Меню Закрыть

Как проверить турбину на дизеле видео: Как проверить турбину на дизельном двигателе

Содержание

Как проверить турбину на дизельном двигателе

Необходимость проверить турбину дизельного двигателя своими руками может возникнуть по ряду причин. Выполнение диагностики турбокомпрессора на СТО зачастую потребует определенных финансовых затрат, так как специалисты в большинстве случаев подключают диагностическое оборудование, снимают турбину с двигателя для проверки.

Чтобы выявить неисправности самостоятельно без снятия турбины, можно воспользоваться несколькими способами диагностики. На проблемы с турбокомпрессором могут указывать следующие прямые или косвенные признаки, которые проявляются в процессе работы силового агрегата:

  • появление черного, сизого или синеватого дыма выхлопа;
  • дизель шумно работает в разных режимах под нагрузкой;
  • повышается температура, мотор склонен перегреваться;
  • возрастает расход горючего и моторного масла;
  • двигатель теряет мощность, падает тяга и динамика;

В самом начале стоит отдельно отметить, что подобные симптомы могут возникать не только по причине неисправностей турбины, но данный элемент также находится в списке.

Содержание статьи

На начальном этапе диагностики следует проверить уровень и качество дизельного моторного масла. Также необходимо исключить возможное попадание сторонних предметов в турбокомпрессор.

Далее приступаем к анализу цвета выхлопных газов. Падение мощности и черный цвет выхлопа дизеля говорит о переобогащении смеси. Это может указывать на недостаточное количество подаваемого в цилиндры воздуха по причине неисправностей во впуске. Тяга дизельного мотора может также пропадать в результате утечек на выпуске.

Для проверки мотор необходимо завести и оценить звуки в процессе работы турбокомпрессора. Турбина не должна свистеть или скрипеть, не должно быть звука прорывающегося воздуха через соединения. Нужно проверить состояние и герметичность соединений патрубков, по которым осуществляется подача воздуха. Любые неплотности или повреждения недопустимы. Также обязательно проверяется состояние воздушного фильтра, так как загрязнение и снижение его пропускной способности приведет к недостаточной подаче воздуха в цилиндры.

Турбину нужно дополнительно проверять на износ. Для диагностики ротор турбины потребуется провернуть вокруг своей оси. Присутствие небольшого люфта вполне допустимо. В том случае, если ротор касается корпуса, турбине необходим ремонт.

Если дизель дымит белым или сизым выхлопом, тогда это указывает на попадание масла в цилиндры двигателя и его сгорание в рабочей камере. Подобная неисправность может возникать как по причине неисправностей турбокомпрессора, так и других узлов ДВС. Также на проблему указывает большой расход масла (около литра на 1 тыс. пройденных км.)

В этом случае необходимо снова вернуться к проверке воздушного фильтра и ротора турбины. Загрязненный фильтр пропускает малое количество воздуха, что приводит к сильной разнице давлений между корпусом турбины и картриджем с подшипниками. Из этого картриджа масло начинает вытекать в корпус компрессора. Если неисправностей не выявлено, тогда нужно приступить к осмотру сливного маслопровода на наличие загибов, трещин и других дефектов.

Еще одной причиной роста давления может служить активное попадание газов из камеры сгорания в картер двигателя, что препятствует нормальному сливу масла из турбины. Данная неисправность может быть связана с проблемами в работе системы вентиляции картерных газов, дизель начинает сапунить. На моторе с исправной турбиной во впускном и выпускном коллекторе не должно быть признаков обильного попадания масла.

Снова проводим анализ состояния турбины на осевой люфт. Если с компрессором все в норме, тогда причины наличия масла в турбине заключаются именно в повышении давления в картере двигателя. Дополнительно возможно присутствие пробки в сливном маслопроводе.

В случае шумной работы дизеля нужно проверить трубопроводы, через которые воздух подается под давлением, а также ротор турбокомпрессора. Ротор турбины во время прокрутки не должен касаться стенок. Повышенного внимания заслуживает состояние крыльчатки турбины. Любые зазубрины или признаки повреждений крыльчатки требуют немедленного ремонта компрессора. При обнаружении заметных дефектов ротора турбину необходимо снимать для детальной диагностики.

Люфта во время осевого смещения вала турбины не должно быть заметно, так как допустимый люфт составляет 0,05 мм и его не почувствуешь. Смещение вала в радиальном направлении допускает присутствие микролюфта ( допустимое значение около 1мм.), который немного ощущается. Если при оценке состояния турбины замечены сильные отклонения от данных требований и показателей, тогда компрессор можно считать сильно изношенным или неисправным.

Проверка турбонагнетателя на заведенном двигателе

Проверять турбину на наддув следует так:

  • пригласите помощника;
  • запустите двигатель;
  • определите патрубок, который соединяет впускной коллектор и турбокомпрессор;
  • пережмите указанный патрубок рукой;
  • помощник должен погазовать несколько секунд;

Если компрессор работает, тогда патрубок должен будет ощутимо раздуваться. При отсутствии производительности турбины этого не произойдет. Дополнительно следует оценить общее состояние патрубков, а также исключить возможность трещин и других дефектов впускного и выпускного коллектора дизельного двигателя.

Читайте также

  • Ресурс турбины дизельного двигателя

    От чего зависит срок службы турбонагнетателя дизельного ДВС. Особенности и рекомендации касательно эксплуатации и ремонта турбин с изменяемой геометрией.

методы диагностики и устранения неисправности

Турбированные двигатели стремительно завоевывают популярность. Если раньше турбонагнетатели устанавливались в тяжеловесные или мощные спортивные автомобили, то теперь турбины можно увидеть на легковых автомобилях, как с бензиновым движком, так и с дизельным.

Турбины дизельного двигателя обычно имеют срок эксплуатации намного меньший, чем у самого движка. Для того чтобы вовремя провести профилактические работы и не столкнуться с необходимостью оплачивать дорогостоящие детали, нужно периодически проверять работу турбины. Это вполне можно сделать самостоятельно, не обращаясь в автосервис.

Причины неисправности

Для того чтобы провести осмотр турбины и выявить неисправность, необходимо понимать, какие именно поломки могут произойти в системе турбонагнетателя.

Обычно самыми проблемными элементами являются сальники и подшипники. От износа этих деталей может появиться люфт, шум, можно столкнуться с клином турбины. Нарушиться работа может из-за неисправности смазочной системы, клапанов вентиляции, или поршневые кольца уже достаточно изношены. В таком случае продукты сгорания дизтоплива попадают в картер и приводят к негативным последствиям.

Если в выхлопе замечен дым, чаще всего сизый, то следует обратить внимание на PCV-клапан. Его неправильная работа повышает давление масла в турбине, из-за этого смазочный материал продавливает сальники. Попав наружу или в нагнетаемый воздух, масло меняет состав смеси, от этого движок значительно теряет мощность и начинает выделять вышеупомянутый дым.

Когда проверять турбину

Если использовать качественное масло и бережно относиться к дизельному агрегату, то турбонагннетатель будет работать исправно примерно 150 тысяч километров. Чтобы обнаружить любую поломку на ее начальной стадии, нужно внимательно следить за турбиной, достаточно проверить работу агрегата во время замены масла.

Таким образом, автовладелец может значительно сэкономить, ремонтируя неисправность на ее начальной стадии, вместо замены дорогостоящей детали.

Первые признаки неисправности

Разумеется, если у автолюбителя нет опыта в работе с автомобилями, не стоит сразу же разбирать агрегат и пытаться выявить неисправность изнутри. Существует несколько признаков, которые свидетельствуют о неправильной работе турбокомпрессора:

  • появление сизого или черного дыма во время выхлопа;
  • очень громкая работа дизельного агрегата при различных нагрузках;
  • двигатель часто перегревается;
  • расход топлива неуклонно растет, как и скорость расхода масла;
  • ухудшение тяги, потеря мощности и динамики.

Каждый из признаков может говорить не только о неисправной турбине, но и о ряде других мелких поломок. Если причина не в турбонагнетателе, то необходимо немедленно обратиться на сервис для дальнейшей диагностики. Чем раньше обнаружить поломку, тем дешевле обойдется ее устранить.

Самостоятельная проверка

Первичную проверку можно провести собственными силами, чтобы не тратиться на компьютерную диагностику, которая часто стоит немалых денег.

Для начала, турбокомпрессор нужно тщательно осмотреть.

В первую очередь проверяется уровень и качество моторного масла используемого для дизельного мотора. Затем нужно убедиться, что в компрессор не попал никакой посторонний предмет.

После проведенных процедур необходимо оценить цвет выхлопа. Он также может указать на конкретные проблемы с турбиной. Если цвет выхлопа черный, и при этом замечено падение мощности, то, скорее всего, придется иметь дело с переобогащенносй смесью. Она появляется из-за поломки системы впуска-выпуска воздуха. На впуске в цилиндры попадает недостаточное количество воздуха, а на выпуске могут быть утечки, которые и приводят к потере мощности.

Сизый или даже белый дым из выхлопной трубы говорит о том, что масло попадает в цилиндры, а затем сгорает в рабочей камере. При этом расход масла может вырасти примерно до литра на 1000 километров. Необходимо проверить работу ротора и чистоту фильтров. Ротор должен иметь небольшой люфт и не касаться корпуса, иначе деталь требует немедленного осмотра и ремонта.

Сильно загрязненный фильтр не может пропускать необходимое количество воздуха, за счет этого создается разное давление в корпусе турбонагнетателя и в картридже с подшипниками. Из этого картриджа масло попадает в компрессор. Если дело не в фильтре, то необходимо проверить всю систему подачи масла, шланги и патрубки на наличие загибов, трещин и щелей.

Герметичность соединений патрубков можно проверить при заведенном двигателе. Свист и скрип, а также воздух, прорывающийся сквозь систему, говорит о том, что хомуты нужно подтянуть. Любая неплотность или повреждение ведет к недостаточной подаче воздуха в цилиндры.

Еще одной причиной неисправности турбины становится неправильный слив масла из-за того, что газы попали в картер. Необходимо проверить систему вентиляции, чтобы дизельный мотор не начал сапунить.

Проверка на заведенном двигателе

Самый простой способ, как проверить турбину на дизельном двигателе требует присутствия хотя бы двух человек.

  1. Заведите двигатель.
  2. Найдите патрубок между турбонагнетателем и впускным коллектором.
  3. Передавите его.
  4. Несколько секунд погазуйте.

При правильной работе турбины, почувствуется, что патрубок ощутимо надувается. Если этого не происходит, возможны разнообразные трещины и дефекты коллектора. Следует обратиться за квалифицированной помощью для устранения поломки.

Очень важно понимать, что диагностику можно провести самостоятельно, но ремонт необходимо доверить профессионалам.

Неквалифицированное вмешательство может привести к тому, что маленькая неисправность приведет к поломке всей детали и поставит автовладельца перед необходимостью менять и ремонтировать турбокомпрессор. Необходимо обратиться в проверенный сервис, где специалисты быстро и качественно устранят неисправность и продлят жизнь турбонагнетателю на дизельном двигателе.

Как проверить турбину на дизеле видео

Турбированные двигатели стремительно завоевывают популярность. Если раньше турбонагнетатели устанавливались в тяжеловесные или мощные спортивные автомобили, то теперь турбины можно увидеть на легковых автомобилях, как с бензиновым движком, так и с дизельным.

Турбины дизельного двигателя обычно имеют срок эксплуатации намного меньший, чем у самого движка. Для того чтобы вовремя провести профилактические работы и не столкнуться с необходимостью оплачивать дорогостоящие детали, нужно периодически проверять работу турбины. Это вполне можно сделать самостоятельно, не обращаясь в автосервис.

Причины неисправности

Для того чтобы провести осмотр турбины и выявить неисправность, необходимо понимать, какие именно поломки могут произойти в системе турбонагнетателя.

Обычно самыми проблемными элементами являются сальники и подшипники. От износа этих деталей может появиться люфт, шум, можно столкнуться с клином турбины. Нарушиться работа может из-за неисправности смазочной системы, клапанов вентиляции, или поршневые кольца уже достаточно изношены. В таком случае продукты сгорания дизтоплива попадают в картер и приводят к негативным последствиям.

Если в выхлопе замечен дым, чаще всего сизый, то следует обратить внимание на PCV-клапан. Его неправильная работа повышает давление масла в турбине, из-за этого смазочный материал продавливает сальники. Попав наружу или в нагнетаемый воздух, масло меняет состав смеси, от этого движок значительно теряет мощность и начинает выделять вышеупомянутый дым.

