тракта и ДЗ в чистом состоянии — Нет
— Сохранение впускного коллектора в чистом состоянии — Нет
— Сохранение или уменьшение вредных выбросов — Возможно
— Предотвращение от попадания не учтенного воздуха во впуск — Да

Вывод: ПЛОХАЯ ИДЕЯ

Вентиляция при открытом дросселе в атмосферу через фильтр:

Влияние на характеристики:
— Лучший внешний вид подкапотного пространства — Возможно
— Упрощение системы вентиляции картера — Возможно
— Сохранение заводского предохранения от попадания высокого давления в картер — Да
— Прекращение использования интеркуллера в роли масляного сепаратора — Да
— Удаление большего количества масла из вохдуха — Без изменений
— Улучшенная очистка картера — Нет
— Улучшенная или сохраненная пропускная способность — Да
— Сохранение сальников и избежание паразитных газов — Нет
— Избежание масляного дыма в выхлопе — Нет
— Избежание «выплевывания» масляного щупа — Нет
— Избежание масляных подтеков из-за высокого давления — Нет
— Сохранение впускного тракта и ДЗ в чистом состоянии — Да
— Сохранение впускного коллектора в чистом состоянии — Да
— Сохранение или уменьшение вредных выбросов — Нет
— Предотвращение от попадания не учтенного воздуха во впуск — Нет

Вывод: НЕПЛОХАЯ ИДЕЯ

Пока что это всё. Веду поиски других способов решения проблемы. Запись будет обновляться при наличии новой информации.

www.drive2.ru

Какую вентиляцию картера имеют большинство автомобильных двигателей

Главная » Разное » Какую вентиляцию картера имеют большинство автомобильных двигателей

Большая Энциклопедия Нефти и Газа

Cтраница 1

Принудительная вентиляция картера имеется у большинства современных автомобильных двигателей.  [1]

У двигателей с принудительной вентиляцией картера необходимо систематически очищать вентиляционные трубки. При очистке трубки промываются в керосине с продувкой сжатым воздухом, а при сильном загрязнении трубок — при помощи проволоки или прожиганием на огне.  [2]

Схемы вентиляции двигателя.  [3]

Двигатель автомобиля ЗИЛ-130 имеет принудительную вентиляцию картера. Картерные газы отсасываются во впускной трубопровод 2 ( рис. 49, а) по трубке 3 через клапан 4, расположенный между впускными трубопроводами правого и левого рядов цилиндров. Клапан регулирует проходное сечение для отсоса картерных газов в зависимости от разрежения во впускном трубопроводе, которое увеличивается при полном открытии дроссельной заслонки и уменьшается по мере ее прикры.  [4]

Полнопоточный масляный фильтр двигателя автомобиля ГАЗ-24 Волга.  [5]

На рис. 101 показана схема принудительной вентиляции картера восьмицилиндрового V-образного двигателя. Осуществляется она соединением картера с впускным трубопроводом.  [6]

Схема вентиляции картера двигателя ЗИЛ-130.  [7]

На рис. 102 показана схема принудительной вентиляции картера восьмицилиндрового V-образного двигателя. Осуществляется она соединением картера с впускным трубопроводом. Свежий воздух поступает в картер через воздушный фильтр / маслоналивной горловины. В систему вентиляции картера включен клапан 3, установленный на впускном трубопроводе. Перед клапаном расположен маслоуловитель 2, отделяющий частицы масла от газов, отсасываемых из картера.  [8]

Поэтому большинство современных автомобильных двигателей имеет принудительную вентиляцию картера.  [9]

Для улучшения условий работы смазки во всех двигателях применяют принудительную вентиляцию картера.  [10]

На двигателе автомобиля ГАЗ-24 Волга ( рис. 63 6) применяется закрытая принудительная вентиляция картера. При работе двигателя на частичных нагрузках ( дроссельная заслонка открыта не полностью) за заслонкой создается высокое разрежение. К картерным газам, идущим по шлангу 14, добавляется чистый воздух, поступающий по шлангу 12 большого диаметра. Все эти газы и воздух смешиваются с горючей смесью, поступают через открытый впускной клапан в цилиндр двигателя и там сгорают.  [11]

В современных двигателях от эффективности этих свойств масел зависит интенсивность закоксовыва-ния клапана принудительной вентиляции картера.  [13]

В присутствии поверхностно-активных присадок уменьшается осадкообразование в двигателях, увеличивается срок службы систем с принудительной вентиляцией картера, общее количество отложений во всасывающей системе сводится к минимуму, причем эти отложения становятся мягче, растворяются в углеводородах, и порча двигателя при их откалывании менее вероятна.  [14]

Испытание по этому методу проводят на шестицилиндровом рядном двигателе Ford модели 1963 г. Отличительная особенность испытания — выключена система принудительной вентиляции картера, двигатель оборудован системой конденсации прорывающихся в картер газов; поэтому кондевсат попадает в работающее масло, что интенсифицирует процесс ржавления деталей двигателя.  [15]

Страницы:      1    2

www.ngpedia.ru

Система вентиляции картера. Теория. Много букв. — бортжурнал Toyota Funcargo £ 1999 года на DRIVE2

Всем привет! Две следующие записи, как и обещал, будут посвящены маслоуловителям.Для начала, для тех, кто читает, немного теории. Скажу сразу, всё ниже написанное является в большей части моим собственным мнением, основанном на собственном опыте и знаниях,

piter-at.ru

Раздел №5 Системы управления



Стр 1 из 6Следующая ⇒

Методические указания

для организации самостоятельной работы

Рабочая тетрадь

МДК 01.02. «Устройство, техническое обслуживание и

ремонт автомобилей»

Профессия 23.01.03 Автомеханик

 

 

Ташла 2016

 

 

Составитель: В.А. Самонин

 

МДК 01.02. «Устройство, техническое обслуживание и ремонт автомобилей» Методические указания для организации самостоятельной работы/ Ташлинский политехнический техникум Сост.: В.А. Самонин – Ташла 2016

 

Методические указания для организации самостоятельной работы (рабочая тетрадь) предназначена для обучающихся по профессии 23.01.03 «Автомеханик» , изучающих ПМ.01 «Техническое обслуживание и ремонт автотранспорта» МДК 01.02. Устройство, техническое обслуживание и ремонт автомобилей. Задания рассчитаны на более прочное усвоение, повторение и закрепление знаний. Некоторые задания содержат дополнительную информацию, расширяющую кругозор учащихся.

Включенные в рабочую тетрадь задания предусматривают разнообразные формы работы и могут быть использованы как на уроке, так и во внеурочное время.

В пособии представлены различные тесты, задачи, проблемные вопросы, и иные формы контроля ваших знаний.

Все задания соответствуют требованиям федерального государственного стандарта общего образования, и соответствует программе.

Рассмотрены вопросы по организации самостоятельной работы по профессиональному модулю ПМ 01 Техническое обслуживание и ремонт автомобильного транспорта Главное внимание уделено развитию форм самостоятельной работы, подводя учащихся к завершению изучения профессионального модуля на её высший уровень.

 

Оглавление

Пояснительная записка …………………………………………………………2

Раздел №1 Общие сведения

1. Классификация и общее устройство автомобиля……………………………..3

Раздел №2 Двигатель

2. Основы работы и конструкции …………………………………………………5

3. Кривошипно- шатунный механизм…………………………………………….8

4. Газораспределительный механизм……………………………………………11

5. Система охлаждения……………………………………………………………12

6. Система смазки…………………………………………………………………14

7. Система питания бензинового двигателя…………………………………….16

8. Система питания дизельного двигателя………………………………………19

9. Тестовые задания по теме «Двигатель»………………………………………23

Раздел №3 Трансмиссия

10. Общее устройство трансмиссии………………………………………………26

11. Сцепление ………………………………………………………………………27

12. Коробки передач и карданная передача………………………………………28

13. Ведущие мосты…………………………………………………………………30

Раздел №4 Ходовая часть

14. Ходовая часть…………………………………………………………………..33

15. Тестовые задания по разделам «Трансмиссия», Ходовая часть»……………35

Раздел №5 Системы управления

16. Рулевое управление…………………………………………………………….37

17. Тормозная система……………………………………………………………..38

Раздел №6 Кузов. Прицепы

18. Кузов. Прицепы…………………………………………………………………………41

19. Тестовые задания по разделам «Системы управления», «Кузов. Прицепы.44

Раздел №7 Электрооборудование

20. Электрооборудование автомобилей…………………………………………..45

21. Тестовые задания по теме «Электрооборудование»…………………………51

22. Вопросы для дифференцированного зачета по курсу «Устройство автомобиля»…………………………………………………………………….54

Раздел №1

КЛАССИФИКАЦИЯ И ОБЩЕЕ УСТРОЙСТВО АВТОМОБИЛЯ

1. Закончите предложение:

Автомобиль — это самоходное транспортное средство, предназначенное для перевозки грузов, людей или выполнять спец. операции.

2. Как классифицируется автомобильный транспорт по назначению

подразделяются на пассажирские, грузовые и специальные.

3. Для чего служат специальные автомобили? Приведите примеры спец.автомобилей. Специальные автомобили перевозят только специальное оборудование, установленное на них. К спец. автомобилям относятся такие автомобили как пожарные, уборочные автомобили, автокраны, автовышки и т.п.


4. Как подразделяются автомобили по типу шасси?

С несущим кузовом и с использованием рамы

5. Как подразделяют автомобили по типу двигателя?

2х тактные и 4х тактные.

6. Расшифруйте марки отечественных автомобилей:

ЗИЛ- 4333 грузовой автомобиль с бортовой платформой с полной массой 8 – 14т. Модель 33

ГАЗ-3307 грузовой автомобиль с бортовой платформой с полной массой 2 – 8т. Модель 07

КАМАЗ-5320 грузовой автомобиль с бортовой платформой с полной массой 14 – 20т. Модель 20

7. С помощью учебника Родичев В.А. «Грузовые автомобили» заполни таблицу «Классификация автомобилей»

Параметр

Вид

Класс

 

1

2

3

4

5

6

7

 

 

Литраж ,л

Индекс

 

Длина, м

Индекс

 

Полная масса, т

Индекс автомобиля:

— с бортовой платформой

— седельный тягач

— самосвал

— цистерна

— фургон

Специальный

 

1

Легковые автомобили

 

До 1,2л

1,2 – 1,8л

1,8 – 3,5л

Больше

3,5л

2

Автобусы

 

До 5м

6 – 7,5м

8 – 9,5м

10,5 – 12м

16,5 и более

3

Грузовые автомобили

  До 1,2т     13   14   15 16 17 18 19

1,2 – 2т

 

23

 

24

 

25

26

27

28

29

2 – 8т

 

 

33

 

34

35

36

37

38

39

8 – 14т

 

43

 

44

45

46

47

48

49

14 – 20т   53   54 55 56 57 58 59

20 – 40т

 

63

 

64

65

66

67

68

69

Больше 40т

 

73

 

74

75

76

77

78

79

                                           

 

8. Напишите общее устройство грузового автомобиля (три основные части) и для чего каждая часть необходима

 

 

 

А) Двигатель – источник механической энергии, необходимый для движения автомобиля.

Б)Кузов – часть автомобиля предназначенная для размещения груза или для размещения водителя и пассажиров.

В)Ходовая часть – предназначена для передвижения автомобиля.

 

 

Раздел №2 Двигатель

ОСНОВЫ РАБОТЫ И КОНСТРУКЦИИ

1. Где сгорает топливо в поршневых двигателях?

В камере сгорания

2. Классификация автомобильных двигателей:

А) по способу смесеобразования:

С внешним (карбюраторные, инжекторные и газовые) и внутренним (дизельные) смесеобразованием

Б) по виду применяемого топлива:

Бензиновые, газовые и дизельные.

В) по способу охлаждения

С жидкостным и воздушным охлаждением.

Г) по расположению цилиндров

Рядные,V – образные и оппозитные.

              3. Определите объем камеры сгорания, рабочий объем цилиндра, полный объем цилиндра, верхнюю и нижнюю мертвые точки:

 

Vk=Vo-Vp

VP=Vo-Vk

VO=Vp+Vk

ВМТ — это наивысшая точка в цилиндре, которой достигает поршень

НМТ — это крайнее нижнее положение поршня в цилиндре

 

4. Напишите определения

Ход поршня-

это то расстояние, которое поршень проходит от своего нижнего положения до верхнего.

Камера сгорания-

Это пространство над поршнем, когда он находится в верхней мертвой точке. В этом надпоршневом пространстве и происходит воспламенение, и сгорание топливно-воздушной смеси.

Рабочий объем цилиндра-

Это весь объем цилиндра без объема камеры сгорания

Литраж-это рабочий объем всех цилиндров двигателя.

 

Полный объем цилиндра-

сумма объема камеры сгорания и рабочего объема цилиндра.

Степень сжатия-

отношение объёма надпоршневого пространства цилиндра при положении поршня в НМТ(полный объем цилиндра) к объёму надпоршневого пространства цилиндра при положении поршня в ВМТ, то есть к объёму камеры сгорания.

Такт- Часть рабочего цикла многократно повторяющееся

5.Как протекает рабочий цикл четырехтактного карбюраторного двигателя?

