Как проверить дроссель — 5 причин неисправности балласта ламп дневного света. Проверка ПРА и ЭПРА отличия.
Лампы дневного света, несмотря на популяризацию светодиодного освещения, до сих пор остаются одним из распространенных видов осветительных приборов в домах, гаражах и производственных помещениях.
Когда такой светильник перестает гореть, первым делом грешат на саму лампочку или стартер. А если они не виноваты, как проверить другой не менее важный элемент – дроссель?
Для чего нужен дроссель
Во-первых, определимся, что же такое дроссель или как его еще называют балласт. По сути, это обыкновенная катушка индуктивности с ферромагнитным сердечником.
Вот так она выглядит в разрезе.
В схемах балласт нужен для трех функций:
- контроля тока, чтобы он не превышал номинала
- образование за счет индуктивности кратковременного импульса повышенного напряжения
- сглаживания возможных пульсаций в сети 220В
Подключается он последовательно, а параллельно ему монтируется стартер.
Стартер необходим для поджига лампы.
Как работает лампа дневного света
Напряжение, которое подводится к спиральным электродам на концах лампы, изначально недостаточно для ее розжига. И тут на помощь приходит дроссель и стартер.
После появления напряжения в стартере, внутри образуется разряд, который нагревает биметаллический электрод.
Из-за нагрева форма электрода меняется и происходит его замыкание.
В результате чего, резко возрастает ток и электроды раскаляются. Ток ограничивается только сопротивлением самого дросселя.
У стартера контакты постепенно остывают и размыкаются. При размыкании, благодаря дросселю, в лампе возникает эффект самоиндукции, с образованием высоковольтного импульса и электрического разряда напряжением до 1000В.
От этого разряда создается ультрафиолетовое свечение ртутных паров, которыми заполнена колба. Оно оказывает воздействие на люминофор, и только благодаря ему, мы и можем различать свет в привычном для нас спектре.
Если для кого-то это объяснение слишком заумно, то вот одно из самых простых и понятных видео, объясняющих на доступном всем языке, как же работает лампа ЛДС.
Получается, что сам процесс включения люминесцентной лампы дневного света довольно длителен и занимает 5 этапов:
- подача 220В из розетки и замыкание контактов стартера
- разогрев спиралей электродов
- размыкание контактов стартера
- подача высоковольтного импульса от дросселя
- образование тлеющего разряда в колбе и поддержка его внешним напряжением 220В + шунтирование стартера и исключение его из схемы
Как видно из процесса запуска, при неисправности ламп, виноватыми могут быть три элемента:
- сама лампочка
- стартер
- дроссель
При этом, чаще всего повреждаются лампочки и стартера – из-за перегоревших вольфрамовых нитей и конденсаторов.
Узнать об этом проще всего – заменив стартер или лампочку. Тем более, что стоят они копейки. А вот как быстро узнать о неисправности дросселя?
Как проверить дроссель ПРА без мультиметра
Без специальных измерительных приборов о неисправности ПРА может свидетельствовать эффект огненной змейки. Вы визуально сможете наблюдать ее внутри лампы.
О чем это говорит? А говорит это в первую очередь о том, что есть превышение максимально допустимого тока. Из-за чего заряд потерял стабильность.
Также может наблюдаться неустойчивое свечение или мерцание лампы. При поломке балласта, светильник не загорится с первого раза.
В результате, стартер будет постоянно запускаться и отключаться, запускаться и отключаться. От таких частых пусков, возле спиралей на концах лампы появляются почернения.
Еще один способ проверки без измерительных приборов и мультиметра – контрольная лампочка. Мощность ее должна быть примерно такой же, как и мощность самого дросселя.
Подключаете ее последовательно по следующей схеме с ПРА и смотрите как она светит.
- если не горит совсем – в балласте обрыв, дроссель неисправен
- горит ярко – в балласте межвитковое короткое замыкание
- моргает или светит в половину накала – дроссель исправен
Проверка балласта ПРА мультиметром
Но чтобы точно убедиться в повреждении дросселя, все таки лучше воспользоваться мультиметром и провести замеры.
Повреждение дросселя может быть пяти видов:
- замыкание разных обмоток
- замыкание витков в одной обмотке
- неисправность магнитопровода
- пробой на корпус
Какой-то из проводов, которым намотан дроссель может просто оборваться. Выявляется это легко.
Переводите мультиметр в режим измерения сопротивления и касаетесь щупами выводов дросселя. Если высвечиваются показания ”бесконечность” это и свидетельствует об обрыве.
При замерах только не касайтесь голых кончиков щупов руками. Иначе замерите сопротивление своего тела, а не дросселя.
Кстати, обрыв из всех видов поломок, выявить проще всего. Это можно сделать даже без мультиметра, с помощью обычной индикаторной отвертки.
Ничего выключать и разбирать не нужно, провода тоже не отсоединяются. Если индикатор светится во входной клемме ПРА:
а на выходе свечения нет:
то считайте что обрыв вы нашли.
Замыкание обмоток
Некоторые дросселя могут иметь не одну, а две обмотки. В нормальном режиме они должны быть изолированы между собой.
Но изоляция может высохнуть или нарушиться.
Чтобы узнать о замыкании, мультиметром проверьте выводы не одной, а разных обмоток. Если у вас высветятся непонятно малые цифры, то значит обмотки замкнуты.
Межвитковое замыкание
Если дроссель у вас постоянно грелся, то его лакированная изоляция проводов, могла высохнуть. И один или несколько близлежащих витков, просто спекутся между собой.
Найти такое повреждение очень трудно, даже при помощи мультиметра.
Нужно точно знать изначальные значения сопротивления обмотки, чтобы было с чем сравнивать. Если у вас замкнулись один или два витка, то разницу обычным тестером вы и не увидите.
Найти витковое замыкание можно при спекании достаточно большого количества проводников. Тогда разницу будет видно сразу.
Нормальный (не китайский дроссель), имеет примерно следующие сопротивления:
- мощностью на 20Вт — сопротивление от 55 до 60 Ом
- мощностью на 40Вт – сопротивление от 24 до 30 Ом
- мощностью на 80Вт – сопротивление от 15 до 20 Ом
Магнитопровод
Сердечник дросселя выполнен из ферромагнитных материалов. А они (ферриты), довольно капризны сами по себе.
При эксплуатации, на поверхности запросто могут образоваться трещинки или сколы. Если такое произошло, значит у дросселя изменятся параметры катушек индуктивности.
Еще в сердечниках из-за механических нагрузок могут измениться специальные зазоры.
Проверить индуктивность дросселя можно не всеми мультиметрами. Большинство к сожалению, такой функции лишены.
Однако опять же, чтобы понять проблему, вам нужно знать первоначальные значения данной индуктивности.
Пробой на корпус
О неисправности катушки может свидетельствовать ее нулевое сопротивление относительно корпуса. Здесь ничего сложного в проверке нет.
Один щуп мультиметра подносите к металлическим частям корпуса, а другим касаетесь к выводам катушки дросселя.
Проверять можно и в режиме прозвонки цепи. Если звукового сигнала не будет, значит пробоя нет.
Повреждение электронного дросселя
А если балласт у вас электронный, как проверить его? ЭПРА как сокращенно их называют, уже не похож на индуктивную катушку.
Все современные модели выпускаются с электронными дросселями без стартеров.
ЭПРА расшифровывается как — электронная пуско-регулирующая аппаратура.
У нее множество электронных компонентов напаяны на плату и помещены в один корпус.
Прозвонить мультиметром всего лишь два конца здесь уже не получится. Придется последовательно шаг за шагом проверять все элементы схемы.
Начинать лучше с предохранителя. Вызваниваете его целостность в режиме прозвонки.
Далее осматриваете конденсаторы. У тех, которые в виде бочонков, можно определить повреждение даже визуально, по вздутию нижней части.
Еще внимательно проглядите все места пайки. Какие-то ножки могут отвалиться и контакт пропадет.
Диоды и транзисторы также проверяются мультиметром, после переключения его в соответствующий режим измерения.
Данные сопротивлений берите из таблиц в интернете, согласно их расцветки.
И сравнивайте с теми фактическими замерами, которые у вас получились.
В общем, чтобы проверить и отремонтировать электронный дроссель, понадобятся минимальные навыки радиолюбителя.
Вот очень хорошее и подробное видео по проверке каждого элемента на плате ЭПРА, с заменой поврежденных деталей на исправные. Тем более, что повреждений здесь оказалось не одно, а несколько.
Как проверить дроссель с помощью мультиметра
Одним из компонентов схем различных электронных и электротехнических приборов является дроссель. Дросселем называют катушку индуктивности, которая при работе в электрических схемах ограничивает проводимость для переменного тока и беспрепятственно пропускает ток постоянный. Это свойство дросселя используется для сглаживания переменной составляющей токов. Проверка дросселя осуществляется мультиметром или специальным тестером.
Назначение и устройство
В некоторых приборах дроссели устанавливаются для того, что бы пропускать импульсные токи определенного диапазона частот. Диапазон этот зависит от конструктивного решения дросселя, то есть от применяемого в катушке провода, его сечения, количества витков, наличия сердечника и материала, из которого он изготовлен.
Конструктивно дроссель представляет собой намотанный на сердечник изолированный провод. Сердечник может быть металлическим, набранным из изолированных пластин или ферритовым. Иногда дроссель может выполняться без сердечника. В этом случае используется керамический или пластмассовый каркас для провода.
Дроссельная заслонка присутствует в карбюраторе. Она регулирует подачу горючей смеси, представляя собой потенциометр. Чтобы проверить датчик дроссельной заслонки в автомобиле, определяют соответствие входного напряжения устройства положению заслонки.
В мультиметре выставляют режим прозвонки. Контакты разъема датчика соединяют со щупами мультиметра и создают видимость движения заслонки (пальцами). При этом проверяют, как реагирует датчик в крайних положениях заслонки. Должен идти чистый сигнал без хрипов.
В светильниках
В светильниках, предусмотренных для использования ламп дневного света, помимо самих ламп, применяются такие компоненты, как стартер и дроссель.
Стартер, как следует из названия, запускает процесс свечения в лампе, и далее в процессе не участвует. Дроссель выполняет функции стабилизатора тока и напряжения в течение всего периода свечения лампы.
Если дроссель неисправен, лампа не горит, или горит не устойчиво, свечение ее неоднородно по всей длине, внутри могут появляться области с более ярким свечением, движущиеся от одного электрода лампы к другому. Иногда можно заметить эффект мерцания света.
Лампа при неисправном дросселе может не загореться с первого раза, и стартер будет многократно включаться, пока, наконец, процесс свечения не запустится. В результате, в местах установки спиралей, на колбе лампы появятся потемнения. Это связано с тем, что спирали работают более продолжительное время, чем установлено для нормального запуска.
Проверка в лампах
Проверку дросселя необходимо произвести, если наблюдается одно из вышеописанных явлений при работе лампы дневного света, а также, если замечено появление характерного запаха подгорающей изоляции, появление звуков, нехарактерных для работы прибора, а также в том случае, если лампа не включается.
До того, как проверить дроссель лампы, проверяются сама лампа и стартер.
Неисправность дросселя может заключаться в обрыве или перегорании провода катушки или межвитковом замыкании, вызванном пробоем или подгоранием изоляции.
Обе неисправности могут произойти либо вследствие длительного времени использования прибора, либо в результате какого-либо механического воздействия. Возможно перегорание провода катушки в результате подачи на нее тока большего, чем максимальный, на который рассчитан дроссель.
В случае обрыва или перегорания провода, можно выявить неисправность обычным тестером или мультиметром. В силу того, что дроссель пропускает постоянный ток, замкнув цепь тестера через катушку, по свечению контрольной лампы или его отсутствию можно понять, есть обрыв или нет.
Если при измерении мультиметром, сопротивление бесконечно, имеет место обрыв провода катушки.
Проверка межвиткового замыкания
В случае межвиткового замыкания, проверка тестером результата не даст. В этом случае необходимо знать, как проверять дроссель при помощи мультиметра.
Межвитковое замыкание имеет место при непосредственном гальваническом контакте двух витков или при контакте витков с металлическим сердечником. Очевидно, что в этом случае сопротивление катушки уменьшается.
Возможен редкий случай, когда измерение сопротивления катушки не даст достоверной картины ее состояния. Такое может случиться при обрыве и межвитковом замыкании одновременно.
В этом случае межвитковое замыкание может оказаться параллельным обрыву, и несколько витков просто не будут участвовать в измерении. Исправный, казалось бы, дроссель будет работать некорректно.
Для проверки катушки на наличие межвиткового замыкания, аналоговый мультиметр в режиме миллиамперметра необходимо использовать в составе прибора, собранного на двух транзисторах.
Схема прибора приведена на рисунке.
Сам прибор представляет собой генератор низкой частоты. При сборке схемы используются любые транзисторы из линейки МП39-МП42 (коэффициент усиления 40-50).
Диоды можно использовать типа Д1 или Д2 с любым индексом. Резисторы применяются любого типа, рассчитанные на мощность не менее 0,12 Вт. Питание прибора осуществляется от источника постоянного тока, напряжением 7-9 В.
Последовательность действия
Порядок проверки следующий:
- включается тумблер Вк. При этом стрелка мультиметра должна отклониться до середины шкалы;
- в зависимости от индуктивности катушки, устанавливается положение движка переменного резистора R5. Левое положение соответствует меньшей, а правое – большей индуктивности. При проверке катушек с индуктивностью менее 15 мГн, необходимо дополнительно нажать кнопку Кн2;
- к клеммам Lx подключаются выводы дросселя и замыкается кнопкой контакт Кн1. При этом, если в обмотке нет витков, короткозамкнутых между собой, стрелка мультиметра должна отклониться в сторону больших значений или же незначительно отклониться в сторону меньших. Если в обмотке есть хоть одно замыкание между витками, стрелка возвращается на нуль.
Иногда причиной неисправности катушки может стать разрушившийся или поврежденный сердечник. Материал, из которого выполнен сердечник, его размер и положение относительно катушки, влияют на индуктивность.
Проверка индуктивности
Наличие в арсенале мультиметра такой полезной функции, как измерение индуктивности катушек, будет полезным для проверки соответствия дросселя характеристикам, заявленным в справочной литературе. Функция присутствует только в некоторых моделях цифровых мультиметров.
Чтобы воспользоваться этой функцией, необходимо настроить мультиметр на измерение индуктивности. Контакты щупов присоединяются к выводам катушки. При первом измерении мультиметр устанавливается в наибольший диапазон измерений, и потом диапазон уменьшается для получения измерения достаточной точности.
При проведении всех измерений важно не допускать касания руками контактов, на которых измеряются те или иные параметры, иначе проводимость человеческого тела может изменить показания прибора.
Проверка ламп дневного света мультиметром
В условиях повышения цен на энергоресурсы, увеличения тарифов на электроэнергию, для населения актуальным стал вопрос экономии электричества в домах и квартирах. Разработаны различные технологии, позволяющие использовать более экономичные электроприборы, чем те, которые производились еще несколько десятилетий назад. При организации освещения помещений уже достаточно давно применяются люминесцентные источники света, или лампы дневного света (ЛДС).
Они, обеспечивая такую же освещенность, как и обычные лампочки накаливания, потребляют в 5-7 раз меньше электроэнергии, чем их предшественники. Несмотря на то, что появились еще более экономичные светодиодные источники, цена их настолько высока, что в настоящее время использование светильников с ЛДС остается наиболее рациональным решением.
В процессе эксплуатации светильников всегда возможны поломки, отказы в работе некоторых элементов. Для ремонта необходимо знать, как можно проверить лампы дневного света тестером. Для этого нужно представлять, как устроены и как работают такие источники света.
Устройство
Принцип работы ламп дневного света основан на свечении люминофоров в ультрафиолетовом свете.
Сам прибор представляет собой герметичную колбу из тонкого прочного стекла, на поверхность которой внутри нанесен люминофорный состав. Внутри колбы также находится небольшое количество ртути, которая и образует свечение под действием разогретых вольфрамовых спиралей по концам колбы. Перегорание спиралей можно проверить тестером.
В светильниках лампа подключается последовательно с дросселем, представляющим собой катушку индуктивности.
Параллельно лампе подключается стартер. Он представляет собой заключенные в пластмассовый или алюминиевый корпус компактную газоразрядную лампу с биметаллическим контактом и компенсационный конденсатор, который служит для выравнивания тока на лампе стартера.
Принцип работы
Когда электрическая цепь светильника подключается к источнику тока, как правило, это электрическая сеть переменного тока с напряжением 220 В и частотой 50 Гц, величины силы тока не хватает, чтобы разогреть спирали в колбе лампы.
И вот в этот самый момент газоразрядная лампа под действием тока в цепи включается и разогревает биметаллический контакт, который физически замыкает цепь светильника. Ток увеличивается в несколько раз, спирали в колбе разогреваются до температуры испарения ртути. Чем выше температура, тем выше проводимость паров в колбе.
Далее ток проходит через пары ртути, вызывая их ультрафиолетовое свечение, а оно в свою очередь преобразуется в белый свет люминофорным составом, нанесенным на стенки колбы.
Величина тока на участке цепи светильника, на котором установлен стартер, падает вдвое и газоразрядная лампа гаснет. Биметаллический контакт остывает, выключается и с этого момента ток течет только внутри колбы и через дроссель. В исправном светильнике стартер больше не участвует в процессе до того момента, пока не нужно будет еще раз разогревать спирали лампы после ее отключения.
Дроссель обеспечивает регулировку тока в цепи, не допуская перегрева спиралей в колбе и их перегорания.
В подавляющем большинстве случаев в конструкциях светильников используется несколько ламп. Их количество четно и они подключаются последовательно по две. Соответственно, стартеры (а их тоже будет два или более – по количеству ламп), тоже подключаются последовательно. В этом случае стартеры должны быть на напряжение 127 В, иначе они не сработают.
Проверка стартера
Проверка светильников с ЛДС заключается в контроле целостности вольфрамовых спиралей, расположенных непосредственно в колбах ламп, а также в контроле работоспособности дросселей и стартеров.
После вскрытия корпуса светильника, лампы надо проверить на наличие почернений у концов колб. Если почернения есть, то в схеме светильника, скорее всего, имеется какая-то неисправность, и, если ее не устранить, то лампы отработают очень недолго.
При отсутствии «признаков жизни» в светильнике следует проверить в первую очередь стартер. Он выходит из строя чаще всего, так как его элементы работают механически в условиях многократно изменяющейся температуры. Разобрав корпус стартера, необходимо осмотреть конденсатор и лампу:
- конденсатор не должен быть вздутым или взорвавшимся, что может быть следствием наличия скачков большого напряжения в сети;
- лампа не должна быть сильно почерневшей;
- далее конденсатор можно проверить с помощью универсального тестера – мультиметра.
Чтобы проверить ЛДС, мультиметр переводится в режим омметра с наибольшим возможным пределом измерения сопротивления. При проведении измерений между выводами конденсатора сопротивление должно быть бесконечным.
Если при измерении будет зафиксировано сопротивление менее 2 МОм, то, скорее всего конденсатор имеет недопустимый ток утечки. Но эти признаки, указывающие на неисправность, могут и не выявиться. Очень часто в домашних условиях проверить стартер можно только, установив его в заведомо исправный светильник.
В любом случае, если выяснится, что причиной отказа в работе светильника является стартер, его необходимо заменить.
Целостность спиралей-электродов
Лампы «перегорают» гораздо реже, хотя проверить их проще, чем стартер. Делают это обычным тестером с контрольной лампой или мультиметром, настроенным на измерение сопротивлений. Довольно легко проверить целостность спиралей.
Для проверки тестер или мультиметр подключается к паре выводов на отдельном конце колбы.
Если спирали целые, то контрольная лампа тестера должна светиться, а мультиметр должен показывать небольшое сопротивление (около 10 Ом). Если тестер «молчит», а сопротивление мультиметра бесконечно, имеет место обрыв спирали. При обрыве даже одной спирали из двух, лампа, очевидно, работать не будет. В этом случае необходима ее замена.
Проверка дросселя
Следующим шагом будет проверка дросселя. Он во всей этой конструкции самый стойкий элемент, и выходит из строя гораздо реже остальных. Тем не менее важно знать, как проверить дроссель лампы дневного света мультиметром.
Неисправность его может заключаться в обрыве или перегорании обмотки, нарушении изоляции между витками провода. В обоих случаях неисправность можно выявить, подключив к выводам дросселя мультиметр, настроенный на измерение сопротивления.
Если сопротивление между выводами дросселя будет бесконечно, значит, имеет место обрыв или перегорание обмотки. Перегорание обычно предвещается неприятным запахом, исходящим от детали, особенно во время работы.
Если сопротивление ничтожно мало, то, скорее всего, нарушена изоляция провода, и произошло межвитковое замыкание в обмотке, или замыкание обмотки на сердечник.
Совершенно очевидно, что все приемы проверки, описанные выше, справедливы только при использовании в светильниках, так называемых электромагнитных пускорегулирующих аппаратов (ЭмПРА).
В настоящее время появляются электронные пускорегулирующие аппараты (ЭПРА), исключающие наличие в схеме стартеров. Устанавливаются такие аппараты и в компактные ртутные лампы дневного света.
Пока они достаточно дороги и ремонту своими силами не подлежат, поэтому использование ЭмПРА еще оправдано.
Как проверить дроссель (катушку индуктивности) при помощи мультиметра?
Иногда, дроссель может перестать функционировать. Проявляется это по-разному, может появиться шум, лампа начинать мигать, лампа вовсе не зажигается и другие варианты. Как проверить дроссель, если подозреваете поломку – рассмотрим в статье далее.
Механическими поломками считаются – выход из строя сердечника, повреждение каркаса или креплений, обрыв на обмотке или пробой между ними. Любая проверка должна начинаться с внешнего осмотра. Здесь нужно внимательно осмотреть данной устройство. Так можно сразу выявить причину поломки и по возможности восстановить его. Если осмотр не дал результатов и внешне прибор выглядит идеально, нужно переходить к проверке его мультиметром. Для подробного изучения этого вопроса в статье предложен способ проверки дросселя мультиметром, а также добавлено видео и интересный файл с материалом по теме.
Проверка дросселя мультиметром.
Какое строение имеют источники светового потока
Дневное освещение является самым экономичным вариантом в плане освещения. При этом оно лучше всего подходит для глаз, благодаря чему служит отличной альтернативой всем существующим на сегодняшний день вариантам подсветки помещений.
Для создания дневного света сегодня используются различие виды люминесцентных ламп. Такие лампы могут классифицироваться по оттенку и яркости излучаемого света:
- теплый белый;
- холодный белый;
- желтоватый тон.
Схема дросселя.
Дроссель
Но для повышения их безопасности во время работы принято использовать специальный прибор – дроссель. Им оснащены все лампы дневного света. Покупая светильник дневного света, обязательно поинтересуйтесь у продавца гарантией и другой сопроводительной документацией на приобретаемое изделие. Так вы точно купите качественный прибор для своих нужд. Что же представляет собой дроссель? Внешне дроссель имеет вид катушки индуктивности, у которой имеется специальный ферримагнитный сердечник. Это такая деталь, которая необходима для стабильной работы любой лампы при создании дневного света. По сути, дроссель входит в состав энергосберегающего источника света, установленного в светильнике. Частые поломки и способы их проверки мультимером указаны в таблице ниже:
Таблица основных поломок дросселя и способы их проверки мультимером.
При его неисправности или падении работоспособности на концах лампы появляются почернения. В задачи данной детали входит контроль напряжения, создаваемого на выходных контактах энергосберегающего источника света. Очень часто дроссель входит в состав люминесцентных ламп. Для того чтобы источник дневного света не погас, создается балласт. Он способен поддерживать в контактах осветительного прибора ток на требуемом уровне.
По существующим на сегодняшний день стандартам, такой балласт нужно подключать последовательно. Затем к нему параллельно подсоединяют стартер. Он ответственен за зажигание лампы.
Такое строение и способ подключения играет важную роль в работоспособности лампы, используемой для создания дневного света в помещении. Поэтому если имеются неисправности, то в первую очередь нужно проверить дроссель. О том, как это сделать мы расскажем несколько ниже. Чтобы понять, почему лампы дневного света перестали работать, необходимо быть знакомым с их конструкцией, а также принципом работы. Это нужно для того, чтобы по косвенным признакам проверить их работоспособность и определиться с вариантами починки. На данный момент в продаже существует несколько типов люминесцентных ламп. Но все они имеют одинаковое строение.
Тороидальный дроссель.
Строение люминесцентной лампы
Такие источники дневного света в своей конструкции обязательно содержат стеклянную колбу различной формы. В ней находятся спиральные электроды и инертный газ (пары ртути).Сверху колба покрыта специальным слоем из люминофоров.
Принцип работы лампы таков:
- при поступлении электрического тока на электроды (спирали) они нагреваются;
- в результате нагревания спиралей происходит зажигание газа;
- под действием него начинает светиться люминофор.
Из-за того, что электроды имеют ограниченные размеры, имеющегося в сети напряжения недостаточно для розжига электродов. Вот для этого и используют дроссель. А чтобы предотвратить чрезмерный перегрев спирали в лампы устанавливают стартер. Он после зажигания газа запускает процессы, приводящие к отключению накала электродов.
Проверка приборов низкой частоты
По конструкции и технологии изготовления силовые трансформаторы, трансформаторы и электрические дроссели НЧ имеют много общего. Те и другие состоят из обмоток, выполненных изолированным проводом, и сердечника. Неисправности трансформаторов и дросселей НЧ делятся на механические и электрические.
К механическим неисправностям относятся: поломка экрана, сердечника, выводов, каркаса и крепежной арматуры, к электрическим – обрывы обмоток; замыкания между витками обмоток; короткое замыкание обмотки на корпус, сердечник, экран или арматуру; пробой между обмотками, на корпус или между витками одной обмотки; уменьшение сопротивления изоляции; местные перегревы.