Когда проверять турбину

Если использовать качественное масло и бережно относиться к дизельному агрегату, то турбонагннетатель будет работать исправно примерно 150 тысяч километров. Чтобы обнаружить любую поломку на ее начальной стадии, нужно внимательно следить за турбиной, достаточно проверить работу агрегата во время замены масла.

Таким образом, автовладелец может значительно сэкономить, ремонтируя неисправность на ее начальной стадии, вместо замены дорогостоящей детали.

Первые признаки неисправности

Разумеется, если у автолюбителя нет опыта в работе с автомобилями, не стоит сразу же разбирать агрегат и пытаться выявить неисправность изнутри. Существует несколько признаков, которые свидетельствуют о неправильной работе турбокомпрессора:

  • появление сизого или черного дыма во время выхлопа;
  • очень громкая работа дизельного агрегата при различных нагрузках;
  • двигатель часто перегревается;
  • расход топлива неуклонно растет, как и скорость расхода масла;
  • ухудшение тяги, потеря мощности и динамики.

Каждый из признаков может говорить не только о неисправной турбине, но и о ряде других мелких поломок. Если причина не в турбонагнетателе, то необходимо немедленно обратиться на сервис для дальнейшей диагностики. Чем раньше обнаружить поломку, тем дешевле обойдется ее устранить.

Самостоятельная проверка

Первичную проверку можно провести собственными силами, чтобы не тратиться на компьютерную диагностику, которая часто стоит немалых денег. Для начала, турбокомпрессор нужно тщательно осмотреть.

В первую очередь проверяется уровень и качество моторного масла используемого для дизельного мотора. Затем нужно убедиться, что в компрессор не попал никакой посторонний предмет.

После проведенных процедур необходимо оценить цвет выхлопа. Он также может указать на конкретные проблемы с турбиной. Если цвет выхлопа черный, и при этом замечено падение мощности, то, скорее всего, придется иметь дело с переобогащенносй смесью. Она появляется из-за поломки системы впуска-выпуска воздуха. На впуске в цилиндры попадает недостаточное количество воздуха, а на выпуске могут быть утечки, которые и приводят к потере мощности.

Сизый или даже белый дым из выхлопной трубы говорит о том, что масло попадает в цилиндры, а затем сгорает в рабочей камере. При этом расход масла может вырасти примерно до литра на 1000 километров. Необходимо проверить работу ротора и чистоту фильтров. Ротор должен иметь небольшой люфт и не касаться корпуса, иначе деталь требует немедленного осмотра и ремонта.

Сильно загрязненный фильтр не может пропускать необходимое количество воздуха, за счет этого создается разное давление в корпусе турбонагнетателя и в картридже с подшипниками. Из этого картриджа масло попадает в компрессор. Если дело не в фильтре, то необходимо проверить всю систему подачи масла, шланги и патрубки на наличие загибов, трещин и щелей.

Герметичность соединений патрубков можно проверить при заведенном двигателе. Свист и скрип, а также воздух, прорывающийся сквозь систему, говорит о том, что хомуты нужно подтянуть. Любая неплотность или повреждение ведет к недостаточной подаче воздуха в цилиндры.

Еще одной причиной неисправности турбины становится неправильный слив масла из-за того, что газы попали в картер. Необходимо проверить систему вентиляции, чтобы дизельный мотор не начал сапунить.

Проверка на заведенном двигателе

Самый простой способ, как проверить турбину на дизельном двигателе требует присутствия хотя бы двух человек.

  1. Заведите двигатель.
  2. Найдите патрубок между турбонагнетателем и впускным коллектором.
  3. Передавите его.
  4. Несколько секунд погазуйте.

При правильной работе турбины, почувствуется, что патрубок ощутимо надувается. Если этого не происходит, возможны разнообразные трещины и дефекты коллектора. Следует обратиться за квалифицированной помощью для устранения поломки.

Очень важно понимать, что диагностику можно провести самостоятельно, но ремонт необходимо доверить профессионалам.

Неквалифицированное вмешательство может привести к тому, что маленькая неисправность приведет к поломке всей детали и поставит автовладельца перед необходимостью менять и ремонтировать турбокомпрессор. Необходимо обратиться в проверенный сервис, где специалисты быстро и качественно устранят неисправность и продлят жизнь турбонагнетателю на дизельном двигателе.

Еще 15-20 лет назад турбированные двигателя встречались только на грузовиках и спецтехнике. Но сейчас все чаще производители используют турбину на легковых автомобилях. На то есть свои причины. Ведь благодаря турбокомпрессору, можно значительно увеличить мощность двигателя и крутящий момент без потери расхода и увеличения камеры сгорания. К сожалению, данный элемент не вечен и со временем выходит из строя. Что же, давайте рассмотрим, как проверить работу турбины своими руками.

Основные признаки неисправности

Если данный механизм начал давать сбои в работе, вы сразу это ощутите. В первую очередь, неисправность турбины будет отображаться на ходовых качествах автомобиля. Так, значительно пропадет динамика разгона. Машине будет трудно набрать нужную скорость, особенно на подъем или при загрузке. Также двигатель будет тяжелее набирать обороты. По сути, он превратится в обычный «атмосферник». А как известно, на трубированных автомобилях стрелка тахометра существенно «оживает» после определенного диапазона оборотов (2 и более тысяч, в заливистости от типа мотора). При неисправном компрессоре она будет тянуться вверх так же медленно, как и в начале.

Черный дым из выхлопной и малая мощность. Что делать?

Основная проблема заключается в несанкционированном поступлении воздуха в выпускной или впускной коллектор. Итак, как проверить турбину дизельного двигателя своими руками? Для начала запускаем мотор и прислушиваемся к его звуку работы. Так можно определить конкретное место поломки. Часто проблема заключается в лишнем «подсосе» воздуха или загрязненном воздушном фильтре.

Сизый дым из выхлопной

Этот признак может говорить о чрезмерном расходе масла. Смазка попадает в выхлопную систему и там сгорает. Основная причина заключается в недостаточном пропуске воздуха. Это может быть грязный фильтр, из-за чего создается разница в давлении между картриджем турбины и корпусом компрессора. Также стоит осмотреть повреждение на роторе и сливной маслопровод. Последний не должен содержать пробок и перегибов. Дополнительно проверяют давление картерных газов в системе. Это тоже может стать причиной повышенного расхода масла и синего дыма.

Проверяем наддув

Как проверить турбину на дизеле без снятия? Запускаем двигатель, открываем капот и находим патрубок, который соединяет впускной коллектор и турбину. Его нужно пережать рукой, а затем отпустить. Далее помощник должен нажать на газ в течении трех секунд. В чем суть этой проверки? После нажатия на газ вы увидите, как патрубок под давлением раздувается. Если этого не произошло, значит, турбина не работает как положено.

Дефектовка

Чтобы убедиться в исправности элемента, можно произвести его дефектовку. Как проверить турбину? Для этого отсоединяем патрубок, который идет на воздушный фильтр, и осматриваем лопатки турбины. Они должны быть без забоин и зазубрин, с правильной формой (не погнутые). При повреждении крыльчатки компрессор нужно менять, либо ремонтировать.

Если на автомобиле используется воздушный радиатор (интеркуллер), его тоже необходимо осмотреть. Внутри него исключены потеки масла. В противном случае компрессор нуждается в ремонте.

О герметичности

Стоит отметить, что даже при дефектовке невозможно определить поломку на 100 процентов. Дело в том, что подобные признаки могут наблюдаться и из-за негерметичных соединений впускного и выпускного тракта. По этой причине система не может произвести нормальную регулировку подачи топлива. Это ведет к повышенному расходу масла, топлива и падению мощности.

Профилактика

Чтобы не задаваться вопросом, как проверить турбину, нужно знать меры профилактики. Несколько простых советов, отмеченных ниже, значительно продлят срок службы вашему элементу:

  • Придерживайтесь регламента замены воздушного фильтра. В половине случаев повышенный расход масла и другие проблемы с турбиной возникают именно из-за грязного фильтра. И если на атмосферных двигателях просто пропадет тяга, то здесь будет перегружен весь механизм (а именно компрессор, из-за разницы давлений во впуске и выпуске).
  • Следите за уровнем масла. Даже кратковременное «голодание» очень вредно для двигателя и турбины. Заливайте только рекомендованное производителем масло. Часто поломки возникают из-за применения поддельной продукции. Что касается регламента замены, он немного отличается от обычных, атмосферных двигателей. На турбированных моторах масло меняется раз в 7 тысяч километров.
  • Контролируйте величину наддува. Особенно это касается тех, кто ставит турбину нештатно на бензиновые двигателя. Данный параметр должен находится в пределах одного бара. Помните, что с каждым увеличением «буста» мотор терпит колоссальные нагрузки.

  • Перед тем как глушить мотор после поездки, дайте ему поработать 1-2 минуты на холостых. Так вы исключите углеродный осадок, который вредит подшипникам турбины.

Заключение

Итак, мы выяснили, как проверить турбину разными способами. При возникновении проблем не стоит медлить с их устранением. Ведь повышенному износу подвергается не только компрессор, но и сам двигатель. Не используйте присадки, которые, по словам производителей, «лечат» турбину. Они никаким образом не восстановят заводские зазоры и уж тем более не вернут прежнее состояние треснутых лепестков крыльчатки. Все эти проблемы решаются только путем механического вмешательства, со снятием и дефектовкой.

Привет мои дорогие Други и Подруги!Решил вам для расширения кругозора создать вот такой вот ПОСТ…
Если вы эксплуатируете дизельный или бензиновый (турбированный) автомобиль, то стоит уделить особое внимание состоянию турбины. Это довольно дорогой агрегат, который существенно влияет на стоимость приобретаемого «железного коня». Если автомобиль ранее неправильно эксплуатировался может потребоваться ремонт турбины, который ощутимо ударит по карману. Поэтому к вопросу выбора автомобиля с турбокомпрессором стоит подходить с особой тщательностью.
Диагностика проблемы в автосалоне может обойтись вам в кругленькую сумму, и это не считая самого ремонта. Если средства ограничены, то вы можете самостоятельно проверить работу турбокомпрессора.
Основные неисправности турбины дизельного двигателя (тут и далее подрузумевается в том числе бензиновые турбированные аналоги) можно определить не прибегая к помощи специалистов. Часто автомобилисты или работники СТО сразу снимают турбокомпрессор с двигателя, не определив реальной проблемы. Это приводит к лишним тратам сил и времени. В большинстве случаев намного проще определить неисправность не снимая турбину.
Наиболее распространёнными признаками неисправности турбины являются:
чёрный, сизый или синий цвет выхлопных газов
шумная работа двигателя, помпаж
перегрев двигателя
большой расход масла или топлива
уменьшается тяга
К причинам таких проблем относят: грязное или некачественное масло, посторонние предметы внутри механизма турбины, отсутствие или низкий уровень масла.
Хотя это признаки показательны, далеко не всегда они указывают именно на неисправность работы турбины. В ряде случаев причиной их появления являются другие узлы двигателя.двигателя
Теперь рассмотрим, как самостоятельно проверить турбину дизельного двигателя и устранить проблемы.
Начнем с наиболее простых и легко обнаруживаемых визуально проблем, которые можно определить самостоятельно.
Уменьшение мощности двигателя, выхлопные газы стали чёрного цвета.
Налицо недостаточное поступление воздуха в двигатель и сгорания обогащённой смеси внутри турбины.

Причина: засорение клапана, утечка во впускном или выпускном коллекторе.

Устранение. Запускаем двигатель и слушаем работу турбины. По звуку можно определить, где именно возникла проблема. Проверяем места соединения воздушных патрубков, если там все в порядке переходим к воздушному фильтру. В случае если его работа нарушена, необходима замена.

Если есть возможность, то проверьте износ турбины. Для этого прокрутите немного ротор вокруг своей оси. Небольшой люфт является нормой, но если же ротор цепляет за корпус, турбину следует отдать в ремонт.

Если вы выполнили все перечисленные действия, а причина так и не найдена, проблема кроется в неисправности самого двигателя и топливной системы.

Сизый, белый или синеватый цвет выхлопных газов.
Серый (белый или синеватый) дым свидетельствует о том, что масло попадает выхлопную систему и там сгорает. В таком случае поломка возникла в турбине или двигателе. Не в зависимости от изменения цвета дыма растет потребление масла с 0,2 до 1 литра на тысячу километров.

