Меню Закрыть

Гидравлический руль – Гидроусилитель рулевого управления: устройство и принцип работы

Содержание

Какие бывают усилители рулевого управления?

Современный автомобиль сложно представить без усилителя рулевого управления. Ведь легкость вращения «баранки» — один из важнейших потребительских параметров. Разные производители предлагают различные варианты усилителей. Чем они отличаются друг от друга?

Первые усилители были использованы серийно в 30-х годах ХХ века на грузовиках. Тогда водитель уже с трудом справлялся с поворотами колес, несмотря на огромный диаметр «баранки», и даже помощнику шофера (тогда существовала и такая должность) помимо обязанностей по обслуживанию автомобиля добавили новую повинность – в крутых виражах он помогал крутить руль. По сути, машиной управляли «в четыре руки».

Пневматический усилитель руля

Поскольку в тормозах работал сжатый воздух, решение лежало на поверхности — сделать усилитель пневматическим.  Такие устройства были просты и дешевы, но очень шумны. При этом точно спрогнозировать, насколько надо крутить «баранку», чтобы вписаться в поворот, мог только очень опытный водитель. Дело в том, что пневматика работала по принципу «включено-выключено» — если руль повернуть чуть-чуть, усилитель не работал, на больших же углах «баранка» уже не сопротивлялась вращению, а уже сама рвалась из рук и колеса мгновенно выворачивались полностью. А попадись на дороге яма или выбоина, колеса из-за большой упругости воздуха могли повернуть, куда им вздумается.

Гидравлический усилитель руля

Поэтому в середине столетия воздух сменила жидкость. Гидравлические усилители лишены недостатков предшественника. Приводимый двигателем насос создает необходимое давление. Распределитель, связанный с рулевым валом, отслеживает угол поворота «баранки» и сопротивление на ней, дозируя количество масла, направляемого в дополнительное устройство, которое и поворачивает колеса. Оно может стоять отдельно от рулевого механизма или составлять с ним единое целое. В последнем случае гидроусилитель называют интегральным. Его-то в основном и применяют на легковых автомобилях — от «Лады» до «Мерседеса».

Гидроусилитель еще и сглаживает толчки от неровностей дороги, приходящие на «баранку». При этом «гидравлика» настолько эффективна, что позволяет удержать машину на дороге, даже если вдруг лопнет покрышка и сопротивление на рулевом колесе резко многократно возрастет. Улучшается маневренность — от упора до упора «баранку» крутить надо меньше.

Минусы гидроусилителя вытекают из его сложности. В нем необходимо контролировать уровень жидкости, следить за герметичностью магистралей, менять масло и т.п. Насос усилителя работает постоянно, независимо от того, поворачивает водитель руль или нет. Значит, двигатель теряет впустую ни много ни мало около 7% мощности (для городской микролитражки — существенная цифра). Давление в системе напрямую зависит от оборотов коленвала. Поэтому при маневрах на малых скоростях или при быстром вращении «баранки» производительности насоса не хватает. Руль, как говорится, «закусывает». А на трассе он, наоборот, становится «пустым», теряется «чувство дороги» — ведь при высоких оборотах мотора усилитель работает по максимуму, чтобы решить эту проблему применяют специальные устройства (насос с переменной производительностью, различные клапаны, модуляторы и т.д.), усложняя и удорожая и без того сложный механизм. Кроме того, вся система очень тяжелая. Покупателю это не принципиально, а вот конструктор для сохранения заданных параметров автомобиля (ресурс, максимальная скорость и т.д.) вынужден увеличивать мощность двигателя, усиливать другие элементы, что в свою очередь удорожает машину.

Электрогидроусилитель

Электрогидроусилитель лишен большинства недостатков «чистой» гидравлики. Такие устройства устанавливаются, например, на «Ford Focus» второго поколения. По конструкции электрогидравлический усилитель аналогичен гидравлическому, но только давление в нем создает насос, приводимый не двигателем машины, а собственным электромотором. Его работой руководит электроника. Иногда водитель даже сам может выбрать режим работы. Например, «городской» (руль работает легче) или «движение по трассе» (руль становится «тяжелее», что повышает точность управления на высоких скоростях). Производительность электрогидроусилителя не зависит от оборотов мотора, его мощность теряется только на привод генератора, но масса системы в целом и ее сложность остаются на прежнем уровне. Таким образом, электрогидроусилитель – переходный вариант от гидравлики к электроусилителю.

Электроусилитель руля

Электрический усилитель год от года все популярнее. Им оснащены большинство автомобилей последних моделей. Его конструкция проще, чем у гидро- и электрогидроусилителя — электромотор просто доворачивает рулевой вал.

Электроусилитель компактен и расположен на рулевой колонке. Командует им электронный блок, собирающий и обрабатывающий сигналы от нескольких датчиков (углы и скорости поворотов «баранки», скорость автомобиля, обороты двигателя и т.п.). Такой усилитель в целом легче и проще своих предшественников, не требует обслуживания‚ но усилие на руле многим водителям кажется искусственным. У них возникает ощущение управления автомобилем в компьютерной игре. Тем не менее большинство изготовителей работает над совершенствованием именно этой системы. Ведь кроме всего прочего, электроусилитель позволяет реализовать большинство новомодных функций: автопарковка, удержание машины в своей полосе, а также будущее использование автопилотов. А это значит, что электрические усилители – самые перспективные.

carwow.ru

Гидроусилитель руля — Википедия

Следящий гидропривод. Сверху показан золотник, переключающий гидравлические потоки в соответствии с положением штока золотника. Снизу силовой гидроцилиндр двойного действия, осуществляющий перемещение конструкции в двух направлениях Насос ГУР (16) с ременным приводом от двигателя и стоящий на нём бачок на грузовике ЗИЛ-131

Гидравлический усилитель руля (ГУР) — автомобильная гидравлическая система, часть рулевого механизма, предназначенная для облегчения управления направлением движения автомобиля при сохранении необходимой «обратной связи» и обеспечении устойчивости и однозначности задаваемой траектории[1].