Проверку исправности трансформаторов и дросселей НЧ начинают с внешнего осмотра. В ходе его выявляют и устраняют все видимые механические дефекты. Проверка на короткое замыкание между обмотками, между обмотками и корпусом производится омметром. Прибор включают между выводами разных обмоток, а также между одним из выводов и корпусом. Так же проверяется и сопротивление изоляции, которое должно быть не менее 100 МОм для герметизированных трансформаторов и не менее десятков МОм для негерметизированных.
Интересный материал для ознакомления: что нужно знать об устройстве силового трансформатора.
Самая сложная проверка на межвитковые замыкания. Известно несколько способов проверки трансформаторов.
- Измерение омического сопротивления обмотки и сравнение результатов с паспортными данными. (Способ простой, но не точный, особенно при малой величине омического сопротивления обмоток и малом числе короткозамкнутых витков.)
- Проверка катушки с помощью специального прибора — анализатора короткозамкнутых витков.
- Проверка коэффициентов трансформации на холостом ходу. Коэффициент трансформации определяется как отношение напряжений, показываемых двумя вольтметрами. При наличии межвитковых замыканий коэффициент трансформации будет меньше нормы.
- Измерение индуктивности обмотки.
- Измерение потребляемой мощности на холостом ходу. У силовых трансформаторов одним из признаков короткозамкнутых витков является чрезмерный нагрев обмотки.
Диагностика дросселя.
Стартер
При подаче напряжения в стартере возникает тлеющий разряд. Нагреваясь биметаллические пластины, из которых сделаны электроды стартера, замыкаются, в результате чего ток в цепи значительно увеличивается. Увеличившийся ток разогревает электроды люминесцентной лампы, и они начинают испускать электроны. Одновременно с этим электроды стартера остывают, биметаллическая пластина изгибается и цепь разрывается. Таким образом, стартер нужен только в момент запуска, в дальнейшей работе он не участвует и его электроды остаются разомкнутыми.
При этом на дросселе, благодаря самоиндукции, возникает кратковременный высоковольтный импульс, который приводит к газовому разряду и зажиганию лампы. Когда лампа горит, напряжение на её электродах ниже напряжения сети на величину эдс самоиндукции, возникающей в дросселе при зажигании лампы. Таким образом дроссель препятствует возрастанию тока в рабочем режиме лампы. Недостатками данной схемы являются продолжительное время включения светильника, по мере износа дроссель начинает издавать гул, низкая эффективность при отрицательных температурах.
Стартеры.
Неисправности светильников с ЭМПРА
Лампа не зажигается
- Неисправность электросети — проверить наличие напряжения на контактах патрона.
- Плохой контакт между лампой и контактами патрона или между стартером и контактами держателя — пошевелить лампу и стартер. Возможно надо подогнуть контакты патрона для лучшего прилегания.
- Неисправность лампы — проверить целостность нитей накала или заменить на заведомо исправную. Для проверки нитей накала выставляем мультиметр на минимальное сопротивление или на прозвонку и поочередно прозваниваем выводы цоколя с одной стороны и с другой. При исправной лампе должно быть небольшое сопротивление. В случае обрыва мультиметр покажет бесконечное сопротивление.
- Неисправность стартера — не замыкает цепь накала электродов лампы. Заменить стартер.
- Неисправность дросселя — обрыв в обмотке дросселя или межвитковое замыкание. Обрыв дросселя можно определить с помощью мультиметра.
Лампа не зажигается. Свечение по краям лампы
- Неисправность стартера. Если вынуть стартер из держателя, свечение прекратится. Заменить стартер.
Лампа мигает, но не зажигается
- Неисправен стартер — заменить стартер.
- Низкое напряжение сети — проверить мультиметром напряжение.
- Потеря эмиссии электродов лампы — заменить лампу.
Стартер в лампе.
На концах включенной лампы появляется и пропадает оранжевое свечение, лампа не зажигается
- В лампу попал воздух — заменить лампу.
Лампа зажигается, но через некоторое время наблюдается потемнение на концах лампы
- Замыкание на корпус светильника — проверить изоляцию.
- Неисправен дроссель — несоответствие пускового и рабочего токов вольт-амперной характеристики. Амперметром проверить значение пускового и рабочего токов.
Лампа периодически зажигается и гаснет
- Неисправна лампа — заменить лампу
- Неисправен стартер — заменить стартер
Лампа зажигается, но на некоторых участках наблюдается свечение в виде оранжевой змейки
- Неисправен дроссель — проверить значение пускового и рабочего токов.
- Неисправна лампа — заменить лампу.
При включении лампы перегорают, потемнение на концах лампы
- Пробой изоляции дросселя — заменить дроссель
При работе светильника слышно гудение
- Колебание пластин дросселя — заменить дроссель
Изменение цвета свечения лампы – частичное выгорание люминофора вследствии длительного срока службы лампы — заменить лампу.
Материал в тему: Что такое кондесатор
Как проверить дроссель люминесцентного светильника?
Дроссель представляет собой катушку индуктивности, намотанную на ферромагнитном сердечнике с большой величиной магнитной проницаемости. Он является составной частью электромагнитной пускораспределительной аппаратуры (ЭмПРА). На этапе включения ЛДС он вместе со стартером обеспечивает разогрев катодов и затем создает высоковольтный импульс (до 1000 В) для создания тлеющего разряда в колбе за счет, свойственной ему электродвижущей силы (ЭДС) самоиндукции.
После выключения из работы стартера дроссель использует свое индуктивное сопротивление для поддержки тока разряда через ЛДС на уровне, необходимым для постоянной и стабильной ионизации газово-ртутной смеси, используемой в колбе. Величина индуктивности такова, что сопротивление дросселя для переменного тока защищает спирали электродов от перегрева и перегорания.
Проверить исправность дросселя люминесцентной лампы можно путём измерения сопротивления с помощью омметра. Он входит в состав комбинированного прибора электрика.
Если проверить дроссель лампы дневного света мультиметром, можно обнаружить либо его исправное состояние, при котором измеренное активное сопротивление соответствует его паспортным данным, либо столкнуться с несоответствиями. Проанализировав их, можно сделать вывод о характере обнаруженного дефекта. Замыкания сопровождаются неприятным запахом и изменением цвета защитной изоляции. При любом внешнем проявлении или обнаруженном отклонении величины измеренного сопротивления от номинального его значения дроссель необходимо заменить.
Проверка дросселя люминесцентного светильника.
Как проверить стартер
Это устройство входит в состав электромагнитной пускорегулирующей аппаратуры и при совместной работе с дросселем обеспечивает запуск процесса образования тлеющего разряда в колбе ЛДС при подаче переменного напряжения сети на контакты светильника. Конструктивно стартер выполнен в виде небольшой лампочки, внутренняя полость которой заполнена инертным газом.
Внутри колбы находятся два биметаллических контакта, один из которых имеет сложный профиль. В исходном состоянии контакты разомкнуты. При подаче на выводы стартера напряжения в газовой среде возникает дуговой разряд, который нагревает контакты. Они изменяют свою форму и происходит их короткое замыкание, в цепи начинает протекать электрический ток.
Схема из лампы и дросселя.
Контакт имеет меньшее переходное сопротивление, чем существующая до этого «дуга» и температура в нем начинает уменьшаться. Это остывание приводит к повторному изменению формы контактов, в результате которого происходит их размыкание. Дроссель балласта в этот момент вырабатывает высоковольтный импульс, который приводит к появлению тлеющего разряда в ЛДС и протеканию в ней тока, ионизирующего газово-ртутную смесь. Стартер выполнил свое предназначение – произвел запуск. Если цикл прошел по описанному сценарию, то стартер прошел тестирование в составе ЭмПРА. Другим способом проверки его работоспособности может быть только его замена исправным и имеющим те же параметры, что и исследуемый.
Заключение
В данной статье были рассмотрены основные вопросы проверки стартеров и дросселей люминесцентных ламп. Подробнее можно узнать, прочитав статью Проверка дросселей.
В нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессиональных электронщиков. Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vk.com/electroinfonet. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:
www.1000eletric.com
www.electricalschool.info
www.electric-blogger.ru
ПредыдущаяПрактикаКак проверить конденсатор при помощи мультиметра
СледующаяПрактикаКак проверить резистор мультиметром
Как проверить дроссель тестером — Строительство домов и бань
Дроссель — свойства, обозначение, виды, использование
Чтобы понять, как работает схема, необходимо знать не только состав элементов, но и точно представлять, что делает конкретный элемент или их группа. В этой статье будем разбираться с тем, что такое дроссель, как он устроен и работает в различных устройствах и схемах.
Что такое дроссель, внешний вид и устройство
Дроссель — это один из видов катушки индуктивности, представляет собой специальную медную проволоку, намотанную на сердечник. Но не всё так просто, бывают они и без сердечника, называются бескаркасные или воздушные. Внешне некоторые похожи на трансформатор. Отличие в том, что дроссель имеет только одну обмотку, а у трансформатора их две или больше. Если вывода только два, то перед вами точно не трансформатор.
Дроссели без сердечника представляют собой намотанную спиралью проволоку. Как выглядит дроссель в электротехнике разобрались, теперь поговорим о его конструкции.
Что такое дроссель: это намотанная в виде спирали медная проводка с сердечником или без
Как уже говорили, сердечник у дросселя может быть, а может и не быть. Сердечник может быть из токопроводящего материала — металла, а может из магнитного. Наличие или отсутствие сердечника, а также его тип (не только материал, но и форма) влияют на параметры катушки индуктивности.
Элементы без сердечников применяются для отсечения высоких частот, с сердечником чаще применяют для накопления энергии. Есть и ещё один момент: если сравнить дроссели с одинаковыми параметрами с сердечником и без, то те которые его имеют, размером намного меньше. Чем лучше проводимость сердечника, тем меньше идёт проволоки и меньшие размеры имеет элемент.
Схематическое изображение дросселя с магнитным сердечником и без
Несколько слов о проволоке, которую используют для намотки дросселя. Это специальный изолированный провод. Изоляция — тонкий слой диэлектрического лака, он незаметен, но изолирует хорошо. Так что, при самостоятельной намотке катушки, не используйте обычную проволоку, только специальную, покрытую изоляцией.
Дроссель на схеме обозначается графическим изображением полуволны. Если он с магнитным сердечником, добавляется черта. Если требуется какой-то специальный металл это также указывается рядом со схематическим изображением. Также может быть указан диаметр провода (L1).
Свойства, назначение и функции
Теперь разберём, что такое дроссель с точки зрения электрики. Если говорить коротко — это элемент, который сглаживает ток в цепи, что отлично видно на графике. Если подать на него переменный ток, увидим, что напряжение на катушке возрастает постепенно, с некоторой задержкой. После того, как напряжение убрали, в цепи еще какое-то время протекает ток. Это происходит так как поле катушки продолжает «толкать» электроны благодаря запасённой энергии. То есть, на дросселе ток не может появляться и исчезать мгновенно.
Ток на дросселе возрастает плавно и так же плавно снижается. Глядя на эти графики становится понятно, что дроссель — это элемент, сглаживающий ток
Это свойство и используют, когда надо ограничить ток, но есть ограничения по нагреву (желательно его избежать). То есть дроссель используют как индуктивное сопротивление, задерживающее или сглаживающее скачки тока. Как и резистор, катушка индуктивности имеет определённое сопротивление, что вызывает падение напряжение и ограничивает ток. Вот только греется намного меньше. Потому его часто используют как индуктивную нагрузку.
У дросселя есть два свойства, которые тоже используют в схемах.
- так как это подвид катушки индуктивности, то он может запасать заряд;
- отсекает ток определённой частоты (задерживаемая частота зависит от параметров катушки).
В некоторых устройствах (в люминесцентных лампах) дроссель ставят именно для накопления заряда. Во всякого рода фильтрах его используют для подавления нежелательных частот.
Виды и примеры использования
Чтобы более точно усвоить, что такое дроссель, поговорим о конкретном применении этого элемента в схемах. Его можно увидеть практически в любой схеме. Их ставят, если надо развязать (сделать независимыми друг от друга) участки, работающие на разной частоте. Они сглаживают резкие скачки тока (увеличение и падение), используются для подавления шумов. В некоторых схемах работают как стартовые, способствуя увеличению напряжения в момент старта. В зависимости от назначения, делятся на следующие виды:
- Сглаживающие. В силу индуктивности, препятствуют резкому повышению или понижению тока.
- Фильтрующие. Специально подобранные параметры отсекают (подавляют) выбросы на определённых частотах (или в целом диапазоне). Ставят их и на входе статических конденсаторов.
- Сетевые. Ставят в приборах, питающихся от однофазной сети. Служат для предохранения аппаратуры от перенапряжения.
- Моторные. Ставят на входе электроприводов, чтобы сгладить пусковые токи.
Практически в любой схеме есть этот элемент
Как видите, дроссели в электрике имеют широкое применение. Есть они в любой бытовой аппаратуре, даже в лампах. Не тех, которые работают с лампами накаливания, а тех, которые называют лампами дневного света, а так же в экономках и в светодиодных. Просто там они очень небольшого размера. Если разобрать плеер, проигрыватель, блок питания, — везде можно найти катушку индуктивности.
Дроссель в лампах дневного света
Для работы лампы дневного света необходим пуско-регулирующий аппарат. В более «старом» варианте он состоит из дросселя и стартера. Зачем дроссель в люминесцентной лампе? Он выполняет сразу две задачи:
- При пуске накапливает заряд, необходимый для розжига лампы (пусковой).
- Во время работы сглаживает возможные перепады тока, обеспечивая стабильное свечение лампы.
Как подключается дроссель в светильнике дневного света
В схеме люминесцентной лампы с электромагнитным ПРА, дроссель включается последовательно с лампой, стартер — параллельно. При неисправности одного из элементов или сгорании лампы, она просто не зажигается. Принцип работы этого узла такой. При включении напряжения в 220 В недостаточно для старта лампы. Пока она холодная, имеет очень большое сопротивление и ток течёт через постепенно разогревающиеся катоды лампы, затем через стартер.
В стартере есть биметаллический контакт, который при прохождении тока нагревается, начинает изгибаться. В какой-то момент он касается второго неподвижного контакта, замыкая цепь. Тут в работу вступает дроссель, пока грелся контакт стартера, он накапливал энергию. В момент когда происходит разряд стартера, он выдаёт накопленную энергию, увеличивая напряжение. В момент старта оно может достигать 1000 В. Этот разряд провоцирует разгон электродов, вырывая их из катодов лампы. Высвобождённые электроды начинают движение, ударяются о люминесцентное покрытие лампы, она начинает светиться. Дальше ток протекает не через стартер, а через лампу, так как её сопротивление стало ниже. В этом режиме дроссель работает на сглаживание скачков тока. Как видим, катушка индуктивности работает и как стартовая, и как стабилизирующая.
Зачем нужен дроссель в блоке питания
Как уже говорили, дроссель сглаживает пульсации тока. Если он при этом обладает значительным сопротивлением, параметры можно подобрать так, чтобы подавить определённые частоты.
Дроссель для сглаживания пульсаций
Второе назначение дросселя в блоке питания — сглаживание тока. Для этого используют низкочастотные дросселя с сердечниками из магнитной стали. Пластины друг от друга изолированы слоем диэлектрика (могут быть залиты лаком). Это необходимо чтобы избавится от самоиндукции и токов Фуко. Катушки такого типа имеют индуктивность порядка 1 Гн, так что сглаживают любые колебания тока, гасят его выбросы.
Как проверить дроссель мультиметром
Что такое дроссель и для чего его применяют разобрались, теперь ещё стоит научиться определять его работоспособность. Если мультиметр может измерять индуктивность, всё несложно. Просто проводим измерение. Если параметры дросселя нам неизвестны, выставляем самый большой предел измерений. Обычно это несколько сотен Генри. На шакале обозначаются русскими Гн или латинской буквой H.
Установив переключатель мультиметра в нужное положение, щупами касаемся выводов катушки. На экране высвечивается какое-то число. Если цифры малы, переводим переключатель в одно из следующих положений, ориентируясь по предыдущим показателям.
Функция измерения индуктивности есть далеко не во всех мультиметрах
Например, если высветилось 10 мГн, выставляем предел измерения ближайший больший. После этого повторно проводим измерения. В этом случае на экране высветится индуктивность измеряемого дросселя. Имея паспортные данные, можно сравнить реальные показатели с заявленными. Они не должны сильно отличаться. Если разница велика, надо дроссель менять.
Если мультиметр простой, функции измерения индуктивности в нём нет, но есть режим измерения сопротивлений, также можно проверить его работоспособность. Но в данном случае мы будем измерять не индуктивность, а сопротивление. Измерив сопротивление обмотки мы просто сможем понять, работает дроссель или он в обрыве.
Так можно проверить исправность дросселя для ламп дневного света
Для прозвонки дросселя тестером переводим переключатель мультиметра в положение измерения сопротивлений. Выставляем предел измерений, лучше выставить нижний,чтобы видеть сопротивление обмотки. Далее щупами прикасаемся к концам обмотки. Должно высветиться какое-то сопротивление. Оно не должно быть бесконечно большим (обрыв) и не должно быть нулевым (короткое). В обоих случаях дроссель нерабочий, все остальные значения — признак работоспособности.
Чтобы убедиться в отсутствии короткого замыкания на витках дросселя, можно перевести мультиметр в режим прозвонки и прикоснуться щупами к выводам. Если звенит — короткое есть, где-то есть пробой, а это значит, что нужен другой дроссель.
Как проверить дроссель с помощью мультиметра
Одним из компонентов схем различных электронных и электротехнических приборов является дроссель. Дросселем называют катушку индуктивности, которая при работе в электрических схемах ограничивает проводимость для переменного тока и беспрепятственно пропускает ток постоянный. Это свойство дросселя используется для сглаживания переменной составляющей токов. Проверка дросселя осуществляется мультиметром или специальным тестером.
Назначение и устройство
В некоторых приборах дроссели устанавливаются для того, что бы пропускать импульсные токи определенного диапазона частот. Диапазон этот зависит от конструктивного решения дросселя, то есть от применяемого в катушке провода, его сечения, количества витков, наличия сердечника и материала, из которого он изготовлен.
Конструктивно дроссель представляет собой намотанный на сердечник изолированный провод. Сердечник может быть металлическим, набранным из изолированных пластин или ферритовым. Иногда дроссель может выполняться без сердечника. В этом случае используется керамический или пластмассовый каркас для провода.
Дроссельная заслонка присутствует в карбюраторе. Она регулирует подачу горючей смеси, представляя собой потенциометр. Чтобы проверить датчик дроссельной заслонки в автомобиле, определяют соответствие входного напряжения устройства положению заслонки.
В мультиметре выставляют режим прозвонки. Контакты разъема датчика соединяют со щупами мультиметра и создают видимость движения заслонки (пальцами). При этом проверяют, как реагирует датчик в крайних положениях заслонки. Должен идти чистый сигнал без хрипов.
В светильниках
В светильниках, предусмотренных для использования ламп дневного света, помимо самих ламп, применяются такие компоненты, как стартер и дроссель.
Стартер, как следует из названия, запускает процесс свечения в лампе, и далее в процессе не участвует. Дроссель выполняет функции стабилизатора тока и напряжения в течение всего периода свечения лампы.
Если дроссель неисправен, лампа не горит, или горит не устойчиво, свечение ее неоднородно по всей длине, внутри могут появляться области с более ярким свечением, движущиеся от одного электрода лампы к другому. Иногда можно заметить эффект мерцания света.
Лампа при неисправном дросселе может не загореться с первого раза, и стартер будет многократно включаться, пока, наконец, процесс свечения не запустится. В результате, в местах установки спиралей, на колбе лампы появятся потемнения. Это связано с тем, что спирали работают более продолжительное время, чем установлено для нормального запуска.
Проверка в лампах
Проверку дросселя необходимо произвести, если наблюдается одно из вышеописанных явлений при работе лампы дневного света, а также, если замечено появление характерного запаха подгорающей изоляции, появление звуков, нехарактерных для работы прибора, а также в том случае, если лампа не включается.
До того, как проверить дроссель лампы, проверяются сама лампа и стартер.
Неисправность дросселя может заключаться в обрыве или перегорании провода катушки или межвитковом замыкании, вызванном пробоем или подгоранием изоляции.
Обе неисправности могут произойти либо вследствие длительного времени использования прибора, либо в результате какого-либо механического воздействия. Возможно перегорание провода катушки в результате подачи на нее тока большего, чем максимальный, на который рассчитан дроссель.
В случае обрыва или перегорания провода, можно выявить неисправность обычным тестером или мультиметром. В силу того, что дроссель пропускает постоянный ток, замкнув цепь тестера через катушку, по свечению контрольной лампы или его отсутствию можно понять, есть обрыв или нет.
Если при измерении мультиметром, сопротивление бесконечно, имеет место обрыв провода катушки.
Проверка межвиткового замыкания
В случае межвиткового замыкания, проверка тестером результата не даст. В этом случае необходимо знать, как проверять дроссель при помощи мультиметра.
Межвитковое замыкание имеет место при непосредственном гальваническом контакте двух витков или при контакте витков с металлическим сердечником. Очевидно, что в этом случае сопротивление катушки уменьшается.
Возможен редкий случай, когда измерение сопротивления катушки не даст достоверной картины ее состояния. Такое может случиться при обрыве и межвитковом замыкании одновременно.
В этом случае межвитковое замыкание может оказаться параллельным обрыву, и несколько витков просто не будут участвовать в измерении. Исправный, казалось бы, дроссель будет работать некорректно.
Для проверки катушки на наличие межвиткового замыкания, аналоговый мультиметр в режиме миллиамперметра необходимо использовать в составе прибора, собранного на двух транзисторах.
Схема прибора приведена на рисунке.
Сам прибор представляет собой генератор низкой частоты. При сборке схемы используются любые транзисторы из линейки МП39-МП42 (коэффициент усиления 40-50).
Диоды можно использовать типа Д1 или Д2 с любым индексом. Резисторы применяются любого типа, рассчитанные на мощность не менее 0,12 Вт. Питание прибора осуществляется от источника постоянного тока, напряжением 7-9 В.
Последовательность действия
Порядок проверки следующий:
- включается тумблер Вк. При этом стрелка мультиметра должна отклониться до середины шкалы;
- в зависимости от индуктивности катушки, устанавливается положение движка переменного резистора R5. Левое положение соответствует меньшей, а правое – большей индуктивности. При проверке катушек с индуктивностью менее 15 мГн, необходимо дополнительно нажать кнопку Кн2;
- к клеммам Lx подключаются выводы дросселя и замыкается кнопкой контакт Кн1. При этом, если в обмотке нет витков, короткозамкнутых между собой, стрелка мультиметра должна отклониться в сторону больших значений или же незначительно отклониться в сторону меньших. Если в обмотке есть хоть одно замыкание между витками, стрелка возвращается на нуль.
Иногда причиной неисправности катушки может стать разрушившийся или поврежденный сердечник. Материал, из которого выполнен сердечник, его размер и положение относительно катушки, влияют на индуктивность.
Проверка индуктивности
Наличие в арсенале мультиметра такой полезной функции, как измерение индуктивности катушек, будет полезным для проверки соответствия дросселя характеристикам, заявленным в справочной литературе. Функция присутствует только в некоторых моделях цифровых мультиметров.
Чтобы воспользоваться этой функцией, необходимо настроить мультиметр на измерение индуктивности. Контакты щупов присоединяются к выводам катушки. При первом измерении мультиметр устанавливается в наибольший диапазон измерений, и потом диапазон уменьшается для получения измерения достаточной точности.
При проведении всех измерений важно не допускать касания руками контактов, на которых измеряются те или иные параметры, иначе проводимость человеческого тела может изменить показания прибора.
Способы проверки работоспособности лампы дневного света
Самым популярным источником искусственного света является люминесцентная лампа, которая потребляет в 5–7 раз меньше электроэнергии, чем лампа накаливания, а светит так же ярко. Более экономичные светодиоды с драйверами не смогли вытеснить лампы дневного света с рынка в силу своей высокой цены.
В течение срока использования ЛДС могут потерять работоспособность. Для устранения неполадок необходимо знать, как проверить люминесцентную лампу, в том числе – мультиметром. Об этом и пойдет речь.
Люминесцентная лампа к содержанию ↑Принцип работы
Люминесцентная лампа по принципу действия приравнивается к газоразрядным источникам света, является энергосберегающей. Из стеклянной колбы откачивается воздух и помещается инертный газ с капелькой ртути 30 мг. В противоположные стороны встроены спиральные электроды, напоминающие нить накаливания. Эти электроды припаяны с обеих сторон к двум контактным ножкам, помещенным в диэлектрические пластины. Трубка изнутри покрыта слоем люминофора. Длина, диаметр и форма колбы могут быть разными, внутреннее строение от этого не меняется.
Строение люминесцентной лампыВключение ЛЛ происходит с помощью пускорегулирующей аппаратуры – электромагнитной или электронной. Электромагнитная пускорегулирующая аппаратура (ЭмПРА) включает в себя главный элемент – дроссель.
Электромеханический дроссельЭто балластное сопротивление в виде катушки индуктивности с металлическим сердечником, последовательно соединенное с ЛДС. Дроссель поддерживает равномерность разряда и корректирует ток при необходимости. В миг включения светильника дроссель сдерживает пусковой ток, пока спиральные нити не разогреются, далее выдает пиковое напряжение от самоиндукции, зажигающее лампу.
Схема люминесцентного светильника с ЭмПРАОбратите внимание! Дроссель сдерживает ток в системе при включении, предотвращая перегрев спиральных нитей в трубке и их перегорание.