Устранение: Проверяем воздушный фильтр, как ни странно вероятнее всего его загрязнение стало причиной утечки масла. Дело в том, что загрязненный воздушный фильтр пропускает незначительный объем воздуха из-за чего создается большая разница в давлении между корпусом компрессора и картриджем турбины (иначе корпус подшипников) и из второго в первый начинает вытекать масло. Если фильтр в порядке смотрим на наличие повреждений на роторе. После внимательно осматриваем сливной маслопровод на наличие пробок, перегибов и повреждений. Не в зависимости от результатов предыдущих проверок обратите внимание на давление картерных газов. Они могут препятствовать нормальному сливу масла. Часто эта проблема возникает из-за нарушений их системы вентиляции. И последнне ВЫПУСКНОЙ КОЛЛЕКТОР .В нем не должно быть МАСЛА…
Устранение. Опять же начинаем с воздушного фильтра. После проверяем давление в корпусе турбины и крепление. На глаз определяем износ турбины. Это можно сделать по люфту оси. Если все в норме, то скорее всего причина поломки в повышенном давлении картерных газов или засорении сливного маслопровода.

Шумная работа двигателя.Признаки неисправности турбины
Наиболее распространёнными признаками неисправности турбины являются:

чёрный, сизый или синий цвет выхлопных газов
шумная работа двигателя, помпаж
перегрев двигателя
большой расход масла или топлива
уменьшается тяга
К причинам таких проблем относят: грязное или некачественное масло, посторонние предметы внутри механизма турбины, отсутствие или низкий уровень масла.

Хотя это признаки показательны, далеко не всегда они указывают именно на неисправность работы турбины. В ряде случаев причиной их появления являются другие узлы двигателя.

Диагностика турбины без снятия с двигателя
Теперь рассмотрим, как самостоятельно проверить турбину дизельного двигателя и устранить проблемы.

Начнем с наиболее простых и легко обнаруживаемых визуально проблем, которые можно определить самостоятельно.
Уменьшение мощности двигателя, выхлопные газы стали чёрного цвета.
Налицо недостаточное поступление воздуха в двигатель и сгорания обогащённой смеси внутри турбины.

Причина: засорение клапана, утечка во впускном или выпускном коллекторе.

Устранение. Запускаем двигатель и слушаем работу турбины. По звуку можно определить, где именно возникла проблема. Проверяем места соединения воздушных патрубков, если там все в порядке переходим к воздушному фильтру. В случае если его работа нарушена, необходима замена.

Если есть возможность, то проверьте износ турбины. Для этого прокрутите немного ротор вокруг своей оси. Небольшой люфт является нормой, но если же ротор цепляет за корпус, турбину следует отдать в ремонт.

Если вы выполнили все перечисленные действия, а причина так и не найдена, проблема кроется в неисправности самого двигателя и топливной системы.

Сизый, белый или синеватый цвет выхлопных газов.
Серый (белый или синеватый) дым свидетельствует о том, что масло попадает выхлопную систему и там сгорает. В таком случае поломка возникла в турбине или двигателе. Не в зависимости от изменения цвета дыма растет потребление масла с 0,2 до 1 литра на тысячу километров.

Устранение: Проверяем воздушный фильтр, как ни странно вероятнее всего его загрязнение стало причиной утечки масла. Дело в том, что загрязненный воздушный фильтр пропускает незначительный объем воздуха из-за чего создается большая разница в давлении между корпусом компрессора и картриджем турбины (иначе корпус подшипников) и из второго в первый начинает вытекать масло. Если фильтр в порядке смотрим на наличие повреждений на роторе. После внимательно осматриваем сливной маслопровод на наличие пробок, перегибов и повреждений. Не в зависимости от результатов предыдущих проверок обратите внимание на давление картерных газов. Они могут препятствовать нормальному сливу масла. Часто эта проблема возникает из-за нарушений их системы вентиляции.

И последнее – выпускной коллектор. На нём не должно быть следов масла.

Повышенный расход масла.
Устранение. Опять же начинаем с воздушного фильтра. После проверяем давление в корпусе турбины и крепление. На глаз определяем износ турбины. Это можно сделать по люфту оси. Если все в норме, то скорее всего причина поломки в повышенном давлении картерных газов или засорении сливного маслопровода.

Шумная работа двигателя.
Устранение. Проверяем все трубопроводы, которые работают под давлением, затем ось турбины. Просматриваем роторы на наличие повреждений. Если вы обнаружили потёртости или деформацию, необходимо снять турбину для более тщательного осмотра. Скорее всего, понадобится квалифицированный ремонт.
ДАЛЕЕ перейдем ко второму этапу проверки для него нам понадобиться посторонняя помощь.

Проверка наддува. Заведите мотор, откройте капот, найдите патрубок соединяющий турбину и впускной коллектор двигателя и пережмите его рукой, затем попросите своего товарища нажать на газ в течение 3-5 секунд, а потом отпустить. В это время вы должны почувствовать, как патрубок раздувается под давлением. Если такого нет в течение 3-4 циклов значит турбина сломана.
В большинстве случаев вполне хватает первых двух этапов для определения неисправности турбокомпрессора не снимая его с двигателя, но для пущей уверенности можно провести и следующие пункты.
Отсоедините и осмотрите патрубки. Если в них нет или имеется незначительные следы отпотевания масла — значит все хорошо, но если же там его много значит нужно выяснять причину. Иногда турбина при этом совершенно исправна, а виной всему двигатель.
Посмотрите на состояние крылатки турбины, если есть следы зазубрин и забоин то турбину как можно раньше нужно снять для проведения ремонта или полной замены.
Попробуйте переместить вал в осевом направлении. Люфта вообще не должно ощущаться, поскольку его допустимое значение менее 0,05мм в противном случае турбина является сломанной.
Передвиньте вал в радиальном направлении. Его значение достигает 1 мм, поэтому его можно ощутить. Прокрутите крыльчатку вокруг своей оси. При этом она не должна задевать стенки. Если это все же происходит или люфт значительно больше значит турбина в скором времени сломается или уже сломана.
Если предыдущие этапы не дали результатов осмотрите корпус турбины, патрубки, фланцы, коллекторы двигателя на наличие трещин.
Будьте более внимательны к работе своего автомобиля. Если вы заметили какое-то изменение, то не ждите усугубления проблемы, а проведите диагностику. Всегда используйте только качественное масло, масляные фильтры и меняйте их в срок. Это поможет турбине на дизельном двигателе прослужить вам долгие годы…

Как проверить турбину на дизеле?

Если Вы почувствовали, что пропала тяга в автомобиле — значит с большой вероятностью сломался турбокомпрессор.

Причиной проверки работы турбокомпрессора дизельного двигателя может быть низкий уровень тяги или инородный свист, производимый турбиной. Автолюбители с многолетним стажем имеют свои специфические способы проверки аппарата, однако, лучше воспользоваться специальными сервисными устройствами.

Как проверить турбину на дизеле?

В сервисных центрах обычно для выявления неисправной работы турбины, к специальному разъему автомобиля подключают сканер. Отключение турбонаддува может случиться из-за датчика давления нагнетаемого воздуха или по причине выработки своего ресурса турбиной. Для определения давления воздуха, который нагнетается во время работы турбиной, к ее выходу необходимо подключить специальное устройство с манометром. Снятые показатели дадут понять, нужно менять турбокомпрессор полностью или проводить ремонт турбины. При этом, если Вы решите купить бу турбину (при нарушении целостности корпуса турбины), то обращайтесь в наш техцентр. Специалисты помогут Вам подобрать необходимую модель, которая будет стоить на 30-40% дешевле.

Видео — турбина кидает масло во впуск

 

Причины неисправности турбины автомобиля

Причиной неисправности турбины является выброс синего выхлопного дыма при разгоне автомобиля, а при постоянных оборотах его исчезновения. Это может быть вызвано сгоранием масла, попадающего в цилиндры мотора из-за утечки в турбокомпрессоре.

Также о неисправности в системе управления ТКР (турбокомпрессор) может свидетельствовать черный дым, появляющийся во время сгорания обогащенной смеси за счет утечки воздуха в нагнетающих магистралях.

Белые же выхлопные газы, наоборот, говорят о том, что засорился сливной маслопровод ТКР. Увеличение расходов масла (0,2 – 1 л на 1 тыс. км) и наличие подтеков на стыках патрубков воздушного тракта и на турбине, происходит, вероятнее всего, из-за загрязнения сливного маслопровода или воздушного канала.

Видео — белый дым

 

Также причиной может стать закоксовывание корпуса оси ТКР. За счет недостаточного поступления воздуха из неисправного турбокомпрессора, может ухудшиться динамика разгона авто.

Если во время работы двигателя слышен посторонний шум или свист, то источником проблемы может быть утечка воздуха на стыке выхода мотора и компрессора.

Видео — свист на Mercedes-Benz Sprinter

 

Если же вы услышите характерный скрежет при работе или заметите трещины и деформацию корпуса турбины, то будьте готовы к тому, что ТКР в скором времени может выйти из строя.

Предупреждение!

Компоненты, из которых состоит система турбонадува: турбина, электронные датчики давления, воздуха, масла, магистраль по забору и передаче воздуха в нагнетающий трубопровод, клапан-отсекатель и т.п. Многие современные машины оснащены системами автоматики, которые немедленно отключат турбину, если одна из перечисленных систем выйдет из строя. А это, в свою очередь, скажется на возможности развить максимальную мощность двигателем.

  • < Назад
  • Вперёд >

Как понять, что турбине автомобиля скоро придет конец — Российская газета

Турбированный двигатель имеет массу преимуществ: повышенная мощность, экономичность. Но главный его недостаток — недолгий срок службы турбины: около 10 лет или 150-170 тысяч километров.

На этом пробеге подержанные автомобили спешат выставить на вторичный рынок, поэтому при покупке есть шанс нарваться на проблемный вариант. Какие симптомы позволяют определить грядущие неисправности?

Первым делом стоит осмотреть выхлопную систему автомобиля и прислушаться к посторонним звукам из-под капота. В нормальном состоянии компрессор раскручивается до нескольких десятков тысяч оборотов и чуть слышно шипит. Если при добавлении газа начинает раздаваться свист, похожие на звуки сирены завывания и прочие странные звуки, то долго турбина не протянет.

В данном случае дело, скорее всего, в опорных подшипниках, где закоксовалось масло. Посторонние шумы могут возникать из-за трещин в корпусе, потери герметичности впуска или сломанных лопастей компрессора. Подобые проблемы игнорировать нельзя: частички металла при разрушении могут попадать в двигатель, в камерах сгорания появятся задиры, пишет aif.ru.

Еще один очевидный признак проблем с турбиной — это выхлоп сизого цвета. На холостом ходу такой дым исчезает, а на высоких оборотах двигателя нарастает. Возникает он из-за утечки масла через компрессор в цилиндры.

Если дым приобрел черный цвет, то скорее всего произошла утечка воздуха в интекулере или нагнетающих магистралях. Темный выхлоп может свидетельствовать об износе поршневых колец.

Третий симптом — масляные подтеки, выявляемые при осмотре системы турбонаддува. Они говорят о том, что узел потерял герметичность и его нужно менять.

Деформироваться технический узел может из-за превышения турбиной допустимых оборотов (так называемый «перекрут»). Причиной являются ложные показания датчика воздуха, из-за чего механизм регулировки давления срабатывает с задержкой. Перепады давления могут наблюдаться из-за засорения канала подачи воздуха. Валы турбины могут закоксоваться, сливной маслопровод — засоряться.

Любые из перечисленных признаков должны насторожить как потенциального покупателя, так и владельца автомобиля. Машину нужно отправить на диагностику, чтобы компьютер проанализировал ошибки и указал на возможные неисправности.

Как проверить турбину дизельного двигателя видео не снимая с авто КАМАЗ

Люфт турбины (турбина в масле)

После старта двигателя, вакуумом из вакуумного аккумулятора через регулирующий клапан N подымается шток актуатора до упора, и лопатки турбины отправляют выхлопные газы на выхлопную крыльчатку. ЭБУ определяет что, давление во впускном коллекторе великовато и плавно, клапаном, уменьшает величину вакуума в актуаторе, шток опускается под действием пружины, отворачивая лопатки от выхлопной крыльчатки, отправляя выхлопные газы по кругу турбины, уменьшая обороты турбины, а соответственно и давлени во впускном коллекторе.

Давайте подумаем почему на дизельных моторах, турбина может ходить намного дольше чем скажем на бензиновых Турбина осталась висеть только на дополнительной тяге, прикрученной к двигателю.

Сточил один ключ на 17 для того, что бы открутить вверху трубку подачи масла к турбине. А вот в низу масляная магистраль прикручена фланцем на двух болтах под торсы.