Гидроусилитель руля устроен так, что при отказе усилителя рулевое управление продолжает работать (хотя руль при этом становится более «тяжёлым»).

В Советском Союзе (СССР) впервые был применён в 1950 г. на карьерном самосвале МАЗ-525. Первый советский легковой автомобиль, оснащенный ГУР — автомобиль высшего класса ЗИЛ-111 (1958 г.).

Назначение и устройство гидроусилителя рулевого управления

Для уменьшения усилия, затрачиваемые при повороте рулевого колеса, смягчения ударов, передающихся на рулевое колесо при наезде управляемых колес на неровности дороги, и повышения безопасности при разрыве шин переднего колеса в конструкцию рулевого управления некоторых автомобилей вводят специальные гидроусилители.

Устройство

Гидроусилитель представляет собой замкнутую гидравлическую систему, состоящую из насоса, регулятора давления, бачка с запасом гидравлической жидкости, управляющего золотника и силового гидроцилиндра.

Насос (с приводом от двигателя автомобиля или электромотора), регулятор давления (обычно в виде перепускного клапана, сливающего избыток расхода насоса мимо золотника) и бачок с запасом гидравлической жидкости предназначены для создания рабочего перепада давлений в гидросистеме усилителя.

Силовой гидроцилиндр двойного действия (то есть умеющий создавать усилие в двух направлениях) в современных легковых автомобилях обычно интегрируется с рулевой рейкой и передает усилие на неё. Золотник устанавливается на рулевой колонке и реагирует на вращательный момент на валу колонки.

Придумано множество способов преобразовать вращательный момент рулевого колеса в работу золотника. Большинство основаны на подвижности отдельного участка вала рулевой колонки. В современных машинах роль подвижного элемента колонки обычно играет торсион — радиально пружинящий участок вала рулевой колонки. Золотник реагирует на угловой сдвиг между концами торсиона при наличии усилия на руле. Существуют конструкции с осевой подвижностью участка вала рулевой колонки: осевое перемещение задается винтовой передачей, преобразующей вращательное усилие руля в поступательное движение штока золотника. В некоторых конструкциях усилие поворота колес регистрируется не на рулевой колонке, а на других узлах передачи усилия от руля к колесу.

Пример гидроусилителя, совмещённого с рулевым механизмом — гидроусилитель, применяемый на автомобилях ЗИЛ-130 и ЗИЛ-131

Принцип работы гидроусилителя руля автомобиля ЗИЛ-130:

При прямолинейном движении автомобиля золотник за счёт пружин удерживается в нейтральном положении, при этом все каналы золотника открыты.

При повороте — при вращении руля винт вращается и вкручивается в шариковую гайку. При этом он смещается вместе с золотником и подшипниками и смещает плунжеры, сжимая пружины. Как только подшипники упрутся в корпус, винт с золотником перестанет смещаться, а смещаться начнёт шариковая гайка с поршнем и рейкой, при этом как бы накручиваясь на винт. При смещении золотника центральный канал от насоса останется связанным с одним из боковых каналов, а другой боковой канал останется связанным с каналом слива. При смещении поршня усилие будет передаваться от рейки сектору, а от него через вал сошке. Так как центральный канал от масляного насоса связан с одним из боковых каналов, то масло пойдёт из него в одну из полостей гидроцилиндра и будет давить на поршень, помогая смещать его и облегчая усилие, прилагаемое на рулевое колесо.

При прекращении вращения руля винт перестаёт вкручиваться в гайку и минимальное движение поршня передаётся на винт и золотник. Золотник возвращается в нейтральное положение. Все каналы открываются, масло от насоса начинает уходить на слив, и усилитель прекращает свою работу. Кроме того, возвращению золотника в нейтральное положение способствуют пружины, давящие на плунжеры и на подшипники.

При увеличении сопротивления повороту начнёт возрастать давление в линии от насоса через золотник в одну из полостей гидроцилиндра. Эта линия связана с полостью между плунжерами, где находятся пружины. Повышенное давление будет давить на плунжеры, а они — на подшипники. Плунжеры будут стараться вернуть золотник в нейтральное положение. Часть масла начнёт уходить на слив, а водитель почувствует дополнительное сопротивление вращению руля — следящее действие за усилием.

При неработающем двигателе насос не накачивает масло и усилитель не работает. Управление автомобилем может осуществляться. При вращении руля поршень смещается и вытесняет масло из одной полости в другую через обратный клапан, и масло не мешает движению поршня.

Пример гидроусилителя, совмещённого с продольной тягой — гидроусилитель, применяемый на автомобилях МАЗ и КрАЗ-255

Принцип работы гидроусилителя руля автомобиля КрАЗ-255:

При прямолинейном движении — золотник находится в нейтральном положении, все каналы открыты и масло от насоса уходит на слив.