Предъявляемые к балластному сопротивлению требования:
- минимальные потери мощности;
- малые вес и размер;
- отсутствие гула;
- температура накала не выше 600 градусов по Цельсию.
Другой значимый элемент ЭмПРА – стартер тлеющего разряда.
Стартер тлеющего разрядаВо время включения светильника в стартере возникает разряд тока, накаляющий биметаллические контакты. Они замыкаются, увеличивая ток в цепи светильника, что ведет к разогреву электродов. Далее биметаллический контакт стартера остывает и размыкает цепь. В этот миг балласт (дроссель) выдает высоковольтный импульс на электроды. Между ними возникает дуговой разряд, вызывающий ультрафиолетовое излучение. От этого люминофор на поверхности колбы светится в видимом для человека спектре.
Люминесцентная лампа с электромагнитным дросселем функционирует в двух режимах: зажигания и свечения.
Электронная пускорегулирующая аппаратура (ЭПРА) используется в светильниках нового поколения, увеличивает срок службы лампы и повышает КПД. В режиме свечения уровень напряжения на электродах допускает работу ЛЛ с перегоревшими спиралями, что невозможно при ЭмПРА. В схеме ЭПРА исключается использование стартеров.
Схема подключения электронного балластаЭлектронные балласты достаточно дорогие и сложны для ремонта своими силами, поэтому имеет место широкое применение электромеханических дросселей.
Электронный балластВажно! Лампа с электронным балластом функционирует в четырех режимах: включения, предварительного разогревания, зажигания и горения.
Почему перегорают люминесцентные лампы
Часто лампы дневного света перегорают, что делает их похожими на обычные лампы накаливания. Во время включения светильника в колбе возникает электрическая дуга и происходит сильный нагрев спиральных электродов из вольфрама. Высокая температура приводит к разрушению нитей и перегоранию.
Для продления срока эксплуатации вольфрамовую нить покрывают слоем активного щелочного металла. Это стабилизирует тлеющий разряд между электродами и понижает температуру, сохраняя целостность нити на долгое время. Частое включение-выключение светильника разрушает защитное покрытие, оно осыпается. Разряд, проходя через оголенные части нити, точечно нагревает спираль, что приводит к перегоранию. Это видно на старых трубках как потемнение люминофора.
Перегоревшая лампа дневного светаПерегоревшая лампа дневного светаКолба не должна иметь повреждений, иначе лампа сгорит. Если на концах трубки обнаруживается оранжевое свечение, а лампа не загорается, – внутрь ЛДС попадает воздух. ЛЛ нужно менять.
Выявление неполадок и их устранение
Неисправность лампы дневного света выражается в:
- Полном отсутствии включения.
- Кратковременных мерцаниях лампы с дальнейшим включением.
- Продолжительном мерцании без дальнейшего включения.
- Гудении.
- Мерцании в режиме горения.
Это может неблаготворно сказаться на зрении человека, поэтому следует незамедлительно диагностировать поломку и приступить к ремонту светильника. Для этой цели понадобится мультиметр или тестер сопротивления.
Следует помнить! Чтобы понять, где неисправность, в лампе или в светильнике, нужно заменить ЛЛ на заведомо исправную. Если она загорится, это означает, что дело в лампе. Если нет – следует искать неисправность в светильнике.
Часто ЛЛ не горит из-за плохого контакта между штырьками лампы и контактами патрона. Держатели со временем изнашиваются и окисляются. Следует почистить их спиртосодержащей жидкостью, ластиком, мелкой шкуркой, а при необходимости подогнуть или заменить пластинки контактов для лучшего соприкосновения со штырьками. Следует помнить, что ЛДС не работает при температуре ниже –50 ˚С и при скачках напряжения более 7 %.
Целостность спиралей-электродов
Лампа не загорается. Проверяется при помощи мультиметра или индикатора на наличие сопротивления с мини-лампочкой. Переключатель устанавливают на измерение сопротивления – минимальный диапазон, щупами прикасаются к штырькам сначала с одной, потом с другой стороны. Неисправная спираль покажет нулевое сопротивление (нить порвалась). Целая нить покажет незначительное сопротивление – от 3 до 16 Ом. Если даже одна из спиралей покажет обрыв, лампа подлежит замене. Восстановить работоспособность с такой поломкой не получится.
Проверка целостности спиралей-электродов к содержанию ↑Неисправности в электронном балласте
В лампах нового поколения используется электронная пускорегулирующая аппаратура (ЭПРА). Чтобы понять, исправен ли балласт, заменяют его на заведомо рабочий. Если светильник включился, это означает, что поломка была в нем. Старый балласт можно починить в домашних условиях. Сначала можно попробовать заменить предохранитель на аналогичный с таким же диаметром и плавкой вставкой. Если спиральные нити слабо светятся – пробит конденсатор между ними. Его нужно заменить на аналогичный, но с рабочим напряжением 2 кВ. В дешевых балластах ставят конденсаторы на 250–400 В, которые часто сгорают.
Устройство электронного балластаТранзисторы могут перегореть из-за скачков напряжения. При работе сварочного агрегата или любой мощной техники ЛДС желательно выключать. Транзисторы можно взять из списанных балластов или подобрать по таблице. После замены любого элемента нужно проверить исправность светильника, вставив в него лампу мощностью 40 Вт.
Помните! Электронный балласт нельзя включать без нагрузки, он может быстро сломаться. Стоит уделить внимание контактам. При подключении ЭПРА нужно строго соблюдать полярность.
Как проверить дроссель люминесцентного светильника
Признаки неисправности дросселя:
- гудение светильника из-за дребезжания пластин;
- лампа зажигается нормально, потом темнеет по краям и гаснет;
- перегрев ЛДС;
- после включения внутри колбы бегают змейки;
- сильное мерцание.
Для проверки дросселя на исправность из светильника вынимают стартер и замыкают накоротко контакты в его патроне. Вынимают лампу и закорачивают контакты в патронах с обеих сторон. Мультиметр устанавливается в режим измерения сопротивления, щупы присоединяются к контактам в патроне лампы. Обрыв обмотки покажет бесконечное сопротивление, а межвитковое замыкание – значение (стрелка) около нуля.
Сгоревший дроссель выдаст себя паленым запахом и пятнами коричневого цвета. Неисправный элемент не подлежит ремонту и требует замены. Новый дроссель подбирают в соответствии с мощностью лампы.
Как проверить стартер
Если при включении ЛДС мерцает, но не загорается, – неисправен стартер. Отдельно от светильника прозвонить стартер мультиметром не удастся, так как без напряжения его контакты разомкнуты. Схема проверки данного элемента включает в себя лампочку 60 Вт и стартер, подключенные последовательно к сети 220 В.
Схема проверки стартера к содержанию ↑Как проверить емкость конденсатора тестером
Неисправный конденсатор, находящийся между проводами сети питания, снижает КПД светильника до 40%. В рабочем состоянии КПД составляет 90%, что более экономично. Для ЛЛ до 40 Вт подойдет конденсатор емкостью 4,5 мкФ. Слишком низкая емкость снижает КПД, высокая – вызовет мерцание. Исправность конденсатора проверяют мультиметром с соответствующей функцией.
Включение люминесцентной лампы без дросселя
Перегоревшим лампам можно дать вторую жизнь, если подключить их в схему без дросселя и стартера, применив постоянное напряжение. Для такой цели применяется двухполупериодный выпрямитель с удвоением напряжения. Когда яркость уменьшится со временем, нужно перевернуть лампу в светильнике, чтобы поменять полюса подключения. Следует подбирать радиоэлементы для схемы с напряжением до 900 В, такое значение достигается при пуске.
Схема подключения сгоревшей лампы к содержанию ↑Утилизация прибора
Люминесцентные лампы содержат пары ртути, вредные для живых организмов и окружающей среды. Утилизация осуществляется лицензированными организациями, с которыми юридические лица заключают договоры. Выбрасывать ЛДС с обычным мусором запрещено.
Ремонт люминесцентных ламп несложен, если следовать схемам и инструкциям, и позволяет продлить срок службы осветительного оборудования.
Тестирование дросселя – как проверить дроссель мультиметром
В широком понимании слова, дроссель является специальным ограничительным элементом.
Перед тем, как проверить дроссель мультиметром, нужно помнить, что тестирование выполняется несколькими способами, включая применение контрольного или заведомо исправного осветительного элемента, а также специального прибора.
Конструктивные особенности
Мягкость свечения светового потока обуславливается специально подобранным газовым составом, поэтому осветительный прибор может генерировать источник света:
- в желтоватых тонах;
- в холодных белых тонах;
- в теплых белых тонах.
Полностью безопасная эксплуатация люминесцентной лампы обеспечивается наличием в конструкции осветительного прибора специального элемента, называемого дросселем. По своим внешним характеристикам такое устройство имеет схожесть с катушкой индуктивности, дополненной сердечником на основе ферримагнитных сплавов.
Cиловые дроссели EPCOS AG
В процессе работы источника света, наличие дросселя эффективно стабилизирует генерируемое осветительным прибором свечение, что исключает негативное воздействие мерцания. Таким образом, неисправность дроссельного элемента становится основной причиной пульсации светового потока.
Особенности дросселя
Вне зависимости от конструкции, назначение дросселя люминесцентных источников света представлено:
- защитой от перепадов в показателях напряжения;
- разогревом катода;
- созданием напряжения достаточного уровня для запуска светильника;
- ограничением силовых показателей электрического тока непосредственно после запуска;
- стабилизацией процессов работы осветительного прибора.
Экономически обоснованным является подключение одного дроссельного устройства сразу на пару осветительных приборов. Стандартное электромагнитное пускорегулирующее устройство, помимо дросселя, представлено стартером и парой конденсаторов.
Характеристики ЭмПРА
Дроссели электромагнитного типа характеризуются доступной стоимостью, простой конструкцией и высокими показателями надежности, а основные недостатки таких устройств представлены:
- пульсирующим световым потоком, вызывающим усталость органов зрения;
- порядка 10-15% потери электрической энергии;
- шумностью работы в пусковой момент;
- недостаточно устойчивым запуском в низкотемпературных условиях;
- большими размерами и ощутимым весом;
- продолжительным запуском источника света.
Как правило, комплект бывает представлен лампами и дросселями, а самостоятельная замена баланса предполагает приобретение элемента с аналогичными параметрами.
Характеристики электронного балласта
Электронные балласты относятся к категории современных устройств, в которых практически полностью нивелированы недостатки электромагнитного дросселя. Схематично, такой элемент является единым блоком, производящим запуск осветительного прибора и поддерживающим процесс горения посредством образования определенной последовательности в изменении уровня напряжения.
Преимущества электронного балласта представлены:
- любой скоростью запуска;
- отсутствием необходимости устанавливать стартер;
- исключено проявление мерцания;
- максимальными показателями световой отдачи;
- компактными размерами и небольшим весом устройства;
- оптимальными условиями функционирования.
Так выглядит электронный балласт
Электронные балласты стоят на порядок выше электромагнитных устройств, что обуславливается сложностью схемы с наличием фильтров, корректирующих коэффициент мощности моментов, инвертора и балласта. Некоторые модели электронного устройства дополняются системой защиты от включения осветительного прибора без лампы.
Удобство эксплуатации электронных балластов в лампах дневного света энергосберегающего типа, обусловлено установкой источников света непосредственно в цокольную часть стандартных патронов.
Самые часты неисправности
Как правило, источники неисправности, которые связаны с эксплуатацией люминесцентных ламп, представлены сбоями в работе электрической схемы ПРА и стартера. Посредством оценивания характерных визуальных эффектов, можно достоверно определить причины неисправности:
- наличие «огненной змейки», вьющейся внутри колбы, является результатом превышения допустимых токовых значений и нестабильности электрического разряда;
- темная колба на участке расположения выходных цокольных контактов, свидетельствует о несоответствии показателей тока на пуск и работу с вольт-амперными характеристиками;
- перегорание спиралей в лампах дневного света, может стать результатом изоляционной изношенности обмотки пускорегулирующего устройства.
Достаточно часто встречаются проблемы, сопровождающиеся появлением запаха гари или сторонних звуков. В этом случае можно предположить появление межвиткового замыкания на индукционной катушке.
Как проверить дроссель лампы дневного света мультиметром
Самым износостойким элементом в конструкции светильников с лампами дневного света является дроссель, поломка которого встречается достаточно редко. Неисправность такого элемента может быть представлена обрывом или обмоточным перегоранием, нарушениями межвитковой изоляции в электропроводах.
Обе неисправности могут быть выявлены при подключении тестера в виде мультиметра к дроссельным выводам на замеры сопротивления. Об обрыве и перегорании свидетельствует наличие бесконечного сопротивления.
Стартер и дроссель для люминесцентных ламп
Как правило, перегорание сопровождается появлением неприятного запаха, исходящего от пришедшей в негодность детали.
Любые описанные выше процессы проверки являются справедливыми исключительно в случае применения электромагнитных пускорегулирующих устройств, так как электронные балласты исключают наличия в схеме стартера.
Как проверить стартер люминесцентной лампы
Процесс проверки осветительных приборов люминесцентного типа предполагает не только контроль спиральной целостности внутри колбы, но также работоспособности дроссельной и стартерной системы.
- конденсаторы, которые не должны быть вздутыми, деформированными или лопнувшими под воздействием избыточного напряжения в электрической сети;
- колба источника света, которая не должна быть почерневшей.
Конденсаторная целостность проверяется посредством мультиметра в режиме омметра с максимально возможными пределами измерения сопротивления.
Если показатели на тестере составляют меньше 2,0 МОм, то, можно предположить наличие в конденсаторе недопустимой токовой утечки. Как показывает практика, оптимальным вариантом при проведении самостоятельных ремонтных работ, станет полноценная замена всех пришедших в негодность элементов (стартера и дросселя), новыми устройствами аналогичного типа.
Видео на тему
Как проверить дроссель при помощи мультиметра
Иногда, дроссель может перестать функционировать. Проявляется это по-разному, может появиться шум, лампа начинать мигать, лампа вовсе не зажигается и другие варианты. Как проверить дроссель, если подозреваете поломку – рассмотрим в статье далее.
Механическими поломками считаются – выход из строя сердечника, повреждение каркаса или креплений, обрыв на обмотке или пробой между ними. Любая проверка должна начинаться с внешнего осмотра. Здесь нужно внимательно осмотреть данной устройство. Так можно сразу выявить причину поломки и по возможности восстановить его. Если осмотр не дал результатов и внешне прибор выглядит идеально, нужно переходить к проверке его мультиметром. Для подробного изучения этого вопроса в статье предложен способ проверки дросселя мультиметром, а также добавлено видео и интересный файл с материалом по теме.
Какое строение имеют источники светового потока
Дневное освещение является самым экономичным вариантом в плане освещения. При этом оно лучше всего подходит для глаз, благодаря чему служит отличной альтернативой всем существующим на сегодняшний день вариантам подсветки помещений.
Для создания дневного света сегодня используются различие виды люминесцентных ламп. Такие лампы могут классифицироваться по оттенку и яркости излучаемого света:
- теплый белый;
- холодный белый;
- желтоватый тон.
Дроссель
Но для повышения их безопасности во время работы принято использовать специальный прибор – дроссель. Им оснащены все лампы дневного света. Покупая светильник дневного света, обязательно поинтересуйтесь у продавца гарантией и другой сопроводительной документацией на приобретаемое изделие. Так вы точно купите качественный прибор для своих нужд. Что же представляет собой дроссель? Внешне дроссель имеет вид катушки индуктивности, у которой имеется специальный ферримагнитный сердечник. Это такая деталь, которая необходима для стабильной работы любой лампы при создании дневного света. По сути, дроссель входит в состав энергосберегающего источника света, установленного в светильнике. Частые поломки и способы их проверки мультимером указаны в таблице ниже:
При его неисправности или падении работоспособности на концах лампы появляются почернения. В задачи данной детали входит контроль напряжения, создаваемого на выходных контактах энергосберегающего источника света. Очень часто дроссель входит в состав люминесцентных ламп. Для того чтобы источник дневного света не погас, создается балласт. Он способен поддерживать в контактах осветительного прибора ток на требуемом уровне.
Такое строение и способ подключения играет важную роль в работоспособности лампы, используемой для создания дневного света в помещении. Поэтому если имеются неисправности, то в первую очередь нужно проверить дроссель. О том, как это сделать мы расскажем несколько ниже. Чтобы понять, почему лампы дневного света перестали работать, необходимо быть знакомым с их конструкцией, а также принципом работы. Это нужно для того, чтобы по косвенным признакам проверить их работоспособность и определиться с вариантами починки. На данный момент в продаже существует несколько типов люминесцентных ламп. Но все они имеют одинаковое строение.
Строение люминесцентной лампы
Такие источники дневного света в своей конструкции обязательно содержат стеклянную колбу различной формы. В ней находятся спиральные электроды и инертный газ (пары ртути).Сверху колба покрыта специальным слоем из люминофоров.
Принцип работы лампы таков:
- при поступлении электрического тока на электроды (спирали) они нагреваются;
- в результате нагревания спиралей происходит зажигание газа;
- под действием него начинает светиться люминофор.
Из-за того, что электроды имеют ограниченные размеры, имеющегося в сети напряжения недостаточно для розжига электродов. Вот для этого и используют дроссель. А чтобы предотвратить чрезмерный перегрев спирали в лампы устанавливают стартер. Он после зажигания газа запускает процессы, приводящие к отключению накала электродов.
Проверка приборов низкой частоты
По конструкции и технологии изготовления силовые трансформаторы, трансформаторы и электрические дроссели НЧ имеют много общего. Те и другие состоят из обмоток, выполненных изолированным проводом, и сердечника. Неисправности трансформаторов и дросселей НЧ делятся на механические и электрические.
К механическим неисправностям относятся: поломка экрана, сердечника, выводов, каркаса и крепежной арматуры, к электрическим – обрывы обмоток; замыкания между витками обмоток; короткое замыкание обмотки на корпус, сердечник, экран или арматуру; пробой между обмотками, на корпус или между витками одной обмотки; уменьшение сопротивления изоляции; местные перегревы.
Проверку исправности трансформаторов и дросселей НЧ начинают с внешнего осмотра. В ходе его выявляют и устраняют все видимые механические дефекты. Проверка на короткое замыкание между обмотками, между обмотками и корпусом производится омметром. Прибор включают между выводами разных обмоток, а также между одним из выводов и корпусом. Так же проверяется и сопротивление изоляции, которое должно быть не менее 100 МОм для герметизированных трансформаторов и не менее десятков МОм для негерметизированных.
Самая сложная проверка на межвитковые замыкания. Известно несколько способов проверки трансформаторов.
- Измерение омического сопротивления обмотки и сравнение результатов с паспортными данными. (Способ простой, но не точный, особенно при малой величине омического сопротивления обмоток и малом числе короткозамкнутых витков.)
- Проверка катушки с помощью специального прибора — анализатора короткозамкнутых витков.
- Проверка коэффициентов трансформации на холостом ходу. Коэффициент трансформации определяется как отношение напряжений, показываемых двумя вольтметрами. При наличии межвитковых замыканий коэффициент трансформации будет меньше нормы.
- Измерение индуктивности обмотки.
- Измерение потребляемой мощности на холостом ходу. У силовых трансформаторов одним из признаков короткозамкнутых витков является чрезмерный нагрев обмотки.
Стартер
При подаче напряжения в стартере возникает тлеющий разряд. Нагреваясь биметаллические пластины, из которых сделаны электроды стартера, замыкаются, в результате чего ток в цепи значительно увеличивается. Увеличившийся ток разогревает электроды люминесцентной лампы, и они начинают испускать электроны. Одновременно с этим электроды стартера остывают, биметаллическая пластина изгибается и цепь разрывается. Таким образом, стартер нужен только в момент запуска, в дальнейшей работе он не участвует и его электроды остаются разомкнутыми.
При этом на дросселе, благодаря самоиндукции, возникает кратковременный высоковольтный импульс, который приводит к газовому разряду и зажиганию лампы. Когда лампа горит, напряжение на её электродах ниже напряжения сети на величину эдс самоиндукции, возникающей в дросселе при зажигании лампы. Таким образом дроссель препятствует возрастанию тока в рабочем режиме лампы. Недостатками данной схемы являются продолжительное время включения светильника, по мере износа дроссель начинает издавать гул, низкая эффективность при отрицательных температурах.
Неисправности светильников с ЭМПРА
Лампа не зажигается
- Неисправность электросети — проверить наличие напряжения на контактах патрона.
- Плохой контакт между лампой и контактами патрона или между стартером и контактами держателя — пошевелить лампу и стартер. Возможно надо подогнуть контакты патрона для лучшего прилегания.
- Неисправность лампы — проверить целостность нитей накала или заменить на заведомо исправную. Для проверки нитей накала выставляем мультиметр на минимальное сопротивление или на прозвонку и поочередно прозваниваем выводы цоколя с одной стороны и с другой. При исправной лампе должно быть небольшое сопротивление. В случае обрыва мультиметр покажет бесконечное сопротивление.
- Неисправность стартера — не замыкает цепь накала электродов лампы. Заменить стартер.
- Неисправность дросселя — обрыв в обмотке дросселя или межвитковое замыкание. Обрыв дросселя можно определить с помощью мультиметра.
Лампа не зажигается. Свечение по краям лампы
- Неисправность стартера. Если вынуть стартер из держателя, свечение прекратится. Заменить стартер.
Лампа мигает, но не зажигается
- Неисправен стартер — заменить стартер.
- Низкое напряжение сети — проверить мультиметром напряжение.
- Потеря эмиссии электродов лампы — заменить лампу.
На концах включенной лампы появляется и пропадает оранжевое свечение, лампа не зажигается
- В лампу попал воздух — заменить лампу.
Лампа зажигается, но через некоторое время наблюдается потемнение на концах лампы
- Замыкание на корпус светильника — проверить изоляцию.
- Неисправен дроссель — несоответствие пускового и рабочего токов вольт-амперной характеристики. Амперметром проверить значение пускового и рабочего токов.
Лампа периодически зажигается и гаснет
- Неисправна лампа — заменить лампу
- Неисправен стартер — заменить стартер
Лампа зажигается, но на некоторых участках наблюдается свечение в виде оранжевой змейки
- Неисправен дроссель — проверить значение пускового и рабочего токов.
- Неисправна лампа — заменить лампу.
При включении лампы перегорают, потемнение на концах лампы
- Пробой изоляции дросселя — заменить дроссель
При работе светильника слышно гудение
- Колебание пластин дросселя — заменить дроссель
Изменение цвета свечения лампы – частичное выгорание люминофора вследствии длительного срока службы лампы — заменить лампу.
Как проверить дроссель люминесцентного светильника?
Дроссель представляет собой катушку индуктивности, намотанную на ферромагнитном сердечнике с большой величиной магнитной проницаемости. Он является составной частью электромагнитной пускораспределительной аппаратуры (ЭмПРА). На этапе включения ЛДС он вместе со стартером обеспечивает разогрев катодов и затем создает высоковольтный импульс (до 1000 В) для создания тлеющего разряда в колбе за счет, свойственной ему электродвижущей силы (ЭДС) самоиндукции.
После выключения из работы стартера дроссель использует свое индуктивное сопротивление для поддержки тока разряда через ЛДС на уровне, необходимым для постоянной и стабильной ионизации газово-ртутной смеси, используемой в колбе. Величина индуктивности такова, что сопротивление дросселя для переменного тока защищает спирали электродов от перегрева и перегорания.
Если проверить дроссель лампы дневного света мультиметром, можно обнаружить либо его исправное состояние, при котором измеренное активное сопротивление соответствует его паспортным данным, либо столкнуться с несоответствиями. Проанализировав их, можно сделать вывод о характере обнаруженного дефекта. Замыкания сопровождаются неприятным запахом и изменением цвета защитной изоляции. При любом внешнем проявлении или обнаруженном отклонении величины измеренного сопротивления от номинального его значения дроссель необходимо заменить.
Как проверить стартер
Это устройство входит в состав электромагнитной пускорегулирующей аппаратуры и при совместной работе с дросселем обеспечивает запуск процесса образования тлеющего разряда в колбе ЛДС при подаче переменного напряжения сети на контакты светильника. Конструктивно стартер выполнен в виде небольшой лампочки, внутренняя полость которой заполнена инертным газом.
Внутри колбы находятся два биметаллических контакта, один из которых имеет сложный профиль. В исходном состоянии контакты разомкнуты. При подаче на выводы стартера напряжения в газовой среде возникает дуговой разряд, который нагревает контакты. Они изменяют свою форму и происходит их короткое замыкание, в цепи начинает протекать электрический ток.
Контакт имеет меньшее переходное сопротивление, чем существующая до этого «дуга» и температура в нем начинает уменьшаться. Это остывание приводит к повторному изменению формы контактов, в результате которого происходит их размыкание. Дроссель балласта в этот момент вырабатывает высоковольтный импульс, который приводит к появлению тлеющего разряда в ЛДС и протеканию в ней тока, ионизирующего газово-ртутную смесь. Стартер выполнил свое предназначение – произвел запуск. Если цикл прошел по описанному сценарию, то стартер прошел тестирование в составе ЭмПРА. Другим способом проверки его работоспособности может быть только его замена исправным и имеющим те же параметры, что и исследуемый.
Заключение
В данной статье были рассмотрены основные вопросы проверки стартеров и дросселей люминесцентных ламп. Подробнее можно узнать, прочитав статью Проверка дросселей.
Проверка исправности лампы дневного света и ее элементов — Почему перегорают?