1такт

Такт впуска. Поршень движется от В. М. Т. к Н. М. Т. При этом впускной клапан открыт, а выпускной закрыт. Вследствие разрежения, создаваемого при движении поршня, в цилиндр засасывается горючая смесь. По достижении поршнем Н. М. Т. впускной клапан закрывается.

 

2такт

Такт сжатия. Поршень от Н. М. Т. движется к В. М. Т. Оба клапана закрыты, рабочая смесь сжимается поршнем. По достижении поршнем В. М. Т. в конце такта сжатия рабочая смесь воспламеняется электрической искрой.

3такт

Рабочий ход. Поршень под давлением газов, образующихся при сгорании рабочей смеси, движется от В.М.Т. к Н.М.Т. Оба клапана закрыты.

4такт

Такт выпуска. Поршень перемещается от Н.М.Т. к В.М.Т. и выталкивает отработавшие газы.

 

      6. Напишите отличие рабочего цикла дизельного четырехцилиндрового двигателя от карбюраторного

При такте в цилиндр двигателя засасывается из впускного трубопровода очищенный от пыли воздух, а не горючая смесь, как это было в карбюраторном двигателе.

7. Напишите порядок работы четырехцилиндрового двигателя

1-3-4-2 или 1-2-4-3

  8. Напишите порядок работы восьмицилиндрового двигателя 1-5-4-2-6-3-7-8

  9. Какие два механизма есть в ДВС и напишите их определение

1. Кривошипно-шатунный механизм преобразует возвратно-поступательное движение поршня во вращательное движение коленчатого вала.

2. Механизм газораспределения обеспечивает своевременный впуск в цилиндр свежей горючей смеси и выпуск из цилиндра отработавших газов.

10. Перечислите системы ДВС и напишите их определения

 1. Система питания в карбюраторном двигателе служит для приготовления горючей смеси необходимого состава.

2. Система зажигания служит для зажигания рабочей смеси в цилиндре двигателя.

3. Система смазки обеспечивает надежную смазку трущихся поверхностей деталей.

4. Система охлаждения предназначена для охлаждения нагревающихся деталей двигателя.

 

11. Какого автомобиля двигатель указан на рисунке? Подпишите его устройство .


Это двигатель автомобиля ЗИЛ-130

Устройство ДВС:

1 – масляный насос

2 – выпускной коллектор

3 – свеча зажигания

4 – центробежный маслоочиститель

5 – воздушный фильтр

6 – компрессор

7 – генератор

8 – карбюратор

9 – распределитель зажигания

10 – масляный щуп

11 – стартер

12 – насос ГУР

13 – бачок насоса ГУР

14 – вентилятор

15 – топливный насос

16 – сапун

МЕХАНИЗМЫ ДВИГАТЕЛЯ

Система охлаждения

1. Для чего служит система охлаждения?

Служит для поддержания нормального температурного режима двигателя.

2. Система охлаждения бывает двух видов:

1.Воздушная

2.Жидкостная

3. Какая должна быть температура охлаждающей жидкости для нормальной работы двигателя?

80-95°С.

4.Какие узлы и агрегаты включает в себя жидкостная система охлаждения?

Рубашка охлаждения, водяной насос, радиатор, термостат, вентилятор, расширительный бочок, заливная горловина, сливные краники или пробки, датчики и указатели температуры охлаждающей жидкости, трубопроводы и шланги, могут быть жалюзи.

5. По какому кругу циркулирует жидкость на этом рисунке?

По большому кругу

6.Какой узел системы охлаждения служит для ускорения прогрева холодного двигателя и автоматического регулирования его теплового режима в заданных пределах? термостат

7. Что изображено на рисунке? Напишите назначение и устройство этого узла.

Это водяной насос автомобиля ЗИЛ130

Для обеспечения циркуляции жидкости в систему охлаждения двигателя ЗИЛ-130 включен укрепленный на переднем торце блока двигателя ЗИЛ-508 центробежный водяной насос с односторонним подводом жидкости. Вал привода водяного насоса установлен в чугунном корпусе на двух шариковых подшипниках между которыми находится распорная втулка . На наружном конце вала на шпонке и разрезной конусной стальной втулке установлена ступица вентилятора, которая удерживается от осевых смещений корончатой гайкой со шплинтом. Это крепление обеспечивает возможности надежного подтягивания ступицы вентилятора на разрезной конусной втулке. На внутреннем конце вала на лыске посажена крыльчатка водяного смещения. Крыльчатка размещается в алюминиевом корпусе водяного насоса. Раструбы корпуса двумя болтами каждый крепятся к блоку двигателя. Охлаждающая жидкость поступает в центр крыльчатки  насоса от радиатора по патрубку, и далее от крыльчатки подаётся под паром 1,4 – 2,6 кГ/см. кв. через раструбы в правую и левую группы цилиндров двигателя. Для предохранения от вымывания смазки охлаждающей жидкости между корпусом и крыльчаткой установлен самоподвижный сальник с графитизированной упорной шайбой перед малым подшипником (со стороны крыльчатки) имеется водосбрасыватель, а в нижней части корпуса находится контрольный канал, через который выливается просачиваемая через сальник жидкость. В случаи течи жидкости через канал нужно исправить или заменить сальник

8.Напишите назначение и устройство радиатора системы охлаждения.

Радиатор служит для охлаждения жидкости, поступающей из водяной рубашки двигателя. Радиатор состоит из верхнего и нижнего баков, сердцевины и деталей крепления.

9. Из какого материала изготовлены баки и сердцевина радиатора?

Баки и сердцевина для лучшей проводимости теплоты изготовлены из латуни.

10. Как называется этот узел системы охлаждения? Напишите его устройство и работу.

1-шток 2- корпус 3 — клапан 4- термоэлемент 5 — резиновая полость 6 — пружины клапанов 7 — основание пружины клапана    
Это термостат.

.

    11. Для чего в крышке радиатора устанавливают паровоздушный клапан? В пробке горловины радиатора смонтирован паровоздушный клапан. Когда пробка установлена на горловине радиатора, корпус клапанов через резиновую прокладку прижимается пружиной к специальному выступу горловины. Пространство между корпусом крышки и корпусом клапанов сообщается с атмосферой через пароотводную трубку. При повышении давления в системе охлаждения на 0,28—0,38 кг/см2 сверх атмосферного корпус клапанов перемещается по штоку вверх, преодолевая сопротивление пружины. Через образовавшуюся щель пар выходит в полость горловины, а оттуда по пароотводной трубке наружу.При создании в системе разрежения (что может быть при конденсации пара в остывающем двигателе) воздух в радиатор из полости горловины поступает через воздушный клапан, прижимаемый пружиной к корпусу клапанов

   12. Где устанавливаются датчики указателя температуры охлаждающей жидкости?

Датчики могут быть в головке цилиндров, в водоотводящей трубе, впускном трубопроводе или в верхнем баке радиатора.

   13. Для чего на некоторых автомобилях устанавливают предпусковые подогреватели?

Д л я прогрева двигателя зимой при температуре ниже — 20 °С

  14. Какие три положения имеет переключатель предпускового подогревателя?

0 — все выключено

1 — включен электродвигатель вентилятора

II — включены электродвигатель вентилятора и электромагнитный клапан

  15. Опишите схему работы предпускового подогревателя

Пульт управления подогревателем представляет собой металлическую коробку, в которой находятся контрольная спираль , включатель и переключатель . Последним включают электровентилятор и электромагнитный клапан. В камеру сгорания котла топливо (бензин низких сортов) попадает самотеком из бака . Поступление топлива дозируется регулировочной иглой  электромагнитного клапана. Воздух подается электровентилятором. Смесь воспламеняется свечой. О работе свечи судят по накалу спирали. Воду или антифриз заливают в котел подогревателя через горловину. Пускают в работу подогреватель в определенной последовательности, описанной в инструкциях по эксплуатации трактора или автомобиля. Факел, образовавшийся в котле, подогревает полость котла, связанную с водяной рубашкой двигателя. Одновременно горячие газы направляются в кожух и подогревают масло в поддоне двигателя. Предпусковой подогреватель обеспечивает надежный пуск двигателя в течение 20 мин. Вода в системе охлаждения двигателя прогревается до температуры 60-70°С, а масло в поддоне двигателя — до 40-50°С.Если температура окружающего воздуха ниже -15 °С, вместо холодной воды в систему рекомендуется заливать горячую воду или антифриз.

Смазочная система

1. Для чего необходима смазочная система двигателя?

Смазочная система двигателя необходима для непрерывной подачи масла к трущимся поверхностям деталей и отвода от них теплоты.

2. Какая система смазки будет называться «комбинированная»? комбинированная система смазки, в которой часть деталей смазывается под давлением, а другая часть – разбрызгиванием или самотеком

3. Перечислите детали двигателя, которые будут смазываться:

Под давлением

Под давлением смазываются коренные и шатунные подшипники, поршневые пальцы, подшипники распределительного вала, втулки толкателей, наконечники штанг толкателей, втулки коромысел, а также подшипник промежуточной шестерни привода масляного насоса.

 

Разбрызгиванием

Стенки цилиндров, поршней, поршневые пальцы, распределительные шестерни

4. Перечислите основные узлы системы смазки двигателя

 

Датчик давления масла

Масляный фильтр

Масляный насос

Маслоприемник

Масляные каналы

5. Куда удаляются картерные газы при закрытой вентиляции картера?

При закрытой вентиляции картера, газы выходят через сапун в воздушный фильтр и смешиваются с топливовоздушной смесью, попадая обратно в цилиндры

6. Напишите схему работы системы смазки

К наиболее нагруженным деталям масло подается под давлением, а к остальным — разбрызгиванием и самотеком. Под давлением смазываются коренные и шатунные подшипники коленчатого вала, клапанный механизм, втулки распределительного вала и распределительных шестерен.

7. Как называется узел системы смазки, указанный на рисунке? Напишите его назначение и устройство.

На рисунке показан двухсекционный масляный насос. Для нагнетания масла в магистральны каналы и подачи его под давлением к трущимся деталям узлов и механизмов двигателя служит масляный насос. Двухсекционный, шестеренчатый масляный насос состоит из корпуса верхней и корпуса нижней секции насоса, разделенных между собой промежуточной крышкой. Ведущие шестерни соответственно верхней и нижней секции с помощью шпонок крепятся на валу насоса, который приводится в действие от распределительного вала. В корпусе каждой секции на осях свободно установлены ведомые зубчатые колеса.

8. Какой клапан смонтирован в расточке корпуса насоса и для чего он нужен? Редукционный клапан, предотвращает чрезмерное поднятие давления в системе.

9. Для чего нужен перепускной клапан в насосе и на какое давление он отрегулирован?

Давление масла, нагнетаемого в радиатор, поддерживается шариковым перепускным клапаном, отрегулированным на давление 0,12- 0,15 МПа

10. Как называется узел системы смазки, указанный на рисунке? Напишите его назначение и устройство.

Это центробежный маслоочиститель, служит для очистки масла. Состоит из корпуса, который закрывается колпаком через уплотнительную прокладку и зажимается гайкой. В корпусе на пустотелой оси свободно установлен ротор, опирающийся на упорный шарикоподшипник. Ротор закрывается кожухом через уплотнительное кольцо. Снизу в ротор ввернуты жиклеры с противоположно направленными отверстиями. Сверху кожух закрепляется стопорным кольцом, упирается в опорную шайбу через прокладку и зажимается гайкой. Осевое перемещение ротора предотвращается гайкой с шайбой. На ось одета трубка и направляющий щиток с сеткой и пружиной, прижимающей щиток к ротору. Масло от масляного насоса подводится в фильтр по каналу и, очистившись, отводится по каналу. Масло, подаваемое масляным насосом по каналу, подводится в полость щитка. Здесь небольшая часть его проходит через сетку, очищается и направляется в жиклеры, представляющие собой калиброванные отверстия, направленные под углом к оси ротора. Благодаря этому масло, вытекающее из жиклеров, создает реактивный момент, который приводит во вращение ротор вместе с кожухом и маслом, поступающим под кожух от направляющего щитка. Так как частота вращения ротора 5-6 тыс. об/мин, то под действием центробежной силы из вращающегося масла удаляются механические примеси. Очищенное масло проходит в центральный стержень и по каналу направляется в распределительную камеру и далее в главную масляную магистраль на смазку двигателя.

Состоит из составного корпуса — части проставки и бумажного фильтрующего элемента, фильтрующий элемент включает в себя наружный и внутренний перфорированные цилиндры, две крышки и помещенную между ними ленту из пористой фильтровальной бумаги, которая для увеличения фильтрующей поверхности уложена гармошкой.

Обеспечивать чистоту деталей двигателя, способствовать легкому холодному пуску двигателя, отводить тепло от нагретых деталей двигателя, обеспечивать надежную смазку деталей двигателя при любых режимах его работы, нейтрализация коррозионно-агрессивных компонентов

 

Вихрекамера

Форкамера

Непосредственный впрыск

4. Какой угол называют «углом опережения впрыскивания топлива»?

Угол, на который кривошип коленчатого вала не доходит до ВМТ в момент начала впрыскивания топлива, называют углом опережения впрыскивания топлива

5. Какой угол называют «углом опережения подачи топлива»?

Угол по кривошипу коленчатого вала, на который поршень не

доходит до ВМТ в момент начала подачи топлива из топливного

насоса, называют углом опережения подачи топлива.