Обсуждаем двигатели КАМАЗ

Эти болту тоже пришлось откручивать с помощью длинного воротка и карданчика с головкой под торс. Что снижает ресурс и убивает Турбину двигателя, что входит в Конструкцию турбины современных автомобилей Заглушить двигатель и обеспечить доступ к впускному тракту, удалив, например, патрубок, подводящий воздух от турбины.

Оживление, раскоксовка, промывка крыльчатки.

Граждане подскажите, кто может у меня Форд Гэлакси г. Недавно решился на чистку геометрии турбины, так как надоел передув, свист турбины при нагрузке и плохая динамика. Немного помучавшись с другом, мотористом в гараже мы сняли турбину вместе с выпускным коллектором, затем приложив немного усилий вынули из него саму турбину. В данном видео показываю на примере авто Фольцваген Пассат Б6 как просто и легко можно быстро и не снимая Все секреты, при ремонте турбины о которых принято молчать.

ВИДЕО: Самая Страшная Привычка Водителя — Быстро Глушить Двигатель! Вот почему…

Автомобиль — это такое устройство, в котором все системы взаимосвязаны. В случае возникновения перебоев в работе одного из устройств, вся система может или работать неправильно, или вовсе выйти из строя. Одной из вероятных причин поломки механизма — банальное его загрязнение.

Это может касаться как двигателя, так и сопутствующих элементов, например, турбины.

Как промыть турбину дизельного двигателя

Ремонт турбины гаретт. Установка ремкомплекта. И еще один совет!!! Если колесо компрессора не сходит после При правильной его эксплуатации он служит, не создавая проблем, очень долго. Работа дизельного мотора полностью зависит от состояния ТНВД и форсунок.

Если они будут чистыми, двигатель будет долго и штатно работать. Как проверить турбину дизельного двигателя? Перед тем, как чистить турбину, ее нужно демонтировать. Этот процесс достаточно сложен, так как перед тем, как Вы доберетесь до самой турбины, придется снимать форсунки, клапанную крышку, распределительный вал, даже гидрокомпенсаторы, а потом необходимо убирать ГБЦ вместе с выпускным коллектором.

Как проверить турбину дизельного двигателя и вовремя заметить проблему? На большинство современных дизель Очень важные советы при установке Турбины на двигатель. Производители промывочных жидкостей знают об этом, но молчат, потому, что испугавшись трудностей со снятием насоса, вы не будете покупать их продукт.

Помпа или топливный насос высокого давления грузовика КамАЗ — это сложный механизм.

Download — Промывка дизельного двигателя 4D56 Mitsubishi L

Он подаёт топливо в камеру двигателя, очищает и распределяет. Отключение турбины Opel Astra H 1. И еще вопрос на засыпку, из чего мона вырубить живучую прокладку на выходе турбины, а то в магазинах нет ее, заказал продинамили на Писарева, нах.

Материал по теме: КАМАЗ 65115 евро 3 фильтр грубой очистки топлива

Некоторые автовладельцы вымачивают элементы турбины в солярке. Хороши подобные химикаты тем, что для их использования турбину не нужно демонтировать и разбирать.

Однако многие автовладельцы достаточно нелестно отзываются о подобных средствах. Следует отметить, что результат будет заметен только после прохождения — км.

Рекомендуем: Стенд универсальный для ремонта двигателей КАМАЗ ямз ручной

Сразу извиняюсь за посторонние шумы и ветер. Как почистить геометрию турбины.

Масло в интеркулере дизельного двигателя – решаем проблему

Это устройство оснащено нагнетателем-крыльчаткой, который прикреплен вместе с турбиной-крыльчаткой к единому валу. Простой способ очистить геометрию турбины.

Почему пропадает тяга в двигателе с турбиной? Одна из частых причин. Да вроде, то дерьмо бычтро испоряется и по идее в течение двух недель любое дерьмо должно было выгореть напрочь. Знакомые говорили, что также могут выгорать остатки масла на воздушных патрубках идущих к турбине, но я в разговоре с мастерами специализирующимися на чистке турбин узнал, что налет имеется в каждом автомобиле и что он не может давать такого эффекта.

Также нужно учесть и то, что уровень масла медленно но все же понижается, да и дым из выхлопной вроде как с запахом сгоревшего масла. Теперь вот не знаю с чего и начать, уж очень не хочется снова снимать турбину, так как дело это не легкое, а тем более везти на диагностику для последующей рестоврации, за которую нужно отвалить приличную сумму.

Как проверить турбину на дизельном двигателе КАМАЗ видео

Оптимальная эксплуатация турбокомпрессора возможна лишь тогда, когда при использовании этого высокоточного механизма соблюдены правила, иначе возникают проблемы. Часто причиной поломок становится масло в турбине. Что предпринять, если турбокомпрессор гонит масло?

Свистит турбина – беспокоиться или нет?

Масло поступает во впускную систему из компрессора. Для устранения неполадок необходимо проверить сопротивление поступающего воздуха.

Параметры разрежения в области воздушного фильтра — не более 20 мм водного столба на холостом ходу. Если остановить двигатель, резиновые патрубки вернут свою начальную форму.

Свистит турбина – беспокоиться или нет?

Напоследок необходимо освободить впускной коллектор иинтеркулер от масла. Если на крыльчатке нет царапин и биение подшипников не наблюдается, турбину менять не.

Масло поступает во впускную систему двигателя. Она возникает по причине утечки, которая увеличивает количество воздуха, идущее через компрессор, и уменьшает давление.

В результате масло вытекает через компрессорную часть.

Следует устранить утечку: заменить прокладки на новые, туже затянуть хомуты. Масло поступает в выпускную систему.

Как проверить турбину дизельного двигателя —

Следует заглянуть в выпускной коллектор: скорее всего, это масляные пары или топливо. Конденсат, возникающий из-за разницы температур, часто принимают за следы масла. Масло поступает в обе системы. Масло поступает во впускную систему из компрессора Возможные причины: засорение патрубка; обледенение или засорение воздушного фильтра; повреждение сегмента впускного коллектора.

Необходимо проверить места, из которых масло может теряться по пути до турбины: воздушный фильтр, наполненный маслом; компрессор тормозной системы; система замкнутой вентиляции. Причин может быть две: Повреждение или засорение масляной магистрали, неправильное положение прокладки на стыке с турбиной.

ВИДЕО: Основные моменты самостоятельной диагностики турбины

Неисправность картера двигателя, а именно засорение системы вентиляции. Возможно появление избытка газов из-за неполадок в двигателе или износа деталей. В этом случае для начала следует устранить неисправности.

Если потеки масла слабые, скорее всего, виновата не турбина, а системы двигателя.

Каково управлять грузовиком с турбинным электродвигателем? (Видео)

Обычная рекламная практика показывает, как продукт может сделать вашу жизнь лучше — возможно, проще, веселее или сблизить друзей и семью.

Если вы рекламируете коммерческий грузовик, вы можете показать, что он перевозит тяжелые грузы или легко маневрирует по городу.

ДОЛЖЕН ВИДЕТЬ: Ford Mustang EcoBoost 2015: огромный толчок для турбо-четырехцилиндрового двигателя

Или, если вы Wrightspeed, вы показываете переделанный электрический грузовик, дрейфующий по солончакам и преследуемый вертолетом.Почему бы и нет?

Читатель

и водитель BMW ActiveE Джон Хайэм недавно получил возможность управлять одним из грузовиков Wrightspeed.

У него, возможно, не было возможности проехать на нем боком по пустыне, но он описывает его как «грузовик с плохой задницей» — и что он «не такой сексуальный, как новый BMW i8, но, возможно, более важный».

Грузовики

Wrightspeed не только электрические.

Они действительно перемещают вас по дороге с помощью электродвигателя, но источником энергии для батареи является генератор, увеличивающий запас хода — концепция, с которой вы знакомы по Chevrolet Volt или BMW i3 REx.

Доступны обычные генераторы с поршневым двигателем, но Wrightspeed также предлагает микротурбины.

Компания перечисляет несколько преимуществ использования турбин: они прочные, простые в обслуживании и мощные для своего размера и веса. Недаром турбины используются в авиации и производстве электроэнергии.

Они также могут работать на всевозможных видах топлива — если вы автотранспортная компания, имеющая доступ к дизельному топливу, сжатому природному газу, сжиженному природному газу или свалочному газу, тогда все они являются подходящими вариантами.

ПОДРОБНЕЕ: Производитель электрических грузовиков Смит получил 42 миллиона долларов в виде новых инвестиций

Хайэм также говорит, что это звучит как готовый к взлету авиалайнер — «хотя и не так громко». Только представьте, насколько напряженным был бы фильм «Дуэль», если бы машина неизвестного дальнобойщика звучала как 747.

Большой аккумуляторный блок позволяет ездить только на электричестве, что в большинстве случаев делает грузовик с переоборудованием Wrightspeed намного тише обычного грузовика.

Регенеративное торможение также мощное — «безусловно, самая сильная регенерация, которую я когда-либо испытывал», — говорит Джон, «определенно с одной педалью».

Обращаясь к спецификации, мы не удивлены — на сайте компании указано, что у него 400 лошадиных сил рекуперативного торможения. А для реального вождения электродвигатель имеет крутящий момент 1100 фунт-фут.

Более того, фирма описывает это как установку «включай и работай», подходящую практически для любого коммерческого грузовика.

Самый главный показатель, конечно же, экономия.

Из-за технологии plug-and-play трудно определить точную цифру потребления, а огромный разброс грузов, перевозимых грузовиками, делает это еще более трудным.

Но Wrightspeed утверждает, что расход топлива может снизиться на 50 процентов и более, в зависимости от ездового цикла. Учитывая, насколько сильно могут испытывать жажду грузовики, это может означать огромную экономию для операторов.

А если вы живете недалеко от солончаков или пустыни, водить машину тоже может быть довольно весело …

_________________________________________

Подпишитесь на GreenCarReports в Facebook, Twitter и Google+

Газовая турбина или газовый двигатель? Сравнение | Энергетика

Топливо будущего также можно разделить на углеродно-нейтральное, например

.

е-метан и е-метанол, не содержащие углерода, например зеленый водород или

аммиака зеленого цвета, в зависимости от производственного процесса.Топливная гибкость

Значение

будет расти при переходе на декарбонизированную энергию

Система

. Использование менее углеродоемкого или безуглеродного электронного топлива составляет очень

.

обещает достичь углеродной нейтральности в электроэнергетике. Причитается

Быстрый всплеск роста возобновляемой энергии с перерывами

Поколение

, аспекты безопасности и доступности энергии

трилеммы становятся все более сложными. Надежное (резервное) питание

Поколение

с низким уровнем выбросов углекислого газа имеет решающее значение для поддержки

Потребительские потребности.

Газовые турбины являются наиболее чистым традиционным источником энергии, а их топливная гибкость идеально подходит для поддержки перехода как к централизованным, так и к децентрализованным сетям. По сравнению с газовыми двигателями, газовые турбины имеют значительно более низкую концентрацию загрязнителей воздуха (CO₂, NOx, SOx, твердые частицы) в их выбросах. Двигатели потребляют меньше топлива и выделяют меньший объем газа, но производят более высокую концентрацию загрязняющих веществ.

Газовые турбины могут работать на широком диапазоне видов топлива с переключением топлива в оперативном режиме для обеспечения надежности энергоснабжения.Эти виды топлива представляют собой не только обычные ископаемые виды топлива, такие как природный газ, сжиженный нефтяной газ и дизельное топливо, но также обрабатывают отходящие газы, такие как коксовый газ (COG) и нефтеперерабатывающий газ (RFG), а также топлива с низким и нулевым содержанием углерода, такие как водород, биогаз и возобновляемые источники энергии. природный газ (RNG). Многие из них можно сжечь без значительного снижения производительности, при этом сохраняя минимально возможное воздействие на окружающую среду.

Газовые двигатели могут работать на топливе с очень низкой теплотворной способностью (LHV), таком как синтез-газ (4,5 МДж / Нм³). Они также могут сжигать биогаз, свалки и газы с более высокой НТС (факельный газ), пропан и сжиженный нефтяной газ с НТС около 110 МДж / Нм³, хотя производительность может отличаться от тех, которые достигаются на природном газе.

При каждой инвестиции в производство электроэнергии, в каждом приобретенном сегодня газовом двигателе или газовой турбине водород будет использоваться в качестве топлива в течение всего срока службы. Клиенты должны быть уверены, что приобретают готовые к будущему продукты, чтобы избежать возможности остаться с неработающими активами.