С приходом электричества началась другая жизнь: появились электроплитки, холодильники, радиоприемники, телевизоры и другая техника, без которой трудно представить наше существование в окружающем мире. Для освещения придумано и придумываются различные средства. Одно из распространенных изобретений — люминесцентная лампа или лампа дневного света (ЛДС), имеющая различные формы и параметры. Она расходует во много раз меньше энергии по сравнению с лампой накаливания, давая столько же света. ЛДС имеет ряд преимуществ перед остальными светильниками:
- высокая степень светоотдачи;
- разнообразие оттенков света;
- большой срок эксплуатации;
- высокий КПД; рассеянный световой поток.
В силу некоторых причин ЛДС перестает светиться, не всегда имея видимых признаков неполадки. Пришла пора выяснить: как проверить лампу дневного света тестером (мультиметром).
Почему перегорают люминесцентные лампы
ЛДС имеют большой срок эксплуатации, но иногда перегорают. Случается такое чаще всего при включении светильника. Возникающая в колбе мощная дуга нагревает вольфрамовые спиральные электроды до высокой температуры, разрушающей металл и приводящей к перегоранию спиралей. Для увеличения сроков работоспособности нити на вольфрам наносят тонкий слой защитного металла. Он позволяет снизить температуру и продлить срок службы нити. При частом включении и выключении защитный слой выкрашивается, оголенные участки вольфрамовой нити перегорают, лампа перестает работать.
Другая причина перегорания дает о себе знать по появлению на изделии свечения, окрашенного в оранжевый цвет. Это значит, в колбу ЛДС проник воздух, светильник гореть не будет.
Выявление неполадок и их устранение
Все неисправности ЛДС сводятся к следующему:
- изделие не включается;
- светильник мерцает и выключается;
- мерцание длится долго, изделие не загорается;
- гудение без включения;
- ЛДС горит, но с мерцанием.
Эти проявления приводят к порче зрения, поэтому ремонтировать светильник следует немедленно. Для проверки люминесцентной лампы нужно иметь мультиметр для измерения сопротивления. Сначала меняют лампу на годную. Если она включается — дело в ней, не горит — применяем инструмент.
Распространенной причиной является ослабление контакта между электродами лампы и клеммами патрона. Их нужно почистить спиртосодержащим средством или ластиком, использовать для этого шкурку с мелким зерном или просто слегка подогнуть штырьки. Этот способ хорошо помогает при устранении неисправности в домашних условиях.
ЛДС не предназначена для работы при низких температурах окружающего воздуха и при больших скачках напряжения в сети (более 7%).
Целостность спиралей-электродов
При неполадках часто случаются причины, которые не всегда видны невооруженным глазом. В этом случае нужно прозвонить изделие мультиметром или проверить индикатором. Его переключатель нужно установить в положение, измеряющее сопротивление. Диапазон — самый малый из всех возможных. Щупами касаются штырьков и смотрят на табло. Если спираль порвана или сгоревшая — на табло светится 0, если она целая — цифры 3-16 Ом. Порванная или сгоревшая нихромовая нить не восстанавливаются, изделие требуется заменить.
Неисправности в электронном балласте
Часть светильников с ЛДС работают только с подключением электронного балласта ЭПРА (пускорегулирующая аппаратура). Ее тоже нужно проверить на исправность. Сначала желательно заменить балласт на рабочий и включить светильник. Свидетельством неисправности балласта будет свечение лампы. Неисправную аппаратуру можно привести в порядок своими руками в условиях дома.
Начинают ремонт с замены предохранителя. Если после этого нити начнут слабо светиться, это будет являться признаком пробоя конденсатора. Его заменяют на другой, рассчитанный на напряжение 2 кВ. Стандартные иногда устанавливаются на 250-400 В, при работе они сгорают.
Следующая часто выходящая из строя деталь балласта — транзистор. Он перегорает по причине скачков напряжения в сети. Эти скачки могут вызываться работой сварочных аппаратов, включенных в общую электросеть. Сгоревший транзистор меняется на подобранный из радиодеталей или снимается с подобного пускорегулирующего устройства. После выполнения всех ремонтных операций в светильник вставляется ЛДС мощностью 40 Вт и включается в сеть.
Как проверить дроссель люминесцентного светильника
ЛДС работает вместе с дросселем, который предназначен для регулировки тока и не дает возможности перегорания спиралей из-за перегрева. Это устройство представляет собой обмотку из проволоки с металлическим сердечником. Неисправность может находиться в дросселе, если:
- светильник сильно гудит;
- лампа загорается, но быстро гаснет с появлением темных пятен;
- ЛДС перегревается во время горения;
- внутри стеклянной колбы наблюдается сильное мерцание и бегающие змейки.
Неисправность чаще всего кроется в перегорании или обрыве обмотки, в потере изоляции. Для обнаружения причины нужно измерить сопротивление дросселя. Если оно бесконечное — есть обрыв обмотки. Малое сопротивление — потеря изоляции, приводящая к межвитковому замыканию.
Перед проверкой дросселя лампы дневного света мультиметром нужно вынуть стартер и закоротить контакты в патроне. На следующем этапе снять лампу и в каждом патроне замкнуть клеммы. Щупами прибора коснуться контактов. Сгоревший дроссель издает сильный характерный запах и имеет коричневые пятна на корпусе. Исправность дросселя свидетельствует о неисправности других деталей. Неисправный дроссель заменяется запасной деталью.
Как проверить емкость конденсатора тестером
При неисправности конденсатора в схеме КПД светильника снижается до 40%. Для изделий мощностью 36-40 Вт устанавливается конденсатор, имеющий емкость 4,5 мкФ. Если она ниже нормы — КПД снижается, при более высокой емкости лампа начинает мерцать. Для проведения измерений конденсатор должен прозваниваться тестером. При касании щупами выводов рабочей детали прибор показывает бесконечное сопротивление. Если оно меньше 2 Мом — это признак большой утечки тока.
Как проверить дроссель лампы дневного света мультиметром
Одним из наиболее часто встречаемых осветительных приборов, особенно в помещениях общественного назначения, является лампа дневного света. Такие осветительные изделия благодаря своему строению получили широкое применение в самых разнообразных сферах человеческой деятельности.
Но бывают ситуации, когда такие светильники выходят из строя и их нужно проверить на предмет обнаружения поломки. При этом очень большую роль в работоспособности такой осветительной продукции играет дроссель. О том, что и где следует искать, а также причем здесь мультиметр, расскажет наша статья.
Какое строение имеют источники светового потока
Дневное освещение является самым экономичным вариантом в плане освещения. При этом оно лучше всего подходит для глаз, благодаря чему служит отличной альтернативой всем существующим на сегодняшний день вариантам подсветки помещений.
Для создания дневного света сегодня используются различие виды люминесцентных ламп. Такие лампы могут классифицироваться по оттенку и яркости излучаемого света:
- теплый белый;
- холодный белый;
- желтоватый тон.
Дроссель
Но для повышения их безопасности во время работы принято использовать специальный прибор – дроссель. Им оснащены все лампы дневного света.
Обратите внимание! Покупая светильник дневного света, обязательно поинтересуйтесь у продавца гарантией и другой сопроводительной документацией на приобретаемое изделие. Так вы точно купите качественный прибор для своих нужд.
Что же представляет собой дроссель? Внешне дроссель имеет вид катушки индуктивности, у которой имеется специальный ферримагнитный сердечник. Это такая деталь, которая необходима для стабильной работы любой лампы при создании дневного света. По сути, дроссель входит в состав энергосберегающего источника света, установленного в светильнике. При его неисправности или падении работоспособности на концах лампы появляются почернения. В задачи данной детали входит контроль напряжения, создаваемого на выходных контактах энергосберегающего источника света.
Очень часто дроссель входит в состав люминесцентных ламп. Здесь, для того чтобы источник дневного света не погас, создается балласт. Он способен поддерживать в контактах осветительного прибора ток на требуемом уровне.
Обратите внимание! По существующим на сегодняшний день стандартам, такой балласт нужно подключать последовательно. Затем к нему параллельно подсоединяют стартер. Он ответственен за зажигание лампы.
Такое строение и способ подключения играет важную роль в работоспособности лампы, используемой для создания дневного света в помещении. Поэтому если имеются неисправности, то в первую очередь нужно проверить дроссель. О том, как это сделать мы расскажем несколько ниже.
Люминесцентные светильники: строение и принцип работы
Чтобы понять, почему лампы дневного света перестали работать, необходимо быть знакомым с их конструкцией, а также принципом работы. Это нужно для того, чтобы по косвенным признакам проверить их работоспособность и определиться с вариантами починки.
На данный момент в продаже существует несколько типов люминесцентных ламп. Но все они имеют одинаковое строение.
Строение люминесцентной лампы
Такие источники дневного света в своей конструкции обязательно содержат стеклянную колбу различной формы. В ней находятся спиральные электроды и инертный газ (пары ртути).
Сверху колба покрыта специальным слоем из люминофоров.
Принцип работы лампы таков:
- при поступлении электрического тока на электроды (спирали) они нагреваются;
- в результате нагревания спиралей происходит зажигание газа;
- под действием него начинает светиться люминофор.
Из-за того, что электроды имеют ограниченные размеры, имеющегося в сети напряжения недостаточно для розжига электродов. Вот для этого и используют дроссель. А чтобы предотвратить чрезмерный перегрев спирали в лампы устанавливают стартер. Он после зажигания газа запускает процессы, приводящие к отключению накала электродов.
Принцип работы люминесцентной лампы
Первым в работу вступает стартер. Его роль сводится к прогреванию биметаллических электродов. В результате этого наблюдается их короткое замыкание. Затем ток в цепи, ограниченный только внутренним сопротивлением дросселя, резко увеличивается (более чем в три раза). Электроды быстро разогреваются. В то же время у стартера его биметаллические контакты остывают и размыкают цепь запуска. Во время разрыва электрической цепи наблюдается эффект самоиндукции, который приводит к высоковольтному импульсу. Он и обеспечивает в среде инертного газа электрический разряд. Под влиянием созданного разряда формируется видимое ультрафиолетовое свечение находящихся в колбе паров ртути.
В дальнейшем при работе лампы происходит равномерное распределение электрического тока, а дроссель обеспечивает ее стабильную работу.
Какие неисправности возможны и как их устранить
В ситуации, когда уровень освещения, которое дают лампы дневного света, перестал быть стабильным, нужно искать причины дабы выяснить, подлежит ли источник света ремонту или нуждается в замене.
Обратите внимание! Поверку ламп дневного света (мультиметром) следует начинать со стартера или дросселя, так как это два наиболее важных элемента источника света.
Стоит отметить, что чаще всего из строя выходят стартеры. Поэтому проверить в первую очередь нужно именно их. У него обычно ломается конденсатор, который подключается параллельно источнику света. Делая замену конденсатора, необходимо учитывать напряжение, на которое рассчитан этот элемент. Здесь нет универсального решения и каждый случай нужно оценивать отдельно.
А вот дроссель ломается гораздо реже. Хотя такая ситуация не является исключением. Дроссель может престать функционировать из-за того, что произошел обрыв его обмотки. Это связано с тем, что при межвитковом замыкании данный элемент сильно нагревается. При этом можно почувствовать характерный запах, который источает горелая изоляция. В такой ситуации через некоторое время источник дневного света также выйдет из строя.
Почернение лампы
Также очень часто поломка люминесцентной лампы происходит из-за перегорания вольфрамовой спирали. Это вообще самая распространенная причина выхода источника света из строя.
О неисправности дросселя или постепенному, но верному перегоранию вольфрамовой спирали свидетельствует появление на концах изделия почернений разной площади. Если такие пятна появились, то лампе осталось функционировать уже чуть-чуть, и она подлежит замене в ближайшее время.
Но это все лишь домыслы, так как для определения причины поломки нужно прибегать к помощи специального прибора – мультиметра.
Как проводится проверка работоспособности ламп
Мультиметр
Проверка источника света сводится к тому, чтобы убедиться в сохранности целостности спирали с обеих сторон колбы. Для этих целей можно использовать цифровой мультиметр или тестер.*
Обратите внимание! Многие модели мультиметров оснащены функцией звуковой прозвонки. Вместо нее можно включить наименьший предел измерения сопротивлений.
Если прибор выдал значение (например, 10 ом), то лампа целая и нити не перегорели. А вот если мультиметр выдает полный обрыв, то нить перегорела.
Дополнительным визуальным способом определить неисправность дросселя, без помощи измерительного прибора, является наличие эффекта «огненной змейки». Она периодически «вьется» по колбе. Ее появление демонстрирует факт того, что ток в источнике света превышает свои допустимые значения. Поэтому электрический заряд стал нестабильным. В такой ситуации мультиметром нужно проверить вольт-амперные характеристики источника света. Если будут выявлены даже незначительные несоответствия с заданными производителями параметрам, то необходимо менять дроссель.
Обратите внимание! Проверку дросселя рекомендуется проводить при помощи контрольного светильника, который точно исправлен.
В данной ситуации проверка проводиться следующим образом:
- два провода, идущие от дросселя, нужно отсоединить;
- их соединяем с цоколем рабочей контрольной лампы;
- подключаем полученную конструкцию к электросети.
Если люминесцентный осветительный прибор загорелся в полную силу, то значит дроссель исправен и причина поломки кроется в другом.
Самостоятельно ремонтировать устройство источников света дневного типа можно только людям, имеющим необходимые знания, а также набор инструментов. Заменяя дроссель нужно обязательно отключить осветительный прибор от сети электропитания.
Обратите внимание! Помните, что просто нажав на выключатель, вы не сможете полностью обесточить светильник. Напряжение в нем все равно останется.
При ремонте внимательно следите за схемой подключения определенных элементов устройства прибора, а также обязательно используйте мультиметр для проверки конечного результата ремонтных работ.
Заключение
При неисправности дросселя, находящегося в составе лампы дневного света, можно и нужно использовать такой измерительный прибор, как мультиметр. С его помощью вы сможете быстро и эффективно не только обнаружить причину поломки, но и своими руками провести необходимые ремонтные действия.
Как проверить дроссель мультиметром
Самым популярным источником искусственного света является люминесцентная лампа, которая потребляет в 5–7 раз меньше электроэнергии, чем лампа накаливания, а светит так же ярко. Более экономичные светодиоды с драйверами не смогли вытеснить лампы дневного света с рынка в силу своей высокой цены.
В течение срока использования ЛДС могут потерять работоспособность. Для устранения неполадок необходимо знать, как проверить люминесцентную лампу, в том числе – мультиметром. Об этом и пойдет речь.
Люминесцентная лампа к содержанию ↑
Принцип работы
Люминесцентная лампа по принципу действия приравнивается к газоразрядным источникам света, является энергосберегающей. Из стеклянной колбы откачивается воздух и помещается инертный газ с капелькой ртути 30 мг. В противоположные стороны встроены спиральные электроды, напоминающие нить накаливания. Эти электроды припаяны с обеих сторон к двум контактным ножкам, помещенным в диэлектрические пластины. Трубка изнутри покрыта слоем люминофора. Длина, диаметр и форма колбы могут быть разными, внутреннее строение от этого не меняется.
Строение люминесцентной лампы
Включение ЛЛ происходит с помощью пускорегулирующей аппаратуры – электромагнитной или электронной. Электромагнитная пускорегулирующая аппаратура (ЭмПРА) включает в себя главный элемент – дроссель.
Электромеханический дроссель
Это балластное сопротивление в виде катушки индуктивности с металлическим сердечником, последовательно соединенное с ЛДС. Дроссель поддерживает равномерность разряда и корректирует ток при необходимости. В миг включения светильника дроссель сдерживает пусковой ток, пока спиральные нити не разогреются, далее выдает пиковое напряжение от самоиндукции, зажигающее лампу.
Схема люминесцентного светильника с ЭмПРА
Обратите внимание! Дроссель сдерживает ток в системе при включении, предотвращая перегрев спиральных нитей в трубке и их перегорание.
Предъявляемые к балластному сопротивлению требования:
- минимальные потери мощности;
- малые вес и размер;
- отсутствие гула;
- температура накала не выше 600 градусов по Цельсию.
Другой значимый элемент ЭмПРА – стартер тлеющего разряда.
Стартер тлеющего разряда
Во время включения светильника в стартере возникает разряд тока, накаляющий биметаллические контакты. Они замыкаются, увеличивая ток в цепи светильника, что ведет к разогреву электродов. Далее биметаллический контакт стартера остывает и размыкает цепь. В этот миг балласт (дроссель) выдает высоковольтный импульс на электроды. Между ними возникает дуговой разряд, вызывающий ультрафиолетовое излучение. От этого люминофор на поверхности колбы светится в видимом для человека спектре.
Люминесцентная лампа с электромагнитным дросселем функционирует в двух режимах: зажигания и свечения.
Электронная пускорегулирующая аппаратура (ЭПРА) используется в светильниках нового поколения, увеличивает срок службы лампы и повышает КПД. В режиме свечения уровень напряжения на электродах допускает работу ЛЛ с перегоревшими спиралями, что невозможно при ЭмПРА. В схеме ЭПРА исключается использование стартеров.
Схема подключения электронного балласта
Электронные балласты достаточно дорогие и сложны для ремонта своими силами, поэтому имеет место широкое применение электромеханических дросселей.
Электронный балласт
Важно! Лампа с электронным балластом функционирует в четырех режимах: включения, предварительного разогревания, зажигания и горения.
Почему перегорают люминесцентные лампы
Часто лампы дневного света перегорают, что делает их похожими на обычные лампы накаливания. Во время включения светильника в колбе возникает электрическая дуга и происходит сильный нагрев спиральных электродов из вольфрама. Высокая температура приводит к разрушению нитей и перегоранию.
Для продления срока эксплуатации вольфрамовую нить покрывают слоем активного щелочного металла. Это стабилизирует тлеющий разряд между электродами и понижает температуру, сохраняя целостность нити на долгое время. Частое включение-выключение светильника разрушает защитное покрытие, оно осыпается. Разряд, проходя через оголенные части нити, точечно нагревает спираль, что приводит к перегоранию. Это видно на старых трубках как потемнение люминофора.
Перегоревшая лампа дневного света
Перегоревшая лампа дневного светаКолба не должна иметь повреждений, иначе лампа сгорит. Если на концах трубки обнаруживается оранжевое свечение, а лампа не загорается, – внутрь ЛДС попадает воздух. ЛЛ нужно менять.
Выявление неполадок и их устранение
Неисправность лампы дневного света выражается в:
- Полном отсутствии включения.
- Кратковременных мерцаниях лампы с дальнейшим включением.
- Продолжительном мерцании без дальнейшего включения.
- Гудении.
- Мерцании в режиме горения.
Это может неблаготворно сказаться на зрении человека, поэтому следует незамедлительно диагностировать поломку и приступить к ремонту светильника. Для этой цели понадобится мультиметр или тестер сопротивления.
Следует помнить! Чтобы понять, где неисправность, в лампе или в светильнике, нужно заменить ЛЛ на заведомо исправную. Если она загорится, это означает, что дело в лампе. Если нет – следует искать неисправность в светильнике.
Часто ЛЛ не горит из-за плохого контакта между штырьками лампы и контактами патрона. Держатели со временем изнашиваются и окисляются. Следует почистить их спиртосодержащей жидкостью, ластиком, мелкой шкуркой, а при необходимости подогнуть или заменить пластинки контактов для лучшего соприкосновения со штырьками. Следует помнить, что ЛДС не работает при температуре ниже –50 ˚С и при скачках напряжения более 7 %.
Целостность спиралей-электродов
Лампа не загорается. Проверяется при помощи мультиметра или индикатора на наличие сопротивления с мини-лампочкой. Переключатель устанавливают на измерение сопротивления – минимальный диапазон, щупами прикасаются к штырькам сначала с одной, потом с другой стороны. Неисправная спираль покажет нулевое сопротивление (нить порвалась). Целая нить покажет незначительное сопротивление – от 3 до 16 Ом. Если даже одна из спиралей покажет обрыв, лампа подлежит замене. Восстановить работоспособность с такой поломкой не получится.
Проверка целостности спиралей-электродов к содержанию ↑
Неисправности в электронном балласте
В лампах нового поколения используется электронная пускорегулирующая аппаратура (ЭПРА). Чтобы понять, исправен ли балласт, заменяют его на заведомо рабочий. Если светильник включился, это означает, что поломка была в нем. Старый балласт можно починить в домашних условиях. Сначала можно попробовать заменить предохранитель на аналогичный с таким же диаметром и плавкой вставкой. Если спиральные нити слабо светятся – пробит конденсатор между ними. Его нужно заменить на аналогичный, но с рабочим напряжением 2 кВ. В дешевых балластах ставят конденсаторы на 250–400 В, которые часто сгорают.
Устройство электронного балласта
Транзисторы могут перегореть из-за скачков напряжения. При работе сварочного агрегата или любой мощной техники ЛДС желательно выключать. Транзисторы можно взять из списанных балластов или подобрать по таблице. После замены любого элемента нужно проверить исправность светильника, вставив в него лампу мощностью 40 Вт.
Помните! Электронный балласт нельзя включать без нагрузки, он может быстро сломаться. Стоит уделить внимание контактам. При подключении ЭПРА нужно строго соблюдать полярность.
Как проверить дроссель люминесцентного светильника
Признаки неисправности дросселя:
- гудение светильника из-за дребезжания пластин;
- лампа зажигается нормально, потом темнеет по краям и гаснет;
- перегрев ЛДС;
- после включения внутри колбы бегают змейки;
- сильное мерцание.
Проверка дросселя
Для проверки дросселя на исправность из светильника вынимают стартер и замыкают накоротко контакты в его патроне. Вынимают лампу и закорачивают контакты в патронах с обеих сторон. Мультиметр устанавливается в режим измерения сопротивления, щупы присоединяются к контактам в патроне лампы. Обрыв обмотки покажет бесконечное сопротивление, а межвитковое замыкание – значение (стрелка) около нуля.
Сгоревший дроссель выдаст себя паленым запахом и пятнами коричневого цвета. Неисправный элемент не подлежит ремонту и требует замены. Новый дроссель подбирают в соответствии с мощностью лампы.
Как проверить стартер
Если при включении ЛДС мерцает, но не загорается, – неисправен стартер. Отдельно от светильника прозвонить стартер мультиметром не удастся, так как без напряжения его контакты разомкнуты. Схема проверки данного элемента включает в себя лампочку 60 Вт и стартер, подключенные последовательно к сети 220 В.
Схема проверки стартера к содержанию ↑
Как проверить емкость конденсатора тестером
Неисправный конденсатор, находящийся между проводами сети питания, снижает КПД светильника до 40%. В рабочем состоянии КПД составляет 90%, что более экономично. Для ЛЛ до 40 Вт подойдет конденсатор емкостью 4,5 мкФ. Слишком низкая емкость снижает КПД, высокая – вызовет мерцание. Исправность конденсатора проверяют мультиметром с соответствующей функцией.
Включение люминесцентной лампы без дросселя
Перегоревшим лампам можно дать вторую жизнь, если подключить их в схему без дросселя и стартера, применив постоянное напряжение. Для такой цели применяется двухполупериодный выпрямитель с удвоением напряжения. Когда яркость уменьшится со временем, нужно перевернуть лампу в светильнике, чтобы поменять полюса подключения. Следует подбирать радиоэлементы для схемы с напряжением до 900 В, такое значение достигается при пуске.
Схема подключения сгоревшей лампы к содержанию ↑
Утилизация прибора
Люминесцентные лампы содержат пары ртути, вредные для живых организмов и окружающей среды. Утилизация осуществляется лицензированными организациями, с которыми юридические лица заключают договоры. Выбрасывать ЛДС с обычным мусором запрещено.
Ремонт люминесцентных ламп несложен, если следовать схемам и инструкциям, и позволяет продлить срок службы осветительного оборудования.
Ранее мы писали о симптомах, которые могут проявляться при поломке датчика положения дроссельной заслонки. Но такие признаки нередко вызывают и поломки других датчиков или компонентов двигателя. Поэтому перед покупкой нового ДПДЗ имеющийся датчик необходимо проверить на работоспособность.
ДПДЗ установлен на корпусе дроссельной заслонки. Этот датчик содержит резистор переменного сопротивления (или контактные точки, в зависимости от модели), который передает сигнал в электронный блок управления двигателем. Показания датчика зависят от положения дроссельной заслонки.
Когда водитель нажимает на педаль газа, заслонка вращается, увеличивая приток воздуха во впускной коллектор. При работающем моторе положение заслонки (и данные с других датчиков) сообщает компьютеру, сколько топлива нужно двигателю в определенный момент.
Поэтому, без правильного сигнала, поступающего от ДПДЗ, возникают проблемы с топливно-воздушной смесью. Отметим, что проверить датчик положения дроссельной заслонки не очень сложно. Вам понадобится информация о заводских параметрах работы датчика, после чего его проверяют с помощью цифрового мультиметра.
Купить мультиметр можно во многих магазинах, этот простейший диагностический прибор пригодится вам ещё не раз.
Самая распространенная неисправность датчика дроссельной заслонки – износ, короткое замыкание или обрыв в электрической цепи либо резисторе. С помощью этой статьи вы сможете понять, как проверить ДПДЗ мультиметром лишь за несколько минут. Это поможет понять, нуждается ли элемент в замене или проблема не в нём.
Симптомы неисправности ДПДЗ:
- бедная или богатая топливная смесь;
- проблемы с зажиганием;
- неправильные сигналы для других исполнительных механизмов;
- неровный холостой ход;
- провалы при разгоне;
- подергивание;
- остановка двигателя.
Методы диагностики ДПДЗ
Самый распространенный тест датчика – измерение сопротивления или напряжения в различных положениях дроссельной заслонки (закрытое, полуоткрытое и полностью открытое). Мы будем выполнять тестирование, используя функцию измерения напряжения.
- Откройте капот и снимите узел воздушного фильтра в том месте, где он соединяется с корпусом дроссельной заслонки.