6. Напишите общее устройство системы питания дизеля

 

Топливный бак

Подкачивающий насос

Топливный фильтр

ТНВД

Форсунка

Свеча накаливания

7. Напишите схему работы дизельного двигателя

 

Принцип работы дизельного двигателя основан на самопроизвольном (компрессионном) воспламенении дизельного топлива, впрыскиваемого в камеру сгорания и смешиваемого со сжатым и нагретым до высокой температуры воздухом. Воздух вводится в цилиндр. Форсунка впрыскивает в цилиндр горючее, а поршень при движении вверх сжимает смесь. В этих условиях происходит спонтанное воспламенение горючего; продукты сгорания расширяются и толкают поршень вниз. Вращение коленвала толкает поршень вверх, и происходит выброс выхлопных газов. В дизельном двигателе, турбовентилятор использует энергию выхлопных газов для нагнетания воздуха в цилиндр при помощи подсоединенных к нему крыльчаток, что позволяет достичь более сильного сжатия в цилиндре. Топливные фильтры очищают топливо от грязи и мелких частиц, тнвд создает давление для подачи топлива к форсункам, глушитель служит для отвода отработавших газов.

8. Что изображено на рисунке?

Раздел № 3 Трансмиссия

Сцепление

1. Напишите назначение сцепления:

Сцепление служит для кратковременного отсоединения двигателя от трансмиссии и плавного их соединения в моменты начала движения (трогания с места) автомобиля и переключения передач в коробке передач в процессе движения. Кроме того, сцепление предохраняет детали двигателя и агрегатов трансмиссии от перегрузки, возникающей при резком торможении автомобиля с неотключенным двигателем.

2. Какая сила используется в работе фрикционного сцепления?

Сила трения

3. Напишите устройство сцепления

Коленчатый вал; 2 — маховик; 3 — ведомый диск; 4 — нажимной диск; 5 — кожух сцепления; 6 — нажимные пружины; 7 — отжимные рычаги; 8 — нажимной подшипник; 9 — вилка выключения сцепления; 10 — рабочий цилиндр; 11 — трубопровод; 12 — главный цилиндр; 13 — педаль сцепления; 14 — картер сцепления; 15 — шестерня первичного вала; 16 — картер коробки передач; 17 — первичный вал коробки передач

4. Напишите отличие однодискового сцепления от двухдискового

Коробка передач служит для изменения по величине и направлению передаваемого крутящего момента, длительного разъединения двигателя и трансмиссии во время стоянки или при движении автомобиля по инерции, а также для движения автомобиля

Задним ходом.

2. На чем основано действие коробки передач?

Ведущие мосты

1. Закончите предложение «Ведущим называют мост, механизмы которого передают вращающий момент…

От коробки передач к колесам автомобиля

2. Подпишите устройство ведущего моста

1 — фланец; 2 — вал ведущей шестерни; 3 — ведущая шестерня; 4 — ведомая шестерня; 5 — ведущие (задние) колеса; 6 — полуоси; 7 — картер главной передачи

3. Напишите назначение и виды главных передач

Главная передача увеличивает вращающий момент после коробки передач. Главная передача может быть одинарной(обычная и гипоидная

) и двойной.

4. В чем преимущество гипоидной главной передачи от обычной?

Преимущество в том, что ось ее ведущей шестерни расположена ниже оси ведомой(оси заднего моста), поэтому центр масс автомобиля ниже и устойчивость его лучше.

5. Как называется этот механизм? Напишите его устройство.

Главная передача с дифференциалом 1 — полуоси; 2 — ведомая шестерня; 3 — ведущая шестерня; 4 — шестерни полуосей; 5 — шестерни-сателлиты

6. Из каких основных частей состоит двухступенчатый ведущий мост?

Он состоит из главной передачи, включающей в себя две пары шестерни и дифференциала

7. Рассмотрите рисунок. Опишите схему работы ведущего моста

При работе главной передачи усилие от ведомого зубчатого колеса передается коробке дифференциала, а через них — на крестовину и сателлиты. Последние, находясь в зацеплении с полуосевыми зубчатыми колесами , обеспечивают вращение полуосей.

8. Закончите предложение: «Межосевой дифференциал служит для….

распределения подводимого к нему вращающего момента между полуосями и позволяющий им вращаться с разными скоростями

9. Напишите назначение механизма блокировки дифференциала Блокировка дифференциала – один из наиболее эффективных способов повышения проходимости колесных автомобилей.

10. Где установлены полуоси и с чем они соединяются наружными концами?

В полости ведущего моста, с внутреннего конца шлицы на которых сидит полуосевая шестерня, а с наружной — имеется специальный фланец для крепления ступицы с помощью шпилек.

11. Какие полуоси называют полуразгруженными и полностью разгруженными?

Полуразгруженной полуосью называется полуось, которая опирается на шарикоподшипник , расположенный внутри ее кожуха. Такая полуось не только передает крутящий момент, скручивающий ее, но и воспринимает изгибающие моменты.

Полностью разгруженной называется полуось, разгруженная от изгибающих моментов и передающая только крутящий момент.

РАЗДЕЛ №4 ХОДОВАЯ ЧАСТЬ

1. Какой остов у грузовых автомобилей?

Рамный

2. Закончите предложение: «Рама это несущая часть автомобиля, она воспринимает..

воспринимает все нагрузки, возникающие при

движении автомобиля, и служит основанием , на котором монтируют двигатель, агрегаты трансмиссии , механизмы органов управления , дополнительное оборудование , а также кабину и кузов

3. Какие рамы устанавливают на грузовых автомобилях?

Лонжеронные

4. Для чего служат балки мостов?

Для установки на них рессор автомобиля

5. Какие колеса устанавливают на автомобилях?

Дисковые колеса с пневматическими шинами

6. Как делятся колеса по назначению?

Ведущие, управляемые, ведомые, комбенированные.

7. Напишите устройство колеса автомобиля

1 — диск колеса; 2 — обод; 3 — борт; 4 — камера; 5 — боковина; 6 — корд; 7 — протектор

 

8. Какое расположение корда у этих шин?

а б

 

а) диагональное, б) радиальное

 

9. Расшифруйте маркировку шины 175/70 R13.

Радиальная низкопрофильная шина с шириной профиля 175мм,посадочный диаметр 13 дюймов

10.  Из каких основных частей состоит пневматическая шина

1 — протектор, 2 — полушечный слой , 3 — каркас покрышки; 4 — боковина; 5 — борг, 6 — кольцо-сердечник из стальной проволоки; 7 — ободная лента; 8 — вентили камерной и бескамерной шин, 9 — покрышка; 10 — камера, 11-герметизирующий слой бескамерной шины

11. Что называют подвеской автомобиля?

совокупность деталей, узлов и механизмов, играющих роль соединительного звена между кузовом автомобиля и дорогой

12. Напишите, какая подвеска указана на рисунках?

А                                                             Б

А — зависимая, Б — независимая

 

 

13. Напишите назначение амортизатора

Амортизаторы гасят колебания рессор, вызванные наездом колеса на препятствие.

14. Подпишите основные элементы амортизатора

1 — верхняя проушина; 2 — защитный кожух; 3 — шток; 4 — цилиндр; 5 — поршень с клапанами сжатия и «отбоя»; 6 — нижняя проушина; 7 — ось колеса; 8 — кузов автомобиля

15. Опишите принцип действия амортизатора

Принцип действия амортизатора основан на том, что в результате относительных перемещений подрессорных

и неподрессорных масс автомобиля сопротивление жидкости при

перетекании ее под действием поршня через малые отверстия из одной полости цилиндров другую тормозит перемещение движущихся частей амортизатора и вместе с ними подрессорных масс

 

Тестовые задания по разделам «Трансмиссия», «Ходовая часть»

1. Для чего предназначена трансмиссия автомобиля? 

 

а) для передачи крутящего момента на ведущие колеса;

б) для изменения крутящего момента;

в) для распределения крутящего момента между колесами в зависимости от нагрузки на них; 

г) для передачи крутящего момента с двигателя на ведущие колеса и изменения его по величине и направлению.

2.  Дополните предложение: 

Поперечное расположение валов коробки передач позволяет ……….. . 

а) уменьшить длину коробки передач; 

б) уменьшить габаритные размеры автомобиля;

в) осуществить реверс на все передачи;

г) достичь всех перечисленных целей

3. Для чего предназначено сцепление автомобиля? ____________

_ Сцепление предназначено для кратковременного отсоединения двигателя от трансмиссии и плавного их соединения при переключении передач, а также предохранения элементов трансмиссии от перегрузок и гашения колебаний.

4.   Из каких частей состоит механизм сцепления автомобиля?

Механизм сцепления автомобиля состоит из ведущих деталей, ведомых деталей, нажимного устройства, механического выключения и привода.

5. Какие бывают трансмиссии по принципу действия?

а) механические, ступенчатые, комбинированные;

б) механические, гидромеханические, комбинированные;

в) механические, ступенчатые, гидромеханические, комбинироваанные.

6.  Из каких сборочных единиц состоит карданная передача?

а) из двух вилок, крестовины, шести подшипников;

б) из двух вилок, крестовины, двух подшипников;

в) из двух вилок, крестовины, четырех подшипников.

7. Какие полуоси применяются на автомобилях средней и повышенной грузоподъемности?

а) полунагруженные;

б) полностью нагруженные;

в) разгруженные.

8. Каким должен быть угол развала управляемых колес автомобиля?

а) 0-5°; б) 0-4°; в) 0-3°; г) 0-2°.

9. В каких пределах должна быть сходимость управляемых колес автомобиля?

а) 15-20 мм; 

б) 4-12 мм;

в) 2-12 мм;

 г) 6-12 мм. 

10.   Какие бывают шины по форме профиля?

а) обычного профиля, низкопрофильные, бескамерные, широкопрофильные;

б) обычного профиля, низкопрофильные, камерные, бескамерные, широкопрофильные;

в) обычного профиля, низкопрофильные, широкопрофильные, арочные.

11. Что понимается под дорожным просветом?

а) расстояние от поверхности почвы до дна коробки передач;

б) расстояние от поверхности почвы до дна коробки маховика;

в) расстояние от поверхности почвы до нижних точек переднего и заднего мостов.

 

Рулевое управление

1. Закончите предложение: «Рулевое управление предназначено для …. обеспечения движения автомобиля по заданному направлению.

2. Для чего служит рулевой механизм?

Рулевой механизм служит для передачи усилия от рулевого колеса на рулевой привод и уменьшения усилия, необходимого для поворота автомобиля.

3. Перечислите типы рулевых механизмов:

а)червячно -роликовые

б) винтореечные

в) червяк—сектор с большой поверхностью зацепления или механизм

с двумя рабочими парами

4. Как называется этот механизм ? Напишите его устройство

Рулевой механизм типа червяк—трехгребневый ролик

состоит из: картер, головка рулевой сошки, трехгребневый ролик, регулировочные прокладки, червяк, вал, ось, роликоподшипник, стопорная шайба, колпачковая гайка, регулировочный винт, вал сошки, сальник, сошка, гайка крепления сошки, бронзовая втулка.

5. Как называется этот механизм? Напишите его устройство


Рекомендуемые страницы:

Замена масла в 1к62 — В помощь хозяину

Замена масла в токарном станке

Ресурс работы токарного оборудования во многом зависит от надлежащего функционирования смазочной системы узлов, поверхность которых пребывает в постоянном трении друг о друга. Своевременное смазывание продлевает работоспособность станков, снижает их потребляемую мощность, уменьшает нагрузку на детали, сокращает их износ. Кроме того, использование качественных смазочных материалов положительно влияет на качество точения, КПД, позволяет поддерживать температуру агрегатов в заданном спектре. Решающими являются такие факторы, как исправность системы и выбор подходящего масла.

Системы смазки узлов токарного станка

В основе работы смазочных устройств, доставляющих масло в требуемую точку, лежат простейшие законы физики:

  • Сила тяжести, позволяющая перетекать маслу к месту трения самостоятельно
  • Капиллярные силы, которые посредством пористых втулок и фитилей поднимают смазывающее вещество на определенную высоту.
  • Сила вязкого трения, образующаяся между поверхностью и самим материалом для смазки, предотвращает стекание последнего вниз.
  • Давление. Используется в ручных смазочных системах, вроде поршневых насосов и масленок.
  • Центробежные силы, заставляющие масло поступать под давлением к поверхностям.
  • Инерция. За счет захвата жидкости вращающимися элементами станка, разбрасывает ее частицы.
  • Разница давлений, создающая самовсасывание масла посредством самих механизмов.

Способы смазки токарного станка

1. Периодическая ручная смазка – производится через закрытые при работе станка технологические отверстия. Для ее выполнения используется шприц или масленка. Для доставки жидкости в труднодоступные места применяется поршневой ручной насос.

2. Капельный или фитильный способ – производится посредством капельных или фитильных масленок путем заполнения специальных емкостей. Из последних смазка непрерывно подается на поверхность деталей за счет капиллярных сил.

3. Циркуляционная смазка – производится посредством работы гидронасоса, который подает масло под давлением прямо к деталям. Жидкость стекает естественным образом. Количество подаваемой смазки регулируется специальными устройствами.