Ремонт двигателя, поврежденного наводнением | Бизнес Квинсленд

Машины повреждены паводком

Не пытайтесь перезапустить какой-либо двигатель, пострадавший от наводнения, пока он не будет осмотрен обученным механиком.

  • Отсоедините клеммы аккумулятора, если это не было сделано до затопления.
  • Проверьте все уровни масла и проверьте масло на изменение цвета. Сюда входят коробки передач, трансмиссия, дифференциалы и гидробаки. Если вода поднялась достаточно высоко, она попала бы через сапуны для всего этого.
  • Слейте 1–4 л смазочного масла из сливной пробки масляного поддона. Если в масле есть вода, или оно переполнено или обесцвечено, слейте масло, замените фильтры и залейте в систему новое масло как можно скорее.
  • Слейте 1–4 л топлива через сливные пробки всех топливных баков. Если в топливе есть вода, слейте и замените все топливо в баках, топливных шлангах и топливных фильтрах. Очистите топливный бак и шланги изнутри. Слейте немного топлива из топливного насоса и проверьте наличие воды. Если в топливном насосе есть вода, полностью слейте воду из насоса и залейте чистое топливо.
  • Снимите форсунки и проверните двигатель рукой, чтобы убедиться, что он нормально вращается. Пытайтесь провернуть коленчатый вал вручную только с помощью ручных инструментов.Не проворачивайте стартер.
  • Если коленчатый вал не проворачивается без чрезмерных усилий в течение 2 полных оборотов коленчатого вала, обратитесь к производителю машины за информацией по обслуживанию машины. Даже если двигатель вращается свободно, мы настоятельно рекомендуем, чтобы обученный и квалифицированный техник проверил его на предмет других возможных повреждений.
  • Если двигатель легко вращается, рекомендуется снять и осмотреть все форсунки. Проверните коленчатый вал, чтобы удалить всю жидкость из силового цилиндра.Впрысните 30 мл чистого моторного масла в каждый цилиндр и проверните двигатель не менее чем на 2 оборота.
  • Удалите воду из-под крышек коромысел. Обратите внимание на количество коррозии / ржавчины в этой области. Как правило, чем темнее красный цвет коррозии, тем меньше срок службы двигателя.
  • Снимите все воздушные фильтры и проверьте фильтры и корпуса на наличие следов воды. Если есть признаки того, что фильтрующие элементы были влажными, замените все воздушные фильтры.

Электрические и другие компоненты

Вода может вызвать серьезные повреждения электроники и других компонентов, таких как подшипники и уплотнения. Не перемещайте платы или компоненты, чтобы просушить их, так как это может привести к дальнейшему повреждению и поставить под угрозу любые потенциальные гарантийные или страховые претензии.

Что проверять при покупке бывшего в употреблении турбокомпрессора [видео]

Опубликовано Тимом Скоттом 16 марта 2016 г.

Используемый турбокомпрессор?

Покупатель, будьте осторожны, !

В то время покупка бывшего в употреблении турбонагнетателя может показаться выгодной сделкой, но эта покупка может обойтись вам дороже, чем вы думаете.Глубоко внутри могут быть скрытые повреждения, вызванные чрезмерным износом, попаданием посторонних предметов, мусора из поврежденных деталей двигателя, повреждениями из-за перегрева / избыточного наддува и т. Д. Вы можете не узнать о наличии повреждений без разборки и тщательного осмотра. В этом видео мы покажем вам, какие виды повреждений следует искать и чего следует избегать.

Если у вас есть бывшая в употреблении турбина, которую вы не уверены в безопасности для установки на дорогостоящий двигатель, или если ваша старая турбина просто изношена и больше не обеспечивает необходимую мощность, свяжитесь с нами сегодня!

Выписка

Всем привет.Спасибо, что вернулись на Tim’s Turbos. Я хочу пройти ускоренный курс по покупке бывшего в употреблении турбокомпрессора.

Я собираюсь начать от компрессора до конца турбины с того, что вы могли бы поискать, чтобы понять, хотите ли вы решить, действительно ли вы хотите его купить или нет.

Проверьте наличие проблем с встряхиванием

Первый тест — и самый простой — это взять турбокомпрессор и встряхнуть его. Если у вас есть проблема с тряской, и вы видите, что колеса там болтаются, а колесо турбины и компрессора не вращаются одновременно, лучше всего с этим турбокомпрессором положить его в красивую коробку и бросить. мусор.

Осмотрите колесо компрессора

Следующим этапом является осмотр крыльчатки компрессора. Если у вас какой-либо тип отказа подшипника, большую часть времени вы также будете иметь выход из строя крыльчатки компрессора. Если вы посмотрите сюда, вы увидите, что лезвия на самом деле катятся вверх.

Это происходит из-за того, что колесо движется вперед и назад, контактируя с корпусом. Это также может быть проблема с мягким повреждением. Если вы вытащите интеркулер, как магазинную тряпку или силиконовую муфту, он также откатит эти лопасти и не отломит их, но обычно здесь будут блестящие следы, как от полировки.

Лучший способ исправить это, если у него большой люфт на выходе и большой люфт вала и, вероятно, есть некоторые повреждения подшипника, — это тоже выбросить.

Проверьте края крыльчатки компрессора

Теперь есть еще несколько деталей, которые вы можете закрепить на колесах компрессора. Это обычное колесо HX35.

Наверное, это сложно увидеть на картинке, но можно как бы послушать. На лицевой стороне лица имеется куча бороздок и сколов. Вы можете восстановить их и очистить.Колеса компрессора не слишком дороги, в зависимости от того, какие из них вы приобретете, но еще одна вещь, которую вы хотите найти, находится на самых краях. Вы должны почувствовать гладкую кромку большого пальца, выходящего из этого угла. Если вы чувствуете какой-либо щелчок, это означает, что колесо контактировало с корпусом. Лучшее, что с этим можно сделать, — это выбросить.

Что происходит с турбонагнетателем с люфтом

Далее я покажу вам, что происходит с турбонагнетателем.

Большинство конструкций подшипников могут выдерживать некоторый боковой люфт слева направо или вверх и вниз, но когда у вас есть люфт внутрь и наружу — если вы посмотрите на поршневое кольцо прямо здесь, которое неподвижный — поршневое кольцо не движется, но вал выдвигается и выдвигается, и это прорезает канавку на валу.

Обычно у вас начинает развиваться отказ масла, оно выходит за края, и колесо компрессора в таком же плохом состоянии. Со стороны турбины и компрессора на индукторе турбины вы увидите износ, а за люфтом уплотнения вы увидите там контакт. Со стороны компрессора вы увидите повреждение прямо в нижней части эксдуктора, потому что колесо направлено к крышке компрессора.

Вы не так много можете сделать, чтобы отремонтировать это, и вам лучше приобрести новые детали, но внешне визуально вы не можете видеть повреждения от толчков внутрь и наружу, потому что все находится под поверхностями, так что вы действительно хотите быть осторожно с этим.

Проверка на повреждение турбины

Другое дело: нет двухсекционных валов и головок турбин. Если это произойдет, значит, что-то оторвалось от сварного шва. Единственное, что вы можете с этим сделать, — это выбросить их в мусорную корзину или пойти к дилеру металлолома и получить немного денег.

Когда вы отрываете турбинную головку, это может выглядеть не так уж плохо, но этот контур был полностью разжеван прямо здесь, и поэтому, когда колесо отскакивает оттуда и щелкает головкой, в конечном итоге она действительно пролетит, и это будет ваш каталитический нейтрализатор, если вы его используете, и этот корпус турбины в значительной степени бесполезен.

Внешне отверстие выглядит примерно так же, но когда вы заходите внутрь, радиус становится настолько большим, что между лопастями и турбинным колесом может быть зазор в четверть дюйма. Так что корпус турбины в значительной степени мусор.

Ищите проблемы с скачком напряжения

Еще одна вещь, на которую стоит обратить внимание, — это проблемы с перенапряжениями. Это колесо могло выйти из строя по двум разным причинам, из-за перегрузки, вызвавшей всплеск. На этом контргайка выскочила и засосала обратно. Вы можете увидеть маленькие оспины прямо на внутренней стороне отверстия.Это просто колесо, подпрыгивающее вперед-назад, все пережевывая.

Если повезет, иногда можно спасти это; в большинстве случаев, когда стопорная гайка отрывается, все отсеки тяги больше не имеют нагрузки, поэтому все они расширяются, и вы начинаете врезаться в колесо турбины, ударяясь о корпус и тому подобное. Таким образом, вы можете исправить это с помощью картриджа, если корпуса все еще в хорошем состоянии, но вам просто нужно присмотреться к нему поближе.

Признаки бокового повреждения — проверьте наличие блестящих отметин на краях турбины

Другая проблема заключается в том, что при поперечном повреждении вы увидите блестящие отметины на краях турбины прямо в том месте, где она попадает в отверстие. Так же, как колесо компрессора, вы почувствуете клещ прямо у ногтя. Если вы чувствуете галочку, это был какой-то контакт. Некоторые люди скажут, что колесо не касается корпуса — это просто потому, что колесо полностью изношено, все края, которые фактически касаются отверстия.

Кольца поршневые

Еще один комплект — чего не увидишь, когда у тебя вся турбина в сборе — этот турбокомпрессор вышел из строя из-за перегоревших поршневых колец. Таким образом, кольца вставляются в само колесо турбины, и вы можете видеть, где оно просто скручивает их и измельчает. Иногда вы можете исправить это с помощью только турбинного колеса, если вы не ударите вал изнутри, где он проходит через отверстие. Это мелочь, но если вы можете снять корпус турбины с турбокомпрессора, прежде чем покупать его, сделайте это.Вы можете прочитать об этом много информации.

Я часто сталкиваюсь с этим из-за высокопроизводительных двигателей, которые работают слишком бедно. Самым популярным из них, вероятно, является 7-3 Powerstroke — наконечники свечей накаливания отламываются, проходя сквозь них, и вы не можете видеть колесо турбины под ними, пока не снимете корпус турбины.

Проверить отверстие и отверстия заслонки для отходов на предмет трещин

Это хороший пример турбонаддува, который не так уж и плох, но у вас есть время входа и выхода. Вы можете видеть, как лезвия откатываются в контакте.Надо немного поработать, и это можно исправить путем восстановления картриджа. Вам нужно заглянуть в канал ствола, чтобы увидеть, нет ли массивных трещин. Большинство трещин вы увидите вокруг портов перепускных клапанов, потому что теплопередача очень радикальна, и она идет вверх и вниз. Если вы видите сломанные шпильки, оцените примерно 20-50 долларов за шпильку при любом ремонте турбокомпрессора, а если это корпус из нержавеющей стали, это еще большая головная боль. Если у вас нет фрезы или болторезного станка, чтобы их вырезать, с таким же успехом можно купить новый корпус турбины.

Резка канавок для MAP

Еще одна вещь, на которую стоит обратить внимание — это может быть трудно увидеть — это прорези канавок MAP. Здесь прямо на краю вы можете увидеть, как ступенька сливается и исчезает, когда вы перемещаете колесо в сторону. Вот где находится канавка для карты, поэтому у него был слишком большой люфт вала и повреждение подшипника, что он контактировал везде, кроме канавки MAP. Это тост за колесо. Турбина полностью заржавела, перепускная заслонка заржавела, и лучшее, что можно сделать с этой турбиной, — это выбросить ее в мусорное ведро.

Неравномерное колебание канала

Вот еще одна вещь, о которой вы можете не думать: когда у вас есть турбокомпрессор, который пробыл на машине пару сотен тысяч миль, этот вал и порт перепускной заслонки, вероятно, открывались пару миллионов раз, и у него начиналось неравномерное колебание канала. так что прорезь в отверстии действительно колебалась и приобрела форму яйца. Часто это не большая проблема, но если он полностью закрывается, а затем у вас все еще есть подъем на порт перепускной двери, то с корпусом мало что можно сделать, и вы как бы выдавливаете втулку и свариваете в новой, ну и на новом валу.Тебе, наверное, лучше найти новую шахту.

Unseen Turbo Damage

И последнее, но не менее важное: невидимые повреждения. Практически каждый 911 turbo, который я строю, мне приходится вставлять новый вал турбины только потому, что он разрушается.

Здесь есть канавка под поршневое кольцо внизу и внешняя канавка. Внешняя канавка покрывается ржавчиной, накапливается нагар и начинает срезаться. Когда вы надеваете на него двойные поршневые кольца и пытаетесь вставить их обратно в канал, вам очень повезет, если вы получите их обратно.В большинстве случаев они отрываются и скользят по валу, поэтому лучше заменить вал на всем этом.