- Осмотрите пластину дроссельной заслонки и стенки корпуса дроссельной заслонки, расположенные вокруг неё.
* Если вы видите нагар на стенках или под пластиной заслонки, выполните очистку этого узла с помощью очистителя карбюраторов (карбклинера) и чистой ветоши. Поверхность должна быть полностью чистой. Нагар и грязь могут препятствовать закрытию дроссельной заслонки и её свободному перемещению.
- Найдите ДПДЗ, установленный на боковой части корпуса дроссельной заслонки. Датчик выполнен в виде небольшого пластикового блока с трехжильным разъемом.
Подключен ли ваш ДПДЗ к «земле»?
- Аккуратно отсоедините электрический разъем от датчика положения дроссельной заслонки.
- Проверьте разъем и клемму на наличие загрязнений и повреждений.
- Установите мультиметр в подходящий режим, к примеру, 20V на шкале постоянного напряжения (DCV).
- Поверните ключ зажигания в положение ON, но не запускайте двигатель.
- Подключите красный щуп мультиметра к плюсовой клемме аккумулятора, обозначенной символом «+».
- Прикоснитесь черным щупом мультиметра к каждому из трех электрических контактов разъема проводки, который подключается к ДПДЗ.
* Один из контактов, при прикосновении к которому на экране мультиметра появляется напряжение около 12 вольт, является контактом заземления. Обратите внимание на цвет этого провода.
* Если ни один из контактов не отображает 12 вольт, это является признаком дефекта проводки, которая идёт к датчику положения дроссельной заслонки. Датчик не имеет заземления, поэтому он не может правильно работать. В такой ситуации нужно решать проблему с проводкой.
Подключен ли ДПДЗ к источнику опорного напряжения?
- Теперь подключите черный щуп мультиметра к контакту заземления на разъеме ДПДЗ, который вы только что идентифицировали.
- Поверните ключ зажигания в положение ON, но не запускайте двигатель.
- Подключите красный щуп мультиметра к каждому из двух других контактов разъема.
- На одном из контактов напряжение должно составлять около 5 вольт. Этот контакт передаёт опорное напряжение на ДПДЗ. Обратите внимание на цвет провода, подключенного к этому контакту. Третий провод является сигнальным.
* Если ни на одном из двух контактов разъема не будет 5 вольт, в проводке есть проблема, которую необходимо исправить. Проверьте электрическую цепь на наличие плохих контактов или поврежденных проводов.
- Выключите зажигание.
- Вставьте электрический разъем в ДПДЗ.
Выдает ли датчик положения дроссельной заслонки правильный сигнал?
- Для выполнения такой проверки необходимо использовать пару штырьков или скрепок.
- Подключите красный щуп тестера к сигнальному проводу датчика, а черный – к проводу заземления.
- Включите зажигание, но не запускайте двигатель.
- Убедитесь в том, что дроссельная заслонка полностью закрыта.
- Ваш мультиметр должен отображать значение в диапазоне 0,2-1,5 вольт или около этого, в зависимости от конкретного автомобиля. Если на экране вы видите ноль, убедитесь, что вы выбрали правильный режим прибора – обычно оптимальным является 10 или 20 вольт. Если на экране все ещё виднеется ноль, продолжайте проверку.
- Постепенно открывайте дроссельную заслонку, пока она не будет полностью открыта (или же ваш помощник может постепенно нажимать педаль газа до упора).
* При полностью открытой дроссельной заслонке на мультиметре должно отображаться около 5 вольт.
* Убедитесь в том, что напряжение постепенно увеличивается, когда вы медленно открываете дроссельную заслонку.
* Если вы заметили, что в определенных положениях заслонки есть скачки напряжения или оно зависает на одном уровне, ваш ДПДЗ не работает правильным образом, поэтому его необходимо заменить.
* Если датчик положения дроссельной заслонки не достигает напряжения в 5 вольт или около этого (в некоторых автомобилях – 3,5В) при полностью открытой заслонке, его надо менять.
- Выключите зажигание и снимите штырьки (скрепки).
Если на вашем автомобиле установлен регулируемый датчик положения дроссельной заслонки (они встречаются на старых моделях), и его показания не соответствуют норме, попробуйте сначала отрегулировать его. Датчик подлежит регулировке, если вы можете ослабить болты его крепления и повернуть элемент влево или вправо.
Регулировка датчика положения дроссельной заслонки
Этот способ подходит для настройки внешнего датчика. Следующие советы дадут вам общее представление о процедуре регулировки ДПДЗ.
- Ослабьте крепежные болты датчика так, чтобы вы могли вращать его, слегка постукивая по нему рукояткой отвертки.
- Оттяните датчик для проверки напряжения с помощью мультиметра.
- Поверните ключ зажигания в положение ON, но не запускайте двигатель.
- Удерживайте дроссельную заслонку в закрытом положении (или в положении, указанном в руководстве по ремонту или обслуживанию вашего автомобиля).
- Убедитесь, что напряжение соответствует указанному в руководстве. Если нет, поверните датчик влево или вправо, пока не получите заданное напряжение.
- Удерживайте ДПДЗ в этом положении и затяните крепежные винты.
Если датчик не поддаётся регулировке и не достигает требуемого напряжения, замените его.
Информация о том, как проверить датчик дроссельной заслонки, может сэкономить ваше время и поможет избежать ненужной замены компонентов. С помощью простого теста вы сможете быстрее вернуть свой автомобиль в строй. Такая проверка легко выполняется всего за несколько минут.
Всё гениальное – просто.
Копеечный пробник, а сил, времени и нервов сэкономит порядочно!
Зы: Во второй схеме следует полярность светодиода либо диода поменять.
Дубликаты не найдены
Когда вижу на видео материнку от бука и закадровый голос, сразу вспоминаю это видео.
да чувак это видео хит!рукожопа
Чувак сказал слово «Дроссель» 108 раз за 10 минут 50 секунд. В среднем он говорил слово дроссель каждые 6 секунд.
А вот если бы он говорил чаще слово дроссель, то сам принцип дросселирования был бы нарушен недодросселированностью.
Врешь. Всего 23 раза он сказал. Каждые 28 секунд в среднем
Он тебя на понт взял, что бы кто то другой посчитал=)
Дроссель обычного человека и дроссель автослесаря).
На второй фотке дроссельная заслонка
Прочитал «Как проверить дроссель не выпивая». И тут же подумал, что «ну никак же ясен хуй»
чувак открыл для себя трансформатор
Я, конечно, предпочитаю проверять наличие ШИМ-сигнала осциллографом, потому что доверять этому тестеру как-то сомнительно. Ну и ещё такой момент: а может в данное время на том или ином преобразователе (скажем, в дросселе, в данном случае) нет никакого сигнала, ну т.е. по логике работы платы он в данное время не требуется, а включается тогда, когда это нужно? Это я к чему, к тому, что нужно наверняка знать, что в данное время проверяемый дроссель должен работать, а не находится в дежурном режиме.
Кстати, иногда, чтобы понять, есть ли ШИМ сигнал, достаточно просто прислонить или подвести поближе сигнальный щуп осциллографа к дросселю (трансформатору и т.п.) и посмотреть наличие сигнала на осциллографе.
тот самый случай когда достаточно одной картинки, а не мусолить 10 минут
Можно пойти чуть дальше и подключить примерно такую штуку к мультиметру – покажет хоть какое то значение, на которое можно ориентироваться.
Или просто дроссель к мультиметру на переменку подключать.
Да как вы его сделали?)
3 пробника сделал на разных дроселях, не один не работает. (
Как проверить электронный балласт с помощью цифрового мультиметра?
В повседневной жизни мы используем электронный балласт для люминесцентной лампы в наших домах, а также на рабочем месте. Несколько раз мы сталкиваемся с проблемой, связанной с повреждением электронного балласта. Вы могли столкнуться с подобными ситуациями. Вы, должно быть, пытались узнать, как проверить электронный балласт.
Однако проверка электронного балласта не является сложной задачей. С помощью цифрового мультиметра можно быстро устранить неисправность электронного балласта — все, что вам нужно, чтобы знать некоторые основные понятия о системе тестирования и оборудовании.
В этой статье мы попытались дать четкое представление о том, как тестировать электронный балласт с помощью цифрового мультиметра.
SaleBestseller № 1 Цифровой мультиметр AstroAI TRMS 6000 считает вольт …- Универсальный цифровой мультиметр — точно измеряет постоянный и переменный ток, переменный / постоянный ток …
- Продуманный дизайн — поддержка удержания данных, большой ЖК-экран с подсветкой, автоматический режим. ..
- Подходит для многих случаев — этот мультиметр — золотой партнер, который может помочь …
Последнее обновление 18.09.2021 / Партнерские ссылки / Изображения из Amazon Product Advertising API
Прежде чем приступить к процессу устранения неполадок, давайте знать об электронном балласте и почему мы его используем.
Что такое электронный балласт?
Электронный балласт — это устройство, которое используется для ограничения тока нагрузки, например, ламповых или люминесцентных ламп. Его также называют стартером из-за его действия. Во время включения люминесцентной лампы требуется большее напряжение. Балласт ограничивает ток, увеличивая энергию лампы.
Последнее обновление 2021.09.19 / Партнерские ссылки / Изображения из Amazon Product Advertising API
В основном существует три типа балласта.Это:
- Электронный балласт,
- Магнитный балласт,
- Гибридный балласт.
Балласт необходимо подключить последовательно к цепи.
Следовательно, он работает как дополнительная нагрузка, ограничивая ток, а также увеличивая напряжение, необходимое для запуска лампы или лампы.
Что делать, если мы не используем балласт?
Может возникнуть большой вопрос, что будет при отсутствии балласта в цепи.Ответ: осветительное устройство может повредить сразу или в долгосрочной перспективе.
Балласт — это разновидность резистора, который сопротивляется току в электрической цепи. Без балласта ток в цепи может быть случайным. Это может привести к возгоранию или повреждению устройства. Кроме того, это также уменьшает время включения электрического осветительного устройства.
Как определить неисправный балласт?
Как правило, хороший балласт срабатывает сразу после включения переключателя.С другой стороны, неисправный балласт не будет работать корректно. Если вы столкнулись с подчеркнутыми знаками веса, вам следует проверить балласт.
- Лампочкам требуется больше времени для запуска,
- Шипение в момент включения,
- Свет не включается,
- Виды мигают, то загораются,
- Балласт сгорел и стал черным.
Но все это способы проверить балласт физически. Вы также можете проверить балласт с помощью цифрового мультиметра.
Проверка балласта с помощью цифрового мультиметра
Проверка балласта с помощью цифрового мультиметра — самый удобный способ проверки электрического балласта. Это займет меньше времени, и вы можете быть уверены в балласте. Однако, прежде чем знакомиться с процессом тестирования, давайте вкратце узнаем о цифровом мультиметре.
Мультиметр — незаменимый инструмент электрика. Вы можете получить качественный комплект до 100 грн. Здесь вы можете ознакомиться со списком лучших мультиметров стоимостью менее 100 долларов США .
Последнее обновление 18.09.2021 / Партнерские ссылки / Изображения из API рекламы продуктов Amazon
Что такое цифровой мультиметр?
Цифровой мультиметр оснащен монитором, который показывает результат в цифровом формате, то есть в цифровом или числовом формате. В отличие от аналогового мультиметра , он имеет механическую систему. Цифровой мультиметр удобнее в эксплуатации, чем аналоговый.
Мультиметр измеряет ток, напряжение, а также сопротивление и емкость устройства или цепи.Он также может проверить непрерывность курса . Он может выполнять несколько функций. Именно поэтому его называют мультиметром.
Давайте поговорим о том, как проверить ЭПРА с помощью цифрового мультиметра.
Для проверки балласта нам понадобятся следующие вещи
- Цифровой мультиметр,
- Электронный балласт, который нужно проверить,
- Осветительное устройство для крепления противовеса.
Процесс тестирования:
Для проверки балласта с помощью мультиметра вы можете выполнить шаги , указанные ниже, .Помните, что при работе с электрическими устройствами меры предосторожности в первую очередь опасны.
Здесь я обсудил пять шагов по тестированию электрического балласта с помощью цифрового мультиметра.
1. Выключите автоматический выключатель
При выполнении любых электромонтажных работ убедитесь, что автоматический выключатель находится в положении ВЫКЛ. Итак, сначала выключите прерыватель. Убедитесь, что коммутатор подключен к устройствам, которые вы хотите протестировать.
2. Снимите балласт
Так как балласт обычно соединяется с лампочкой или осветительными приборами. Попробуйте удалить лампочку в соответствии с ее настройками, потому что на разных машинах процесс установки отличается. Например, люминесцентная лампа круглой формы подключается к розетке вместе с балластом. С другой стороны, колба П-образной формы связана с натяжением пружины, поэтому ее нужно снимать, вращая по часовой стрелке или против часовой стрелки.
Откройте крышку и отсоедините балласт от соединения .Однако разная конструкция имеет разные секции для установки балласта.
Последнее обновление 2021.09.19 / Партнерские ссылки / Изображения из Amazon Product Advertising API
3. Настройка мультиметра в сопротивлении
Проверьте настройку мультиметра в сопротивлении. Если у вашего мультиметра другие настройки сопротивления, установите его в положение «X1k».
4. Подключите щуп мультиметра с помощью провода
Удерживая белые провода вместе, вставьте с ним один щуп мультиметра.Вставьте еще один зонд с другими проводами, обычно красными, синими и желтыми. Однако у некоторых мультиметров есть только синий и красный провод.
Если балласт в хорошем состоянии, он покажет сопротивление в мультиметре. С другой стороны, если он поврежден или в плохом состоянии, мультиметра не будет рейтинга , и нужно будет заменить балласт.
5. Повторная установка
Как только тестирование будет завершено, вы будете уверены, что делать. Если нужно поменять балласт, сделайте это и установите таким же образом.Если с балластом все в порядке, то проблема может быть в других устройствах. Так что правильно переустановите балласт.
Теперь включите питание и выключите автоматический выключатель. Это все, что тебе нужно сделать.
Заключение
Все вышеперечисленное может помочь вам исправить простые проблемы в электрическом балласте. Опять же, это также сэкономит ваше время и деньги. Если вы сможете правильно следовать процессу, вам не понадобится электрик для этой простой работы по проверке. Однако всегда помните об этой предосторожности, поэтому выключите питание, прежде чем делать все это.
Последнее обновление 18.09.2021 / Партнерские ссылки / Изображения из Amazon Product Advertising API
Automatic Choke
См. Также нашу процедуру автоматической регулировки дроссельной заслонки. ~~~В этой статье рассматриваются следующие темы —
~~~Функция автоматического дросселя
Функция автоматической воздушной заслонки заключается в регулировании топливовоздушной смеси при запуске двигателя.Он производит более высокую концентрацию топлива («более богатую» топливно-воздушную смесь), когда двигатель холодный, затем постепенно увеличивает концентрацию воздуха (постепенно возвращая топливную смесь к нормальной плотности, называемой стехиометрией) по мере прогрева двигателя. Это достигается с помощью дроссельной заслонки в горловине карбюратора в самом верху. Когда этот клапан закрыт, поток воздуха очень сильно уменьшается, а топливно-воздушная смесь становится «богатой». Когда клапан открыт (т. Е. Дроссельная заслонка стоит прямо вверх), поток воздуха увеличивается до максимума, а топливно-воздушная смесь сбалансирована — стехометрическая.Положение дроссельной заслонки (и, следовательно, соотношение топлива и воздуха) регулируется круглым баллонным устройством в верхней правой части карбюратора с прикрепленным к нему проводом. Это автоматический дроссель.
Черный провод на воздушной заслонке, а также черный провод на запорном клапане подачи топлива на холостом ходу (соленоид) на стороне карбюратора и фонарей заднего хода подключаются непосредственно к положительной стороне катушки, которая получает питание от выключатель зажигания. Эта клемма на катушке — просто удобная точка для подачи питания на эти компоненты при включенном зажигании.
Примечание: Очень важно отметить, что в проводке VW черная изоляция означает «есть питание при включенном зажигании».
Принцип действия воздушной заслонки следующий: когда двигатель холодный, воздушная заслонка хочет закрываться, чтобы быть готовой к холодному запуску (т. Е. «Богатой» топливно-воздушной смеси). Когда вы нажимаете на дроссельную заслонку, ступенчатый кулачок на левой стороне карбюратора (слева — левая сторона автомобиля) будет вращаться, позволяя дроссельной заслонке закрываться и удерживая дроссельную заслонку слегка открытой — на высоких холостых оборотах, что необходимо. чтобы двигатель оставался холодным.Когда вы включаете зажигание, мощность поступает на катушку системы зажигания; он также открывает запорный клапан подачи топлива на холостом ходу (соленоид), чтобы автомобиль работал на холостом ходу, и он также начинает открывать воздушную заслонку. Нагревательный элемент (круглая деталь с правой стороны в верхней части карбюратора) расширяется, поскольку электрический ток нагревает его. Это начинает медленно открывать воздушную заслонку и вращать ступенчатый кулачок, так что высокие обороты холостого хода постепенно возвращаются к нормальному.
Для полного открытия заслонки требуется около минуты (в зависимости от того, насколько холодна погода вначале).Когда воздушная заслонка полностью открыта, дроссельная заслонка в горловине карбюратора будет стоять прямо вверх. Каждый раз, когда вы запускаете двигатель VW, вы должны ехать прямо — не позволяйте ему сначала работать на холостом ходу, чтобы прогреть двигатель. При вождении двигатель нагревается примерно на той же скорости, на которой открывается воздушная заслонка, поэтому автомобиль будет плавно работать (с воздушной заслонкой) холодным утром, а также плавно ехать по мере прогрева двигателя. В очень жаркий день воздушная заслонка не будет сильно закрываться при выключенном двигателе, так как двигатель уже несколько теплый (в зависимости от температуры окружающей среды).
~~~Устройство / Работа
Холодным утром перед запуском двигателя снимите воздухоочиститель и посмотрите в горловину карбюратора. Прямо под трубкой подачи ускорительного насоса находится дроссельная заслонка. Осторожно потяните рычаг дроссельной заслонки назад и поверните ступенчатый кулачок назад. При этом воздушная заслонка должна закрываться через горловину карбюратора. Если он не закрывается почти вплотную, его можно отрегулировать.
Как указано, внутренности автоматической воздушной заслонки расположены с правой стороны карбюратора вверху.Механизм состоит из биметаллической спиральной пружины внутри круглой внешней крышки. Крышка удерживается на месте металлическим стопорным кольцом с тремя винтами. Биметаллическая пружина нагревается при подключении к клемме (+) катушки (черный провод). Пружина раскручивается с той же скоростью, что и двигатель (надеюсь). На конце биметаллической пружины есть крюк, который управляет дроссельной заслонкой, входящей в карбюратор, которая вращает дроссельную заслонку.
Это раскручивание биметаллической пружины, которая постепенно открывает дроссельную заслонку в горловине карбюратора, контролируя насыщенность топливно-воздушной смеси.По мере того, как биметаллическая пружина нагревается, она медленно открывает дроссельную заслонку в горловине карбюратора, постепенно уменьшая насыщенность топливной смеси. В то же время высокие обороты на холостом ходу постепенно возвращаются к норме. Когда двигатель полностью прогрет, заслонка-заслонка будет полностью открыта (т.е. стоит прямо вверх), производя надлежащую топливно-воздушную смесь для полностью прогретого двигателя.
Автоматический дроссель — это устройство с таймером. Он открывается с заданной скоростью, как только включается зажигание (питание подается по черному проводу, подключенному к (+) стороне катушки).Прогрев воздушной заслонки рассчитан на то, чтобы соответствовать скорости прогрева двигателя, при условии, что вы трогаетесь с места сразу после запуска (VW рекомендует это), а не сначала «разогреваете»; и при условии, что у вас все еще есть охлаждающие заслонки в кожухе вентилятора (они закрывают большую часть охлаждающего воздуха, когда двигатель холодный, ускоряя его прогрев).
Если у вас нет подвижных заслонок охлаждения, и вы «прогреете его» на холостом ходу в течение нескольких минут, воздушная заслонка откроется, если двигатель теплый, а когда это не так! Таким образом, он умирает на холостом ходу в течение некоторого времени, пока двигатель не прогреется до рабочей температуры.По сути, в этом состоянии двигатель работает на обедненной смеси, поэтому вы можете легко перезапустить его с помощью нескольких насосов на дроссельной заслонке (впрыскивая больше топлива). Та же история с «ловлей» его до того, как он умрет, жесткий насос на дроссельной заслонке дает ему струю топлива, которая заменяет отсутствующую богатую смесь, которую он ожидал от (теперь открытой) заслонки.
Просто для того, чтобы разобрать проводку — клемма (+) на катушке также обеспечивает питание соленоида отключения холостого хода в левой части карбюратора (предотвращает «запуск» после выключения двигателя) и фонари заднего хода.
~~~Дроссельный вакуумный механизм
Дэйв написал Робу: «Кажется, что-то не так в моем автоматическом механизме дросселирования, что не позволяет дроссельной заслонке полностью закрыться, а также не позволяет ступенчатому кулачку полностью вращаться до самой высокой точки холостого хода. Никакая регулировка не заставит бабочку полностью закрываться. Это приводит к тому, что мои сыновья-механик в Прово называл хладнокровием (это хороший технический диагноз для вас!) — дроссельная заслонка нагревается раньше, чем двигатель, с сопутствующим заиканием, фырканьем и смертью.
Вчера вечером я частично разобрал автоматическую заслонку в своем старом карбюраторе, чтобы посмотреть, смогу ли я диагностировать проблему. В пластмассовой вставке внутри механизма есть изогнутый паз, через который проходит рычаг на штоке воздушной заслонки. Первой моей мыслью было, что, возможно, эта пластиковая вставка была установлена неправильно. Но при осмотре вставки от моего старого карбюратора очевидно, что вставка идет только в одном направлении. Это обеспечивает конструкция «шпунт в пазу».
Тогда я обратил внимание на вакуумный механизм.Мне непонятно, как работает это устройство. Внутри находится диафрагма, к которой прикреплен зубчатый стержень (в мануале это называется стержень вакуумной диафрагмы), который входит в автоматический дроссель. Эта диафрагма внутри вакуумного механизма подпружинена и приводится в действие вакуумом от основания карбюратора, ниже дроссельной заслонки. Когда создается вакуум, диафрагма втягивается против пружины, втягивая прикрепленный стержень, закрывая штуцер и обогащая смесь. (Я не понимаю, что вызывает вакуум, но на данный момент этого нет ни здесь, ни там.)
Если вакуумный механизм вышел из строя (то есть, если диафрагма вышла из строя), пружина будет постоянно удерживать шток вакуумной диафрагмы в дроссельной заслонке до упора. В этом случае только биметаллическая пружина будет управлять дроссельной заслонкой — в холодном состоянии биметаллическая пружина будет толкать рычаг вниз, насколько это возможно, ограничиваясь ДРУГИМ (задним) концом выемки в вакууме. шток диафрагмы!
Итак — я думаю, что я решил проблему.Я думаю, что диафрагма в вакуумном механизме вышла из строя, и задний конец выемки в вакуумном стержне не позволяет дроссельной заслонке полностью закрыться. Этот вывод подтверждается тем фактом, что я МОГУ полностью закрыть дроссельную заслонку, но как только я сбрасываю давление, она возвращается к открытию примерно на 4-5 мм. Очевидно, где-то есть пружина, которая вызывает это, и единственная пружина, которая может быть, находится внутри вакуумного механизма.
Итог! Если мои рассуждения верны, диафрагма внутри вакуумного механизма дроссельной заслонки вышла из строя.
Дэйв купил в местном магазине автозапчастей комплект для ремонта карбюратора и заменил диафрагму в вакуумном механизме воздушной заслонки. После этого дроссельная заслонка полностью закрывается. Однако неясно, что на самом деле вызвало эту проблему. Работа внутри автоматического дросселя остается кандидатом. Будет очень приветствоваться мнение любого, кто читает это.
~~~Автоматическая регулировка воздушной заслонки
Регулировка автоматической заслонки очень важна.Для регулировки автоматической заслонки нужно ослабить (но не снимать) три винта в металлическом кольце, удерживающем его на месте. Затем дроссельную заслонку можно повернуть под кольцом. Поворот против часовой стрелки (если смотреть с правой стороны) увеличивает степень дросселирования. Подробные инструкции см. В нашей процедуре автоматической регулировки воздушной заслонки.
~~~Подключение автоматического дросселя
Автоматический дроссель получает питание от положительной (+) клеммы катушки (# 15) — см. Схему, на которой показано это расположение проводов.«N» на схеме — это катушка. Вы увидите черный провод, идущий к положительной клемме на катушке от предохранителя № 12, который получает питание от замка зажигания, поэтому дроссель получает питание всякий раз, когда зажигание включено, позволяя катушке внутри него нагреваться и расширяться. .
Примечание три черных провода (или один провод с тремя разъемами), ведущие от положительной клеммы на катушке — идут к фонарям заднего хода, автоматической воздушной заслонке и к соленоиду отключения холостого хода.Эта клемма на катушке — просто удобное место для подачи питания на эти компоненты. Тот факт, что они получают питание от клеммы на катушке, не имеет ничего общего с самой катушкой. Каждый из трех проводов можно было подвести к предохранителю №12 по отдельности, но это было бы очень неудобно. Итак, VW выбрал эту конфигурацию.
Возможно, вам придется проявить творческий подход к тому, как подключить такое количество проводов к единственной клемме катушки. Любой магазин автозапчастей может продать вам небольшой Т-образный переходник, который поместится на терминал, с тремя «крыльями» (если хотите), к которым можно прикрепить три черных провода.или вы можете обнаружить, что предыдущий владелец уже изменил проводку на одинарный провод с тремя разъемами вдоль него. Любой метод работает хорошо.