4. Картерный способ – производится посредством разбрызгивания масла быстродвижущейся крыльчаткой или погруженной в смазывающее вещество шестерней, соединенной с вращающимися деталями оборудования.

5. Комбинированная смазка – применяется в тех случаях, когда перечисленные способы по отдельности не могут обеспечить оптимальное смазывание механизмов и деталей.

Масло в токарном станке выполняет следующие функции:

  • Защищает от износа механизмы и детали;
  • Выводит из рабочей зоны продукты износа;
  • Отводит тепло;
  • Снижает коэффициент трения.

Виды масел для металлообрабатывающих станков

При обслуживании оборудования для токарной обработки металла, используются так называемое индустриальное масло – дистиллятный нефтепродукт с малой или средней вязкостью. Характерными для него условиями применения являются умеренное давление и тепловой режим, а купить его можно у любого производителя. Главное – соответствие ГОСТу.

Качественное индустриальное масло для смазки станков обладает следующими характеристиками:

  • Не образует пену;
  • Не образует с продуктами износа стойких эмульсий;
  • Устойчиво к повышенной температуре;
  • Имеет высокие диспергирующие и моющие свойства;
  • Обладает стабильным химическим составом.

Для индустриальных масел определяющими являются характеристики:

  • Плотность – в большей степени влияет на свойства масел для гидравлических систем. Передающие качества уменьшаются при снижении именно плотности жидкости.
  • Вязкость – параметр, который оказывает прямое влияние на качество смазки. Является важнейшим при выборе смазочной жидкости для токарного оборудования. Зависит от условий эксплуатации, в частности, от температуры. Чем выше последний показатель, тем ниже вязкость.
  • Температура вспышки – влияет на расход масла и угар. По сути является температурой воспламенения жидкости.
  • Температура застывания – учитывается при хранении жидкости и ее переливе.
  • Зольность – степень очистки. Чем ниже этот показатель, тем лучше масло очищено.
  • Кислотное число и содержание серы – степень очистки от кислот и серы.

Чтобы быть уверенным, какое масло лить в конкретный токарный станок, его выбор делается исходя из рекомендаций производителя, которые обязательно указаны в инструкции по эксплуатации.

Индустриальные масла для смазывания токарных и сверлильных станков делятся на:

  • И – без присадок;
  • ИГП (легированные) – с присадками.

В токарный станок заливают следующие марки индустриальных масел без присадок:

  • И-5A – используется для смазывания механизмов и узлов, работающих на высокой скорости под небольшой нагрузкой, не требующих особых антиокислительных и антикоррозийных свойств смазывающего состава. При 40°С имеет кинетическую вязкость 6-8 мм2/c и температуру вспышки от 120°С. В металлорежущих станках применяется для смазывания высокоскоростных шпиндельных узлов. Можно заменить марками И-8А, ИЛС-5.
  • И-8A – аналогичная предыдущей марка. При 40°С имеют кинетическую вязкость 9-11 мм2/c и воспламеняется от 130°С. Можно заменить марками И-5А, ИЛС-10, ИЛС-5.
  • И-20А – используется для смазывания узлов, работающих на меньших скоростях и больших нагрузках, например, направляющих скольжения и качения, зубчатых передач. Вязкость 29-35 мм2/c и температуру вспышки от 180°С. Можно заменить маркой ИГП-18 или другим близким по показателю вязкости.
  • И-30А – в токарном оборудовании преимущественно используется для смазывания фартука, ходовых валов, салазок, резцедержателя, сменных шестерней. Вязкость 41-51 мм2/c и воспламенение происходит от 200°С. Можно заменить маркой ИГП-30 или близкими по показателям вязкости.
  • И-40А – Применяется для смазывания зубчатых передач. Вязкость 61-75 мм2/c и температура вспышки от 200°С. Можно заменить маркой ИГП-38 или близкими по показателям вязкости.
  • И-50А — вязкость 90-110 мм2/c и температура вспышки от 215°С. Можно заменить маркой ИГП-38 или близкими по показателям вязкости.

1. Обслуживание системы смазки станка токарем заключается в ежедневной проверке уровня масла в резервуаре до начала токарных работ. При необходимости жидкость доливается. При замене слив осуществляется через пробку. Перед заполнением резервуара, последний очищается и промывается керосином.

2. Механизм фартука имеет автоматическую систему смазки с индивидуальным насосом. Уровень заливаемого масла контролируется по маслоуказателю, расположенному, как правило, с лицевой стороны. Поперечные салазки и каретка смазываются в начале и середине смены до появления на направляющих масляной пленки. Смазка опорных втулок ходового винта и направляющих при винторезных работах производится при включенной маточной гайке.

3. Задняя бабка, ходовой винт и опоры вала смазываются фитилями из резервуаров. В последние масло необходимо лить до вытекания. Смазка конусной оси резцедержателя выполняется ежедневно по окончанию смены. При этом резцовая головка снимается.

4. Все остальные точки, за исключением сменных шестерней и оси промежуточной шестерни, смазываются вручную масленкой, которая должна поставляться вместе со станком.

5. Для обеспечения продолжительной работы станка и точности точения, за смазкой трущихся деталей токарь ведет постоянное наблюдение. Все смазочные отверстия, масленки и трубки, которые подводят к точкам смазки масло, должны быть чистыми и закрыты крышками.

Индустриальное масло не является смазочно-охлаждающей жидкостью. Поэтому его использование для смазывания режущего инструмента недопустимо. Для этого применяется специальная СОЖ – эмульсионный смазывающий состав на основе воды и масла с различными противозадирными и противоизносными присадками.

Приобрести масло можно в пластиковой или металлической таре объемом 5, 10, 18 и 20 л, а также в бочках объемом 200 л и 216,5 л. Для владельцев цехов с токарным оборудованием выгоднее единожды купить смазку по оптовой цене, которая на порядок ниже розничной.

1М63 смазка

Описание работы

Циркуляционная система смазки коробки скоростей

Система включает в себя резервуар 9, лопастный насос 14, пластинчатый фильтр II и маслораспределитель 12. Лопастный насос приводится в действие при помощи шестеренчатой передачи от первого вала коробки скоростей. Подаваемое насосом масло проходит через фильтр и поступает в маслораспределитель, из которого по трубкам поступает на смазку подшипников шпинделя, в поддон для смазки фрикциона, на смазку тормозной электромагнитной муфты и зубчатых колес. Пройдя через смазываемые части, масло собирается на дне коробки скоростей. Контроль наличия в системе смазки и ее уровня в коробке скоростей осуществляется по маслоуказателям 10 и 8.

Рисунок 1 — схема смазки станка

Циркуляционная система смазки фартука

Система включает в себя резервуар 23, плунжерный насос 17, маслораспределитель 21. Плунжерный насос приводится в действие от кулачка, установленного на валу реечного зубчатого колеса. Масло подается насосом в маслораспределитель, из которого поступает на смазку детален фартука. Контроль наличия в системе смазки и ее уровня в фартуке производится по мас- лоуказателям 20 и 25. Контроль за работой плунжерного насоса производится при ускоренных перемещениях суппорта.

Циркуляционная дождевальная система смазки коробки подач

Система включает в себя резервуар 1, плунжерный насос 3 и трубчатый дождевальный маслораспределитель 6, расположенный в верхней части коробки подач. Плунжерный насос смонтирован в нижней части коробки подач и приводится в действие от эксцентрика на первом валу коробки подач. Масло подается насосом в трубчатый маслораспределитель, из которого поступает на смазку деталей коробки подач. Контроль наличия в системе смазки и ее уровня в коробке подач осуществляется по маслоуказателям 5 и 4.

Фитильная система смазки задних опор ходового винта, ходового вала

Система включает в себя ванночку 22, закрытую крышкой. Масло из ванночки по фитилю поступает к точкам смазки.

Фитильная система смазки сменных зубчатых колее

Система включает в себя ванночку 7 и поддон.

Масло по фитилю поступает к точкам смазки, а через отверстие в поддоне поступает в коробку подач.

Система смазки направляющих продольного перемещения суппорта и ходового винта

Система включает в себя резервуар 18 и плунжерный насос 19 с распределителем. Плунжерный насос периодически приводится в действие вручную путем осевых перемещений рукоятки включения насоса.

ВНИМАНИЕ! При отсутствии масла в маслоуказателях контроля работы лопастного и плунжерных насосов работать на станке нельзя.

Указания по монтажу и эксплуатации системы смазки

Перед пуском станка в эксплуатацию необходимо:

  • заполнить резервуар 9 (см. рис. 9) коробки скоростей через отверстие 13 маслом индустриальным И-30А в количестве около 20 литров. Контроль уровня масла производится по маслоуказателю 8. В случае уменьшения подачи масла в маслоуказателе 10 следует через отверстие 13 повернуть 2-3 раза рукоятку пластинчатого фильтра для его очистки. В начале эксплуатации станка целесообразно производить очистку фильтра ежедневно, отстойник резервуара фильтра следует чистить при смене масла;
  • заполнить резервуар 23 фартука через отверстие 26 маслом индустриальным И-20А в количестве около 3 литров. Контроль уровня масла производится по маслоуказателю 25. При длительной работе станка с использованием поперечного суппорта для обеспечения смазки фартука рекомендуется периодически производить 2-3 быстрых перемещения суппорта по станине. Применение масел с повышенной вязкостью ведет к замедленному расцеплению дисков муфт, вследствие чего возникают перебеги суппорта после его отключения или реверсирования движения;
  • заполнить резервуар I коробки подач через отверстие 15 маслом индустриальным И-30А в количестве около 5 литров. Контроль уровня масла производится по маслоуказателю 4;
  • заполнить резервуар 18 смазки направляющих суппорта через отверстие 27 маслом индустриальным И-30А в количестве около 0,2 литра. Контроль уровня
  • масла производится по риске на стержне пробки отверстия 27. Для повышения равномерности и плавности перемещения суппорта, что особенно важно при резьбонарезных работах, рекомендуется в качестве смазки применять масло ВНИИ НП-401 ГОСТ 11058-75. Рекомендуется периодически, не реже 4-5 раз в смену, производить по 2-3 быстрых перемещения суппорта, предварительно перед каждым перемещением сделав вручную 3-4 двойных хода плунжера насоса;
  • заполнить маслом точки смазки I-УП в соответствии с табл. 8. Смазать маслом индустриальным И-30А поверхности ходового винта, ходового вала и направляющие станины;
  • залить масло индустриальное И-30А в ванночку 7 в количестве около 0,3 литра и в ванночку 22 — 0,2 литра;
  • набить солидолом синтетическим С ГОСТ 4366-76 колпачковые масленки сменных зубчатых колес. Колпачковые масленки после заполнения и установки: завернуть на 1,5-2 оборота.
  • При работе станка следует контролировать уровень масла по маолоуказателям 4, 8, 25 и стержню, установленному в отверстие 27. Контроль наличия подачи масла производится по маслоуказателям 5,10,20.
  • Смену масла необходимо производить первый раз после 10 дней работы, второй — после 20 дней, затем через каждые 40 дней.
  • Для слива масла при его смене предусмотрены сливные отверстия 2, 16, 24.
  • Замену смазки НК-50 в подшипниках электронасоса следует производить не реже одного раза в 6 месяцев.
  • ВНИМАНИЕ! Для смазки станка необходимо применять только фильтрованное масло.

Таблица — Перечень точек смазки

Токарный станок 1К62 — Сколько заливать масла?

Для просмотра онлайн кликните на видео ⤵

#20 -Замена масла в токарном станке. Что и как лить? Подробнее

Как правильно СМАЗЫВАТЬ токарный станок 1к62. Подробнее

Эпопея с маслом продолжается. Токарный станок 1к62 Подробнее

Какое масло заливать в станок. Подробнее

Появился масляный фонтан . Передняя бабка 1к62 Подробнее

Какое масло использовать для смазки станка система смазки 1а616 Подробнее

Токарный станок 1К62 — Передняя бабка, слив масла, чистка. Подробнее

Небольшой обзор токарного станка 1к62 Подробнее

Токарный станок 1К62 — Как сделать Фитильную смазку Подробнее

Как смешать масло с водой. Замена масла токарного станка Подробнее

Про систему смазки 16к20 Подробнее

Как нарезать резьбу на токарном станке 1к62 Подробнее

Проверка станка при покупке. №1 Подробнее

✅ Проточка тормозных дисков / brake disk groove/ الحز من الأقراص Подробнее

Самодельные дверные ручки из эпоксидной смолы. Epoxy Door Handles Подробнее

Вечный глазок уровня масла Подробнее

ТОКАРНЫЙ СТАНОК .Замена масла,чистка гитары/TV 4 oil changes,cleaning the guitar Подробнее

1-3 Техническое обслуживание токарного станка — Перезагрузка с улучшениями Подробнее

Подробный обзор токарного станка по металлу 1К62

Первый 1К62 выпустил Московский станкостроительный завод «Красный пролетарий».

Сам завод построили в одна тысяча восемьсот пятьдесят седьмом году. Какая история 1К62, почему им активно пользовались предприятия?