При повороте усилие от рулевого колеса передаётся через рулевой механизм на сошку. Сошка тянет шаровый палец, а он смещает стакан и золотник примерно на 1 мм. Как только стакан упрётся в корпус, усилие будет передаваться корпусу, а от него через другой шаровый палец продольной тяге и далее. Так как золотник сместился, канал от насоса остался связанным только с одной полостью цилиндра, а другая полость осталась связана с каналом слива. Масло, поступающее в цилиндр, смещает корпус за счёт давления в ту сторону, в которую его тянет сошка, облегчая водителю поворот руля. Масло, поступающее в цилиндр, давит на корпус за счёт давления, а опорой для него является поршень и шток, соединенные с балкой переднего моста.

При прекращении поворота руля золотник возвращается в исходное положение за счёт остаточного давления масла, которое давит на торец золотника. Торцевая полость золотника связана с основным каналом отверстием в бурте.

При увеличении сопротивления повороту растёт давление в усилителе, которое действует и на торцевую поверхность золотника и старается вернуть его в исходное положение, создавая дополнительное сопротивление на рулевом колесе. Следящее действие осуществляется по принципу остановки вращения руля.

Эксплуатация

Automatic transmission fluid (ATF) Dexron III

Для предотвращения возникновения аварийно-опасных ситуаций, связанных с отказом системы рулевого управления автомобиля, необходимо периодически производить контроль наличия масла в бачке ГУРа. При заметном снижении его уровня, не связанного с температурой, углом поворота колес, наклоном автомобиля и т. п., необходимо проверить герметичность узлов гидравлического контура: шланги, места их вводов и т. д.

Для увеличения срока службы элементов ГУРа и системы в целом, рекомендуется один раз в 1—2 года производить замену рабочей жидкости.

В инструкции по эксплуатации большинства автомобилей подчеркивается, что нельзя удерживать колеса в крайнем положении более 5 сек, так как это может привести к перегреву масла, вплоть до его закипания, и выходу системы из строя.

В качестве рабочей гидравлической жидкости (а также смазочного масла деталей гидроусилителя) применяется:

На советских грузовых автомобилях применяется веретенное (индустриальное) масло.
На современных автомобилях применяется или жидкость для гидроусилителей (Power steering fluid) или жидкость для автоматических трансмиссий (Automatic transmission fluid или ATF или Dexron III).

Перед заливкой масла в агрегат нужно читать инструкцию по эксплуатации.

Сервомеханизмы

Сервомеханизм является разновидностью гидравлического усилителя рулевого управления. Применяются сервомеханизмы на гусеничной технике для уменьшения усилия, прилагаемого на рычаг управления при повороте.

Устройство сервомеханизма трактора Т-130:

  • Корпус
  • Толкатели
  • Поршни
  • Пружины
  • Рычаги с валиками
  • Плунжер
Принцип работы сервомеханизма трактора Т-130:

При прямолинейном движении — отверстия в поршнях открыты и масло через них уходит от насоса на слив. При повороте — усилие от рычага передаётся толкателю. Толкатель прижимается к поршню, закрывает отверстие в поршне и давит на него. Перед поршнем начинает возрастать давление, за счёт него смещается плунжер и закрывает канал ко второму поршню. Так как масло теперь поступает только к закрытому поршню, давление возрастает настолько, что начинает смещать поршень, от поршня усилие передаётся на рычаг-валик-рычаг-вилка. При отпускании рычага — отверстие в поршне открывается, масло уходит на слив, давление падает, и все детали возвращаются в исходное положение.

См. также

Примечания

Ссылки

wikipedia.green

Гидроусилитель рулевого управления автомобиля (ГУР)

Сейчас почти каждый современный автомобиль оборудуется гидравлическим усилителем рулевого управления. Основная задача этого механизма заключается в создании дополнительного усилия на элементы рулевого управления для облегчения поворота колес во время маневрирования.

Изначально гидроусилитель устанавливался исключительно на грузовые авто и с/х технику по одной простой причине – без этого механизма управлять грузовиком или трактором очень сложно. Но со временем ГУР стал появляться и на легковых авто.

На небольших скоростях и при стоянке для поворота управляемых колес водителю на авто без ГУР приходится прилагать значительные усилия, на большой же скорости сопротивление снижается, то есть для совершения маневра усилия со стороны водителя снижаются.

Усилитель же обеспечивает одинаковое усилие, которое должен приложить водитель, как при малых, так и значительных скоростях. Поэтому парковка, маневрирование при начале движения с гидроусилителем руля значительно легче.

Гидроусилитель не только повышает комфортабельность при поездках но и  дополнительно повышает безопасность, поскольку позволяет удержать автомобиль на дороге в случае пробития колеса на скорости.

Также на рулевом механизме наличие ГУРа позволяет уменьшить передаточное число. То есть, снижается количество оборотов рулевого колеса.

Конструкция гидроусилителя руля

Содержание статьи

Конструкция гидроусилителя

Любой гидравлический усилитель рулевого управления, какую бы он не имел конструкцию, состоит из ряда основных составных элементов:

  1. насос;
  2. распределительное устройство;
  3. исполнительный механизм;
  4. трубопроводы;
  5. бачок для жидкости;

Все составляющие компоненты ГУР соединены при помощи трубопроводов в закрытую систему, по которой циркулирует жидкость под давлением. Именно она и является главным рабочим элементом системы.