Обязательно используйте для этой цели черный провод — черный в мире VW означает «питание при включенном зажигании».На другой стороне катушки есть единственный (обычно зеленый) провод, идущий к распределителю — только этот провод подключен к этому разъему на катушке.
~~~Поиск и устранение неисправностей
Сначала убедитесь, что провод от катушки подключен к нагревательному элементу на дросселе.
Если провод подключен, убедитесь, что питание действительно поступает на клемму дросселя. Сделать это можно с помощью ВОМ (мультиметра) (подойдет контрольная лампа с 12-вольтовой лампочкой малой мощности). При включенном зажигании (двигатель не работает) подключите один провод к клемме автоматической воздушной заслонки, а другой — к массе. Вы должны прочитать на ВОМ около 12 вольт (или контрольная лампа должна ярко светить).
Чтобы проверить сам биметаллический элемент, сначала отсоедините шнур питания от катушки.Затем установите шкалу на ВОМ примерно на 10 Ом (не критично, но мало, и оно должно быть Ом) и прикоснитесь щупами к разъему элемента и металлическому корпусу карбюратора. Если вы получили какое-либо чтение, элемент не поврежден; если вы не читаете, он сломан.
Если у вас есть питание на воздушной заслонке и биметаллический элемент в порядке, выполните процедуру автоматической регулировки воздушной заслонки.
Если воздушная заслонка имеет мощность, элемент исправен и заслонка отрегулирована должным образом, то она ДОЛЖНА открывать воздушную заслонку по мере прогрева двигателя.В противном случае дроссель необходимо заменить.
Другие советы по поиску и устранению неисправностей —
- Если ваши свечи зажигания очень быстро становятся очень черными и покрытыми копотью, это может быть признаком того, что дроссельная заслонка не работает (дроссельная заслонка остается закрытой, образуя чрезмерно богатую топливно-воздушную смесь).
- «Заедание» штуцера может быть физической проблемой самой бабочки, сломанным элементом штуцера или разрывом вакуумной диафрагмы. Дроссельный элемент и вакуумная диафрагма заменяются по отдельности.Вакуумная диафрагма входит в стандартный комплект для ремонта карбюратора (см. Нашу процедуру капитального ремонта карбюратора).
- Еще одно испытание, прежде чем вы решите заменить дроссельную заслонку или весь карбюратор — откройте дроссельную заслонку (используя ступенчатый кулачок и небольшой крючок на нем, который напрямую соединен с дроссельной заслонкой) и проехать на автомобиле. Без дроссельной заслонки будет сложно запустить машину, но после прогрева она должна двигаться плавно. Если этого не произойдет, то весь карбюратор МОЖЕТ быть готов к замене, или может потребоваться просто настройка.См. Нашу процедуру настройки карбюратора.
Если после настройки он по-прежнему плохо работает, то карбюратор почти наверняка поджаривается. Новые карбюраторы можно приобрести в комплекте с Aircooled.Net, California Import Parts, Inc. и т. Д. Нам известен один известный нам производитель карбюраторов VW: [email protected] Он их восстанавливает лучше новых — с качественной фурнитурой.
В целом —
- Дроссельный элемент неисправен, его можно заменить отдельно (любым, кто умеет использовать отвертку).
- Если дроссельная заслонка не закрывается полностью, проблема может быть в разорванной вакуумной диафрагме.
- Если на дроссельную заслонку подается питание, а элемент не сломан, заслонка отрегулирована правильно и вакуумная диафрагма в порядке, проблема может быть в самом карбюраторе. Полная замена может не потребоваться — сделайте капитальный ремонт.
Замена автоматической заслонки
Доступны новые узлы пружин воздушной заслонки (с нагревательной спиралью сзади) — с воздушным охлаждением.В сети они есть (инвентарный номер FSK0013) примерно за 28 долларов США. Они также должны быть в большинстве других крупных VW. (Например, California Import Parts, Ltd., Mid-America Motorworks и т. Д.)
Если карбюратор не может быть настроен, возможна утечка воздуха. Возможно, вам стоит потратить несколько долларов (160 долларов США) на полный карбюратор 34 PICT / 3 на Aircooled.Net).
~~~Вопросы и ответы
Кто-то написал — Вскоре после покупки нашего SB 72 года мы начали испытывать проблемы с холодным запуском и заметили, что верхняя бабочка в карбюраторе не работает.Мы сняли автоматическую заслонку, а затем снова установили ее, и несколько месяцев все было в порядке. Затем цикл начался снова. Любое понимание того, почему это будет продолжаться?
Роб ответил: «Это необычная проблема — я полагаю, вы говорите, что штифт, который управляет воздушной заслонкой внутри корпуса воздушной заслонки, постоянно соскальзывает». Я не слышал об этом раньше, и у меня нет немедленных ответов для вас.
Посмотрим, смогу ли я с этим справиться —
- У дроссельной заслонки есть штифт, который проходит через дроссельный патрон, через изогнутую прорезь в круглой пластиковой «тарелке» (если не так сказать.)
- Винтовая пружина дроссельной заслонки имеет на конце крючок, который охватывает выступающий штифт и толкает штифт, перемещая «бабочку». Имеет ли винтовая пружина дроссельной заслонки полный разворот на конце крюка? Если он поврежден, он может соскользнуть со шпильки. Сам штифт почти, но не совсем, выступает за внешний обод дроссельной заслонки — может быть, на 3 мм короче обода канистры. Я не знаю, можно ли немного согнуть рычаг под пластиковой тарелкой, чтобы вытянуть штифт к краю канистры.
- Пластиковая «тарелка» должна хорошо сидеть внутри канистры. Его обод находится примерно на 4-5 мм ниже обода дроссельной заслонки (на миллиметр или два ниже, чем внешний конец штифта). Если он не сидит так глубоко, это не позволит спиральной пружине дроссельной заслонки сесть внутри канистры достаточно глубоко, чтобы обеспечить хороший контакт со штифтом. Другими словами, есть ли что-то, что мешает пластиковому «блюду» правильно сидеть внутри канистры?
Кто-то написал — я только что купил Баг 69 года… механик говорит мне, что мне нужен новый карбюратор, так как заслонка застряла; есть ли способ отремонтировать или заменить воздушную заслонку, не покупая полностью новый карбюратор? Номер двигателя — AH0395260.
Роб ответил — Поскольку это двигатель AH (двигатель 1600 года выпуска 72 или 73 года), он должен иметь карбюратор 34PICT / 3. Фактически дроссельная заслонка является частью карбюратора и не продается отдельно, но нагревательный элемент («автомат») заменяется отдельно.
Кто-то написал — недавно купил Жук 66 года.Теперь, когда мы приближаемся к зиме, а утро становится холоднее, я замечаю, что когда я зажигаю старую девочку, она буквально выкручивает голову, пока не выключится дроссель. Я предполагаю около 2000 оборотов в минуту с подавлением. Она буквально кричит …! После прогрева она работает на холостом ходу и работает нормально (с небольшой пологой точкой при ускорении). Могу ли я сделать регулировку, чтобы снизить обороты при удушье?
Дроссель установлен на нижнюю из трех отметок.
Роб ответил: «Когда двигатель набирает обороты, он не работает», рычаг быстрого холостого хода находится наверху ступенчатого кулачка или только на полпути?
Если он вверху, вам нужно будет посмотреть, можете ли вы еще немного повернуть дуло дульного сужения (ослабьте, но не удаляйте три винта вокруг прижимной манжеты).Посмотрите вниз на горловину карбюратора и установите заслонку (холодная заслонка и холодный двигатель) так, чтобы она ПРОСТО закрылась. Похоже, дроссельная заслонка установлена дальше, чем должна быть, поэтому она заставляет дроссельную заслонку двигаться дальше по ступенчатому кулачку. Каждый карбюратор немного отличается, но большинство рычагов дроссельной заслонки будет располагаться на ступенчатом кулачке на несколько ступеней ниже верха, когда дроссель включен (холодный).
Когда нагревается, он нормально работает на холостом ходу или имеет тенденцию глохнуть даже на холостом ходу обороты немного увеличились? (вы упомянули небольшое плоское пятно).
Если у него проблемы с плавной работой на холостом ходу в теплом состоянии, то у вас также может быть изношенный подшипник вала дроссельной заслонки, из-за чего карбюратор работает обедненным (что всегда хуже на холостом ходу, чем на скорости), и поэтому в холодном состоянии воздушную заслонку НЕОБХОДИМО установить более «включенной». чтобы он работал.
Вы не можете уменьшить частоту вращения заслонки, не повлияв на «теплые» холостые обороты — единственная реальная регулировка самой заслонки — это вращение ствола заслонки.
Если у вас карбюратор 34PICT3, h40 / 31 или 31PICT3 (любой из карбюраторов с двумя регулировочными винтами с левой стороны), имейте в виду, что вы НЕ можете использовать винт быстрого холостого хода на задней стороне карбюратора для регулировки нормальные обороты холостого хода — это делается с помощью большего винта регулировки объема на левой стороне карбюратора.Винт быстрого холостого хода устанавливается путем завинчивания его внутрь до тех пор, пока он не касается нижней части ступенчатого кулачка, а затем закручивается еще на 1/4 оборота внутрь. его больше не трогают. Это гарантирует, что дроссельная заслонка открывается на 4 тысячных дюйма, что обеспечивает хороший эффект Вентури рядом с отверстием холостого хода в горловине карбюратора — вы не можете вмешиваться в эту настройку. Затем, когда дроссель работает, этот винт открывает дроссель (через ступенчатый кулачок) вместе с дросселем.
~~~Автоматическая регулировка воздушной заслонки Следующая статья была написана Роном Ван Нессом (rvanness @ Neuron.uchc.edu) в ответ на вопрос
о том, как настроить автоматический дроссель.
В связи с изменением погоды в большинстве мест, эта информация должна быть полезной для некоторых людей с карбюраторами с автоматической дроссельной заслонкой, у которых есть только руководство Muir, чтобы пройти …
Передо мной нет руководства, поэтому я не могу указать точный номер страницы с официальной процедурой, но я могу рассказать вам, как проверить / отрегулировать дроссель. Сначала отсоедините провод к воздушной заслонке и снимите возвратную пружину дроссельной заслонки, которая идет от рычага дроссельной заслонки к рычагу наверху карбюратора.Ослабьте три винта вокруг пластины, которая удерживает воздушную заслонку, чтобы они больше не ввинчивались в корпус карбюратора — они по-прежнему будут свободно держаться этими белыми нейлоновыми шайбами. Когда вы ослабите все три, вы можете осторожно оттянуть пластину назад со всеми прикрепленными винтами / шайбами и положить ее в безопасное место, стараясь не уронить эти шайбы и винты. Элемент должен выглядеть для вас так же, как старая часовая пружина, и в пружине не должно быть искажений (то есть элемент должен плавно и равномерно наматываться вокруг себя — если он выглядит погнутым / искореженным или если он выпадает из своего корпуса. , вы знаете, вам понадобится новый дроссель).
Теперь отрегулируйте воздушную заслонку (делайте это при холодном двигателе). Вы заметите, когда посмотрите на элемент, который заканчивается крючком. Этот крюк захватывает рычаг, который перемещает вал / дроссельную заслонку наверху карбюратора. Ослабьте зажим, удерживающий резиновую трубку от воздухоочистителя к верхней части карбюратора, снимите резиновый наконечник с горловины карбюратора и отодвиньте его. Для наглядности поместите ручное зеркало на горловину карбюратора, чтобы вы могли видеть клапан и перемещать рычаг, которым управляет воздушная заслонка.Вы увидите, что когда вы опускаете рычаг (при условии, что вы правильно зацепили крючок элемента на рычаге), дроссельная заслонка полностью закрывается. При снятой заслонке перемещайте рычаг вперед и назад — вал должен плавно открываться и закрываться. Если этого не происходит, значит, у вас изогнутый вал или изношенное отверстие на карбюраторе, и это может быть причиной вашей проблемы — получение хорошей верхней половины от бывшего в употреблении карбюратора (это нижняя втулка дроссельной заслонки, которая имеет тенденцию изнашиваться больше, чем вверху) быстро решит проблему.
Теперь верните дроссельную заслонку на место карбюратора (пока забудьте о пластине / винтах) и установите ее так, чтобы крючок элемента вошел в зацепление с рычагом, когда вы надавите на нее. Следите за зеркалом и слегка переместите штуцер вперед и назад. Вы заметите, что клапан открывается (заслонка вращается назад — против часовой стрелки) и закрывается (заслонка вращается вперед — по часовой стрелке). Вы хотите настроить воздушную заслонку так, чтобы она едва закрывалась в холодную погоду. Для этого осторожно поверните воздушную заслонку так, чтобы клапан просто закрывался, а затем отодвиньте его на волосок, чтобы клапан приоткрылся.Вам придется немного подправить эту начальную настройку, чтобы она была правильной — я опишу это позже — но сначала это даст вам приблизительную оценку.
Вы заметите, что на диске воздушной заслонки выбита точка, которая находится между 3-4 выступами на корпусе карбюратора. Совместите эту точку с нижним гребнем (заслонка более закрыта) — хорошая настройка для холодных зимних дней, когда требуется более длительная разминка. Совместите точку с верхними выступами, чтобы открыть клапан, что лучше для теплых дней, когда вам не нужен полный дроссель.Элемент расширяется / втягивается не из-за тепла двигателя (хотя тепло двигателя влияет на него в некоторой степени), а в первую очередь из-за продолжительности нагрева электрическим током от провода катушки, поэтому даже в теплый день вам придется подождать почти до тех пор, пока воздушная заслонка не откроется на ту же величину. Вот почему вам нужно вручную регулировать его положение при изменении климата.
Если вы обнаружите, что при повороте дроссельной заслонки так, что она просто закрывает клапан, точка совсем не совпадает с выступами на корпусе карбюратора (т.е.е. это намного ниже их) у вас есть искаженный элемент, и вам придется заменить дроссель (вы, вероятно, заметили это при визуальном осмотре — это могло быть результатом того, что кто-то переворачивал дроссель в прошлом, или элемент просто изношен сам не в форме).
Если воздушная заслонка выглядит хорошо и вы располагаете ее так, чтобы клапан открывался только с трещиной, вы можете снова надеть пластину / винт на заслонку и затянуть винты, соблюдая осторожность, чтобы не нарушить настройку. НЕ давите на эти винты слишком сильно.Достаточно, чтобы они плотно прилегали и удерживали дроссельную заслонку на месте — нейлон немного сжимается, обеспечивая хорошее прилегание. Заманчиво дать им дополнительный поворот, но вы лишите корпус, если будете слишком усердны. Если вы снимете резьбовой корпус, быстрое решение будет простым: просто найдите в строительном магазине винт немного большего размера и вкрутите его. Но вам не нужны хлопоты, связанные с возможным повреждением резьбы на корпусе карбюратора, поэтому будьте осторожны с ними и у вас не будет проблем. Установите пружину на рычаг дроссельной заслонки и снова подсоедините провод воздушной заслонки.
Вам, вероятно, придется отрегулировать настройку воздушной заслонки, чтобы обнулить ее, после нескольких разогревов при холодном запуске. Перед запуском двигателя нажмите педаль один раз — это оттянет рычаг дроссельной заслонки назад, а элемент воздушной заслонки будет действовать как пружина, чтобы закрыть клапан и установить шаговый кулачок. Во время первого прогрева вы можете заметить, что частота вращения вашего двигателя немного выше, чем должна быть, или он работает на слишком низких оборотах и глохнет в холодном состоянии. В этом случае необходимо немного изменить настройку воздушной заслонки.Это связано с тем, что воздушная заслонка не только закрывает дроссельную заслонку, но и управляет ступенчатым кулачком на левой стороне карбюратора, что влияет на скорость холостого хода. Когда ваш двигатель холодный, обратите внимание, на какой ступеньке упирается винт дроссельной заслонки. Чем выше ступенька, тем выше холостой ход, тем больше время прогрева перед отключением воздушной заслонки. Если ваш двигатель работает на холостом ходу слишком долго, просто снимите возвратную пружину дроссельной заслонки, немного ослабьте три винта воздушной заслонки и осторожно сдвиньте ее немного назад — теперь винт холостого хода должен находиться на ступеньке ниже.Затяните винты и установите пружину на место. Выполните эту процедуру в обратном порядке, если ваша воздушная заслонка не удерживает ступенчатый кулачок на достаточно высоких оборотах (ваш двигатель заглохнет при прогреве на холостом ходу, потому что воздушная заслонка слишком быстро отключит рычаг). В конце концов, у вас все получится.
Используйте шаговый кулачок и точку на воздушной заслонке относительно выступов на корпусе карбюратора в качестве направляющих для позиционирования воздушной заслонки, и если вы действительно хорошо это сделаете, вы можете немного изменить регулировку, даже когда воздушная заслонка теплая, чтобы что для следующего холодного запуска ваш дроссель будет настроен идеально.
Еще одна мысль: посмотрите на шаговый кулачок, и вы увидите небольшую прорезь в нем — должен быть виден роликовый штифт. Этот штифт ограничивает вращательный ход кулачка и закреплен в корпусе карбюратора. Если роликовый штифт вибрировал и его больше нет, ваш шаговый кулачок может упасть назад и затруднить работу на холостом ходу. Если он отсутствует, вам просто нужно вставить новую шпильку на место.
Также убедитесь, что провод, идущий от катушки к дросселю, действительно подключен с обоих концов — это может быть вашей единственной проблемой, если дроссель настроен правильно.
Если вы живете в регионе, который подвержен сезонным изменениям (в большинстве мест), вам нужно настраивать дроссель несколько раз в год, чтобы утренняя разминка прошла без проблем. Не отключайте дроссель, как советует Мюр, просто держите его правильно отрегулированным.
Удачи,
— Рон Ван Несс
[email protected]
’71 Вести
Примечание Роба: Это хорошее описание, которое должно заставить ваш дроссель работать хорошо.
* * * * * Тестирование автоматической дроссельной заслонки для скутеров
| Блог
Как испытать дроссельную заслонку мопеда
Зачем нужен дроссель?
Когда двигатель скутера холодный, ему требуется более богатая смесь (дополнительный бензин) для запуска и работы.Вкратце это связано с тем, что бензин в жидкой форме на самом деле не горит, а горит пар, который он выделяет. Бензин испаряется намного медленнее, когда он холодный, поэтому вам нужно его больше, чтобы создать такое же количество пара. Цепь дроссельной заслонки обеспечивает способ увеличения подачи топлива до тех пор, пока мопед не прогреется, а затем отключится, либо с помощью ручного дросселя, который вы включаете и выключаете самостоятельно, либо с помощью автоматического дросселя, который делает это за вас.
В любом случае воздушная заслонка представляет собой простой плунжер, который открывает или закрывает (блокирует) небольшой канал внутри карбюратора (контур воздушной заслонки), который пропускает (или не допускает!) Дополнительного топлива в двигатель.
Если вы посмотрите на эту ручную воздушную заслонку здесь … щелкните здесь … вы можете ясно увидеть поршень, который просто поднимается или опускается вручную черным рычагом для размыкания или замыкания цепи воздушной заслонки мопеда по желанию водителя. Такой же плунжер вы можете увидеть на фото автоматической воздушной заслонки вверху страницы.
Вы заметите, что у автоматического штуцера на конце плунжера есть игла, а у ручного — нет. Игла позволяет автоматической заслонке постепенно пропускать все меньше и меньше топлива через цепь заслонки, пока она, наконец, не закроет ее полностью после того, как двигатель проработает несколько минут.В отличие от этого ручной дроссель просто включен или выключен, ничего промежуточного!
Как работает автоматическая воздушная заслонка?
Внутри автоматического штуцера находится небольшая парафиновая капсула, вокруг которой намотана спираль нагревателя. Когда двигатель запускается, на нагреватель подается напряжение, и воск нагревается. Когда воск начинает нагреваться, он расширяется и медленно выталкивает поршень. Примерно через 4 или 5 минут плунжер полностью выдвигается, закрывая цепь воздушной заслонки и больше не позволяя течь дополнительному топливу.Как только двигатель выключается, парафиновая капсула начинает остывать, и примерно через 15 минут поршень снова медленно втягивается.
Как это проверить?
Самый простой и надежный способ проверить дроссельную заслонку — это проверить ее на велосипеде.
- Запустите велосипед и дайте ему поработать (быстрое переключение допустимо) не менее 5 минут. (Это должно гарантировать, что плунжер воздушной заслонки полностью выдвинут)
- Заглушите двигатель и * быстро * снимите блок воздушной заслонки мопеда.В идеале вы должны сделать это в течение 30-60 секунд после выключения двигателя, поэтому убедитесь, что вы уже сняли все панели, которые мешают. Чтобы снять его, под 2 винтами, удерживающими U-образный зажим в форме подковы, вытащите его. Измерьте расстояние A, как показано на рисунке ниже
- Теперь оставьте штуцер хотя бы на 20 минут, чтобы он остыл, и снова измерьте расстояние — расстояние B на фото ниже
Вы сможете получить хорошее представление о том, правильно ли работает дроссель, сравнив его с изображениями и втянут ли плунжер или нет, но для эталонного расстояния A должно быть как минимум на 2 мм больше, чем расстояние A
Не работает!
Есть 2 возможные причины, по которым устройство не работает.Либо неисправен сам дроссельный узел, либо возникла проблема с подачей питания на него. Если у вас есть мультиметр, вы можете проверить источник питания, отключив автоматическую воздушную заслонку и прикоснувшись проводами измерителя к проводам, к которым была подключена воздушная заслонка, во время работы двигателя с быстрым переключением — (не касайтесь их вместе!)
Провода должны показывать 12-14 вольт переменного тока. Обратите внимание, что дроссель обычно отключается от цепи освещения, которая на мопедах обычно является переменным током, поэтому убедитесь, что вы проверяете счетчик как на переменный, так и на постоянный ток! Сам дроссель будет работать как на переменном, так и на постоянном токе, пока у вас есть 12-14 вольт постоянного или переменного тока, с источником питания все в порядке.
Если у вас нет мультиметра, вы можете проверить дроссель, сняв его с велосипеда и подключив напрямую к полностью заряженной батарее мопеда с помощью подходящих проводов (будьте осторожны, не закорачивайте провода вместе!). Неважно, с какой стороны провода подключены к аккумулятору.
Через 5 минут после подключения он должен полностью выдвинуться, как на «горячей» фотографии выше, а затем втянуться, как на «холодной» фотографии, после того, как батарея была отключена на 20 минут.
Если плунжер по-прежнему не движется, дроссельная заслонка неисправна и ее необходимо заменить.
Вы можете либо заменить его идентичным автоматическим дросселем, либо отказаться от него и вместо этого установить дроссель с ручным управлением, который вы полностью контролируете !!
Полное руководство по балластам для люминесцентных ламп
Люминесцентная лампа использует электричество, чтобы ртуть испускала ультрафиолетовый (УФ) свет. Когда этот ультрафиолетовый свет (который невидим невооруженным глазом) взаимодействует с покрытием из порошка люминофора внутри трубки, он светится и излучает свет, который мы видим и используем в наших домах.
Но всякий раз, когда мы используем электричество, мы должны контролировать его, иначе мы рискуем разрушить устройство и даже подвергнуть себя опасности. Чтобы регулировать ток, протекающий через люминесцентные лампы, мы используем так называемый балласт.
Что такое балласт в люминесцентном свете?
Балласт (иногда называемый пускорегулирующим аппаратом) — это небольшое устройство, подключенное к электрической цепи светильника, которое ограничивает количество электрического тока, проходящего через него.
Поскольку напряжение в электросети вашего дома выше, чем требуется для работы фонаря, балласт дает свету небольшое повышение напряжения для включения, а затем достаточное количество питания для безопасной работы.
Зачем нужны балласты?
Процесс, который происходит внутри люминесцентного света, включает в себя молекулы газообразной ртути, нагретые электричеством и делающие их более проводящими. Без балласта, чтобы контролировать это, свет будет пропускать слишком большой ток, и он перегорит и, возможно, даже загорится.
Как работает балласт люминесцентного света?
В люминесцентных лампах используется электронный или магнитный балласт. В настоящее время магнитные балласты — это довольно устаревшая технология, от которой производители отказываются, и поэтому они обычно используются только в старых типах фонарей.
Магнитные балласты
Они основаны на принципах электромагнетизма: когда электрический ток проходит по проводу, он естественным образом создает вокруг себя магнитную силу.
Магнитный балласт (также называемый дросселем) содержит катушку с медным проводом. Магнитное поле, создаваемое проволокой, улавливает большую часть тока, поэтому флуоресцентный свет проникает только в нужном количестве. Это количество может колебаться в зависимости от толщины и длины медного провода.Если вы иногда слышите легкое жужжание или видите, как оно мерцает, причиной этого является изменение тока.
Менее совершенная по конструкции, чем электронные модели, некоторые магнитные балласты не могут работать без стартера. Этот небольшой цилиндрический компонент находится за осветительной арматурой и заполнен газом, который при нагревании позволяет свету включиться. Это называется методом предварительного нагрева.
Метод предварительного нагрева
- Включен выключатель света.Внутри обоих концов светильника находятся металлические электроды с прикрепленными нитями. Ток входит в нити, но на данный момент слишком слаб, чтобы зажечь свет, хотя его достаточно, чтобы нагреть газ (неон или аргон) внутри стартера.
- Нагретый газ заставляет компоненты внутри стартера пропускать полный ток в нити. Это быстро нагревает газообразную ртуть внутри светильника.
- По мере охлаждения стартер блокирует путь тока к нитям нити и заставляет его искать другой путь.Если ртутный газ достаточно нагревается, он проводит ток, генерирует свет и затем продолжает гореть. Если он недостаточно горячий, электричество вернется через стартер и снова запустит процесс. Это то, что вызывает мерцание некоторых старых люминесцентных ламп.