Вы не сможете увидеть эти повреждения, пока турбонагнетатель не будет полностью разобран, поэтому следует обратить внимание на одну вещь: при покупке бывшего в употреблении турбокомпрессора убедитесь, что на нем нет следов износа. Вы не должны видеть никаких люфтов вала, каких-либо сдвигов и сдвигов, очень минимальных боковых сторон, они всегда будут, но следите за разными вещами.

Заключение

Мы можем перестроить практически все, что угодно, но, чтобы снизить затраты, используйте лучший маршрут вместо того, чтобы приносить его и позволять кому-то проверить.

Надеюсь, это видео поможет.

Большое спасибо.

-Tim’s Turbos

Модернизированные дизельные двигатели Toyota с турбонаддувом обеспечивают больший крутящий момент, большую эффективность и меньшие выбросы

  1. Дизельное топливо нового поколения с улучшенной теплоизоляцией

Благодаря первой в мире технологии изоляции стенок Thermo Swing и применению пористого анодированного алюминия, армированного кремнеземом (SiRPA) на поршнях, потери охлаждения при сгорании снижаются примерно на 30 процентов.SiRPA — это материал с высокими изоляционными и рассеивающими свойствами, который легко нагревать и легко охлаждать.

Форма порта, более подходящая для впуска воздуха, резко увеличивает количество воздуха, поступающего в цилиндры. Кроме того, новая форма поршневой камеры сгорания и система впрыска топлива с общей топливораспределительной рампой, которая обеспечивает более высокое давление и более совершенное управление давлением впрыска топлива, используются для оптимизации впрыска топлива в камеру сгорания. Это увеличивает потребление воздуха, обеспечивая высокую тепловую эффективность и низкие выбросы.

Точный предварительный впрыск, соответствующий состоянию окружающего воздуха, происходит перед основным впрыском, чтобы сократить задержку воспламенения, обеспечивая стабильное сгорание даже в самых суровых условиях окружающей среды, обеспечивая при этом тихую работу и высокий тепловой КПД.

  1. Компактный высокоэффективный турбокомпрессор с изменяемой геометрией (собственного производства Toyota)

Новый турбонагнетатель, используемый в двигателях GD, на 30 процентов меньше, чем его нынешний эквивалент, и оснащен недавно разработанной турбиной, которая повышает эффективность, и недавно разработанным рабочим колесом, которое обеспечивает мгновенный отклик на ускорение и обеспечивает максимальный крутящий момент в широком диапазоне оборотов в минуту.

  1. Toyota — первая система селективного каталитического восстановления карбамида (SCR)

Использование запатентованной Toyota компактной системы селективного восстановления на основе мочевины с высокой дисперсией устраняет до 99 процентов выбросов NOx (оксида азота), одной из основных причин загрязнения воздуха. Это поможет транспортным средствам соответствовать стандартам Euro 6 и стандартам выбросов 2010 года, установленным Министерством земли, инфраструктуры и транспорта Японии.

Двигатели KD, применяемые в настоящее время во всем мире, будут постепенно сокращаться и заменяться двигателями GD.К 2016 году производство достигнет примерно 700 000 единиц в год с выводом на рынок примерно на 90 рынках, а к 2020 году планируется расширить как минимум до 150 рынков.

Toyota будет и дальше позиционировать дизельные двигатели как ключевой компонент модельного ряда двигателей Toyota, основываясь на философии предоставления подходящих автомобилей для нужных мест в нужное время. Вся группа Toyota, включая Toyota Industries Corporation, объединит свои усилия для разработки более чистых и более конкурентоспособных дизельных двигателей для самых разных типов транспортных средств с учетом различных потребностей людей во всем мире.

NPTEL :: Машиностроение — NOC: Двигатели внутреннего сгорания и газовые турбины

9 0298 40292 902 92 Загрузить 90 667

HyTech Power, возможно, решил водород, одну из самых сложных проблем в чистой энергии

Это странный химический поворот в том, что в самом обычном веществе на Земле есть топливо, заключенное в воде.

Водород — символ славы h3O — оказался чем-то вроде универсального элемента, швейцарского армейского ножа для получения энергии. Его можно производить без парниковых газов. Он легко воспламеняется, поэтому может использоваться в качестве топлива для сжигания. Его можно подавать в топливный элемент для производства электричества напрямую, без сжигания, с помощью электрохимического процесса.

Может храниться и распространяться в виде газа или жидкости. Его можно комбинировать с CO2 (и / или азотом и другими газами) для создания других полезных видов топлива, таких как метан или аммиак.Его можно использовать в качестве химического сырья в различных промышленных процессах, помогая производить удобрения, пластмассы или фармацевтические препараты.

Довольно удобно.

И это самый распространенный химический элемент во Вселенной, так что можно подумать, что у нас есть все, что нам нужно. К сожалению, это не так просто.

Выделять водород из других элементов, хранить его и преобразовывать обратно в полезную энергию — это дорого как с точки зрения денег, так и энергии. Ценность, которую мы получаем от этого, никогда полностью не оправдывала того, что мы вкладываем в его производство.Это одна из тех технологий, которая, кажется, постоянно находится на грани прорыва, но никогда не достигает цели.

Уроженец Сиэтла Эван Джонсон считает, что он может это изменить. Он думает, что наконец-то понял, как разблокировать водородную экономику.

Джонсон — далеко не первый и не единственный человек, поставивший эту цель. Но после 10 лет экспериментов, испытаний и подготовки он разработал ряд технологий и практический бизнес-план, который проложил путь к реальному коммерческому масштабу использования водорода.

И хотя HyTech Power, где Джонсон является техническим директором, очевидно, стремится к финансовому успеху, Джонсон видит в своих продуктах нечто большее: способ использовать водород для немедленного уменьшения загрязнения при одновременном увеличении масштабов и снижении затрат, достаточных для внесения более фундаментальных изменений в энергетику. система.

Стационарный дизель-генератор с водородными форсунками HyTech. HyTech Power

HyTech нацелена на большой рынок, чтобы выйти на еще больший

HyTech Power, базирующаяся в Редмонде, штат Вашингтон, намеревается представить три продукта в течение ближайшего года или двух.

Первый будет использовать водород для очистки существующих дизельных двигателей, повышая их топливную эффективность на треть и устраняя более половины их загрязнения воздуха, со средней окупаемостью за девять месяцев, сообщает компания. Это потенциально огромный рынок с большим существующим спросом, который, как надеется HyTech, позволит капитализировать свой второй продукт — модернизацию, которая превратит любой автомобиль внутреннего сгорания в автомобиль с нулевым уровнем выбросов (ZEV), позволив ему работать на чистом водороде. В первую очередь это будет нацелено на крупные флоты.

И это станет третьим продуктом — тот, на который Джонсон положил глаз с самого начала, тот, который может революционизировать и децентрализовать энергетическую систему — стационарный продукт для хранения энергии, предназначенный для конкуренции и, в конечном итоге, вытеснения с такими большими батареями, как Powerwall Теслы.

По крайней мере, таков план.

Мир энергетики, конечно, полон громких стартапов, и путь от прототипа к рыночному успеху долог и опасен. Для успеха HyTech потребуется нечто большее, чем просто умная технология.Потребуется хорошее исполнение.

С этой целью компания недавно привлекла поддержку нескольких опытных руководителей Boeing, в том числе Джерри Аллина, который проработал 30 лет в Boeing и в декабре вышел на пенсию, чтобы возглавить расширение HyTech в качестве главного операционного директора.

Мягкая и неторопливая, с аккуратно подстриженной бородой, Аллин занимает небольшой офис на втором этаже бежевого здания HyTech, которое в основном занято огромным гаражом / мастерской. «Я очень скептически относился к технологии, как и обычно», — говорит он, но «как только я смог увидеть ее собственными глазами и понять физику, я подумал:« О, черт возьми ».Это действительно интересно! »

Его привлекло то, что исходные продукты не требуют новых рынков или инфраструктуры. «Теперь они действительно могут изменить мир», — говорит он. Главное — это в первую очередь дизельные двигатели. Их миллионы, они грязные и дорогие, и политики стараются их очистить. Это большой спрос. Компания «ожидает совершить много ошибок», — говорит Аллайн, но потенциальный рынок почти непостижимо велик.

Работа в гараже HyTech, переоборудование больших дизельных грузовиков. HyTech Power

И ставки выше быть не могут. В последние годы стало ясно, что какое-то топливо с нулевым содержанием углерода, пригодное для хранения, горючее, если не необходимо, для полной декарбонизации энергетической системы, по крайней мере, чрезвычайно полезно.

Перед тем, как углубиться в продукты HyTech, стоит объяснить, почему доступный водород является такой заманчивой перспективой для тех, кто озабочен устойчивой энергетикой.

Проблема с водородом: его дорого собирать, хранить и преобразовывать

Около 95 процентов мирового производства водорода осуществляется за счет парового риформинга метана (SMR), продувки природного газа высокотемпературным паром под высоким давлением.Это энергоемкий процесс, требующий использования ископаемого топлива и оставляющий после себя поток углекислого газа, поэтому его использование для обезуглероживания энергетической системы ограничено.

Но также можно извлечь водород непосредственно из воды с помощью электролиза — это процесс поглощения воды (содержащей различные «электрокатализаторы») электричеством, стимулируя химическую реакцию, которая расщепляет водород и кислород. Если электролиз проводится с использованием возобновляемой электроэнергии с нулевым выбросом углерода, полученный водород является топливом с нулевым выбросом углерода.

Это решает проблему углерода, но есть и другие. Водород в воде на самом деле не хочет выпускать кислород (они «прочно связаны»), поэтому их расщепление требует довольно много энергии. Полученный водород необходимо хранить, либо сжимая его в виде газа с помощью больших насосов, либо (слабо) связывая его с чем-то еще и храня в виде жидкости. Для этого газа или жидкости потребуется распределительная инфраструктура. Наконец, водород должен быть извлечен из хранилища и преобразован обратно в энергию путем его сжигания или пропуска через топливный элемент.

К тому времени количество энергии, вложенной в процесс, значительно превышает то, что можно получить обратно.

Это был барьер. Если сложить все затраты на преобразование энергии, «добыча» водорода для использования в энергетической системе с нулевым выбросом углерода, как правило, была убыточным бизнесом. Полезные услуги, предоставляемые водородом, не могут компенсировать энергию (и деньги), необходимые для ее производства и использования. По крайней мере, не на сегодняшний день.

Вот почему, хотя люди добывают и сжигают водород с 17-го века, двигатели и топливные элементы, работающие на водороде, существуют примерно с 19-го, а водород прошел через многочисленные циклы ажиотажа, вплоть до 21-го века. — разрекламированная «водородная экономика» так и не получила широкого распространения.

Таких не так уж и много. Shutterstock

Еще в конце 2000-х годов большинство экспертов в области энергетики списали водород со счетов. С тех пор изменились две вещи.

Доступный водород может устранить основные препятствия на пути к устойчивой энергетике

Главное, что изменилось, — это глобальный переход на чистую энергию. Для решения проблемы изменения климата мир фактически согласился полностью декарбонизировать энергетическую систему в течение столетия.Это вызвало интенсивное исследование инструментов, необходимых для создания системы с нулевым выбросом углерода.

Мы знаем, как производить электричество с нулевым выбросом углерода (возобновляемые источники, гидроэнергетика, атомная энергия), поэтому одним из ключевых шагов в декарбонизации является «электрификация всего» или, по крайней мере, как можно большего количества видов энергии.

Но широкомасштабная электрификация — непростая задача. Существует множество существующих приложений, работающих на горючем жидком топливе. Помимо практически всего транспорта, подумайте о миллионах и миллионах зданий по всему миру, отапливаемых нефтью или природным газом.

Значительная часть транспорта может быть электрифицирована, и все эти печи теоретически можно заменить электрическими альтернативами, такими как тепловые насосы, но сделать все это за оставшееся время для обезуглероживания — поистине монументальная задача.

Конечно, было бы неплохо выиграть время, если бы у нас было жидкое топливо с нулевым выбросом углерода, которое мы могли бы просто использовать в этих существующих системах, чтобы сократить выбросы от транспортных средств и приборов, которые мы уже используем. (Великобритания экспериментирует с отоплением домов водородом; Норвегия запретит любое использование мазута для отопления домов к 2020 году.)

Кроме того, если переменная возобновляемая энергия (солнце и ветер) должна обеспечивать большую часть или всю нашу энергию, нам понадобится какой-то способ хранить эту энергию, когда солнце и ветер не хватает. Нам потребуется не просто посекундное или почасовое хранение (которое вполне может обеспечить батареи), но и ежедневное, ежемесячное или ежегодное хранение (для которого батареи не подходят), чтобы гарантировать защиту от долговременных колебаний солнца и ветра. . Было бы неплохо, если бы мы могли хранить много резервной энергии в виде стабильного жидкого топлива.