Устройство насоса гидроусилителя руля

Насос включен в схему для создания давления жидкости. В работу он может приводится либо от шкива коленвала посредством ременной передачи, либо же от электродвигателя. Регулировка давления же осуществляется перепускным клапаном, включенным в систему.

Распределительное устройство обеспечивает перераспределение потоков жидкости, которая подается от насоса. Основным элементом его является золотник, который при перемещении открывает и закрывает необходимые каналы.

Если колеса авто установлены ровно, то золотник соединяет между собой трубопровод высокого давления, по которому подается жидкость с патрубком обратной подачи. То есть, жидкость от насоса подается на распределитель и сразу возвращается обратно на него, не выполняя никаких действий. А вот при повороте колеса золотник смещается, открывая и закрывая требуемые каналы, и жидкость направляется на исполнительный механизм.

Этот механизм представляет собой гидроцилиндр двойного действия. В нем имеется поршень, разделяющий цилиндр на две полости. Во время поворота распределитель подает жидкость в необходимую полость, которая за счет давления заставляет перемещаться в необходимую сторону. При этом поршень связан с рулевым механизмом, поэтому при перемещении он передает усилие на механизм.

Виды и их конструктивные особенности ГУР

Ещё кое-что полезное для Вас:

Видео: Устройство гидроусилителя руля.

Существует несколько видов гидроусилителей, отличающихся по своей конструкции:

  • раздельный;
  • комбинированный;

ГУР с раздельной конструкцией применялся на ряде грузовиков. Особенностью его являлось то, что распределитель устанавливался на рулевом механизме, а вот гидроцилиндр устанавливался отдельно и был поршнем связан с рулевой трапецией посредством рычага. При повороте рулевого колеса золотник распределительного устройства подавал жидкость в требуемую полость, и поршень, перемещаясь, тянул или толкал рычаг рулевой трапеции.

На легковых же авто распространение получила комбинированная конструкция гидроусилителя. Ее особенность заключается в том, что распределитель и гидроцилиндр входят в конструкцию рулевого механизма.

При этом поршень цилиндра располагается непосредственно на рулевой рейке.

При повороте колес в определенную сторону, золотник, смещаясь, открывает нужные каналы, жидкость поступает в требуемую полость и давит на поршень, тот смещается вместе с рейкой.

Принцип работы гидроусилителя руля

Теперь более подробно рассмотрим принцип работы комбинированного ГУР.

В распределительном механизме такого усилителя используется золотник поворотного типа. То есть открытие и закрытие каналов производится за счет проворота этого элемента вокруг оси.

В нейтральном положении, когда колеса авто установлены ровно, золотник соединяет между собой нагнетательную магистраль с трубопроводом обратной подачи. Кроме того открытыми остаются и каналы, ведущие на полости гидроцилиндра.

То есть жидкость не только циркулирует от насоса на распределительное устройство и обратно, она еще и подается в полости, причем в равных количествах и с одинаковым давлением.

При повороте колеса влево, золотник проворачивается, при этом подающая магистраль соединяется с трубопроводом, ведущим к левой полости. Жидкость подается в нее и начинает воздействовать на поршень. При этом золотник соединяет трубопровод обратной подачи с правой полостью, чтобы не создавалось противодействующего давления, и жидкость из нее уходит к насосу.

Если руль выкручен не до упора и оставлен в таком положении, золотник вернется в исходное положение, из-за чего произойдет выравнивание давления в полостях и поршень перестанет перемещаться.

При повороте колес вправо будут происходить процессы, противоположные описанным.

Недостатком такого гидроусилителя является то, что давление, подаваемое на гидроцилиндр одинаково как на малой так и большой скорости. А поскольку при увеличении скоростного режима сопротивление рулевого механизма снижается, то это приводит к такому эффекту как «пустой руль». Результатом такого явления становиться потеря водителем «чувства дороги» из-за того, что руль вращается очень легко.

Чтобы избавиться от этого негативного эффекта, в конструкцию ГУР часто включаются электронные элементы, контролирующие работу усилителя и регулирующие ее в зависимости от скорости.

Все достаточно просто – в систему включен электромагнитный клапан, работающий от электронного блока управления. ЭБУ считывает показания датчиков (скорости, частоты вращения коленвала), и при повышении скорости он подает сигнал на электромагнитный клапан, которые плавно снижает давление жидкости, подаваемой на распределитель. То есть, усилие ГУР на рулевой механизм будет снижаться.

avtomotoprof.ru

Гидроусилитель руля (ГУР) — устройство, принцип работы, недостатки

В последнее время, практически все автомобили комплектуются гидроусилителем рулевого управления. Гидроусилитель руля (ГУР) изначально был предназначен для грузовых автомобилей, а также многих всевозможных видов различной техники сельскохозяйственного назначения. В то время данное устройство было предназначено вовсе не для улучшения комфорта. Это связано с тем, что руль многих грузовых автомобилей практически невозможно повернуть без усилителя. Сейчас же он упрощает поворот колес и легковых автомобилей, уменьшая передаточное число механизма и диаметр рулевого колеса. Что же такое гидроусилитель руля и как он работает, а также рассмотрим его достоинства и недостатки.