- Теперь, когда поступает больше электричества, балласт начинает выполнять свою работу по его регулированию.
Поскольку для завершения этого процесса может потребоваться несколько секунд, вы можете увидеть задержку между моментом щелчка переключателя и моментом, когда флуоресцентный свет начинает светиться.
Метод быстрого запуска
Если в вашем осветительном приборе есть две или более люминесцентных лампы, скорее всего, он будет использовать другой метод, известный как быстрый запуск. Этот метод используется в старых пробирках T12 и некоторых T8 и работает без стартера.
- В отличие от предварительного нагрева, когда нити получают ток через стартер только для нагрева газообразной ртути, при быстром запуске балласт поддерживает небольшое количество тока, непрерывно протекающего через нити.
- Это вызывает ионизацию газообразной ртути, то есть заряд, позволяющий ей проводить электричество.
- Поскольку это всего лишь слабый ток, сначала свет будет светиться довольно тускло. Но по мере того, как балласт продолжает проталкивать ток через нити, газ становится все горячее и заряженным, и в результате свет становится ярче. Если ваш фонарь загорается сразу, но для полного его яркости требуется несколько секунд, значит, у него есть пусковой балласт для быстрого запуска.
Одним из преимуществ метода быстрого пуска является то, что, обеспечивая низкий постоянный ток, а не сильный скачок, он продлевает срок службы люминесцентного света.Однако он потребляет больше энергии.
Электронные балласты
Используя более сложные схемы и компоненты, балласты могут управлять током, протекающим через люминесцентные лампы, с большей точностью. По сравнению со своими магнитными аналогами они меньше, легче, эффективнее и — благодаря подаче питания на гораздо более высокой частоте — с меньшей вероятностью будут вызывать мерцание или жужжание.
Некоторые старые электронные балласты используют метод быстрого запуска, описанный выше, в то время как новые и более совершенные модели используют то, что известно как мгновенный запуск и запрограммированный запуск.
Метод мгновенного запуска
Эти балласты были разработаны таким образом, чтобы свет можно было включать и работать с максимальной яркостью при первом нажатии переключателя. Вместо предварительного нагрева электродов в балласте используется повышенное высокое напряжение (около 600 вольт) для нагрева и зажигания нитей, а затем ртутного газа. Хотя это делает их энергоэффективными, это также сокращает их жизнь, поскольку скачок напряжения каждый раз, когда они включаются, со временем повреждает их. По этой причине они обычно используются в помещениях, где свет остается включенным на длительное время, например, в офисах, магазинах и на складах.
Метод запрограммированного запуска
Эти балласты, разработанные для областей, в которых освещение постоянно включается и выключается, предварительно нагревают электроды контролируемым током перед подачей более высокого напряжения для включения света. Часто это функция освещения, которая активируется датчиками движения (например, в туалетах на рабочих местах или в общественных местах) и позволяет люминесцентному свету длиться долгое время.
Признаки неисправности вашего магнитного балласта
Когда ломаются магнитные балласты, в этом часто винят лампочку.Обратите внимание на знаки, указывающие на то, что это ваш балласт:
- Отложенный старт
- Жужжание
- Мерцание
- Низкая мощность
- Несоответствие уровней освещения
Вы можете узнать, связана ли проблема с балластом, стартером или лампой, с помощью нашего руководства — Простые решения для медленного запуска, мерцания или неисправных люминесцентных ламп.
Проверка балласта мультиметром / вольт-омметром
Чтобы убедиться, что проблема связана с балластом, вам нужно проверить его с помощью мультиметра.Мультиметр предназначен для измерения электрического тока, напряжения и сопротивления. Они недорогие, и их можно найти в большинстве магазинов электроники.
Эти инструкции предназначены только для ознакомления — убедитесь, что вы ссылаетесь на электрические схемы производителя. Если вам не хватает инструкции по эксплуатации, большинство крупных производителей будут размещать опи на своих сайтах.
Для проверки вашего балласта:
Вам понадобится
Как к
- Отключить питание светильника
- Снять кожух фары
- Снимите лампочки
- Снять балласт с приспособления
- Если балласт выглядит сгоревшим, его обязательно нужно заменить
- Установите мультиметр на сопротивление
- Вставьте первый щуп мультиметра в провод, соединяющий красные провода вместе
- Коснитесь вторым щупом зеленого и желтого проводов
- Если мультиметр не двигается, значит, балласт сдох
- Если мультиметр все еще работает, стрелка мультиметра должна переместиться вправо
Если проблема не в балласте, возможно, вам потребуется заменить люминесцентную лампу.Вы можете узнать, как это сделать безопасно, из Руководства по безопасной замене и переработке люминесцентных трубок.
Могу ли я сам заменить балласт?
Да, если у вас есть немного технических ноу-хау, хотя, если вы не уверены, лучше всего попросить электрика сделать это за вас, так как это может быть сложная работа. Более дешевые балласты, вероятно, потребуют большего количества переустановок, чем фитинг с фирменным балластом. Стоит потратить немного больше, чтобы сэкономить деньги и силы в будущем.
Фирменные балласты могут служить долго, поэтому, если вы их замените, вам, вероятно, не придется менять его снова в течение 10 или более лет.
Замена магнитных балластов на электронные
Процесс замены магнитных балластов на электронные балласты довольно прост и понятен. Это направление, в котором движется индустрия освещения, так почему бы не поменять их раньше, чем позже, чтобы оптимизировать свое пространство с помощью лучшего и более тихого освещения?
Вам понадобится:
- Электронный балласт
- Кусачки
- Проволочные гайки
Как к
- Отключить питание прибора
- Открыть приспособление и снять лампу и кожух балласта
- С помощью кусачков перережьте оба провода питания (коричневый) и нейтральный (синий), входящие в приспособление.
- Закройте провода проволочными гайками.
- Используйте кусачки, чтобы отрезать провода, подключенные к розеткам.
- Снять магнитный балласт
- Вкрутите ЭПРА в крепление, там же, где был магнитный.
- Используйте гайки для соединения проводов розетки.
- Подключите силовой и нейтральный провода к соответствующим проводам балласта
- Закрепите провода проволочными гайками.
- Установить лампу и корпус ПРА обратно
- Снова включите питание.
При замене балласта существует риск поражения электрическим током, поэтому, если вы не уверены, попросите электрика сделать эту работу за вас.
Нужен ли моей люминесцентной лампе как пускатель, так и балласт?
Отдельные стартеры встречаются только в более старых механизмах управления, поэтому, если приспособлению меньше 15 лет, у него, вероятно, не будет стартера. В более новых лампах процесс, обеспечиваемый стартером, встроен, что делает функцию отдельного стартера избыточной. Если в светильнике есть стартер, это будет очевидно.Вы должны найти небольшой серый цилиндр, подключенный к осветительной арматуре.
В чем разница между пусковым переключателем и высокочастотным ПРА?
Высокая частота
Высокочастотный пускорегулирующий аппарат — это современный одиночный балласт, который выполняет функции всех различных компонентов в стандартной пусковой цепи переключателя. Лампы, работающие с высокочастотным балластом, не мерцают, а вместо этого загораются мгновенно из-за того, что частота намного выше.
Выключатель запуска
Switch start — это устройство управления, которое используется в промышленности в течение многих лет. Обычно они считаются устаревшими технологиями, и их создают все меньше производителей. Для запуска выключателя требуется дроссель балласта с проволочной обмоткой. Для запуска переключателя можно заменять различные части, а не весь блок, что можно рассматривать как преимущество.
Что такое рейтинг безопасности мультиметра CAT (категория)?
Если вы когда-либо использовали мультиметр раньше или просматривали его техническое описание, вы, вероятно, заметили оценку безопасности CAT (категория).Что это такое и почему это важно? Этот блог и соответствующее видео будут посвящены этим вопросам.
Согласно IEC (Международной электротехнической комиссии) производители мультиметров должны соблюдать правила тестирования безопасности для всех своих продуктов, чтобы гарантировать, что каждое устройство соответствует или превышает требуемый рейтинг. Эти меры приняты для защиты пользователя от непреднамеренного поражения электрическим током, которое может привести к смерти.
Существует четыре уровня, определяемых типом измеряемой нагрузки.
CAT I |
Электронные устройства |
Все, от маленькой печатной платы до более крупного устройства с высоким напряжением, но с низким энергопотреблением |
CAT II |
Однофазные нагрузки переменного тока |
Приборы или переносные инструменты |
CAT III |
Трехфазное распределение |
Некоторые системы освещения для больших зданий и многофазные двигатели |
CAT IV |
Трехфазные электрические соединения или наружные проводники |
Электросчетчики, внешние подключения, любые низковольтные и высокоэнергетические подключения |
В рамках этих четырех уровней МЭК имеет руководящие принципы тестирования переходных процессов для каждой категории.
Категория измерений | Рабочее напряжение | Переходное напряжение | Тестовый источник (импеданс) |
CAT I | 150 В | 800 В | 30 Ом |
CAT I | 300 В | 1500 В | 30 Ом |
CAT I | 600 В | 2500 В | 30 Ом |
CAT I | 1000 В | 4000 В | 30 Ом |
CAT II | 150 В | 1500 В | 12 Ом |
CAT II | 300 В | 2500 В | 12 Ом |
CAT II | 600 В | 4000 В | 12 Ом |
CAT II | 1000 В | 6000 В | 12 Ом |
CAT III | 150 В | 2500 В | 2 Ом |
CAT III | 300 В | 4000 В | 2 Ом |
CAT III | 600 В | 6000 В | 2 Ом |
CAT III | 1000 В | 8000 В | 2 Ом |
CAT IV | 150 В | 4000 В | 2 Ом |
CAT IV | 300 В | 6000 В | 2 Ом |
CAT IV | 600 В | 8000 В | 2 Ом |
CAT IV | 1000 В | 12000 В | 2 Ом |
Если мы расширим это, чтобы вычислить ток для рабочего и переходного напряжений, вы увидите, что даже если два номинала CAT охватывают одно и то же рабочее напряжение, это НЕ означает, что они равны.
Категория измерений | Рабочее напряжение | Переходное напряжение | Тестовый источник (импеданс) | Рабочий ток | Переходный ток |
CAT I | 150 В | 800 В | 30 Ом | 5A | 26.6A |
CAT I | 300 В | 1500 В | 30 Ом | 10A | 50A |
CAT I | 600 В | 2500 В | 30 Ом | 20A | 83.3A |
CAT I | 1000 В | 4000 В | 30 Ом | 33.3A | 133,3A |
CAT II | 150 В | 1500 В | 12 Ом | 12,5A | 125A |
CAT II | 300 В | 2500 В | 12 Ом | 25A | 208,3A |
CAT II | 600 В | 4000 В | 12 Ом | 50A | 333.3A |
CAT II | 1000 В | 6000 В | 12 Ом | 83.3A | 500A |
CAT III | 150 В | 2500 В | 2 Ом | 75A | 1250A |
CAT III | 300 В | 4000 В | 2 Ом | 150A | 2000A |
CAT III | 600 В | 6000 В | 2 Ом | 300A | 3000A |
CAT III | 1000 В | 8000В | 2 Ом | 500A | 4000A |
CAT IV | 150 В | 4000 В | 2 Ом | 75A | 2000A |
CAT IV | 300 В | 6000 В | 2 Ом | 150A | 3000A |
CAT IV | 600 В | 8000В | 2 Ом | 300A | 4000A |
CAT IV | 1000 В | 12000 В | 2 Ом | 500A | 6000A |
Теперь использование CAT III при 600 В и CAT II при 1000 В в качестве примера ясно показывает, как то, что номинальное рабочее напряжение выше, НЕ означает, что он может выдержать столько же в целом.
Невозможно точно узнать, какой рейтинг у измерителя, если не найти рейтинг CAT либо на самом устройстве, либо в таблице данных мультиметра. Помните, если сомневаетесь, больше защиты всегда лучше.
Об авторе
Эшли Аволт (Ashley Awalt) — разработчик технического контента, работающая в Digi-Key Electronics с 2011 года. Она получила степень младшего специалиста по прикладным наукам в области электронных технологий и автоматизированных систем в Общественном и техническом колледже Northland через стипендиальную программу Digi-Key.В настоящее время ее роль заключается в оказании помощи в создании уникальных технических проектов, документировании процесса и, в конечном итоге, в участии в создании видеоматериалов, освещающих эти проекты. В свободное время Эшли любит — подожди, а есть ли свободное время, когда ты мама?
В поисках перерыва — Экстремальный электрический забор для собак 2021 DIY
Обнаружение и устранение обрыва провода
В течение срока службы электрического ограждения для собак нередко случается обрыв провода.Если провод должен оборваться, ваш передатчик сообщит вам об этом непрерывными звуковыми сигналами и миганием. Вы также можете заметить, что ошейники вашего приемника больше не реагируют, когда вы приближаетесь к проводу.
Выполнение теста короткого замыкания
Ваш передатчик для забора собак сообщит вам о разрыве линии, включив сигнализацию. Если ваш передатчик подает сигнал тревоги, и вы думаете, что у вас может быть обрыв провода, первое, что нужно проверить, — это работоспособность передатчика вашего собачьего забора.Концепция теста с короткой петлей состоит в том, чтобы создать крошечную петлю из проволочного ограждения на вашем передатчике, чтобы увидеть, подает ли ваш передатчик сигнал тревоги при подключении этого короткого провода.
Вот как выполнить тест с короткой петлей:
- Отсоедините все провода, идущие к передатчику ограждения для собак.
- Отрежьте небольшой кусок проволоки (12 дюймов) и зачистите оба конца.
- Подключите каждый конец к двум клеммам передатчика ограждения для собак, образуя крошечную петлю.
- Подключите передатчик к забору для собак.
Ваш передатчик все еще пищит? Это означает, что возникла проблема с передатчиком вашего забора для собак. Свяжитесь с нами по телефону 800-305-6116, чтобы узнать, распространяется ли на ваш передатчик гарантия. Ваш передатчик перестал пищать, когда к нему была подключена короткая петля? Это означает, что, скорее всего, проблема в проволоке забора для собаки. Если звуковой сигнал прекращается во время тестирования с использованием короткой петли, вы можете проверить свой ошейник с помощью короткой петли, если хотите.
Поместите собачий ошейник рядом с короткой петлей, убедившись, что диапазон установлен на передатчике достаточно низким. Держите ошейники приемника на расстоянии нескольких дюймов от петли и убедитесь, что в ошейник вставлены свежие батарейки. Ваш собачий ошейник должен издавать звуковой сигнал, когда вы кладете его рядом с проволокой.
Проверка целостности провода с помощью мультиметра
Мультиметр также можно использовать для проверки работоспособности основного контура. Мультиметр можно купить в любом строительном или хозяйственном магазине.
Начните с установки мультиметра в положение непрерывности, то есть положение, напоминающее динамик. Затем прикоснитесь кончиками металлических ножек к концам скрученной проволоки. Затем прислушайтесь к звуковому сигналу мультиметра. Если это так, это означает, что у вас есть непрерывность в проволоке вашего собачьего забора. Это означает, что ваша петля исправна и у вас нет обрыва провода. Если у вас нет обрыва провода, проблема может быть в ошейнике или передатчике.
Способы обнаружения обрыва провода
Комплект для определения обрыва провода
Вы можете обнаружить обрыв провода с помощью набора для определения обрыва провода.Он включает в себя мини-передатчик и AM-радио.
На основании наших обширных испытаний было установлено, что это устройство хорошо работает только с системами ограждений с длиной проволоки для собачьих ограждений менее 500 футов. Кроме того, разрывы должны быть чистыми, а не частичными или гниющими.
Что делать:
- Отключите передатчик на заборе для собак.
- Подключите локатор обрыва провода к скрученному проводу.
- Заземлите передающий блок, прикрепив прилагаемый провод к центральному винту электрической розетки.
- Подключите передающее устройство, чтобы на передатчике горели оба индикатора.
- Включите AM-радио, переключив станцию на 530 KHZ. Возможно, вам придется настроить циферблат на канал, на котором нет радиостанции.
- Начните следовать по скрученному проводу вместе с радио в направлении основной петли ограждения собаки. Вы начнете слышать комбинацию двух звуков, когда будете следовать по скрученному проводу. В случае обрыва скрученного провода звук будет медленно переключаться с двух звуков на один.
- Если все, начиная с скрученной проволоки, проходит нормально, начинайте следовать основной петле ограждения. Вы начнете слышать ровный звук. Следуйте за проволокой для собак, пока этот тон не станет мягче или не начнет меняться. Начните копать в этой области и найдите оба конца того места, где оборвалась ваша проволока.
- Если у вас возникнут проблемы с помехами, отсоедините скрученный провод от основного контура и подключите оба конца основного контура к передающему устройству. Вам нужно будет подключить удлинитель к основному контуру, чтобы включить его.
Визуальный осмотр
В поисках помехОбрыв проволоки обычно вызывают следующие предметы: кромкообрезные станки, средства для удаления сорняков, аэраторы для газонов и грызуны. Физическая прогулка по периметру в поисках признаков возникновения любой из этих ситуаций — это первый способ найти обрыв провода.
Второе место, которое нужно проверить, — это где расположены ваши сращивания или соединители проводов. Иногда это та область, где провода могут непреднамеренно разорваться.
- Начать с передатчика. Осмотрите провод от точки выхода через дверь, стену или окно. Внимательно осмотрите место выхода скрученной проволоки из вашего дома. Это обычное место, где может оборваться провод. Осмотрите землю, где проложен скрученный провод, в поисках возможных участков повреждения.
- Пройдитесь по периметру, ища любые нарушения в земле. Обратите особое внимание на проезжую часть, дорожку, тротуар и участки с интенсивным пешеходным движением.Эти области являются наиболее частыми местами обрыва проводов. Внимательно смотрите на кромки проезжей части и тротуаров.
RF Метод дросселя
Вы также можете использовать метод RF-дросселя, чтобы найти обрыв провода. Во-первых, вам нужно будет приобрести ВЧ-дроссель в местном магазине электроники или хозяйственном магазине. Затем отсоедините провода от передатчика и замените их дроссельной заслонкой на конце каждого провода на блоке управления. Затем полностью увеличьте мощность сигнала.Когда дроссель установлен, ошибки обрыва провода быть не должно. Теперь возьмите два концевых провода и прикрепите по одному по обе стороны от дросселя, обернув провод вокруг дросселя. Убедитесь, что дроссель касается неизолированного конца каждого провода. Используйте AM-радио, чтобы обнаружить перерыв, пройдя по периметру и прислушиваясь к тишине. Должна быть слышна пульсация в местах неповрежденного провода и тишина в местах обрыва.
Для частичной замены проволоки для собачьего забора:
Если проволока для забора для собак старая, подумайте о ее замене, прежде чем тратить слишком много времени на поиск и устранение обрыва в проволоке.Проволока для собачьего забора стоит относительно недорого, и ее проще установить во второй раз. Вы можете решить пропустить дорожки и проезды. Вместо этого вы можете соединить их с обоих концов, хотя рекомендуется проверять участки при замене каждого участка провода.
- Для начала найдите концы скрученного провода, которые соприкасаются с основной петлей вашего электрического забора для собак.
- Отсоедините скрученный провод от основного контура. Зачистите примерно ½ дюйма проволоки из скрученной проволоки, чтобы вы могли видеть медь.Временно скрутите оба конца проволоки вместе.
- Подойдите к передатчику забора для собак и проверьте целостность с помощью измерителя. Если ваша скрученная проволока в порядке, переходите к следующему шагу. Если это не так, замените скрученный провод или найдите место разрыва скрученного провода. Если ваш скрученный провод был сломан, и вы отремонтировали или заменили его, временно подключите скрученный провод к основному контуру. Подойдите к коробке передатчика забора вашей собаки и проверьте целостность. Если периметр вашего основного забора для собак прошел хорошо, безвозвратно отремонтируйте или замените только скрученный провод.Нет необходимости смотреть дальше. Если у вас все еще нет полного цикла, переходите к следующему шагу.
- Если вы выяснили, что обрыв не в скрученном проводе, начните частично заменять участки провода, которые вызывают сомнения. После того, как вы заменили определенные участки вашего провода, вернитесь к своему передатчику, чтобы увидеть, была ли устранена проблема. Вы также можете протянуть кусок стандартной проволоки от каждого конца скрученной проволоки до середины забора и соединить их с петлей.Это упрощает изоляцию разрыва, позволяя уменьшить зону поиска для потенциальных разрывов.
Устранение поломки
Обнаружив обрыв провода, снимите по ½ дюйма изоляции с каждой стороны, а затем используйте водонепроницаемую капсулу для сращивания или водонепроницаемую гайку для проводов, чтобы снова соединить два конца вместе. Если провод слишком короткий, чтобы соединить два конца, вы можете просто соединить другой участок провода, чтобы создать соединение.
Некоторые измерения люминесцентной лампы и ее магнитного балласта
Некоторые измерения флуоресцентной лампы и ее магнитного балластаВведение
Люминесцентные лампы повсюду; они надежны и энергоэффективны.Даже если сегодня (2017) светодиоды заменяют многие источники света, лампы все еще остаются рентабельны и имеют почти такой же хороший КПД, если не лучше. Старый магнитный (индуктивный) балласт в настоящее время часто заменяют на электронный для большей эффективности, но есть еще так много старых балласты, которые я думаю, стоит взглянуть на этот простой и эффективная схема.
Подземный паркинг с большим количеством люминесцентных ламп (нажмите для увеличения).
Найти подробные данные о люминесцентных лампах очень сложно и удивительно. достаточно, поисковые системы в Интернете мало помогают. Несмотря на то, что подавляющее большинство электронных компонентов производители детально указывают все электрические характеристики, для люминесцентных ламп трудно найти какое-либо техническое описание с более чем номинальная мощность и механические размеры. Поэтому очень сложно ответить на такие вопросы, как: что бросается в глаза? Напряжение? Какое напряжение горения лампы? Как выглядит ток при включенной лампе? Эти вопросы были у меня в голове много лет, пока я не решил подключить лампу к пробнику высоковольтного осциллографа и сам посмотрю, что происходит.
Чтобы провести эти измерения с помощью осциллографа, некоторые необычные оборудование чрезвычайно полезно (если не обязательно), например, высокое напряжение дифференциальный зонд и токовый зонд. Поскольку не у всех есть доступ к этим инструментам, я решил поделиться своими измерения на этой странице, потому что я думаю, что они могут быть интересны.
Прямое подключение осциллографа к сети крайне плохое и опасная идея, всегда используйте подходящие и безопасные пробники высокого напряжения.
На этой странице вы не найдете никаких ракетостроительных технологий, а только некоторые измерения и некоторые мысли о люминесцентных лампах, пускателях и их старые индуктивные балласты.
Здесь обсуждаются только люминесцентные лампы с «горячими электродами»; эти лампы в основном используются для освещения. У них есть две клеммы с каждой стороны, чтобы обеспечить циркуляцию тока в электроды для их нагрева. С другой стороны, трубки с «холодными электродами», также называемые CCFL (Cold Катодные люминесцентные лампы) вроде тех, что используются в «неоновых вывесках». имеют только одну клемму с каждой стороны: у них разные электрические характеристики, требуют другой системы питания и не обсуждается на этой странице.
Базовая схема
Базовая схема показана на схеме ниже. Его поведение много раз описывалось в литературе и в Интернете. поэтому здесь я дам лишь краткий обзор, чтобы прояснить, о чем я говорю о.
Принципиальная схема.
Схема очень проста и состоит только из люминесцентной лампы, стартер и индуктивный балласт.
Важно отметить, что данная схема типична для сети 230 В. В сети 120 В пиковое напряжение обычно недостаточно велико, чтобы лампы горения и балласты часто проектируются как автотрансформаторы с немного другая схема. Соображения относительно напряжения и тока лампы, вероятно, все еще будут применяться, но схема, балласт и возможно также характеристики стартера разные. Поскольку у меня никогда не было возможности поиграть с люминесцентным оборудованием на 120 В, Я не буду обсуждать это здесь, и все соображения на этой странице только действительно для сети 230 В.
В этой схеме отсутствует фазирующий конденсатор и она будет иметь значительную индуктивную реактивное сопротивление. Это было сделано специально, чтобы измерить его cos (φ) . Конечно, в нормальных ситуациях добавляется подходящая схема для компенсация и приведение cos (φ) очень близко к 1. Часто бывает достаточно конденсатора, подключенного параллельно к сети.
Лампа
Люминесцентная лампа обычно состоит из стеклянной трубки с низким смесь газов под давлением, обычно паров ртути и некоторого количества аргона.Давление составляет порядка 5 мбар. Добавление небольшого количества благородного газа к ртути значительно снижает поражающее напряжение (эффект Пеннинга). На концах трубки две вольфрамовые нити, похожие на нити обычных лампы накаливания, которые действуют как электроды для передачи тока в газ и часто называются катодами. Нити часто покрываются веществами с высоким коэффициентом излучения электронов, такими как соединения бария. Ток, протекающий в этих нитях, будет нагревать их, увеличивая их способность испускать электроны еще больше и, следовательно, снижение напряжения требуется для ионизации газа и зажигания лампы.Вот почему эти элкотроды есть два терминала. Когда лампа включена, нити накаливания остаются достаточно горячими, даже если лампа включена. ток, и нет необходимости форсировать дополнительный ток, поэтому другой конец каждой нити накала можно отсоединить.
Внутренняя структура люминесцентной лампы хорошо видна в
эта маленькая прозрачная УФ-лампа (нажмите, чтобы увеличить).
Внимательно посмотрев на большую версию изображения, можно заметить, что маленькие капельки
ртуть на внутренней стенке стакана хорошо видна, особенно в
близость электродов.