Краткая история серии

  • Первые токарно-винторезные станки с коробкой скоростей выпускались на заводе «Красный пролетарий» и назывался ДИП 200,
  • ДИП 300 и так далее. Буквы означали «Догнать и перегнать», а цифры высоту над станиной.
  • ЭНИМС приняла единую систему условных обозначений станков. По системе ДИП 200 начал называться 1Д62, соответственно и его модификации поменяли названия.
  • Вскоре появились первые модели ДИП 200, которые назывались 1Д62,
  • 1Д62М. После эти модели заменила более новая — 1А62.
    1А62 выпускали несколько лет, после чего на замену ему пришел 1К62, который выпускался еще восемнадцать лет. К 1К62 выпускались модификации.
  • Затем в производство вошел 16Б20П, который был переходной моделью между двумя станками.
  • Через еще шесть лет произвели первые 16К20. Станки понемногу стали производить все меньше и меньше. Их начали модифицировать, но модификации не были долгожительными.
  • Через семнадцать лет после первых 16К20 на смену им пришли станки серии МК: МК6046, МК6047.

Назначение и область применения токарно-винторезного станка по металлу

Токарный станок 1К62 — универсальный и используется для чистовых, получистовых токарных задач. Им нарезают левые и правые резьбы: метрические, дюймовые.

Используется для обработки закаленных заготовок, потому что шпиндель обеспечивает жесткость аппарата. На нём высококачественно режут твердосплавным инструментом из-за большого диапазона скоростей 1К62.

Аппарат — лобовой и на нем обрабатывают короткие заготовки, большого диаметра. На аппарате обрабатывают пологие конуса, потому что его задняя балка может смещаться.

Основные разновидности и расшифровка модификаций

Первый 1К62 был выпущен на заводе «Красный пролетарий» и прошел длинный путь, множество модификаций.

Основными разновидностями были: 1К625, 1К620, 1К62Б. У модификаций имеются расшифровки, каждая цифра и буква имеет значение:

  • Цифра 1 означает, что станок токарный.
  • Буква К говорит о поколении аппарата.
  • Цифра 6 показывает, что станок токарно-винторезный.
  • Цифра 2 говорит о высоте центров.
  • Цифры 25 на конце — максимальный диаметр заготовки над суппортом.
  • Цифры 20 — высота центров над станиной.
  • Буква Б — значение изменения основной модели.

Так выглядят основные модификации, их расшифровки 1К62.

Технические характеристики

Основными техническими характеристиками выделяют:

  • Диаметр обработки над суппортом — двести мм.
  • Расстояние между центрами составляет тысячу мм.
  • Мощность электродвигателя — 10 квт
  • Масса станка — 3035 кг.
  • Поперечное смещение корпуса примерно пятнадцать мм.

Основные параметры

Основными параметрами называют: расстояние между центрами, которое составляет тысячу миллиметров, вес станка в две тонны.

Пределы оборотов шпинделя в прямом направлении доходят до 2 тыс. оборотов в минуту, в обратном направлении до 1900 оборотов в минуту. Диаметр патрона — 250 миллиметров.

Шпиндель

Шпиндель — вал, имеющий правые, левые обороты вращения. Шпиндель устанавливается для фиксации инструментов, а также заготовок. Следовательно, к нему крепится зажимный патрон или другие элементы. Это зависит от аппарата.

Суппорт и подачи

Суппорт предназначен для перемещения, закрепленного в резцедержателе резца, вдоль, поперек оси шпинделя. Он состоит из трех основных узлов — каретки, поперечных салазок, резцовых салазок суппорта. В технической литературе они могут называться по-другому.

Коробка подач служит для переключения скорости вращения ходового винта, вала, то есть для выбора скорости подачи резца вдоль оси шпинделя. Внутри коробки обычно расположен редуктор.

Редуктор сделан из зубчатых передач, которые переключаются. На входной вал подач поступает крутящий момент от шпинделя. Перед этим он проходит через гитару.

Резцовые салазки

Резцовые салазки — одни из основных узлов суппорта. Их устанавливают под углом к осевой линии центров станка. Обработка конуса происходит при ручном перемещении резцовых салазок. Этот способ позволяет обрабатывать внутренние, наружные конуса с любыми углами уклонов.

Задняя бабка

Бабка — узел, который используется во многих металлорежущих станках. Бабка точно поддерживает, перемещает деталь относительно инструмента, который ее режет. Обычно она находится, крепится на станине. Различают три функции:

У задней, у узла есть конусное отверстие для установки центра. Центр поддерживает заготовку и используется для закрепления инструмента.

Электрооборудование

Электрооборудование предназначается для приведения агрегатов, механизмов в движение, автоматического управления ими, контролирования их состояния. От электрооборудования зависит производительность, надежность агрегатов.

Габариты и масса

У агрегата имеются габариты, масса:

  • Мощность двигателя быстрых перемещений суппорта — от 0,75 до 1,1 кВт.
  • Мощность насоса охлаждения — 0,12 Квт.
  • Габаритные размеры станка составляют две тысячи восемьсот двенадцать миллиметров в длину, тысяча сто шестьдесят шесть в ширину и тысяча триста двадцать четыре в высоту.
  • Масса станка составляет три тысячи тридцать пять килограмм.

Общая конструкция и принцип работы

В конструкции привычно для экспертов расположены регулирующие органы, использована простая схема управления. Модель состоит из узлов:

  • станина;
  • передняя, задняя тумбы;
  • передняя бабка;
  • зажимной патрон;
  • задняя бабка;
  • резцедержатель;
  • фартук с механикой подачи суппорта;
  • ходовой вал;
  • коробка подач.

Конструкция рассчитана на высокую выносливость к вибрации, жесткость. Основой являются тумбы, а для повышения их жесткости используют вертикальные ребра на стенках.

В левой части агрегата имеется передняя бабка, внутри нее коробка передач, шпиндель с патроном. С правой стороны задняя бабка. Суппорт может смещаться в разные стороны за счёт фартука.

Фото и описание устройства

Только что, была рассмотрена общая конструкция аппарата, а сейчас вместе с картинками будут подробно описаны устройства агрегата, их свойства, особенности, значения в механизме.

Общий вид

На данной картинке можно любоваться общим видом токарно-винторезного аппарата. Сразу же видны узлы, различные приборы, рассмотренные ранее.

Вес составляет более двух тонн, а мощность двигателя доходит до десяти кВт. На следующей картинке виден более подробный чертеж, где указаны узлы, их местоположение.

Чертеж

Это — общий чертеж конструкции. На нем указаны все основные узлы. Они будут очень скоро рассмотрены по одиночке. В левом верхнем углу располагается бабка передняя, в левом нижнем углу коробка передач и моторная установка.

Справа от бабки передней виден патрон, а справа от патрона находится ограждение, каретка. Под цифрами 12, 13 в середине — переключение, фартук.

Справа сверху — суппорт, механизм отключения рукоятки, охлаждение, бабка задняя, электрооборудование, станина.

Расположение органов управления

На снимке — все органы управления, их местоположение. Всего — двадцать два органа. От самых простых до очень сложных в управлении, изучении.

Ими управляются все механизмы, за счет них агрегат работает, выполняет задачи. Они не будут рассматриваться, однако, чтобы работать со станком их необходимо знать для избежание происшествий.

Кинематическая схема

На фото расположена кинематическая схема, то есть условное изображение агрегата, которое показывает связь между элементами механизма, передающими движение. Схема помогает лучше разобраться в устройстве конструкции, правильно чинить ее, производить верные подсчеты.

Каждый элемент на схеме имеет свое обозначение. Обозначения надо учить, чтобы понимать схему. Вал обозначается прямой линией, ходовые винты — волнистой линией и так далее.

Шпиндельная бабка

Ранее рассматривалась задняя, а есть еще шпиндельная. Лучше всего она видна на картинке выше. Конструкция представляет из себя узел шлифовальных станков.

Он состоит из несущего шпинделя, который сообщает вращательное движение шлифовальному кругу. Цель механизма — разместить шпиндель, механизмы его привода.

Устройство переключения скоростей и подач

Коробка скоростей — основная часть привода шпинделя станка, предназначена для передачи движения от электродвигателя, изменения частоты вращения. Обычно, механизм монтируется в отдельном корпусе и связан передачей со шпинделем.

Коробка подач обеспечивает большое число подач в станке. Помощь в этом ей оказывает вторая коробка, потому что она изменяет скорость. Механизм подач включается муфтами — фрикционной, кулачковой.

Фартук

На картинке выше изображен фартук токарного агрегата. Фартук преобразует вращательное движение ходового винта, валика в поступательное перемещение суппорта вдоль направляющих станины.

Механизм обычно крепится к переднему торцу каретки суппорта. Он имеет четыре кулачковые муфты. Муфты позволяют каретке, суппорту совершать прямой, обратный ход.

У фартука есть блокирующее устройство, которое препятствует одновременному включению продольной и поперечной подач.

Суппорт

Изображен суппорт 1К62. Суппорт предназначен для перемещения, закрепленного в резцедержателе резца вдоль, поперек оси шпинделя.

Он состоит из трех главных узлов — каретки, поперечных салазок, резцовых салазок. В учебниках, книгах узлы могут называться по-другому, но функции они выполняют всегда одни и те же.

Задняя бабка

Выше изображена конструкция, называющаяся задней бабкой. Она служит для поддержания обрабатываемой заготовки при обработке в центрах, представляет собой вторую опору агрегата.

Во время сверления механизм присоединяется к каретке суппорта, чтобы получить механическую подачу. Механизм не может произвольно сдвигаться, должен давать правильное положение оси центра.

Схема электрическая принципиальная

Сверху находится электрическая принципиальная схема. Каждый агрегат имеет эту схему. Она показывает основные узлы, детали, величины токов.

Без наличия данной схемы, поломка аппарата будет роковой, потому что починить ее без неё будет невозможно. Схема, скорее всего, находится в паспорте станка.

Инструкция по первому запуску и эксплуатации

При первом запуске и последующих необходимо учитывать технику безопасности. Перед запуском:

  • Роба должна быть застегнута.
  • Очки, спецодежда должна быть одета.
  • Надо проверить исправность узлов.
  • Свет должен быть настроен.
  • На рабочем месте не должно быть лишних предметов.

Только после всех этих процедур аппарат можно спокойно запустить.

Правила эксплуатации и ухода

Для агрегата есть правила ухода за ним, чтобы он не ломался, был всегда готов к эксплуатации. Оборудование надо регулярно осматривать, проверять на наличие повреждений.

Работа двигателя определяется по звуку. После запуска прислушайтесь. Если нет посторонних звуков, масло подается, то двигатель исправен. Если же посторонние звуки есть, надо разобрать механизм, узнать причину.

Аккуратно надо следить за предохранительным щитком, удержанием заготовки. Даже при малой неисправности надо прекратить работу, отнести детали в ремонт.

Временами чистить трубы, оборудование, менять резцы, чтобы нагрузка на движок была меньше.

Паспорт

В паспорте указаны все технические характеристики модели, её схемы, инструкцию по ее ремонту, эксплуатации. Сам паспорт можно скачать ТУТ.

Современные аналоги

Современными аналогами являются модели ТРЕНС. Производство идет в Словакии. Они обладают современной конструкцией и лучшими немецкими комплектующими, поэтому агрегаты 1К62, скорее всего, гордятся своим аналогом.

Смешанная смазка — обзор

10.2.3 Теория смешанной смазки

Смешанная смазка, также называемая частичной смазкой, является важным режимом смазки в двигателях внутреннего сгорания. При смешанной смазке происходит как эластогидродинамическое смазывание, так и контакт металла с металлом. Нагрузка поддерживается частично жидкой пленкой и частично неровностями поверхности. Многие компоненты двигателя работают со смешанной смазкой, например поршневые кольца и кулачки. Подшипники двигателя также могут работать со смешанной смазкой при резких мгновенных нагрузках.Понимание смешанной смазки особенно важно для системного инженера по следующим причинам. Во-первых, это режим смазки, в котором точное прогнозирование трения является наиболее трудным из-за взаимодействия между сложной топографией поверхности и давлением жидкости (или толщиной масляной пленки). По сравнению со смешанной смазкой гидродинамический и эластогидродинамический режимы смазки относительно проще. Расчет смешанной смазки также более сложен, чем расчет режима граничной смазки.Во-вторых, смешанная смазка — это мост между гидродинамическим (или эластогидродинамическим) и граничным режимами смазки, позволяющий инженеру-проектировщику системы полностью понимать все связи между ними. В-третьих, разрушение масляной пленки двигателя и износ (проблема долговечности) начинаются с смешанной смазки.

Анализ смешанной смазки тесно связан с отношением толщины масляной пленки к комбинированной (композитной) шероховатости поверхности,

λ = ho / σsr

, которое можно использовать на диаграмме типа Стрибека для замены параметра нагрузки.Толщина масляной пленки h o может быть рассчитана с помощью гидродинамических или эластогидродинамических моделей смазки. Шероховатость поверхности композита σ sr может быть определена комбинацией средних значений высот неровностей обеих поверхностей,

σsr = σsr12 + σsr220,5

или более сложным расчетом топографии. Высокое значение λ ( λ > 3) указывает на гидродинамическую смазку, при которой не происходит контакта металлических поверхностей с неровностями.Как правило, приближение гладкой поверхности в прогнозе толщины масляной пленки действительно, когда λ велико и когда нет масляного голодания. Смешанная смазка происходит, когда λ = 1 ~ 3 (большинство авторов считают, что это происходит примерно при λ = 3). Вероятно, когда λ <0,5, происходит граничная смазка, когда трение и износ высоки. Отношение λ более подробно обсуждалось Cann et al. (1994).