Гидроусилитель — что это и зачем

Как вы уже поняли, изначально он создавался для упрощения поворота рулевого колеса на специальных автомобилях, где он затруднен в связи с большим передаточным числом рулевого механизма. Сейчас же это устройство успешно применяется практически на всех автомобилях, делая их маневреннее и отзывчивее на повороты руля.

Практика показала, что применение гидроусилителя сокращает количество оборотов руля и помогает избежать множества аварийных ситуаций, путем резкого маневра в противоположную сторону. Сделать это с обычным рулевым механизмом даже реечного типа достаточно проблематично.

Схема устройства ГУР

Всего существует два вида гидроусилителей рулевого механизма: стандартный и ЭГУР, который комплектуется специальным электронным блоком управления и электромагнитным клапаном. В целом их конструкция схожа и прекрасно впишется в любой рулевой механизм. Сейчас же, большая часть автомобилей комплектуется рулевой рейкой, поэтому рассмотрим устройство ГУР и ЭГУР на ее примере.

В состав основных частей гидроусилителя входят:

  1. Распределитель золотникового типа
  2. Специальный насос
  3. Бачок, в котором хранится рабочая жидкость
  4. Рабочий цилиндр
  5. Система шлангов патрубков для перемещения жидкости

ЭГУР же может дополнительно комплектуется датчиком скорости, электромагнитным клапаном и специальным блоком управления.

Рабочий цилиндр и распределитель устанавливаются на рулевую рейку и представляют с ним единое целое. Назначение насоса заключается в том, чтобы создать необходимое давление жидкости и приводится в движение при помощи ременной передачи от коленчатого вала двигателя.

Как работает усилитель рулевого управления + Видео

После запуска двигателя, масляный насос начинает вращаться и создает давление внутри системы. Если руль стоит прямо, то жидкость просто циркулирует по системе, минуя золотниковую часть устройства. Однако, после поворота руля в какую либо сторону, рулевой вал воздействует на специальный торсион, который открывает золотник в какую-либо сторону. Таким образом, в работу начинает входить одна из полостей рабочего цилиндра, что упрощает усилие, прилагаемое на руль, колеса начинают поворачиваться быстрее.

Как только руль выворачивается до упора, масло достигает пиковой величины давления, оказываемого на рабочий цилиндр. В этом случае, чтобы избежать повреждений, срабатывает специальный клапан, который открывается и выпускает всю рабочую жидкость в свободную циркуляцию внутри системы. После возврата руля в исходное положение, клапан запирается, и рабочий цилиндр давит уже в другую полость, делая поворот руля быстрее.

Отличие электрогидроусилителя состоит в том, что он оборудован системой, которая позволяет менять давление рабочей жидкости внутри системы в зависимости от скорости движения автомобиля. Это осуществляется при помощи датчика скорости, частоты вращения коленчатого вала или датчика угла поворота рулевого колеса. Такое новшество позволяет отключать ЭГУР при движении на большой скорости, чтобы избежать слишком резких маневров и сделать руль более информативнее на какие-либо отклонения. Когда скорость автомобиля равна нулю, или слишком мала, то ЭГУР начинает работать на полную силу, создавая максимально допустимое давление в системе. Контроллер же нужен для более плавного или резкого открытия клапанов в зависимости от скорости движения автомобиля.

Недостатки

Несмотря на все удобство, такое устройство имеет и ряд недостатков. Прежде всего, это ременная передача, которая отбирает у двигателя определенную величину мощности и некоторая часть его КПД затрачивается на приведение в действие насоса. Таким образом, ГУР увеличивает расход топлива автомобиля и снижает его мощность.

Кроме того, гидроусилитель нуждается в тщательном уходе, потому как его неожиданный отказ воспринимается водителем, как клин рулевого колеса. Понимая это не сразу, неопытные шоферы бросаются в панику и допускают случайные столкновения с определенными препятствиями. Прежде всего, нужно поддерживать постоянную затяжку хомутов гидросистемы, а, во-вторых, менять жидкость ГУР два раза в год и следить за состоянием гидронасоса.

Бачок с рабочей жидкостью должен быть обязательно заполнен ею до необходимого уровня, иначе давление будет слишком избыточным или недостаточным.

vipwash.ru

Гидроусилитель руля Википедия

Следящий гидропривод. Сверху показан золотник, переключающий гидравлические потоки в соответствии с положением штока золотника. Снизу — силовой гидроцилиндр двойного действия, осуществляющий перемещение конструкции в двух направлениях Насос ГУР (16) с ременным приводом от двигателя и стоящий на нём бачок на грузовике ЗИЛ-131

Гидравлический усилитель руля (ГУР) — автомобильная гидравлическая система, часть рулевого механизма, предназначенная для облегчения управления направлением движения автомобиля при сохранении необходимой «обратной связи» и обеспечении устойчивости и однозначности задаваемой траектории[1].

Гидроусилитель руля устроен так, что при отказе усилителя рулевое управление продолжает работать (хотя руль при этом становится более «тяжёлым»).

В Советском Союзе (СССР) впервые был применён в 1950 г. на карьерном самосвале МАЗ-525. Первый советский легковой автомобиль, оснащенный ГУР — автомобиль высшего класса ЗИЛ-111 (1958 г.).

Назначение и устройство гидроусилителя рулевого управления[ | ]

Для уменьшения усилия, прикладываемого при повороте рулевого колеса, смягчения ударов, передающихся на рулевое колесо при наезде управляемых колес на неровности дороги, и повышения безопасности при разрыве шин переднего колеса в конструкцию рулевого управления некоторых автомобилей вводят специальные гидроусилители.