Короче говоря, в наших планах по устойчивой энергетике есть дыра в форме водорода.

Второе, что изменилось, это то, что исследования, разработки и ранние рыночные испытания неуклонно снижали стоимость и повышали долговечность основных компонентов водородной технологии.

В общем, потребность в сочетании с инновациями может, наконец, означать, что под рукой есть рентабельные продукты. Вот почему «во всем мире наблюдается возрождение водородной активности», — говорит Адам Вебер, руководитель группы преобразования энергии в Национальной лаборатории Лоуренса Беркли.

Или, как недавно сказал Пьер-Этьен Франк, секретарь торговой группы Hydrogen Council, «2020-2030 годы будут для водорода такими же, как 1990-е годы для солнца и ветра».

Несмотря на все недавние инновации, Джонсон снова и снова обнаруживал, что каждый раз, когда он отказывался от стандартных компонентов и создавал свои собственные — практически каждый элемент в продуктах HyTech спроектирован и изготовлен по индивидуальному заказу, с исходными материалами, заказанными через Интернет, — цена пошла вниз. Не знаю почему.”

Джонсон — высокий, стройный и светловолосый, заядлый мастер и строитель, глаза которого загораются, когда он говорит о технике. После учебы в Тихоокеанском университете Сиэтла он провел первые 10 лет своей 20-летней карьеры в области сжатия видео. Но работа в Норвегии с Innovation Norway над хранением водородной энергии привела к тому, что у него возникла проблема с водородом. С тех пор он стал истинным верующим. «Ставка на водород в будущем — лучшее, что вы можете сделать», — говорит он.

«Если электролиз действительно настолько дешевле, это меняет правила игры»

Начинается с электролизера, который извлекает водород из воды.Джонсон не смог найти такой дешевый, простой и эффективный, как он хотел, поэтому он построил свой собственный.

Электролизер HyTech (в данном случае присоединенный к стационарному дизель-генератору). HyTech Power

Ничего особенного, просто трубка, наполненная дистиллированной водой. Примерно в центре подвешена небольшая титановая пластина, покрытая специальной смесью электрокатализаторов, оптимизированных для разделения водорода и кислорода.Газы поднимаются с пластины непрерывным потоком пузырьков. Он полностью закрыт металлом, в нем нет движущихся частей, поэтому он чрезвычайно прочен и не требует значительного обслуживания.

В целом, по словам Джонсона, система «очень проста и бессмысленна». (Это тема, к которой он часто возвращается — предпочтение замкнутых, простых, полностью перерабатываемых систем.) Но благодаря эффективности электрокатализаторов, добавляет он, «очень точно, сколько энергии необходимо для производства необходимый водород.”

Джонсон может похвастаться тем, что его электролизер может производить водород примерно в три или четыре раза быстрее, чем электролизеры с аналогичной площадью основания, используя примерно треть электрического тока. Это означает постепенное снижение затрат.

«Очевидно, я не могу проверить их экономику издалека, — сказал мне Джеймс Бреннер из Национального центра исследований водорода при Технологическом институте Флориды, — но если электролиз действительно намного дешевле, это меняет правила игры».

Теперь давайте посмотрим, что HyTech планирует с этим делать.

Модернизация. HyTech Power

Способ очистки дизельных двигателей для рынка, который остро нуждается в одном

Первый продукт, дебют которого запланирован на апрель, — ключ ко всему остальному.

Это называется «Система внутреннего сгорания» (ICA), модификация двигателей внутреннего сгорания, которая позволяет им существенно повысить эффективность использования топлива и уменьшить загрязнение воздуха. Это достигается путем добавления к топливу крошечных количеств газообразного водорода и кислорода непосредственно перед его сгоранием в цилиндрах двигателя.Смесь HHO придает интенсивность сгоранию, позволяя топливу сгорать более полно, генерируя больше энергии и меньше загрязнений.

Система ICA технически может работать на любом двигателе внутреннего сгорания, но для начала HyTech нацелена на самые грязные двигатели с самой быстрой окупаемостью инвестиций, а именно на дизельные двигатели — в транспортных средствах, таких как грузовики, грузовые автофургоны, автобусы и вилочные погрузчики, а также большие стационарные дизельные генераторы, которые по-прежнему обеспечивают резервное (и даже основное) питание миллионов людей во всем мире.

Все эти дизельные двигатели выделяют канцерогенный дым, содержащий твердые частицы (сажа) и оксиды азота (NOx), которые наносят вред здоровью человека. Штаты и города по всему миру борются с загрязнением воздуха дизельным топливом.

Но дизельные сажевые фильтры (DPF), которые задерживают частицы, дороги, требуют технического обслуживания и требуют частой замены. Жидкости для селективного каталитического восстановления (SCR), добавляемые в выхлопные газы для удаления NOx, сами по себе являются загрязнителями, и их необходимо часто менять.

Короче говоря, существует много дизельных двигателей, они очень грязные (ответственны за до 50 процентов загрязнения городского воздуха зимой), и многие люди тратят много денег, пытаясь их очистить. Это большой рынок.

Предложение

HyTech на этом рынке весьма примечательно: оно утверждает, что его ICA может повысить топливную экономичность дизельного двигателя на 20–30 процентов, снизить содержание твердых частиц на 85 процентов и сократить выбросы NOx на 50–90 процентов.Вместе с сажевым фильтром DPF и некоторым количеством SCR он может дать дизельный двигатель, который соответствует официальным калифорнийским стандартам для автомобилей со «сверхнизким уровнем выбросов».

Стоимость преобразования грязного дизельного двигателя в относительно чистый: около 10 000 долларов на установку, которые, по оценке HyTech, окупятся за девять месяцев за счет сокращения расходов на топливо и техническое обслуживание.

Устройство помощи внутреннего сгорания (ICA) HyTech, установленное на большом дизельном двигателе.(Видите маленький ряд форсунок?) HyTech Power

HyTech — не первая и не единственная компания, разработавшая систему присадок HHO, но ничто на рынке не может сравниться с такими цифрами.

ICA достигает этой эффективности благодаря компьютеризированному контроллеру времени, который определяет и анализирует вращение коленчатого и распределительного валов, чтобы определить точное время и размер впрыска HHO. Предыдущие системы HHO более или менее заполняли двигатель HHO через воздухозаборник, но HyTech использует «впрыск через порт» с отдельным инжектором на впускном клапане каждого цилиндра, управляемым таймером.Каждый инжектор (размером примерно с человеческий волос) впрыскивает крошечные, точно отмеренные струи HHO в цилиндр именно тогда, когда это необходимо.

Такой уровень точности позволяет ICA использовать гораздо меньше водорода, чем его конкуренты, гораздо более эффективно. Небольшого бортового электролизера производит более чем достаточно.

Это смелые заявления, но пока они остаются верными. ICA был включен в список EPA как кандидат на технологию сокращения выбросов; Уважаемая испытательная фирма SGS обнаружила, что ICA повысила топливную экономичность грузовика FedEx на 27.4 процента; FedEx в настоящее время проводит дорожные испытания ICA на автопарке грузовиков и обнаруживает, что экономия топлива на 20–30 процентов выше, а затраты на техническое обслуживание сажевого фильтра значительно снизились. При стороннем тестировании и при ограниченных местных продажах в районе Редмонда ICA выполнила свои обещания.

Если он сможет сделать это в масштабе HyTech — надежно повысить экономию топлива на треть и снизить загрязнение почти до нуля, с окупаемостью за девять месяцев — возможностей не будет конца. Компания оценивает рынок очистных работ в 100 миллиардов долларов, включая портовые грузовики, грузовые суда, рефрижераторы, грузовики дальнего следования, автобусы, генераторы и все другие грязные дизельные двигатели.

ICA не полагается на новую инфраструктуру или субсидии. Это способ выйти на большой рынок, немедленно сократить выбросы и накопить средства для долгосрочных усилий по полной замене дизельного топлива.

HyTech также хочет очистить существующие автомобили

Позже в этом году HyTech представит свою вторую линейку продуктов: модифицированные водородом автомобили с ДВС. Проще говоря, потребуется любой двигатель, который работает на дизельном топливе, бензине, пропане или СПГ, и переключить его на 100-процентный водород.(В настоящее время компания находится в процессе сертификации своего модифицированного продукта Калифорнийским советом по воздушным ресурсам как не имеющий выбросов.) Это позволит любому водителю получить автомобиль с нулевым уровнем выбросов по значительно меньшей цене, чем стоимость покупки нового электрического или электрического двигателя. автомобиль на водородных топливных элементах.

Джонсон признает, что, если бы он проектировал автомобиль с нуля, он бы спроектировал его на основе водородного топливного элемента без сгорания, но «мы не заинтересованы в том, чтобы становиться автомобильной компанией», — говорит он.Вместо этого HyTech хочет очистить существующие автомобили.

Не каждый может позволить себе автомобиль Toyota Mirai на водородных топливных элементах (от 58 365 долларов). Shutterstock

Для такого применения с чистым водородом (в отличие от смешанного HHO) электролизер немного отличается. Водород проходит через мембрану, которая лишает его остатков кислорода или азота, оставляя чистый водород для сгорания транспортного средства.(Это делает электролизер протонообменной мембраной, или PEM, электролизером, вариант, знакомый любителям водорода.)

По своему обыкновению, Джонсон разработал свою собственную мембрану, смешав сырье, чтобы создать что-то более эффективное и дешевое, чем другие продукты PEM на рынке.

Есть еще одно отличие, которое представляет собой еще одну из основных технологических разработок Джонсона.

Потребляемая мощность двигателя транспортного средства варьируется и может быстро увеличиваться и уменьшаться, поэтому системе необходимо хранить немного водорода в качестве буфера на случай, если он потребляет больше, чем может произвести электролизер.

Обычные автомобили на водородных топливных элементах (например, Toyota Mirai) хранят водород в виде сильно сжатого газа при давлении около 8000 фунтов на квадратный дюйм. Но со сжатым газом возникают самые разные проблемы. Для сжатия газа требуется много энергии, для этого требуется собственная специализированная инфраструктура, заправочные станции для сжатого газа чрезвычайно дороги в строительстве, а сжатый водород, ну, взрывоопасен, поэтому каждый полный бак, заполненный им, является потенциальной бомбой.

Джонсон не хочет иметь с этим ничего общего. Итак, он пошел другим путем.Его система хранит водород, слабо связанный с металлами в виде «гидридов», в инертном жидком растворе без давления (~ 200 фунтов на квадратный дюйм).

Проблема с гидридами была двоякой: а) создание связи, достаточно слабой, чтобы ее можно было разорвать без излишней энергии, когда необходимо высвободить водород, и б) увеличение плотности энергии образующейся жидкости. (На сегодняшний день большинство гидридных жидкостей имеют меньшую энергетическую плотность, чем сжатый водород, и намного меньше ископаемого топлива. Они весят слишком много для той энергии, которую они производят.)

Джонсон думает, что решил обе проблемы. Он не раскрывает подробностей используемых гидридов, но у него достаточно высокое соотношение мощности к весу, чтобы побить литий-ионные батареи (которые очень тяжелые), и достаточно слабую гидридную связь, чтобы ее можно было разорвать, используя только перенаправляем отходящее тепло от двигателя (не требуется дополнительного тепла или давления).

Более того, он работает с командой над наноматериалами для гидридов и ожидает «огромного скачка» в соотношении мощности к весу в ближайшие годы; в конечном итоге, по его словам, он хочет, чтобы плотность энергии была конкурентоспособной с ископаемым топливом.

Эффективный электролиз плюс эффективное накопление гидридов означает, что в результате модернизации Hy-Tech будет создан автомобиль с нулевым уровнем выбросов (ZEV) со средней дальностью полета 300 миль, сравнимый с электромобилями высокого класса, но способный работать с любым существующим транспортным средством. Когда я посетил завод HyTech в Редмонде, Джонсон отвез меня на обед в гигантском пикапе Ford Raptor, работающем на водороде.

Ford Raptor, работающий на чистом водороде. HyTech Power

Есть два способа «заправить» автомобиль.Медленный способ — включить его на ночь, чтобы электролизер мог заполнить бак. Самый быстрый способ — заполнить его раствором гидрида, который можно получить на месте, дома или на заправочной станции, не имея ничего, кроме электролизера, немного дистиллированной воды и резервуара.