Ток, протекающий через газ, — очень сложное явление, но вкратце Короче говоря, если газ не ионизирован, он ведет себя как изолятор. Если между электродами приложить достаточно большое напряжение, газ ионизируется. и ток течет из-за свободных электронов и положительных ионов (атомов, потерявших один электрон) подпрыгивает. Препятствия между электронами, ионами и нейтральными атомами передают часть кинетической энергия атомам, которые «возбуждаются».Затем энергия переизлучается в виде фотонов, когда они расслабляются вскоре после этого. Активным газом практически любых обычных люминесцентных ламп являются пары ртути: излучает невидимый и вредный свет в ультрафиолетовом (УФ) диапазоне для наших глаз и кожи. Покрытие из флуоресцентных материалов внутри трубки поглощает УФ-свет и преобразует его в видимый свет. Тщательно подобрав подходящее флуоресцентное покрытие, можно получить практически любой цвет свет можно получить.Кроме того, стекло, из которого состоит трубка, непрозрачно для ультрафиолета. радиации и не дает ей выйти наружу.
Трубка, использованная для этих тестов, IBV L36W 4200K, (щелкните, чтобы увеличить).
Для этих измерений я использовал трубку IBV T8 (Ø25,4 мм), 4 фута. (1,2 м) в длину, 36 Вт, холодный белый. На этой конкретной лампе сопротивление постоянному току двух нитей нити равно 5,9 Ом и 5,3 Ом в холодном состоянии. Я также измерил кучу других трубок и нашел аналогичные значения: несколько Ω.
Два следующих графика показывают напряжение и ток в прожигающем . напольная лампа. Это трубка IBV 4 ‘(1,2 м) T8 (Ø25,4 мм) 36 Вт. Конечно, индуктивный балласт включен последовательно. Обратите внимание, что эта лампа уже горит и ее нити горячие (из-за ток лампы).
На первом графике, где представлены напряжение и ток отдельно интересно отметить, что оба находятся в фазе, даже если не идеально синусоидальной формы.Это показывает, что лампа эффективно поглощает активную мощность. Также стоит отметить, что напряжение близко к прямоугольной. Это типично для газоразрядных трубок, поведение которых очень похоже на поведение газоразрядных трубок. Стабилитрон, где напряжение примерно постоянное независимо от тока. Присмотревшись, можно увидеть, что на самом деле напряжение немного падает, так как ток увеличивается (прямоугольная волна не совсем плоская, но немного понижается посередине, когда ток максимален).Это показывает поведение отрицательного сопротивления, еще одну типичную характеристику газоразрядная трубка. В нормальном резисторе при увеличении тока падение напряжения также увеличивается; здесь все наоборот.
Напряжение лампы (Ch2) и ток лампы (Ch3) горящей трубки 4 ‘(1,2 м) T8 (Ø25,4 мм) 36 Вт.
В конце каждого полупериода ток падает до нуля и лампа гаснет.Как только это произойдет, лампа снова загорится, импульс противоположной полярности появляется на графике, и цикл повторяется. Этот импульс не из-за индуктивного балласта (поскольку ток уже был ноль), это просто напряжение сети, которое повторно пробивает лампу: это работает потому что нити еще горячие (подробнее здесь).
Форма волны напряжения не идеально гладкая: есть небольшие колебания колебания, в данном случае около 20 В pp при 4 кГц.Это еще одно типичное поведение отрицательного сопротивления и газа. разрядная трубка. Даже если я не буду проводить никаких дальнейших измерений, это не должно быть проблема для этой схемы как амплитуда и частота колебания достаточно низки, чтобы беспокоить электромагнитные совместимость.
То же измерение может быть показано в режиме XY (ниже), где по оси X есть напряжение лампы, а по оси Y — ток лампы.Точка с нулевым напряжением и нулевым током находится в центре сетки. Когда лампа горит, напряжение составляет около 100 В (положительное или отрицательное). Также видны паразитные колебания.
Следует отметить один интересный факт: ток лампы немного увеличивается. еще до того, как загорится лампа. На сюжете не идеально горизонтальная линия, а скорее наклонная. «S»: при увеличении напряжения небольшой ток течет прямо прочь.Я не уверен в этом, но я думаю, что это из-за горячих электродов и газ все еще частично ионизирован, что позволяет протекать току. Затем, конечно, когда загорается лампа, ток внезапно увеличивается, и напряжение падает примерно на 100 В.
Зависимость тока лампы (по вертикали) от напряжения (по горизонтали) горящей трубки 4 ‘(1,2 м) T8 (Ø25,4 мм) 36 Вт.
Было бы интересно провести такие же измерения с холодной лампой и посмотрите, что нужно, чтобы ударить по нему без предварительного нагрева нитей.К сожалению, у меня нет подходящего источника переменного тока высокого напряжения, достаточного для зажгите лампу.
Дроссель индуктивный
Индуктивный балласт — это просто большой индуктор, намотанный на многослойный железный сердечник. Он выполняет две функции: ограничивает ток и генерирует высокое напряжение для зажгите лампу. Люминесцентные лампы имеют отрицательные характеристики сопротивления и, следовательно, нельзя напрямую подключать к сети.Другими словами, если ток в лампе увеличивается, эквивалент сопротивление уменьшается, дополнительно увеличивая ток. Балласт ограничивает ток и предотвращает самоуничтожение лампы.
Индуктивные балласты являются индукторами и поэтому зависят от частоты. Балласт, рассчитанный на 50 Гц, будет иметь слишком большое реактивное сопротивление при 60 Гц. наоборот.
В лампах малой мощности (несколько ватт) можно также использовать простой резистор; в этом случай, когда импульс высокого напряжения возникает из-за сбоя в электросети индуктивность.Как ни странно, это работает. Обратной стороной является то, что резистор преобразует в тепло примерно такое же количество тепла. мощность как у лампы, что приводит к очень плохому КПД.
Емкостные балласты будут иметь значительно меньшие потери, но из-за нелинейное поведение лампы, это приведет к очень высоким пикам в лампе. Текущий. Кроме того, конденсаторы не могут генерировать пик высокого напряжения, необходимый для зажгите лампу. Емкостные балласты используются только (и часто) в высокочастотной электронике. балласты.
Изображение индуктивного балласта, используемого здесь, IBV 230 В переменного тока 50 Гц 40/36 Вт (2 × 18) 0,43 А (щелкните, чтобы увеличить).
Используемый здесь балласт рассчитан на 230 В, 50 Гц, 40/36 Вт, 0,43 А. Я измерил индуктивность 1,097 Гн и последовательное сопротивление 36,8 Ом в холодном состоянии.
С этим сопротивлением, если короткое замыкание в сети (предполагается, что 230 В 50 Гц), этот балласт будет ограничивать ток на уровне 0.66 А рассеивающий 16,2 Вт. Это выходит за рамки технических характеристик и может перегреться, но наверняка этого не произойдет. мертвая коротышка.
Стартер
Куча старых стартеров. Здесь для тестирования используется тот, который находится на
внизу слева, FZ FS-U 180-250V ~ 4-65W (щелкните, чтобы увеличить).
Стартер представляет собой небольшую стеклянную трубку, заполненную смесью слабых веществ. благородные газы под давлением, обычно аргон, неон и гелий под давлением порядка 50 мбар.Внутри трубки два биметаллических электрода, которые изгибаются навстречу друг другу. когда жарко. В холодном состоянии два электрода находятся близко друг к другу, но не соприкасаются. При приложении достаточно высокого напряжения газ ионизируется, ток около 30 мА начинает течь, и газ светится. Примерно через полсекунды тепло, выделяемое свечением, мягко сгибает электроды, которые соприкасаются, закорачиваются вместе, и свечение гаснет. В горячем состоянии стартер ведет себя как при коротком замыкании.Так как закороченный стартер больше не светится, он остывает и контакты снова размыкаются примерно через полсекунды.
Посмотрите фильм, показывающий, как стартер светится, а электроды замыкаются:
светящийся-стартер.mp4
(1870811 байт, 14 с, h364,
640 × 480, 15 кадров в секунду).
С помощью стартера и лампочки можно сделать очень красивый и грубый мигалка.
Используемый здесь стартер — FZ FS-U, мощностью 180-250 В ~ 4-65 Вт.Чтобы лучше понять характеристики стартера, его ток как функция приложенного напряжения было измерено и видно на графике ниже:
Зависимость тока стартера (по вертикали) от напряжения (по горизонтали) для пускателя FZ FS-U.
По горизонтальной оси отложено приложенное напряжение, по вертикальной оси — результирующий ток. Ноль для обеих осей находится в центре экрана.Начиная с нуля, по мере увеличения напряжения (в положительном или отрицательном отрицательное направление), ток через пускатель не течет, в результате горизонтальная линия. Как только напряжение станет достаточно высоким (скажем, +220 В или –240 В в этом случае) газ ионизируется и становится проводником; напряжение падает на около 50 В и начинает течь ток (наклонные участки). Если теперь напряжение уменьшается, ток также уменьшается до минимума. напряжение горения пересекается (скажем, ± 180 В в этом случае), где ток падает до нуля (снова на горизонтальной линии).
Для выполнения этого измерения вы должны действовать быстро: как только стартер горячий, он замкнется, и вы будете измерять только вертикальную линию. Вы должны сделать снимок экрана, пока стартер еще светится (нагрев вверх).
Поведение этого (и почти любого стартера, которое мне удалось измерить) является не симметричный. Пороговые напряжения и динамическое сопротивление (наклон наклонных участков) не одинаковы для положительной и отрицательной полярностей.Думаю, из-за несимметричной формы электродов.
Очень часто конденсатор из полистирола подключается параллельно к стартер, который помогает снизить коммутационный шум. К сожалению, я ни разу не видел маркировки на этих конденсаторах, но они обычно измеряют около 5 или 6 нФ. Для проведения вышеуказанного измерения этот конденсатор был временно удален, в противном случае сегменты больше похожи на эллипсы.
Поразительная последовательность
Газ в лампе обычно является изолятором.Чтобы включить его, электроды предварительно нагревают в течение нескольких секунд, затем Импульс напряжения ионизирует газ внутри трубки и запускает лампу. Этот процесс состоит из следующих шагов:
Нулевая ступень
Выключатель питания SW1 разомкнут, лампа выключена и холодная. И лампа LN1, и стартер ST1 не ионизируются и ведут себя как изоляторы. Пока не очень интересно … Теперь мы замыкаем SW1 и подаем питание на схему.
Шаг первый
SW1 замыкается и через балласт L1 появляется напряжение сети. лампа и стартер, которые работают параллельно (через нагреватель нити). Напряжение в сети недостаточно велико для ионизации газа в лампе, который по-прежнему ведет себя как изолятор, но этого достаточно, чтобы ионизировать газ внутри стартер, который ведет себя примерно как неоновое свечение напольная лампа. Теперь в цепи протекает небольшой ток, который нагревает стартер.Это часто можно наблюдать, поскольку стартер обычно светится слабым синим светом. свет.
Стартер светится при нагревании (нажмите, чтобы увеличить).
На этом этапе был измерен ток 38,5 мА. Слишком низкий для предварительного нагрева электродов в трубке, которые остаются темными; только стартер светится. Из-за индуктивности балласта этот ток является реактивным: cos (φ) из 0.79 было измерено, что соответствует углу φ 38 °. При сетевом напряжении 237 В полная полная мощность составляет 9,1 ВА. а активная мощность — 7,2 Вт.
Продолжительность этой фазы непостоянна и зависит от многих факторов, таких как напряжение в сети, температура окружающей среды, возраст стартера и т. д., но это полсекунды диапазона. Измеренная здесь длительность составила 550 мс.
Напряжение и ток лампы (стартера) при разогреве стартера
(светится).
Кривые выше показывают напряжение на пускателе (и, следовательно, также поперек лампы) на этом этапе. Сбои в синусоиде напряжения указывают на каждом цикле, когда именно стартер начинает светиться и при выключении. Здесь стартер ионизируется примерно при 230 В и деионизируется примерно при 180 В. Конечно, каждую половину цикла переменного тока напряжение падает до нуля, и газ в стартер деионизируется. Он снова будет ионизироваться в следующем полупериоде, как только напряжение станет высоким. достаточно.График тока (синий) показывает, что проводимость стартера не нарушена. симметричный: положительные пики имеют больший ток, чем отрицательные. Я не знаю точно, почему это происходит, полагаю, это из-за несимметричная форма электродов внутри стартера. В любом случае этот ток небольшой и используется только для нагрева стартера: он не обязательно быть симметричным.
Шаг второй
Стартер нагревается, и биметаллический переключатель внутри него в конце концов замыкается.Теперь у стартера произошло короткое замыкание, он перестает светиться и начинает остывать. Когда стартер замыкается, через нити лампы протекает больший ток, который теперь подключены последовательно через закороченный стартер и нагреваются. Нагревание электродов трубки значительно снижает напряжение зажигания лампы. Кстати, по этой причине запускать холодные лампы в холодную среду не рекомендуется. намного сложнее, чем повторно зажигать горячие лампы. Итак, нити теперь раскалены докрасна, и этот красноватый свет часто может быть наблюдается на концах трубки во время этой фазы.Из-за высокой излучательной способности электродов (белое) свечение Также часто наблюдается флуоресцентное покрытие концов трубок.
Во время этой фазы ток составляет 589 мА. Было измерено cos (φ) 0,23, что соответствует углу φ 77 °. При сетевом напряжении 236 В полная полная мощность составляет 139 ВА. и полная активная мощность 31,5 Вт.
Напряжение и ток лампы при нагреве (короткое замыкание стартера), измеренные
через обе нити последовательно.
Обе нити теперь включены последовательно и имеют одинаковый ток и половину Напряжение. Среднеквадратичное значение напряжения на каждой нити накала составляет около 11 В. Каждая нить накала получает около 6,5 Вт, поэтому из 31,5 Вт 13 Вт нагревают электроды, а 18,5 Вт теряется в балласте. Ток и напряжение в нити совпадают по фазе, низкий общий cos (φ) возникает только из-за реактивного сопротивления балласта.
Как и раньше, продолжительность этой фазы также в какой-то степени неустойчива и зависит от много факторов, но он также находится в диапазоне полсекунды.Измеренная здесь длительность составила 400 мс.
Шаг третий
Когда стартер остывает, биметаллический переключатель снова размыкается, прерывая Текущий. Поскольку катушки индуктивности не «любят» резкие перепады тока, балласт отвечает на это прерывание с помощью всплеска высокого напряжения, который возможно, ионизируйте лампу и зажгите ее. Поскольку точным моментом открытия стартера в этой контура (определяется охлаждением стартера, его возрастом, общим температура ,…), это может произойти в неподходящий момент цикла переменного тока, когда ток уже довольно низкий; произойдет скачок низкого напряжения и лампа может не ударить. В этом случае на пускателе снова появится полное сетевое напряжение. и весь процесс начнется снова с первого шага. Старые и холодные лампы также требуют более высокого напряжения, и их сложнее забастовка.
Пусковой импульс высокого напряжения (–2,78 кВ).
Некоторые паразитные импульсы высокого напряжения также видны до того, как лампа загорится и
возникают из-за плохих контактов стартера.
Яркие плюсы очень разнообразны. Они не всегда попадают в лампу, могут быть положительными или отрицательными и сильно зависят от времени фазового соотношения при открытии, которое является термомеханическим процесс и не синхронизирован с частотой сети. Другими факторами, влияющими на амплитуду импульсов, являются скорость, с которой биметаллические электроды ломаются, газ, заполняющий стартер, его возраст и возможно другие.Показанный здесь — –2,78 кВ, но импульсы от 1 до 3 кВ, как положительные, так и отрицательные стороны наблюдались с помощью одной и той же установки (лампа, стартер и балласт).
Шаг четвертый
Когда загорается лампа, напряжение на ней падает, и именно в этом Трубка держит напряжение около 100 В. Каждую половину цикла переменного тока ток падает до нуля, и лампа должна снова загореться. каждый раз. Из-за фазового сдвига, вносимого индуктивным балластом, когда ток пересекает ноль и меняется на противоположное, напряжение не равно нулю, так что лампа может немедленно возобновить зажигание только с помощью сетевого напряжения, пока лампа горячий и газ не деионизируется слишком долго, нет дополнительного высокого напряжения необходимы импульсы.Если лампу выключить, электроды остынут и почти все ионы в газе рекомбинируют: теперь требуется новая последовательность запуска, чтобы снова зажгите лампу.
Напряжение на стартере (а также на лампе) и ток лампы при включенной лампе.
Кривая на рисунке выше показывает, что ток лампы и напряжение лампы находятся в фаза, что имеет смысл, поскольку лампа потребляет активную мощность.Напряжение в сети здесь не показано (к сожалению, у меня нет двух высоких датчики напряжения), но не в фазе из-за реактивного сопротивления балласта. Другими словами, ток лампы и напряжение лампы совпадают по фазе, но из-за балласта, тока лампы и сетевого напряжения нет. Каждый раз, когда лампы выключаются (ток падает до нуля), напряжение сразу же подскакивает до значения более 300 В при противоположной полярности. Это просто напряжение сети, которое появляется на лампе.Из-за значительного фазового сдвига балласта сетевое напряжение составляет близко к своему пику, когда это происходит, что объясняет внезапный всплеск. Поскольку трубка сейчас горячая (и, вероятно, также имеет более низкое напряжение зажигания, чем стартер), он сработает первым, быстро вернув напряжение к напряжение горения (около 100 В) и предотвращение накала стартера.
Если лампа погаснет, напряжение повысится, и стартер ионизируется. начиная с первого шага.Вот что происходит со старыми или поврежденными лампами, которые постоянно мерцают. «надежда» снова включиться в один прекрасный день.
Напряжение и ток сети при включенной лампе. Фазовый сдвиг хорошо виден.
При сетевом напряжении 236 В общий ток составляет 385 мА и cos (φ) составляет 0,49, что соответствует углу φ 60 °. Полная мощность составляет 90,9 ВА, а активная мощность — 44.9 Вт. Мощность, теряемая в балласте, составляет 5,5 Вт, а трубка поглощает 39,4 Вт. приводит к КПД 88%: неплохо для такой простой схемы. Более высокая эффективность может быть достигнута с помощью лучшего индуктивного балласта (встроенный с большим количеством меди и большего количества железа, чтобы минимизировать его потери) или с электронным балласт. Конечно (и к сожалению) лампа не может преобразовать всю энергию в свет.
Резюме поразительной последовательности
Теперь, когда мы прошли все этапы поразительной последовательности, давайте резюмируйте это и посмотрите, что происходит, в более общем плане.На графике ниже видно напряжение на пускателе:
Напряжение на стартере (а также на лампе) при всех пусках
процесс.
Поскольку это измерение проводится на стороне запуска нитей,
напряжение нагрева не видно и появляется как короткое замыкание.
Хорошо видны разные шаги. На нулевом шаге (лампа не горит) нет напряжения. Когда SW1 замкнут (первый шаг), стартер ионизируется и начать нагреваться.Примерно через полсекунды закорачивает стартер (шаг два) и электроды лампы начинают нагреваться, пока стартер остывает вниз. Поскольку лампа закорочена стартером, напряжение на стороне стартера нити, измеренные здесь, показывают ноль. Конечно, на нити накала, которые сейчас светятся, есть напряжение, но они не могут соблюдать здесь. Еще через полсекунды стартер снова остывает и открывается. (шаг 3) генерирование скачка высокого напряжения, который зажигает и включает лампу (шаг четвертый).
Также интересно посмотреть напряжение на балласте (внизу), где эти же шаги можно наблюдать снова. Обратите внимание, что это измерение было проведено на том же оборудовании, но несколько минут спустя, поэтому продолжительность различных шагов будет другой.
Напряжение на балласте во время всего процесса пуска.
Амплитуда этого напряжения дает приблизительное представление о токе, протекающем в схема.
Присутствуют паразитные импульсы, когда предполагается, что стартер закорочен. Это означает, что его контакты не совсем надежны, и иногда он открывается для крошечная доля секунды. Даже если эти импульсы достаточно сильны, чтобы поразить лампу, этого не происходит. потому что при повторном замыкании контактов лампа закорачивается и не может включиться. Он включится только после последнего импульса, когда стартер наконец откроется. и остается открытым.Блуждающие импульсы не вредят, и схема работает нормально.
Посмотрите фильм, в котором показана полная поразительная последовательность:
люминесцентная лампа.mp4
(3781910 байт, 11 с, h364,
960 × 540, 24 кадра в секунду).
Прочие соображения
До сих пор мы обсуждали, как запускается лампа и ее электрические характеристики. Давайте теперь посмотрим на некоторые другие соображения, такие как коэффициент мощности или спектр света.
Фазирующий конденсатор
Из-за индуктивности балласта эта схема имеет плохое питание. коэффициент: я измерил cos (φ) , равный 0,49. Поскольку все нагрузки, подключенные к сети, должны иметь cos (φ) как как можно ближе к 1, нужно что-то сделать для его улучшения. Есть несколько разных решений этой проблемы, но самое простое (и единственное, что здесь обсуждается) — просто подключить подходящий конденсатор в параллельно с электросетью.
Чтобы узнать необходимую емкость, нам сначала нужно рассчитать реактивную мощность, которую нам нужно компенсировать. Ранее мы обнаружили, что полная мощность S составляет 90,9 ВА, в то время как активная мощность P составляет 44,9 Вт. Если вам интересно, как их измерить, определение кажущейся мощности довольно просто: просто измерьте среднеквадратичный ток сети (здесь I = 385 мА ) и напряжения (здесь U = 236 V ) мультиметром и умножьте их вместе: S = U · I = 90.9 ВА . Определить активную мощность сложнее: если у вас есть измеритель мощности переменного тока, он сразу даст вам P , и это то, что я сделал. В противном случае вы можете измерить фазовый угол φ либо с помощью осциллографом (как и я) или кософиометром (если он у вас есть) и затем вычислить P = S · cos (φ) . Но если у вас нет этого модного оборудования, вы все равно можете использовать метод трех вольтметров.
Зная S и P , можно рассчитать реактивную мощность Q по формуле ниже.Жалко, что в электронике le буквенное обозначение Q используется как для реактивная мощность цепи переменного тока и добротность цепи LC: на этой странице Q — реактивная мощность.
Это не что иное, как теорема Пифагора, где S — это гипотенуза и P и Q — две другие стороны правой треугольник. Со значениями S и P , которые были измерены ранее, мы находим Q = 79.0 var .
Напоминаем, что активная мощность P измеряется в ваттах (Вт), полная мощность S измеряется в вольт-амперах (ВА), а реактивная мощность Q измеряется в реактивных вольт-амперах (вар). Это просто для того, чтобы различать их и избежать путаницы, даже если физически все эти три единицы имеют измерение силы.
Чтобы компенсировать эту индуктивную реактивную мощность, мы вводим равное количество емкостная реактивная мощность, с конденсатором, включенным параллельно сети.Реактивное сопротивление X , создающее такую реактивную мощность, определяется как:
Где U — напряжение сети. Находим X = 705 Ом . Наконец, с определением необходимой емкости C со следующими уравнение:
Где f — частота сети (в данном случае 50 Гц). Находим 4,5 мкФ. Этот конденсатор должен быть рассчитан на прямое подключение к сети: используйте только конденсаторы класса X (или Y).
ПРА прочие
Доступны не только индуктивные балласты. Индуктор простой серии работает только при напряжении сети 230 В. В странах с сетевым напряжением 120 В, в зависимости от длины трубки и мощность, напряжение может быть слишком низким, чтобы лампа продолжала гореть, поэтому балласты немного отличается и работает как автотрансформатор для увеличения напряжения и ограничить ток в то же время.
Некоторые балласты автотрансформаторного типа могут также работать без стартера, с или без подогрева электродов.Импульс высокого напряжения, необходимый для зажигания лампы, может генерироваться резонансный контур, состоящий из дополнительного конденсатора. Дополнительные обмотки в балласте могут использоваться для предварительного нагрева нитей, если требуется. Запуск трубки без предварительного нагрева нитей возможен, но чем выше требуемое напряжение обычно вызывает разбрызгивание электродов, которое изнашивается преждевременно.
В настоящее время электронные балласты заменяют старые индуктивные, особенно из-за их более высокой эффективности, лучших пусковых характеристик и возможность приглушить свет.Кстати, диммирование люминесцентных ламп индуктивным балластом возможно. до некоторой степени, но когда яркость ниже заданного порога, основной ток слишком низкий, чтобы нити оставались достаточно горячими, и дополнительный ток нагрева должны циркулировать в электродах, например, с дополнительным трансформатор. К сожалению, снижение яркости до 0% невозможно.
Взгляд на спектр света
Как объяснялось выше, свет, излучаемый флуоресцентными трубки обычно преобразуются из ультрафиолетового в видимое излучение за счет сочетания флуоресцентные пигменты.При наблюдении с помощью светового спектрометра излучаемый спектр не меняется. непрерывен, как лампа накаливания, но состоит из несколько пиков, каждый из которых более или менее соответствует определенному пигменту. Это объясняет, почему некоторые объекты при флуоресцентном освещении выглядят другого цвета. осветительные приборы.
Спектр излучаемого света, пики различных флуоресцентных материалов
хорошо видны.
Свет кажется холодным белым и имеет температуру 4 200 К.
По горизонтальной оси отложена длина волны в нанометрах, по вертикальной оси. интенсивность света в произвольной, но линейной единице. Эта конкретная трубка имеет холодное белое покрытие и рассчитана на цветовая температура 4’200 тыс.
Заключение
Некоторые измерения и рекомендации по люминесцентным лампам (с горячим катодом) были представлены.На этой странице нет ракетостроения, но есть только некоторые необычная электрическая информация о люминесцентных лампах и их свечении закуски.