Устройство[ | ]

ru-wiki.ru

Гидравлический усилитель рулевого управления с электронным управлением

Чем выше скорость автомобиля, тем меньшие усилия должен прилагать водитель к рулевому колесу, чтобы изменить направление движения, что может привести к потере управляемости. Такая принципиальная закономерность характерна для всех систем рулевого управления (с постоянным и переменным передаточным отношением). Поэтому при разработке рулевого управления принимаются компромиссные решения.

Для улучшения управляемости автомобиля следует повышать крутящий момент при высоких скоростях и сводить его до минимума при малых скоростях движения и при парковке. Для выполнения этих требований современные легковые автомобили оснащаются гидроусилителями с электронным управлением и регулированием типа Servotronic. Эта система регулирует усилия на рулевом колесе в зависимости от скорости автомобиля.

Рис. Зависимость момента на рулевом колесе от скорости движения автомобиля при применении гидроусилителя типа Servotronic. Нулевая скорость соответствует парковке.

Усилитель руля Servotronic создан на базе обычного гидроусилителя. Измененная конструкция клапана управления с поворотным золотником позволяет реализовать принцип непосредственной гидравлической обратной связи. Применением электрогидравлического преобразователя и соответствующим приспособлением клапана управления удалось обеспечить зависимость степени усиления от скорости автомобиля.

Необходимое для работы системы Servotronic давление рабочей жидкости порядка 130 кгс/см2 создается гидронасосом обычной конструкции. Под этим давлением рабочая жидкость поступает к поворотному золотнику 7 клапана управления.

В свободном состоянии торсион удерживает клапан управления в среднем (нейтральном) положении.

Рис. Схема рулевого управления оборудованного гидроусилителем с электронным управлением:
1,7 – поворотный золотник; 2,5 – торсион; 3 – электронный блок управления; 4 – датчик сигнала скорости; 6 – штифт; 8 – насос гидравлический; 9 – резервуар; 10 — предохранительный и перепускной клапан; 11 – реактивный поршень; 12 – электромагнитный клапан; 13,18 – распределительная втулка; 14 – правая полость силового цилиндра;15 — левая полость силового цилиндра; 16 – подвод жидкости к правой полости; 17 – подвод жидкости к левой полости; 19- поршень; а – нейтральное положение; б – поворот вправо; в – поворот влево

В блоке клапана управления находится торсион 5. Верхняя часть торсиона соединена штифтом с золотником 7. Нижняя его часть соединена также штифтом с ведущей шестерней 19 и с втулкой распределителя 13. Торсион связан с рулевым валом через карданный шарнир. Соединения торсиона выполнены посредством штифтов 6.

Рис. Соединения торсиона:
5 – торсион; 6 – штифт; 7 – поворотный золотник; 13 – распределительная втулка; 19 – ведущая шестерня

Подаваемая гидронасосом рабочая жидкость поступает через входное сверление в корпус клапана управления и далее через кольцевой паз и радиальные отверстия в распределительной втулке клапана к регулирующим кромкам золотника. При нейтральном положении клапана рабочая жидкость перетекает через приточные кромки золотника 1 и поступает во все продольные пазы распределительной втулки и далее мимо сливных кромок золотника в его сливные пазы. Через эти пазы рабочая жидкость отводится в сливную полость и далее в бачок. При этом правая и левая полости силового цилиндра оказываются соединенными между собой через подключенные к ним трубопроводы и кольцевые пазы в корпусе клапана.

При повороте рулевого колеса налево создаваемый водителем крутящий момент передается на торсион 2, верхний конец которого соединен штифтом 6 с поворотным золотником, а нижний конец – с распределительной втулкой 18 и приводной шестерней рулевого механизма. В результате торсион скручивается подобно стабилизатору при наезде одного из колес автомобиля на неровность дороги.

При закрутке торсиона золотник вместе с верхней частью торсиона поворачивается в распределительной втулке, изменяя относительное положение пазов золотника и перепускных отверстий втулки. По мере поворота золотника относительно втулки одни каналы открываются, а другие закрываются.

Рабочая жидкость поступает через щели, раскрывающиеся при перемещении приточных кромок, в продольные пазы и далее через отверстие в кольцевой паз и через трубопровод в правую полость 14 силового цилиндра. На поршень 19 воздействует давление жидкости, что облегчает поворот рулевого колеса.

При поступлении рабочей жидкости в правую полость силового цилиндра происходит ее вытеснение из левой полости в сливную магистраль. Если отпустить рулевое колесо, распрямляющийся торсион вернет золотник в нейтральное положение относительно распределительной втулки.

При повороте рулевого колеса направо рабочая жидкость поступает в левую полость 15 силового цилиндра и происходит ее вытеснение из правой полости.

Электронный блок управления системы Servotronic обрабатывает сигнал скорости автомобиля и изменяет в соответствии с ним ток управления электромагнитным клапаном 4. При повышении скорости автомобиля блок управления системы уменьшает ток управления электромагнитным клапаном. В результате этот клапан частично открывается и перепускает ограниченное количество рабочей жидкости из приточного кольцевого паза 5 в полость 9 над реактивным поршнем 8. При этом жиклер 6 препятствует сильному оттоку рабочей жидкости на слив, благодаря чему в полости над реактивным поршнем создается достаточно высокое давление. В зависимости от величины этого давления изменяется усилие, передаваемое поршнем на шарики и далее на втулку распределителя. Чем выше давление рабочей жидкости, тем большие усилия создаются усилителем и тем большие усилия должен прилагать водитель к рулевому колесу.