В дополнение к использованию рабочего параметра μvv / F˜n или отношения λ , третий способ, вероятно, лучший способ охарактеризовать режимы смазки, заключается в использовании параметра смазки, который обычно определяется в форме

10.21Slub, srΔ¯¯μvvplσsr

, где p l — среднее контактное давление Герца (Schipper et al. , 1991). Параметр смазки по существу аналогичен соотношению λ , поскольку μ v v / p l пропорционально толщине пленки жидкости. Schipper et al. (1991) предложил использовать параметр смазки для замены передаточного числа λ по следующим причинам. Хотя параметр продолжительности использования наиболее широко используется, он имеет недостаток, заключающийся в том, что не учитывается шероховатость поверхности.Отношение толщины пленки к шероховатости требует расчета толщины масляной пленки. Параметр смазки можно использовать в ситуациях, когда толщина масляной пленки неизвестна априори . Эта ситуация соответствует требованиям конструкции системы двигателя, в которой толщина масляной пленки неизвестна в моделях трения уровня 1 и уровня 2.

Schipper et al. (1991) пришел к выводу, что переход между смешанной и граничной смазкой контролируется продуктом вязкости смазки и скорости скольжения и не зависит от среднего контактного давления Герца (или нагрузки).Напротив, они обнаружили, что переход между эластогидродинамической и смешанной смазкой зависит от контактного давления или нагрузки. Поэтому они считают, что отношение λ , которое обычно используется для характеристики переходов режимов, зависит от давления и не должно быть постоянным, как предлагается в литературе. Интересный вывод Schipper et al. (1991) заключается в том, что, поскольку переход между смешанной и граничной смазкой не зависит от давления, контакт, работающий в режиме смешанной смазки при постоянном произведении вязкости на скорость скольжения, не будет попадать в граничную смазку, когда увеличивается только контактное давление. .Schipper et al. (1991) предоставил правила (рис. 10.4) параметра смазки как функции контактного давления для переходов между режимами. С помощью этих правил можно предсказать, в каком режиме смазки работает конкретный смазанный концентрированный контакт.

10.4. Использование параметра смазки для характеристики переходов режимов смазки.

(из Schipper et al. , 1991 и Schipper and de Gee, 1995)

Schipper и de Gee (1995) далее пришли к выводу, что переход от эластогидродинамической к смешанной смазке происходит при

10.22σsr1.5pl, mean0.5μvv = 6.5 × 10-5

и переход от смешанной к граничной смазке происходит при

10.23σsrμvv = 1,6 × 10-5

, где v — средняя скорость прокатки ( м / с) и μ v — вязкость на входе (Па · с).

Для контакта качения (например, толкателя на кулачке) коэффициент трения качения (обычно в диапазоне 0,001–0,003) намного ниже, чем коэффициент трения скольжения (например, 0,1 при граничной смазке).Фактически коэффициент трения качения увеличивается с коэффициентом λ (Spikes, 1997).

Экспериментальные коэффициенты трения подшипников двигателей для легких и тяжелых условий эксплуатации были представлены Kapadia et al. (2007). В своей работе они также сообщили об измерении сил трения в зависимости от расчетного отношения λ при различных оборотах двигателя и нагрузках (рис. 10.5).

10.5. Измеренная сила трения в зависимости от лямбда-отношения для двигателей LD и HD.

(из Kapadia et al., 2007)

Основы гидродинамической смазки представлены во многих книгах (например, Cameron, 1981; Heywood, 1988; Taylor, 1993a). Анализ толстопленочной гидродинамической смазки подшипников двигателя представлен Танакой (1999). Обзор тонкопленочной смазки и износа дан Jacobson (1997). Обзор смешанной смазки представлен Спайксом (1997). Основы граничной смазки и задиров представлены в Ling et al. (1969), Спайкс (1995), Тейлор (1993a) и Людема (1984).

Система смазки двигателя внутреннего сгорания.

Вы ездите на своей машине каждый день — было бы неплохо узнать, как это работает? А общее описание принципа работы двигателя внутреннего сгорания находится на «www.howstuffworks.com». Трибология горения тут написан движок. Будут обрабатываться следующие детали:

Смазка система, цилиндр, поршень, поршневые кольца, кулачки / распределительный вал и шатунный подшипник.

Система смазки
Система смазки двигателя предназначена для подачи чистого масла на правильная температура и давление для каждой части двигателя.Масло всасывает поддон в насос, являющийся сердцем системы, чем проходит через масляный фильтр, и давление подается на коренные подшипники и манометр давления масла. Из коренных подшипников масло проходит через отверстия для подачи в просверленные каналы в коленчатом валу и на шатуне подшипники шатуна. Стенки цилиндров и подшипники поршневых пальцев смазываются масляной струей, распыляемой вращающимся коленчатым валом.Избыток соскребается нижним кольцом поршня. Кровоток или приток из главный питающий канал питает каждый подшипник распределительного вала. Еще одно кровотечение цепь привода ГРМ или шестерни на приводе распределительного вала. Затем излишки масла стекают. обратно в отстойник, где тепло распространяется в окружающий воздух.

Подшипник скольжения
Если шейки коленчатого вала изнашиваются, в двигателе будет пониженное давление масла. и полить маслом всю внутреннюю часть двигателя.Чрезмерный всплеск будет Вероятно, это приведет к выходу из строя колец и из-за того, что двигатель будет использовать масло. Изношенные подшипники Поверхности можно восстановить, просто заменив вкладыши подшипников. В хорошем в исправных двигателях износ подшипников наступает сразу после холодного пуска, потому что масляная пленка между подшипником и валом небольшая или отсутствует. На момент, когда в системе циркулирует достаточное количество масла, гидродинамический смазка проявляется и останавливает прогрессирование износа подшипников.

Кольца поршневые — цилиндр
Поршневые кольца обеспечивают скользящее уплотнение, предотвращающее утечку топлива / воздуха. смесь и выхлоп из камеры сгорания в масляный картер во время сжатие и горение. Во-вторых, они предотвращают утечку масла в поддоне. в зону горения, где он сгорит и потеряется. Большинство автомобилей, которые «сжигать масло» и нужно добавлять кварту каждые 1000 миль, чтобы сжигать его потому что кольца больше не закрываются должным образом.

Между поршневыми кольцами и стенкой цилиндра двигателя в хорошем состоянии преобладает гидродинамическая смазка, необходимая для минимального трения и носить. В верхней и нижней мертвой точке, где поршень останавливается для перенаправления, толщина пленки становится минимальной, и может существовать смешанная смазка.

Для обеспечения хорошей передачи головки от поршня к цилиндру оптимальная герметичность и минимум подгорания масла, желательна минимальная толщина пленки.Минимальная толщина пленки поддерживается за счет так называемого маслосъемного кольца. Этот кольцо расположено за поршневыми кольцами, так что излишки масла прямо соскребает вниз к поддону. Осталась масляная пленка на цилиндре стенка при прохождении этого кольца доступна для смазки следующих звенеть. Этот процесс повторяется для следующих друг за другом звонков. По ходу вверх первое компрессионное кольцо смазывается маслом, оставшимся на цилиндре стена во время удара вниз.

Утечка топливовоздушной смеси и выхлопных газов из камеры сгорания в масляный поддон приводит к ухудшению качества масла. По этой причине, несмотря на частое пополнение масла, замена масла останется незаменимой или даже станет больше существенный.

Кулачки и последователи .

>>

Разъяснение режимов смазки

Различают четыре режима смазки — граничный, смешанный, эластогидродинамический и гидродинамический.

Граничная смазка

Граничная смазка связана с металлическим контактом двух поверхностей скольжения машины. Во время первоначального запуска или остановки некоторого оборудования (например, опорных подшипников) или в условиях высоких нагрузок (пальцы и втулки строительного оборудования) металлические поверхности в смазываемой системе могут фактически вступать в сильный контакт друг с другом. Если масляная пленка недостаточно толстая, чтобы преодолеть шероховатость поверхности металла, получается значение лямбда меньше единицы.

Обычно мы стараемся по возможности избегать граничной смазки. Специалисты по смазке согласны с тем, что трение может быть на самом высоком уровне в режиме граничной смазки. Это происходит при запуске, останове, низкой скорости или высокой нагрузке.

Граничные режимы смазки возникают в любых условиях, когда неровности двух смазываемых поверхностей при относительном движении могут вступать в физический контакт, и возникает возможность истирания и / или адгезии.Инженеры по смазке и трибологи предположили, что до 70 процентов износа происходит на этапах пуска и останова оборудования.

Основной метод уменьшения граничной смазки — обеспечение правильной вязкости смазки. Смазка со слишком низкой вязкостью не может разделить металлические поверхности, и происходит контакт металла с металлом. Смазка со слишком высокой вязкостью приведет к увеличению молекулярного трения масла. Это внутреннее действие сдвига масла заставляет слои масла скользить друг мимо друга, что, в свою очередь, увеличивает рабочие температуры и потери энергии.

Резервный или вторичный метод уменьшения этого явления граничного режима смазки заключается в использовании полностью разработанного смазочного материала, который включает противоизносные присадки или противозадирные присадки. Эти добавки вступают в реакцию с металлическими неровностями, которые вступили в контакт, реагируя на высокое давление и высокую температуру контакта и мгновенно образуя измененную пластичную (пластичную) пленку на поверхности металла (железа).

Затем эта новая пленка действует жертвенно, поскольку поверхности скользят или перекатываются друг на друга.Вместо металлической поверхности стирается химическая пленка, образованная добавкой.

Смешанная смазка

Вообще говоря, граничная смазка резко уменьшается по мере увеличения скорости скольжения, создавая клин смазочной пленки между движущимися поверхностями. Поскольку вероятность контакта с неровностями уменьшается, а толщина пленки увеличивается, коэффициент трения резко падает до состояния, известного как смешанная смазка.

Некоторая нагрузка неровностей металла о металл все еще происходит в сочетании с нагрузкой (подъемом) на смазочный материал.Это промежуточное условие между граничным и гидродинамическим / эластогидродинамическим режимами смазки, серая зона между ними. По мере дальнейшего увеличения толщины масляной пленки система переходит в режим полной смазки, эластогидродинамической или гидродинамической.

Гидродинамическая (HD) смазка

Этот режим смазки возникает между поверхностями скольжения, когда полная масляная пленка поддерживает и создает рабочий зазор (например, между вращающимся валом и опорным подшипником).Для того, чтобы гидродинамическая смазка применялась успешно и полностью, должна быть высокая степень геометрического соответствия между компонентами машины (например, кривая вала и кривая гильзы в подшипнике скольжения очень похожи) и, как следствие, низкое контактное давление (от 100 до 300 фунтов на квадратный дюйм в промышленных опорных подшипниках) между поверхностями, находящимися в относительном движении.

Это условие режима смазки возникает после того, как машина начала вращаться, а скорости и нагрузки таковы, что между валом и поверхностями подшипников образовался клин из масла.Этот клин из масла приподнимает вал от опорной поверхности, поэтому риск контакта неровностей невелик. Это желательное условие для предотвращения трения и износа.

Любое остающееся трение обнаруживается внутри самого смазочного материала, поскольку молекулярные структуры масла скользят друг относительно друга во время работы. Масляные пленки обычно имеют толщину от 2 до 100 микрон (от 0,00008 до 0,004 дюйма). Они могут быть больше (300 микрон или 0,012 дюйма) в опорных подшипниках очень большого диаметра.Значения лямбда (отношение толщины масляной пленки к шероховатости поверхности) обычно больше 2.

Чтобы гидродинамическая смазка была эффективной, вязкость масла должна быть такой, чтобы гидродинамические условия сохранялись при любых рабочих условиях, таких как высокая скорость и высокая нагрузка, низкая скорость и высокая нагрузка, низкая скорость и низкая нагрузка и т. Д. Условия приводят к слишком большому уменьшению рабочего зазора, может возникнуть контакт металла с металлом между выступами или неровностями металла.

Если вязкость масла слишком высока (густая), внутреннее сопротивление (сопротивление) молекул масла снизит эффективность работы и повысится температура. Может быть полезно думать о гидродинамической смазке как о аквапланировании, когда автомобильная шина теряет контакт с дорогой. Тяжелый автомобиль может опираться на жидкость с низкой вязкостью (воду) и теряет контакт с дорогой из-за скорости автомобиля. Многие из тех же факторов имеют место при гидродинамической смазке.

Эластогидродинамическая смазка (EHL)

Условия эластогидродинамической смазки возникают, когда между движущимися элементами существует перекатывающее движение, а зона контакта имеет низкую степень соответствия. Например, обратите внимание, что кривая ролика и дорожки качения в подшипнике качения очень различаются.

Фактически, ролик и внутреннее кольцо изогнуты в противоположных направлениях и поэтому имеют небольшую площадь контакта (почти единую точку контакта).Это создает высокое контактное давление (сотни тысяч фунтов на квадратный дюйм).

Когда масло попадает в зону контакта между шариком и дорожкой качения (за счет качения), давление масла резко возрастает. Это высокое давление, в свою очередь, значительно увеличивает вязкость масла и способность выдерживать нагрузки. Эта сосредоточенная нагрузка будет слегка деформировать (сплющивать) металл тел качения и дорожку качения в зоне контакта. Деформация происходит только в зоне контакта, и металл упруго возвращается к своей нормальной форме по мере продолжения вращения.