Пока не существует инфраструктуры, поддерживающей такую ​​быструю заправку, но это не похоже на сжатый водород под высоким давлением, подчеркивает Джонсон. Это не опасно; не производит токсичных побочных продуктов; он не требует множества государственных правил безопасности и правоприменения; Теоретически, на заправочных станциях «мама и папа» можно было бы довольно дешево запустить заправку.

Несколько утопическое видение Джонсона состоит в том, что в конечном итоге в каждом доме и на предприятии будет электролизер и полный бак связанного водорода, который можно будет использовать либо для выработки электроэнергии для здания (подробнее об этом в третьем этапе), либо для топлива водородных транспортных средств.

По словам Джонсона, цель — оставить двигатели внутреннего сгорания, но «это все равно, что бросить курить — каждый хочет остыть индейки». Этого просто не произойдет «. Модернизация существующих транспортных средств за небольшую часть стоимости нового транспортного средства с нулевым уровнем выбросов позволит компании быстро начать сокращение транспортных выбросов.

Святой Грааль HyTech: долгосрочное и доступное хранилище энергии

Наконец, получив финансирование и капитализацию за счет продуктов для модернизации, HyTech приступит к производству аккумуляторов энергии. Его масштабируемое хранилище энергии (SES) предназначено для конкуренции с большими батареями, такими как Powerwall от Tesla, либо в качестве локального хранилища для домов и предприятий, либо в качестве хранилища в масштабе сети, подключенного к крупным солнечным и ветряным электростанциям.

Идея хранения водородной энергии заключается в том, что когда-нибудь скоро будут регулярные периоды, когда ветер и солнце вырабатывают электроэнергию, значительно превышающую спрос.Эти излишки энергии будут стоить очень дешево — на самом деле, мы будем искать способы не тратить их зря.

Одной из набирающих популярность идеей является «преобразование энергии в газ», то есть преобразование этой избыточной энергии в водород и его хранение. «Водород — это, наверное, самое простое, что вы можете сделать при низких ценах на электроэнергию», — говорит Вебер.

Часть этого водорода можно закачать в существующие газопроводы, что снизит углеродоемкость газа. Некоторые из них могут быть объединены с диоксидом углерода для создания другого жидкого топлива.И некоторые из них можно было бы напрямую преобразовать обратно в энергию с помощью топливных элементов. «Стационарное хранение — это замечательных потенциальных возможностей для водородных топливных элементов», — говорит Леви Томпсон, директор Лаборатории технологий водородной энергетики Мичиганского университета.

Проблема, опять же, заключалась в том, что сквозная эффективность накопления водородной энергии на основе электролиза обычно была меньше половины, чем достигается литий-ионной батареей.

Плохой рисунок, иллюстрирующий хранение водородной энергии. Shutterstock

И снова Джонсон думает, что сломал его.

Вот как работает система SES HyTech: энергия поступает (в идеале от солнечных панелей или ветряных турбин) для запуска электролизера. Произведенный водород либо поступает в топливный элемент (да, Джонсон построил свой собственный), либо связывается в виде гидридов и хранится в резервуаре. Когда требуется энергия, гидридные связи разрываются с использованием отработанного тепла системы, высвобождая больше водорода для топливного элемента.

Избегая сжатия и обнаружив, что гидридная связь достаточно слабая, чтобы ее можно было разорвать отходящим теплом, Джонсон заметно повысил эффективность.Он еще больше повысил эффективность с помощью другой умной техники. В большинстве хранилищ водорода используются огромные электролизеры и топливные элементы, которые не могут точно масштабировать производство энергии в соответствии с потребностями. Джонсон разбил свою систему на модули: она содержит стопки электролизеров и топливных элементов меньшего размера, которые можно запускать по одному по мере роста спроса. «Глупо просто, — говорит он с улыбкой.

Внешне SES работает как большая батарея, но есть отличия и компромиссы.

С другой стороны, несмотря на то, что он значительно увеличил сквозную эффективность по сравнению с водородными конкурентами, Джонсон все еще не совсем соответствовал эффективности батарей.Он говорит, что на данный момент эффективность SES составляет около 80 процентов. По крайней мере, когда они новые, традиционные свинцово-кислотные батареи составляют около 90 процентов, а литий-ионные батареи — около 98 процентов или выше, хотя все батареи со временем изнашиваются. (Джонсон ожидает, что эффективность SES будет продолжать расти по мере разработки новых материалов для своих электролизеров и топливных элементов — он думает, что 85 или 90 процентов находятся в пределах досягаемости.)

С другой стороны, SES прослужит намного дольше, чем батарея, пройдя более 10 000 циклов зарядки и разрядки, по сравнению с примерно 1000 для литий-ионной батареи.Это приблизит срок ее службы к сроку службы типичной солнечной панели, что позволит более удобно соединять эти две батареи.

В отличие от аккумуляторов, которые нельзя полностью зарядить или разрядить из-за опасения ухудшения характеристик, SES может перейти от 100-процентной емкости до 0 и обратно без повреждений.

И когда он действительно изнашивается, в отличие от батарей, SES полностью подлежит переработке. Металлы плавятся, перетираются и используются повторно; вода перегоняется.

Лучше всего то, что раствор гидрида может храниться неограниченное время без обслуживания или потери потенциала.Его не нужно сжимать или охлаждать, как сжатый водород. Он не разлагается, как электрохимический заряд аккумуляторов. Гидриды можно хранить столько, сколько необходимо.

Это делает SES фантастическим кандидатом на долгосрочное хранение энергии, святым Граалем по-настоящему устойчивой энергетической системы. Если бы электричество было дешевым и достаточно обильным, то в принципе не было бы ограничений на количество резервной энергии, которую можно было бы накапливать.

Это также делает SES идеально подходящим для распределенной энергетической системы.Без движущихся частей, надежных компонентов, устойчивых к экстремальным температурам и погодным условиям, и 98-процентной возможности вторичной переработки, это был бы чрезвычайно простой способ для любого, у кого есть несколько солнечных панелей, получить степень энергетической независимости. Это может быть особенным благом для удаленных, автономных сообществ.

Жутко горящий электролизер. HyTech Power

Какой бы ни была судьба HyTech, потребность в водороде вызовет инновации

Распределенная безуглеродная водородная экономика — это то, о чем размышляет Джонсон, когда дает себе время подумать.Но в наши дни перед нами стоит более неотложная задача: запустить HyTech.

Ни один из экспертов по водороду, с которыми я разговаривал, не обнаружил каких-либо особых красных флажков в технических утверждениях HyTech, но все они проявили с трудом завоеванный скептицизм «шоу-не-говори». В водородном мире произошло много новых событий. История усеяна трупами многообещающих стартапов, которые не смогли воплотить свои инновации в жизнеспособные рыночные продукты.

Тем не менее, Hytech, похоже, занимает хорошие позиции, имея надежную команду руководителей, некоторое раннее финансирование, положительные результаты испытаний, партнерские отношения с такими крупными игроками, как FedEx и Caterpillar, а также целевой рынок с продемонстрированным спросом на ее продукцию.Скорее всего, через год или два мы узнаем, справились ли они с этим.

В любом случае, по мере того, как стремление к созданию устойчивой энергетической системы всерьез набирает обороты, потребность в водороде будет только возрастать. Нам нужно топливо с нулевым выбросом углерода и нам нужно долгосрочное хранение энергии. Водород подходит обоим счетам.

Когда есть большая социальная потребность и деньги, люди становятся умными. Если Джонсон сможет добиться нескольких поэтапных достижений в водородной технологии, совершая покупки в Интернете и возясь в своей лаборатории, скоро другие сделают то же самое.А по мере выхода продуктов на рынок масштабирование приведет к снижению затрат, как это произошло с ветряной и солнечной энергией.

Во многих смыслах доступный водород — это последняя часть головоломки устойчивой энергетики, энергоноситель, который может заполнить трещины в системе, работающей в основном на ветровой и солнечной энергии. За прошедшие годы его несколько раз оставляли умирать, но, поскольку мир серьезно относится к декарбонизации, водород, наконец, может выиграть свой день на солнце.


У нас есть запрос

В такие моменты, когда люди пытаются понять варианты и вакцины, а дети возвращаются в школу, многие торговые точки отключают свой платный доступ.Контент Vox всегда бесплатный, отчасти благодаря финансовой поддержке наших читателей. Мы освещаем пандемию Covid-19 более полутора лет. С самого начала нашей целью было внести ясность в хаос. Чтобы предоставить людям информацию, необходимую для обеспечения безопасности. И мы не останавливаемся.

В ближайшие 30 дней мы планируем добавить 2500 индивидуальных пожертвований, чтобы освещать кризис Covid-19 бесплатно для всех, кто в этом нуждается. Поскольку каждый из нас здоров настолько, насколько здоров наш самый больной сосед, очень важно, чтобы люди имели бесплатный доступ к четкой информации о пандемии.Поможете ли вы нам достичь нашей цели, сделав взнос в Vox всего за 3 доллара?

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

1 Lec 1: Двигатели внешнего и внутреннего сгорания, компоненты двигателя, двигатели SI и CI Загрузить
2 Lec 2 : Четырехтактные и двухтактные двигатели Загрузить
3 Lec 3: Классификация двигателей внутреннего сгорания Загрузить
4 Lec 4: Рабочие характеристики двигателя Загрузить
Lec 5: Otto, Diesel and Dual cycle Download
6 Lec 6: Otto, Diesel and Dual cycle (Contd.) Загрузить
7 Lec 7: Отто, дизельные и двойные циклы (продолжение) Загрузить
8 Lec 8: Сравнение циклов, фактические циклы и их анализ Загрузить
9 Lec 9: Карбюратор, требования к смеси Загрузить
10 Lec 10: Карбюратор, требования к смеси (продолжение) Загрузить
Lec 11 Lec запасы хода и мощности Загрузить
12 Lec 12: Диапазон холостого хода, крейсерский режим и мощность (продолжение.) Загрузить
13 Lec 13: Классификация, типы форсунок, система зажигания, аккумуляторная батарея и системы зажигания от магнето Загрузить
14 Lec 14: Системы впрыска двигателя SI Загрузить
15 Lec 15: Механические и электронные системы впрыска Загрузить
16 Lec 16: Аккумуляторные системы зажигания Загрузить
17 Lec 17: Трение двигателя, системы смазки, усилия поршень Загрузить
18 Lec 18: Смазочные масла, Термохимия топлива Загрузить
19 Lec 19: моторные топлива IC — типы, требования и характеристики, Альтернативные виды топлива Загрузить Загрузить
20 Lec 20: Сгорание в двигателях SI Загрузить
21 Lec 21: Сгорание в двигателях CI Загрузить
22 Lec 22: Система впрыска двигателя CI Загрузить
23 Система впрыска Lec 23: система впрыска CI) Загрузить
24 Lec 24: Теплопередача и распределение энергии Загрузить
25 Lec 25: Цетановое и октановое число, Системы охлаждения Загрузить
26: Проблемы в двигателе внутреннего сгорания Загрузить
27 Lec 27: Турбомашины, теория газовой турбины Загрузить
28 Lec 28: Газотурбинная электростанция открытого цикла, расположение двух валов Загрузить
29 Lec 29: замкнутый цикл, схема с несколькими золотниками, паровая электростанция Загрузить
30 Lec 30: Базовая термодинамика Загрузить
31 Lec Цикл: Введение и общие отношения Загрузить
32 Lec 32: Цикл Брайтона: Эффективность, рабочий коэффициент и оптимальные рабочие условия.
35 Lec 35: Реальный цикл Брайтона, решенный пример для идеального цикла Скачать
36 Lec 36: Решенные примеры для реального цикла Брайтона Скачать
37 Lec Введение и рабочие параметры силовой установки Загрузить
38 Lec 38: Основы различных авиационных двигателей Загрузить
39 Lec 39: Eular Turbomachinary Equation Lec 40: Введение и анализ расхода центробежных компрессоров
41 Lec 41: Термодинамический анализ центробежных компрессоров Загрузить
42 Lec 42: Осевой компрессор: основы, треугольники скорости, TS-диаграмма и рабочее введение 43 Lec 43: Осевой компрессор: различные факторы, степень реакции и состояние свободного вихря Загрузить
44 Lec 44: Полный анализ газовой турбины с осевым потоком Загрузить
45 Lec 45: Решенные примеры для осевых компрессоров, центробежных компрессоров и турбины Загрузить
46 Lec 46: Турбина с радиальным потоком, решенный пример условия свободного вихря Загрузить
47 Lezzles и Диффузоры: Введение, Эффективность всасывания, Эффективность сопла Загрузить