Действующее на реактивный поршень давление передается на шарики 7, которые установлены между ним и скошенными поверхностями центрирующей втулки 10, жестко соединенной с распределительной втулкой. Точное центрирование клапана управления особенно благоприятно при движении автомобиля по прямой. При вращении клапана управления, находящиеся под нагрузкой шарики противодействуют повороту золотника относительно распределительной втулки. Таким образом, гидравлический способ создания реактивных усилий используется для повышения момента на рулевом колеса до уровня, подбираемого индивидуально для каждой модели автомобиля.

При высоких скоростях движения ток управления снижается до нуля, в результате чего электромагнитный клапан открывается полностью. В результате на реактивный поршень действует максимальное давление, соответствующее его величине в приточном кольцевом пазе. В результате этого при повороте рулевого колеса на реактивный поршень действует повышенное давление рабочей жидкости. Если действующее на реактивный поршень давление достигло установленного для данного автомобиля предела, открывается ограничительный клапан 3, через который рабочая жидкость перетекает в сливную полость. При этом дальнейший рост давления прекращается.

Рис. Блок клапана управления:
1 – распределительная втулка; 2 – сливная полость; 3 – ограничительный клапан; 4 – электромагнитный клапан; 5 – приточный кольцевой паз; 6 – жиклер; 7 – шарик; 8 – реактивный поршень; 9 – полость над реактивным поршнем;10 – центрирующая втулка

При небольшой или нулевой скорости движения сила протекающего через электромагнитный клапан тока достигает максимальной величины, в результате чего электромагнитный клапан 4 закрывается и предотвращает поступление рабочей жидкости в полость 9 над реактивным поршнем. При этом в полости над реактивным поршнем поддерживается такое же давление, как и в сливной полости 2, так как они соединены между собой посредством жиклера 6. Таким образом клапан управления системы Servotronic действует так же, как обычный клапан с поворотным золотником. Так как действие реактивного поршня отсутствует, для поворота колес автомобиля требуются относительно небольшие усилия на рулевом колесе.

При воздействии на рулевой механизм силы в противоположном направлении, например, в результате наезда на неровность, усилитель действует как демпфер. В этом случае торсион закручивается под действием усилия, передаваемого на него через рейку и ведущую шестерню. При этом золотник поворачивается из нейтрального положения относительно втулки распределителя. В результате рабочая жидкость поступает под давлением в ту полость силового цилиндра, которая создает противодействие движению рейки.

Рис. Схема работы гидроусилителя при наезде на препятствие

Например, при переезде неровности на колесо автомобиля действует сила FA, которая стремится его повернуть вокруг точки D (по часовой стрелке). При этом на рейку передается сила FZ, которая поворачивает шестерню и закручивает торсион. В результате открывается проход рабочей жидкости под давлением в правую полость силового цилиндра, а левая полость сообщается со сливом. Действующая на поршень и рейку реактивная сила FR уравновешивает силу FZ и противодействует таким образом повороту колес автомобиля.

На привод насоса гидроусилителя затрачивается значительная мощность (5…7 л.с.), поэтому в целях экономии топлива в современных автомобилях применяют гидравлические насосы с приводом не от коленчатого вала, а от электродвигателя, который включается в работу по сигналу блока управления. Такая конструкция позволяет также повысить долговечность насоса гидроусилителя, так как он работает только во время поворота рулевого колеса.

ustroistvo-avtomobilya.ru

Устройство гидроусилителя руля.

Управляемость автомобиля напрямую зависит от конструкции и состояния узлов рулевого управления. Практически все современные автомобили оснащаются гидроусилителем руля. Но не все автолюбители представляют принцип работы гидроусилителя руля. В связи с этим, когда машину начинает уводить в сторону, основная масса водителей пытается решить проблемы неправильной работы рулевого управления на «сход-развале». Конечно опытный развальщик может выставить углы установки колес таким образом, что бы они «сопротивлялись» уводу автомобиля в сторону из-за неправильной работы гидроусилителя. Например если неправильно работает золотниковый механизм, то давление в силовом цилиндре при повороте вправо и влево будет разным, а значит и усилие на руле будет разным. Другой пример, при отсутствии усилия на руле (прямолинейное движение автомобиля) рабочая жидкость все равно попадает в цилиндр под давлением по одной магистрали высокого давления, при этом руль, а самое главное и колеса, будет поворачиваться в сторону, при этом машину начинает тянуть. Бывали случаи, когда на стенде сход-развала (на пятаках) на заведенной машине, при отпущеном руле, колеса поворачивались сами до упора.  
 В золотниковом механизме (роторный управляющий клапан) совмещены маслопровод подачи и стока. Гидравлическая жидкость перетекает из трубопровода высокого давления в масляный резервуар, не выполняя никакой работы
.               