Очевидно, что для этого режима смазки очень важны металлургия и термическая обработка металла. Поскольку вязкость масла напрямую зависит от температуры, также ясно, что неправильные или ненормальные рабочие температуры будут мешать формированию эластогидродинамической смазочной пленки (EHL).

Примерами машинного оборудования, которое работает в соответствии с EHL, являются подшипники качения, зубья шестерен и кулачковые контакты (качение), где возникают высокие контактные нагрузки качения.Если условия эксплуатации, такие как скорости, нагрузки и температуры, не превышаются, контакт с шероховатостями может никогда не возникнуть из-за этой замечательной характеристики смазки и металла.

Толщина масляной пленки часто составляет порядка 1 микрона (очень и очень тонкая). Однако считается, что EHL работает на полной жидкой (масляной) пленке (высота неровностей поверхности составляет порядка 0,4–0,8 мкм).

производителей систем смазки | Системы смазки

Список производителей систем смазки

Однако большинство систем смазки, доступных сегодня для промышленного применения, представляют собой автоматические системы смазки, работающие с предварительно запрограммированными настройками, а не под контролем отдельного лица.Автоматические системы смазки, также известные как ALS или централизованные системы смазки, доставляют контролируемые количества смазки в различные места на машине по мере необходимости в режиме реального времени.

Важность систем смазки

Возможно, правильная смазка является наиболее важным фактором при промышленном техническом обслуживании. Без систем смазки многие промышленные и производственные процессы изнашиваются из-за трения, перегрева и, как правило, требуют гораздо более быстрого обслуживания.(Без смазки промышленные подшипники редко служат более 10% от своего потенциального срока службы.) Оборудование, которое требует постоянного обслуживания, увеличивает время простоя производства и отрицательно влияет на коммерческую производительность в целом. По некоторым оценкам, проведенным в США, немногим более 50% всех отказов промышленных подшипников объясняется отсутствием надлежащей смазки.

Общие смазочные материалы для систем смазки

Смазочные материалы могут быть твердыми, твердыми / жидкими, жидкими, консистентными или газообразными.Вязкость относится к способности вещества сопротивляться течению под действием силы и является наиболее важной характеристикой любого смазочного материала. Толщина конкретного вещества — важный второстепенный аспект любой смазки.

Чаще всего в системах смазки используется масло (которое считается жидкостью) или консистентная смазка. Масло является отличным смазочным материалом, поскольку оно обладает довольно высокой вязкостью и не прилипает к поверхностям (как жидкость). Лучшими маслами для смазочных материалов являются минеральные масла, такие как нефть, потому что они намного дольше сопротивляются дегенерации, чем органические масла.Смазка — это полутвердое вещество, которое даже более вязкое, чем масло. Смазка консистентной смазкой в ​​промышленных условиях не требует использования жира животного происхождения. Скорее, он использует комбинацию мыла и минерального или растительного масла. Все чаще в промышленных смазках используются консистентные смазки, изготовленные из синтетических масел, таких как силиконы, гидрогенизированные полиолефины, фторуглероды и сложные эфиры. Этот переход на синтетические смазки связан с доступностью синтетических масел, а также с более широким диапазоном вязкости, консистенции и воздействия на окружающую среду, которые оказывают эти синтетические составы.Смазка обычно используется для деталей, которые требуют меньшего количества смазки, так как она служит дольше и требует меньшего ухода.

Как они работают

Автоматическая система смазки способна обеспечить одновременную смазку различных частей машины, присоединяясь к машине. (Хотя они автоматизированы, некоторые системы ALS могут потребовать включения ручного насоса или кнопки активации для запуска.)

Автоматические системы смазки сильно различаются по совместимости и конфигурации.Однако все они имеют пять основных компонентов, известных как контроллер / таймер, насос, линию подачи, дозирующие клапаны / форсунки и линии подачи.

· Контроллер или таймер — это механизм, используемый для включения и выключения системы смазки снаружи или изнутри насоса.
· Насос отвечает за подачу смазочного материала в основную систему из резервуара (где смазочный материал хранится).
· Подающая линия соединяется с насосом и позволяет смазке поступать к дозирующим клапанам / форсункам.
· Дозирующие клапаны или форсунки отвечают за отмеривание смазочного материала и последующую подачу его в питающие линии.
· По подводящим линиям смазка наконец доставляется к заданным точкам нанесения.

Типы

Как упоминалось ранее, системы смазки сильно различаются по своей конфигурации и применению. Один из наиболее удобных методов классификации автоматических систем смазки зависит от метода работы системы.

Однолинейные прогрессивные системы смазки получили свое название от способа постепенного перемещения смазки между последовательностью дозирующих клапанов. В системах этого типа насос подает одну порцию смазки, чтобы запустить процесс смазки. Ряд клапанов или поршней смещается и постепенно направляет смазку к подшипникам или другим точкам приложения, прежде чем направить смазку к следующему клапану. Некоторый тип механизма обратной связи с таймером отвечает за то, чтобы в конечном итоге остановить прогрессирование.

Параллельные системы смазки отличаются от одинарных прогрессивных систем использованием нескольких параллельных систем клапанов или форсунок. В отличие от одной прогрессивной системы, каждый инжектор ограничен одной точкой нанесения смазки. Параллельные системы смазки могут быть однолинейными параллельными или двухлинейными (или двухлинейными) параллельными. В обоих типах систем смазка под давлением сбрасывается обратно в резервуар во время процесса смазки. (Однолинейные параллели достигают этого путем отключения насоса, а двойные параллельные линии достигают этого через вторую линию подачи.) Основное различие между однолинейными и двухмагистральными параллельными системами смазки заключается в том, что последние имеют реверсивные клапаны, которые позволяют насосам создавать давление во второй линии подачи во время процесса смазки.

Иногда автоматические системы смазки различают по типу конкретных применений, для которых они предназначены. Примеры таких систем включают масленки для цепей, воздушные лубрикаторы, газовые насосы, системы смазки спреем / щетками для цепей и масленки с постоянным уровнем.Цепные масленки предназначены для работы с рельсами или цепями. Пневматические лубрикаторы, с другой стороны, обеспечивают как смазку, так и фильтрацию трубопроводов сжатого воздуха. Они могут быть установлены вне воздушной системы, но чаще они встраиваются непосредственно в воздушную линию, где они могут обеспечить постоянную смазку всех механизмов внутри нее. Лубрикаторы для газовых насосов предназначены для предотвращения высыхания топливных насосов (что может привести к необратимым повреждениям), в то время как системы смазки для цепей и щеток можно найти для печей в пищевой промышленности.Наконец, масленки постоянного уровня используются для поддержания уровня жидкости в различном оборудовании. В частности, они помогают подшипникам, редукторам, корпусам насосов и опорным блокам терять слишком много влаги и создавать трение. (Хотя это и не является предметом внимания данной статьи, важно отметить, что двигатели внутреннего сгорания полагаются на автоматические системы смазки с принудительной подачей или подачей давления, иногда с помощью вспомогательного насоса.) \

Многоточечные системы смазки являются часто отличается наличием распределительного блока.Этот блок подключается к единому смазочному узлу и принимает входной сигнал, одновременно направляя его выход в систему из нескольких шлангов. Шланги, идущие от распределительного блока, ведут к отдельным подшипникам и / или механизму.

Существует множество других систем смазки. К ним относятся многоточечные системы прямой смазки, системы смазки туманом, системы распыления с мелким объемом / низким давлением, системы смазки с рециркуляцией масла, однолинейные системы смазки сопротивлением и другие.

Преимущества автоматических систем смазки

Автоматические системы смазки превосходят ручные методы смазки по ряду причин.Ниже приведены лишь некоторые из них:

Согласованность. Вместо того, чтобы ограничивать смазку оборудования широким спектром времени применения, ALS предлагает частую, постоянную смазку в реальном времени, которая намного эффективнее поддерживает долговечность машины. Ручные методы часто сопряжены с риском чрезмерной смазки оборудования, чтобы компенсировать нерегулярные методы смазки. Приложение реального времени, которое стало возможным благодаря ALS, устраняет этот риск.
Безопасность труда. ALS устраняет физические риски, связанные с ручной смазкой, особенно ручной смазкой, которая должна выполняться во время фактической работы оборудования.
Эффективное использование времени. Поскольку ALS смазывает машины во время их работы, она сокращает время простоя на производстве и повышает эффективность использования времени.
Экономия затрат. Предыдущие преимущества ALS в совокупности делают предприятия более рентабельными и производительными в целом. Расчет рентабельности инвестиций (часто с помощью производителя систем смазки) — простой способ увидеть преимущества использования централизованных систем смазки, а не ручных методов.

Приложения

Отрасли, использующие преимущества систем смазки, включают автомобильную промышленность, производство продуктов питания и напитков, горнодобывающую промышленность, печать, упаковку, сталь, бумагу и промышленную механическую обработку.Фактические местоположения, которые зависят от систем смазки, включают электростанции, нефтяные месторождения и предприятия по переработке стали. Некоторые типы смазочных систем используются даже в жилых домах для обслуживания компьютеров и автомобилей.

Уход и техническое обслуживание

Автоматические системы смазки — это сложные особенности промышленных сред, требующие особого ухода для надлежащего обслуживания. Регулярно проверяйте свою систему смазки. Регулярный осмотр важен для выявления повреждений, например ослабленных или поврежденных линий.Такое повреждение может привести к чрезмерной смазке, которая во многих отношениях так же опасна, как и недостаточная смазка. Рекомендуется проверять свои системы не реже одного раза в день. Регулярно меняйте или обслуживайте компоненты вашей системы смазки. Обычно рекомендуемые графики замены смазочного материала можно получить у производителя или поставщика системы смазки. Фильтры в системах смазки — еще один важный компонент, который требует регулярного обслуживания для защиты от пыли и мусора.Не храните и не используйте смазочные материалы в экстремальных температурных условиях. Экстремальные температурные условия или колебания, как правило, снижают вязкость смазочных материалов и, следовательно, общую эффективность вашей системы смазки.

Выбор автоматической системы смазки

Те, кто заинтересован в настройке одной или нескольких систем смазки, должны принять во внимание несколько моментов. Во-первых, они должны сделать выбор между системами на масляной основе и системами на основе консистентной смазки. Для обслуживания стационарного производственного оборудования, такого как фрезерные станки с ЧПУ, системы смазки на масляной основе предлагают лучший сервис.Для мобильных устройств, таких как грузовики, строительная техника или горное оборудование, лучше всего подходят системы смазки. Конечно, если для разных областей применения требуются разные потребности, всегда можно настроить системы смазки как маслом, так и консистентной смазкой. Кроме того, пользователи систем смазки должны убедиться, что выбранный ими смазочный материал совместим с температурами, скоростями и крутящими моментами, с которыми работают их машины. Некоторые нефтяные основы более стабильны, чем другие. По той же причине пользователи системы смазки должны учитывать среду, в которой они работают.

Заказчики систем смазки также должны решить, какая конфигурация системы наилучшим образом соответствует требованиям их области применения. Примером такого решения является выбор между системами прогрессивной и параллельной смазки. Системы последовательной прогрессивной смазки отключаются при выходе из строя какой-либо линии или подшипника в системе. Это дает преимущество заблаговременного предупреждения операторов о механической проблеме. Однако, если время безотказной работы производства крайне необходимо, может быть лучше использовать параллельные системы, которые не зависят от каждого звена в системе, работающего с оптимальной производительностью.Параллельные системы также могут быть предпочтительнее по другим причинам. Например, двухлинейная параллельная система смазки идеальна в сценариях, когда требуется смазка на больших расстояниях или при экстремальных температурах.

Решение о том, какая система смазки лучше всего соответствует вашим конкретным потребностям, не следует принимать изолированно. Целесообразно инвестировать в поиск поставщика систем смазки с репутацией не только поставщика высококачественной продукции (например, благодаря партнерству с несколькими производственными линиями), но и квалифицированного консультирования клиентов и индивидуальных решений.Производители часто не предоставляют «стандартные» версии важных деталей или принадлежностей, таких как фильтры, манометры и пресс-масленки; Таким образом, важно обсудить с поставщиком всю желаемую систему смазки. Приобретая смазочные системы у поставщиков, имейте в виду, что к определенным пакетам могут прилагаться условия, которые не обязательно приносят пользу клиенту (например, требуя, чтобы клиенты покупали смазочный материал непосредственно у поставщика, чтобы гарантировать определенные гарантийные привилегии).Найдите время, чтобы найти поставщика, который не только способен, но и искренне желает предоставить вам наилучшее применение смазки.

Информационное видео о системе смазки

Системы смазки газовых турбин | Блог Turbomachinery

Газовые турбины используются во многих отраслях промышленности уже более века. Они представляют собой уникальную технологию производства энергии или приведения в движение транспортного средства, и эффективность современных газовых турбин постоянно повышается.Одна из них, система охлаждения, описывалась в предыдущих блогах. Другой — система смазки газовой турбины, о которой мы расскажем в этом блоге. Эта система, аналогичная системе поршневого двигателя или паровой турбины, обеспечивает смазку для уменьшения механических потерь и предотвращения износа поверхностей трения. Другая функция — отвод тепла, выделяемого во время трения частью с высоким вращением и передаваемого от горячей части турбины. Основными узлами, нуждающимися в смазке, являются подшипники, поддерживающие вал газовой турбины 2 .

Рис. 1. Конструкция современной сдвоенной шейки 4
Элементы для смазки

В общем случае газотурбинная установка содержит три основных опорных подшипника, поддерживающих ротор газовой турбины 3 . Кроме того, упорные подшипники также поддерживаются в осевом положении ротор-статор 4 . Щелкните здесь для получения дополнительной информации об оптимизации опорных подшипников. В конструкции подшипника есть важные элементы, предотвращающие утечки из системы смазки.Работа, конструкция и анализ лабиринтных уплотнений описаны здесь.

Помимо подшипников, для смазки необходимы и другие детали. Например, насосы для системы смазки, насос для топливной системы и другие дополнительные агрегаты, вращающиеся посредством вала. Система смазки авиационной газовой турбины также может включать в себя компоненты электрического генератора. Но основная цель смазки газовой турбины — поддержание работы подшипников.

Рисунок 2.Смазка контактных поверхностей опорного подшипника
Смазочные жидкости

Смазочное масло — это жизненная сила газовой турбины , и для газовой турбины очень важно выполнять свою функцию и увеличивать интервал между капитальными ремонтами. Жидкостные подшипники скольжения играют важную роль в общей надежности машины, вибрации и характеристиках системы подшипников ротора. Значит, масло должно иметь противоположные свойства. С одной стороны, вязкость может иметь низкое значение для обеспечения гибкости.С другой стороны, вязкость должна выдерживать высокое давление между штоком и корпусом. Масла для системы смазки авиационных газотурбинных двигателей имеют дополнительное требование к диапазону рабочих температур. Современное масло для смазки является синтетическим и имеет дополнительные свойства. Вы можете описать смазочное масло с любыми необходимыми параметрами в AxSTREAM ® , AxCYCLE ™ или AxSTREAM NET ™.

Типы систем смазки

В конструкции газовой турбины используются два основных типа систем смазки посредством картера.Первая — это система смазки с сухим картером, которая обычно используется в авиационных газовых турбинах. В системе этого типа используется резервуар. Смазочное масло хранится вне газовой турбины в резервуаре 5 .

Рис. 3. Пример системы смазки турбины с сухим картером 5

Системы смазки с мокрым картером обычно используются в авиационных газотурбинных двигателях. Смазочное масло хранится в собственно полостях двигателя. Газотурбинные установки по массе и габаритам меньше, чем с сухим картером 6.Недостатком системы мокрого картера является то, что ее элементы расположены близко к горячим участкам двигателей. В результате система смазки работает в более широком диапазоне перепада температур.

Рис. 4. Пример системы смазки мокрой газовой турбины 6

Масляные системы турбинных двигателей также можно классифицировать как систему сброса давления, которая поддерживает в некоторой степени постоянное давление: система полнопоточного типа, в которой давление меняется в зависимости от двигателя. скорость и система общих потерь, используемые в двигателях, предназначенных для кратковременной работы (беспилотные летательные аппараты, ракеты и т. д.)). Наиболее широко используемая система — это система сброса давления с полным потоком, используемая в основном на больших двигателях вентиляторного типа. Одна из основных функций масляной системы в газотурбинных двигателях — охлаждение подшипников за счет отвода тепла и циркуляции масла вокруг подшипника.

Использование AxSTRAM NET ™ для моделирования систем смазки

Типичная газотурбинная система состоит из каналов и каналов внутри смазываемых узлов, трубопроводов, необходимых для соединения различных частей, фильтра для обеспечения масляного зазора и охладителя для обеспечения температуры масла в процессе эксплуатации. диапазон.

Пример такого типа системы смазки газовой турбины был использован в первом серийном авиационном реактивном двигателе JUMO 004B, показанном на Рисунке 5 ниже. Этот газотурбинный двигатель имеет масляный бак. Смазочное масло подается из бака в смазочный насос, который проталкивает жидкость через фильтр в два разных ответвления. Первая ветвь смазывает первый опорный подшипник и дополнительное оборудование, такое как топливные и вспомогательные шестеренчатые насосы. Вторая ветвь смазывает остальные подшипники и шестеренчатые насосы.

На рисунке показано применение AxSTREAM NET ™ для одномерного моделирования системы смазки газотурбинного двигателя JUMO 004B. В программе есть модели подшипников обоих типов (опорных и упорных). Распределение давления отображается в результате моделирования. В данном случае нагрев подшипников не учитывается, потому что на первом газотурбинном двигателе он был небольшим. Но при необходимости термические элементы могут быть добавлены на диаграмму, а термический анализ может быть выполнен в AxSTREAM NET ™. См. Пример системы смазки паровой турбины.

Рисунок 5. Распределение абсолютного давления в смазке газотурбинного двигателя JUMO 004B, смоделированное в AxSTREAM NET

AxSTREAM NET ™ может использоваться не только для анализа существующих систем смазки, но также для проектирования и улучшения. Его можно использовать с любыми конструктивными параметрами для насосов или трубопроводов.

В связи с усилением конкуренции 7 в секторе газовых турбин, каждый процент эффективности турбины становится жизненно важным. Поэтому эффективность системы смазки также важна.Это сложная задача, включающая не только теплогидравлический анализ, но и конструкцию подшипников, смазочного масла и множества теплообменников. Сложную задачу можно решить с помощью одного программного обеспечения: AxSTREAM ® , которое включает AxSTREAM NET ™ для проектирования жидкостной системы контура, и AxSTREAM Bearing ™ для проектирования подшипников, а также многие другие возможности.

Референции
  1. Газовая турбина, https://en.wikipedia.org/wiki/Gas_turbine [12 сен 2019]
  2. Глобальный анализ рынка авиационных газовых турбин в 2019 году ведущими игроками — GE, Siemens, НПО Сатурн, Заря-Машпроект , Vericor, Cryostar, https: // amarketresearchgazette.com / aeroderivative-gas-turbine-market-2019-global-analysis-by-top-Players-ge-siemens-npo-saturn-zorya-mashproekt-vericor-cryostar / [10 апреля 2019 г.]
  3. Подшипники газовых турбин, [ 19 сентября 2019 г.]
  4. Комбинированный упорный и опорный подшипник, https://www.pumpsandsystems.com/bearings/may-2016-combined-thrust-journal-bearing-assembly-reduces-cost-risk-large-pump-users [ 2019 сен 12]
  5. СИСТЕМА МАСЛА ТУРБИНЫ, https://www.quora.com/How-turbine-oil-system-work-in-power-plant [2016, янв 2016]
  6. Справочник авиационного техника по техническому обслуживанию — Силовая установка, том .2, 2012
  7. Doosan Heavy Industries пытается присоединиться к крупным производителям газовых турбин, https://www.power-eng.com/2019/09/20/doosan-heavy-industries-vying-to-join-large-gas- производители турбин / [20 сентября 2019]

Как работает система смазки двигателя

В основном есть два типа масляных систем в транспортных средствах, оба из которых звучат как моржи или что-то в этом роде: мокрый картер и сухой картер.

В большинстве автомобилей используется система с мокрым картером . (Чем больше вы это говорите, тем страннее это звучит.Мокрый картер. Мокрый картер.) Это означает, что масляный поддон находится в нижней части двигателя, и масло хранится там. Помните Оливера, гостиную молекулы масла? Это как будто у него столик рядом с танцполом в клубе. И в этой странной метафоре танцоры — это поршни и подшипники.

Преимущество системы с мокрым картером — ее простота. Масло находится недалеко от того места, где оно будет использоваться, не так много деталей, которые нужно проектировать или ремонтировать, и его относительно дешево встраивать в автомобиль.

В некоторых автомобилях, особенно в высокопроизводительных, используется система с сухим картером .Это означает, что поддон находится не под двигателем — его можно расположить где угодно в моторном отсеке. После того, как Оливер поработал с двигателем, он не просто капает в салон. Он идет в VIP-комнату подальше от танцпола.

Система с сухим картером дает вам несколько бонусов: во-первых, это означает, что двигатель может располагаться немного ниже, что снижает центр тяжести автомобиля и улучшает устойчивость на скорости. Во-вторых, это предотвращает попадание лишнего масла на коленчатый вал, что снижает мощность двигателя.И, поскольку поддон может быть расположен где угодно, он также может быть любого размера и формы.

В двухтактных двигателях, кстати, используется совершенно другая технология. В скутерах, газонокосилках и других двухтактных машинах масло смешивается прямо с бензином. Когда бензин испаряется в процессе сгорания, масло остается, чтобы делать свое дело.

Иногда вам приходится делать это самостоятельно, отмеряя правильное количество перед наполнением бака. Но иногда, как и в большинстве мотороллеров, есть система впрыска, которая забирает масло из резервуара и смешивает его с бензином в нужных пропорциях.

Первоначально опубликовано: 8 мая 2012 г.

Требуется смазка для двух- и четырехтактных двигателей

27 января Требуется смазка для двух- и четырехтактных двигателей

Отправлено в 21:50 в продуктах AmsOil Дэвид Консалво

Двухтактные и четырехтактные двигатели имеют разную конструкцию и работают в разных условиях, требуя разных методов смазки.

Двигатели внутреннего сгорания используются для производства механической энергии из химической энергии, содержащейся в углеводородном топливе. Энергетическая часть рабочего цикла двигателя начинается внутри цилиндров двигателя с процесса сжатия. После сжатия при сгорании топливовоздушной смеси высвобождается химическая энергия топлива и образуются продукты сгорания под высоким давлением и высокой температурой. Эти газы расширяются в каждом цилиндре и передают работу поршню, производя механическую энергию для работы двигателя.

Каждое движение поршня вверх или вниз называется ходом, а два обычно используемых цикла двигателя внутреннего сгорания — это двухтактный цикл и четырехтактный цикл. Термины «, двухтактный, » и «, двухтактный, », а также «, четырехтактный, » и «, четырехтактный, » часто меняются местами.

Двухтактные и четырехтактные различия

Принципиальное различие между двухтактными и четырехтактными двигателями заключается в их процессе газообмена или, проще говоря, удалении сгоревших газов в конце каждого процесса расширения и введении свежей смеси для следующего цикла .Двухтактный двигатель , , , имеет расширение или рабочий ход в каждом цилиндре во время каждого оборота коленчатого вала. Процессы выпуска и зарядки происходят одновременно, когда поршень перемещается через свое самое нижнее или нижнее центральное положение.

Двухтактный двигатель

В четырехтактном двигателе сгоревшие газы сначала вытесняются поршнем во время хода вверх, а свежий заряд поступает в цилиндр во время следующего хода вниз.

Четырехтактным двигателям для рабочего хода требуется два полных оборота коленчатого вала, по сравнению с одним оборотом, необходимым в двухтактном двигателе. Двухтактные двигатели работают при вращении коленчатого вала на 360 °, тогда как четырехтактные двигатели работают на 720 ° вращения коленчатого вала.

4-тактный двигатель

Приложения

Двухтактные двигатели, как правило, дешевле в производстве по сравнению с четырехтактными двигателями, они легче и могут обеспечивать более высокое отношение мощности к массе.По этим причинам двухтактные двигатели идеально подходят для таких применений, как бензопилы, уборщики сорняков, подвесные моторы, внедорожные мотоциклы и гоночные машины. Отчасти из-за своей конструкции и отсутствия масляного картера двухтактные двигатели также легче запускать при низких температурах, что делает их идеальными для использования в снегоходах.

Смазка для четырехтактных двигателей

Четырехтактные двигатели смазываются маслом, находящимся в масляном картере. Масло распределяется по двигателю за счет смазки разбрызгиванием или с помощью системы смазочного насоса под давлением; эти системы можно использовать по отдельности или вместе.

Смазка разбрызгиванием достигается частичным погружением коленчатого вала в масляный поддон. Импульс вращающегося коленчатого вала разбрызгивает масло на другие компоненты двигателя, такие как кулачки, пальцы и стенки цилиндров.

Смазка под давлением использует масляный насос для создания пленки смазки под давлением между движущимися частями, такими как главные подшипники, подшипники штока и подшипники кулачка. Он также перекачивает масло в направляющие клапана двигателя и коромысла.

Смазка двухтактных двигателей Двухтактные двигатели собирают немного масла под коленчатым валом; однако в двухтактных двигателях используется система смазки с полным отсутствием потерь, которая сочетает в себе масло и топливо для обеспечения как энергии, так и смазки двигателя.Масло и топливо смешиваются во впускном тракте цилиндра и смазывают важные компоненты, такие как коленчатый вал, шатуны и стенки цилиндра.

Двухтактные двигатели с впрыском масла впрыскивают масло непосредственно в двигатель, где оно смешивается с топливом, в то время как двухтактные двигатели с предварительным смешиванием требуют топливно-масляной смеси, которая смешивается перед установкой в ​​топливный бак. В целом известно, что двухтактные двигатели изнашиваются быстрее, чем четырехтактные, потому что для них нет специального источника смазочного материала; однако высококачественное масло для двухтактных двигателей значительно снижает износ двигателя.

Добавить комментарий

Ваш адрес email не будет опубликован.