Конструкция и принцип функционирования элементов гидроусилителя рулевого управления — схема работы

 Принцип действия реечного механизма с гидроусилителем. В корпусе рейки — торсионный стержень, связанный с рулевым валом. При повороте рулевого вала (колеса), стержень, поворачиваясь, перемещает золотник. Золотник приоткрывает отверстия каналов, идущих к силовому цилиндру. Цилиндр передвегает рейку, снижая усилие на руле. При отсутствии усилия на руле, ротор возвращается в исходное положение, а жидкость перепускается обратно в бачок.

 

Функциональная схема системы гидросусилителя руля

 

1 — Силовой цилиндр
2 — Поршень рулевой рейки
3 — Шток рулевой рейки
4 — Вал ведущей шестерни
5 — Трубка А
6 — Трубка В
7 — Роторный управляющий клапан
8 — Рулевой вал
9 — Рулевое колесо
10 — Чувствительный к изменениям давления клапан

11 — Резервуар гидравлической жидкости
12 — Шиберный насос
13 — Редукционный клапан
14 — Шланг В
15 — Клапан регулировки расхода
16 — Двигатель
17 — Насосная сборка
18 — Шланг А
19 — Камера А
20 — Камера В


Работа гидроусилителя рулевого механизма
 

1 — Поршень
2 — Шток рейки
3 — Цилиндр

4 — Силовой цилиндр
5 — Вал ведущей шестерни
6 — Роторный управляющий клапан


Общая информация

Привод рулевого насоса осуществляется непосредственно от двигателя с помощью ремня.
При прямолинейном движении автомобиля чувствительный к изменениям давления клапан-переключатель насосной сборки остается открытым, обеспечивая сброс гидравлической жидкости обратно в резервуар системы гидроусилителя руля..
За счет клапана регулировки расхода давление гидравлической жидкости поддерживается практически постоянным при любых оборотах двигателя. Под регулируемым напором гидравлическая жидкость подается по шлангу А к роторному управляющему клапану.
При поворачивании рулевого колеса соединенный с валом ведущей шестерни роторный клапан открывает гидравлический контур в направлении, соответствующем направлению поворота колес и гидравлическая жидкость по трубке А или В подается в соответствующую (А или В) рабочую камеру.
Поскольку рулевой вал через роторный управляющий клапан механически соединяется с валом ведущей шестерни, потери управления не происходит даже в случае отказа системы гидроусиления.

Конструкция и принцип функционирования рулевого механизма

Основу гидравлической части рулевого механизма составляют объединенные в общую сборку роторный управляющий клапан и силовой цилиндр реечной передачи. Шток рулевой рейки в используемой конструкции играет роль поршня в силовом цилиндре, сквозь роторный клапан проходит вал ведущей шестерни. Рабочие камеры цилиндра и роторного клапана соединены между собой посредством двух гидравлических трубок.

Конструкция роторного управляющего клапана (золотниковый механизм)

 

1 — Торсионный стержень
2 — Муфта
3 — Ротор
4 — Ведущая шестерня
5 — Аварийное зацепление шестерни с ротором

 


Схема функционирования роторного клапана при отпущенном рулевом колесе

 

1 — Камера А
2 — Камера В
3 — V1
4 — V2
5 — V3

6 — V4
7 — От рулевого насоса
8 — К А
9 — К В


Схема функционирования роторного клапана при вращении рулевого колеса вправо
 

1 — Камера А
2 — Камера В
3 — V1

4 — V2
5 — V3


Схема подключения рулевого насоса

 

1 — Рулевой насос

2 — Бачок гидравлической жидкости


Схема функционирования рулевого насоса

 

1 — Бачок ГУР
2 — Редукционный клапан
3 — Чувствительный к изменению давления клапан
4 — Шиберный насос

5 — Клапан управления расходом
6 — Насосная сборка
7 — Рулевой механизм


Схема функционирования чувствительного к изменению давления клапана при отпущенном рулевом колесе

1 — К бачку гидравлической жидкости
2 — Сливной порт открыт

3 — Подаваемая под напором от насоса жидкость (выше)
4 — Давление потока жидкости, пропускаемой через клапан управления расходом (ниже)


Схема функционирования чувствительного к изменению давления клапана при вращении рулевого колеса

1 — К бачку гидравлической жидкости
2 — Сливной порт открыт

3 — Подаваемая под напором от насоса жидкость (выше)
4 — Давление потока жидкости, пропускаемой через клапан управления расходом (ниже)


Принцип функционирования редукционного клапана насоса гидроусилителя руля

 

1 — К бачку ГУР
2 — Пружина
3 — Контрольный шарик
4 — Клапан закрыт

5 — Давление жидкости, пропускаемой через клапан управления расходом (ниже критического)
6 — Клапан открыт
7 — Давление жидкости, пропускаемой через клапан управления расходом (выше критического)

Управляющий клапан состоит из вращающегося вместе с рулевым валом ротора, ведущей шестерней, введенной в зацепление с ротором посредством торсионного стержня и вращающейся вместе с шестерней муфты. Конструкция клапана представлена на рисунке. В роторе и муфте клапанной сборки предусмотрены канавки С и D, образующие проходные каналы с V1 по V4 для потока гидравлической жидкости.
Нарушение исправности функционирования системы гидроусиления (например, в результате обрыва ремня) приводит к отказу повышения гидравлического давления, в результате чего прикладываемый к рулевому колесу крутящий момент начинает механически передаваться от ротора управляющего клапана непосредственно на ведущую шестерню рулевого механизма. Но при этом усилие не руле значительно увеличивается.

auto-master.su

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *