Меню Закрыть

Какие бывают моторы: Виды автомобильных двигателей: описание, характеристики

Содержание

Виды автомобильных двигателей: описание, характеристики

Мало кто знает, что двигатель внутреннего сгорания был изобретён ещё 5 веков назад, легендарным инженером и конструктором Леонардо да Винчи. Но, после первого чертежа потребовалось ещё 300 лет, чтобы были созданы первые прототипы, которые могли полноценно работать.

Виды двигателей

Первый полноценный прототип двигателя внутреннего сгорания был сконструирован в далёком 1806 году, который принадлежал братьям Ньепсье. После этого важного исторического факта было недолгое затишье.

Но, в конце 19 века три легендарным немца положили старт автомобилестроению — Николас Отто, Готлиб Даймлер и Вильгельм Майбах. После этого двигатели внутреннего сгорания получили много модификаций и вариантов, которые используются по сегодняшний день.

Рассмотрим, какие существуют виды автомобильных ДВС, а также укажем типы двигателей:

  • Паровая машина
  • Бензиновый двигатель
  • Карбюраторная система впрыска
  • Инжектор
  • Дизельные двигатели
  • Газовый двигатель
  • Электрические моторы
  • Роторно-поршневые ДВС

Паровая машина

Первым представителем полноценного двигателя внутреннего сгорания следует считать паровую машину, которая устанавливалась на все транспортные средства 19 века, до момента изобретения остальных видов моторов.

На то время паровыми движками оснащались паровозы, автомобили и даже примитивные трёхколёсные самоходные машины (напоминающие мотоциклы). Изобретение такого класса завоевало весь мир, но к концу 19 — начало 20 века стало неэффективное, поскольку транспортные средства на пару не могли развивать достаточно большую скорость.

Бензиновый двигатель

Бензиновый двигатель — это ДВС средством питания, которого является бензин. Горючее подаётся с топливного бака при помощи насоса (механического или электрического) на систему впрыска. Итак, рассмотрим, какие бывают типы бензиновых моторов:

  • С карбюратором.
  • Инжекторного типа.

Современный мир привык, что большинство автомобилей имеет электронную систему впрыска топлива (инжектор).

Карбюраторная система впрыска

Карбюратор — это тип впрыскового устройства горючего во впускной коллектор с дальнейшим распределением по цилиндрам. Первый примитивный карбюратор был разработан в Германии ещё в конце 19 века и имеет почти 100 летнюю историю развития.

Карбюраторы бывают — одно-, двух-, четырех- и шестикамерные. Кроме этого существует достаточно много прототипов.

Принцип работы карбюратора достаточно простой: бензонасос подаёт топливо в поплавковую камеру, где бензин проходит сквозь жиклёры механическим путём (количество впрыскиваемого топлива регулирует водитель при помощи педали акселератора), и подаётся во впускной коллектор. Недостатком карбюратора стало то, что он чувствительный к регулировкам, а также не соответствует экологическим международным нормам.

Инжектор

Инжекторный двигатель — это тип впрыскового устройства горючего в цилиндры двигателя. Инжекторный впрыск бывает моно и разделённым Данная система на сегодняшний день все больше совершенствуется, чтобы уменьшит выбросы СО2 в атмосферу. Для впрыска используются форсунки, которые ещё ранее начали использоваться на дизельных двигателях.

С переходом на данную систему транспортные средства стали оснащать электронными блоками управления двигателем, чтобы корректировать состав воздушно-топливной смеси, а также сигнализировать о неисправностях внутри системы.

Дизельные двигатели

Дизельный мотор — это вид двигателя, который расходует как горючее дизельное топливо. Основные системы и элементы движка идентичны бензиновому брату, различие состоит в системе впрыска и воспламенении смеси. В дизельном моторе отсутствуют свечи зажигания, поскольку воспламенение смеси от искры не нужно.

На моторах такого типа устанавливаются свечи накала, которые разогревают воздух в камере сгорания, который превышает температуру воспламенения. После этого через форсунки подаётся распылённое топливо, которое сгорает, чем создаёт достаточное давление для привода в движения поршня, который раскручивает коленчатый вал.

Дизель с турбонаддувом

Одним из подвидов дизельного ДВС считается турбодизель. На этом моторе установлена турбина, которая имеет вид улитки. При помощи турбины в мотор подаётся больше количество сжатого воздуха, который даёт больше детонационный эффект, за счёт чего движок можно быстрее разогнать.

Газовый двигатель

Газовые двигатели на сегодняшний день в автоиндустрии в чистом виде почти не используются, поскольку частые поломки моторов, стали причиной полного отказа от них. Вместо этого, газовые установки зачастую можно встретить на бензиновых автомобилях, что значительно экономит расход денег на горючее.

Газ с баллона подаётся на редуктор, который распределяет топливо по цилиндрам, а затем горючее попадает непосредственно в камеры сгорания. После этого с помощью свечей зажигания газ воспламеняется. Единственным недостатком использования газовой установки считается то, что мотор теряет 20% своего потенциального ресурса.

Электрические моторы

Николас Тесла впервые предложил использовать для автомобилей электроэнергию. Электрические моторы на сегодняшний день не распространены, поскольку заряда батареи хватает только до 200 км пути, а заправочных станций, которые могут предоставить услугу зарядки автомобиля — практически нет.

Известная мировая компания, производитель электрических автомобилей «Тесла» продолжает совершенствовать электродвигатели, и каждый год дарит потребителям новинки, которые имеют больший запас хода без дозарядки.

Гибриды

Наверное, самые желаемые двигатели на сегодняшний день. Это смесь бензинового двигателя внутреннего сгорания и электромотора. Существует несколько вариантов работы такого движка.

  1. Мотор может работать на попеременном питании. Сначала движение производится на бензине, пока генератор заряжает батарею, а затем водитель может переключиться на электропитание.
  2. Двигатель и электромотор работают одновременно, что помогает сэкономить расход горючего на одно, и тоже расстояние с другими типами ДВС.

Роторно-поршневые ДВС

Роторно-поршневой силовой агрегат в автомобилестроении не нашёл широкого распространения, хотя можно встретить модели автомобилей, которые используют такой тип ДВС. Предложил создание такого мотора — конструктор Ванкель.

Движение осуществляется за счёт вращения трёхзубчатого ротора, который позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. Данный мотор активно использовался в 80-е годы 20 ст.

Водородный мотор

НОУ-ХАУ современного мира считается водородный двигатель. В автомобиль устанавливается установка водородного типа. Отличие от бензиновых моторов заключается в подаче топлива. Если у бензина топливо подаётся вовремя возврата поршня к ВТМ, то у водородного силового агрегата в момент, когда поршень возвращается к НТМ.

В будущем планируется создать водородный двигатель закрытого типа, когда не будет требоваться выброс отработанных газов, а также на 500 км автолюбитель сможет забить о заправке автомобиле.

Стоит понимать, что автомобили с таким мотором будут стоить весьма не дёшево, пока они полностью не вытеснят бензинового брата.

Вывод

Двигатели внутреннего сгорания имеют достаточно большое количество видов и типов, на любой вкус. Так, самыми популярными, по мировой статистике, считают бензиновые, дизельные и гибридные силовые агрегата. Но, все движется к тому, что человек хочет отойти от использования бензина и его аналогов и перейти полностью на электрику.

Судовой двигатель СУДОВЫЕ ДИЗЕЛИ, СУДОВЫЕ ДИЗЕЛЬНЫЕ ДВИГАТЕЛИ, СУДОВЫЕ ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ —

Судовой двигатель

СУДОВОЙ ДВИГАТЕЛЬ

входит в состав судовой энергетической установки. Судовые двигатели различают  на главные судовые

двигатели (обеспечивающие движение судна) и вспомогательные судовые двигатели

 (для привода электрогенераторов, насосов, вентиляторов и т. п.). В качестве судового двигателя используют двигатели внутреннего сгорания (ДВС – СУДОВЫЕ ДИЗЕЛИ, СУДОВЫЕ ДИЗЕЛЬНЫЕ ДВИГАТЕЛИ, СУДОВЫЕ ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ), паровые турбины, и газовые турбины.  Основными характеристиками судовых двигателей являются: большой ресурс, возможность реверсирования, умеренная трудоёмкость технического обслуживания, проводимого в судовых условиях, использование топлива в основном тяжёлых сортов, отсутствие жёстких ограничений по массе и размерам двигателя.

Чаще всего на судах используются ДВС — судовые дизели, обладающие наибольшей экономичностью из всех типов судовых двигателей. На транспортных, промысловых и вспомогательных судах применяются мало-, средне- и высокооборотные дизели с наддувом. Малооборотные судовые двигатели внутреннего сгорания используются как главные двигатели судов различных типов; их агрегатная мощность составляет 2,2—35 Мвт, число цилиндров 5—12, удельный эффективный расход топлива 210—215 г/ (квт×ч), частота вращения 103—225 об / мин. Среднеоборотные судовые двигатели внутреннего сгорания используются преимущественно в качестве главных двигателей судов среднего размера; их мощность достигает 13,2 Мвт, число цилиндров 6—20, эффективный расход топлива 205—210 г/(квт×ч), частота вращения 300—500 об/мин. Высокооборотные судовые двигатели внутреннего сгорания применяются в основном как главные двигатели на малых судах, а также в качестве вспомогательных двигателей на судах всех типов; их агрегатная мощность до 2 Мвт, число цилиндров 12—16, удельный эффективный расход топлива 215—230 г/(квт×ч), частота вращения свыше 500 об/мин.

Паровые турбины по степени распространённости несколько уступают двс; используются в качестве главных двигателей на крупных танкерах, контейнеровозах, газовозах и других судах, а также на судах с ядерной энергетической установкой (см. Атомный ледокол «Ленин»). Применяются также как вспомогательные двигатели. Мощность паротурбинных установок достигает 80 Мвт, удельный эффективный расход топлива 260—300 г/(квт×ч), частота вращения турбины 3000—4000 об/мин.

Газовые турбины в составе судовых двигателей применяются в основном в качестве главных двигателей на военных кораблях, транспортных судах на подводных крыльях и на судах на воздушной подушке. Примером газовых турбин является судовой газотурбинный двигатель. Эксплуатация судовых дизелей— подготовка дизельной установки к действию, пуск дизеля, обслуживание дизеля во время работы, вывод из действия (остановка) дизеля в соответствии с инструкцией завода-изготовителя и Правилами технической эксплуатации (ПТЭ).
РАЗДЕЛ «ОБОРУДОВАНИЕ»    

 


 
«Аппаратдизель», ООО  
Экспорт/импорт оборудования и запасных частей для агрегатов на базе отечественных дизелей размерности 6 ЧН 36/45, 6-8Ч23/30, 6Ч18/22, 3Д6, 4Ч9,5/11, 4Ч12/14 и их ремонтом. Диапазон оборудования базирующегося на этих двигателях: от электростанций больших мощностей 1000 кВт и до судовых установок главных и стационарных.
Роспромснаб  
Филиал ООО «АлтайРОСПРОМСНАБ» занимается материально-техническим снабжением флота.Мы специализируемся на поставке главных и вспомогательных судовых дизелей ЧН 15/18(дизели 3Д6, 3Д12, 7Д6, 7Д12), а также запасных частей к ним. На складе имеются : главные судовые дизели: 3Д6С2; 3Д6Н-235С2; 3Д12А, 3Д12А-1; 3КД12Н-520; 3КД12Н-520Р; ВАЗ-3415. Вспомогательные судовые дизели:7Д6-150; П 7Д6АФ-С2; 7Д12; 7Д12А-1; 1Д6БГС2-301; 1Д12В-300КС2-301.
Двигатель 3Д6, 3Д12, ЯМЗ запасные части  
Предлагаем Вам продукцию ОАО ХК Барнаултрансмаш, Турбомоторный завод : — Промышленные дизели (1Д6Н-250,2Д6Н, 1Д12-400БС,1Д12БС(БМС),2Д12, В2-450,В2-500) применяемые для привода механизмов буровой техники, маневровых тепловозов. — Стационарные дизели (1Д6-150,1Д6БА(БГС), 1Д12В-300), применяемые для привода дизель-генераторов 100-200кВт -Транспортные дизели (Д12А-525,Д12А-525А),применяемые для многоосных тягачей Типа МАЗ-537, 543, 7310, КЗКТ-7428, 74106 — Судовые дизели (3Д6, 3Д12, 7Д6, 7Д12) укомплектованные РРП 150-300 л.с. применяемые как главные и вспомогательные судовые дизели, а также предлагаем весь ассортимент запасных частей ОАО ХК Барнаултрансмаш с хорошим дисконтом. -Судовые дизели ЯМЗ ДРА 90-360 л.с. удовлетворяющих требованиям Российского Речного Регистра.
 
ОПИСАНИЕ ТЕРМИНОВ
Судовой газотурбинный двигатель
CГТД — тепловой двигатель, в котором газ сжимается и нагревается, а затем энергия сжатого и нагретого газа преобразуется в механическую работу на валу газовой турбины. Рабочий процесс ГТД может осуществляться с непрерывным сгоранием топлива при постоянном давлении или с прерывистым сгоранием топлива при постоянном объёме.
Основной источник электроэнергии на судах — дизель генератор.

Судовой дизель генератор
СДГ агрегат, состоящий из генератора и дизеля, образованный путём соед. их валов. Осн. достоинства Д.-г. — экономичность и быстрота запуска. Размеры Д.-г. тем меньше, чем больше частота вращения. Однако с ростом частоты вращения падает ресурс дизеля. Поэтому в составе осн. длительно работающих Д.-г. применяются средне-и малооборотные дизели с частотой вращения соотв. 750 и 250 об/мин. Потребление топлива Д.-г. составляет ок. 220-230 г на 1 кВт мощн. в теч. 1ч работы. В качестве генераторов на соврем. судах применяют в большинстве случаев синхронные явнополюсные генераторы с автомат. регуляторами напряжения. Регуляторы в зависимости от отклонения напряжения от установленного значения подают больший или меньший ток в обмотку возбуждения генератора, стабилизируя тем самым напряжение.
Дизель-компрессор судовой
ДКС — уст-во, использующее  хим.энергию топлива для сжатия воздуха и наполнения воздушных баллонов. Представляет собой агрегат, состоящий из одноцилиндрового двухтактного двигателя внутреннего сгорания и поршневого компрессора. Противоположно движущиеся поршни в цилиндре ДВС непосредственно соединены с поршнями компрессора. Д.-к. по конструктивному исполнению и принципу работы близок к свободопоршневому генератору газа. Выпускные газы дизельной части после приведения в действие поршней дизеля и компрессора отводятся в атмосферу. В суд. Д.-к. давление достигает 40 МПа, а их производительность -10 л/мин. Достоинством Д.-к. является независимость его работы от др. суд. оборудования, высокая экономичность расхода энергии на 1л сжатого воздуха и небольшие габариты.  
Если у Вас есть вопросы или Вы хотите стать участником любого из раздела обратитесь к нашим менеджерам: 
«РА Корабел.ру», ООО
тел.+7(812) 458-4452 
сот. +7 (921) 912-0373
[email protected]
skype www.korabel.ru
_____________________
Портал: www.korabel.ru
Журнал: www.korabel.su
Торговая площадка:
www.sudoremont.ru 
Морские сувениры 
https://www.korabel.ru/shop.html 
___________________
https://www.facebook.com/korabel.ru/
https://vk.com/korabelru
https://www.instagram.com/korabel_ru/

Турбированный и атмосферный двигатели

ДВИГАТЕЛЬ

ТУРБИРОВАННЫЙ

Турбированный двигатель – ДВС, который отличается наличием систтемы турбонадува (состоит из турбины, турбокомпрессора и промежуточного охладителя). Она создает принудительное давление с помощью выхлопных газов. В результате в цилиндры через инжектор закачивается большее количество воздуха, который смешиваясь с топливом, сгорает более эффективно. Как результат — выделяется больше энергии, приводящей в движение рабочие части двигателя

 

АТМОСФЕРНЫЙ

Атмосферный двигатель — это классический ДВС, в котором подаваемый через инжектор (или карбюратор) воздух участвует в образовании топливной смеси в цилиндрах. Топливная смесь, воспламеняясь, создает энергию, приводящую в движение рабочие части двигателя.

1,0 л.

Чтобы развить максимальную мощность 125 л.с., условному турбированному двигателю может быть достаточно объема 1,0 л

 

 

1,6 л.

Чтобы развить максимальную мощность, например, 125 л. с., условный двигатель должен иметь рабочий объем не менее 1,6 л.

При одной и той же мощности турбомоторы отличаются чуть лучшей динамикой и несколько меньшим расходом топлива.

 

Помимо, того что двигатель весит больше, он не способен поддерживать высокую мощность при езде в гористой местности с разреженным воздухом.

150 000
километров

Турбированный двигатель подвергается большим нагрузкам и потому изнашивается быстрее. При его правильной эксплуатации пробег до капитального ремонта может составлять 150 тыс. километров.

 

от 300 000 до 500 000
километров

Из-за простой конструкции срок ресурсной эксплуатации «атмосферников» может исчисляться сотнями тысяч километров пробега. Известны случаи, когда некоторые американские атмосферные двигатели «выхаживали» по 300-500 тыс. километров без капитального ремонта.

Нужно заправляться только качественным топливом, правильно запускать и останавливать мотор, следить за уровнем и качеством заливаемого масла. Смазка в турбодвигателе имеет большое значение, благодаря ему эффективно работают подшипники и другие важные элементы. Если уровень масла падает, он ибыстрее изнашиваются и выходят из строя. Поэтому масло необходимо своевременно доливать, а при его слишком быстром расходе — оперативно устранять неполадку, из-за которой это происходит.

 

Атмосферные двигатели более «лояльны» к качеству топлива и моторного масла. Хотя этими особенностями не стоит злоупотреблять, стоит отметить, что «атмосферники» отличаются высокой ремонтоспособностью, устранение возникающих неполакдок к них обойдется гораздо дешевле.

Моторное масло QUARTZ 9000 5W-40 Высококачественное универсальное моторное масло, производимое по синтетической технологи, подходит как для атмосферных, так и для турбированных двигателей. API SN. Самая последняя спецификация по API — уровень SN. Характеризуется улучшенной защитой от высокотемпературных отложений на поршнях, более жесткими требованиями к контролю сажи и совместимости с уплотнителями. QUARTZ 9000 5W-40 обладает исключительными антиокислительными свойствамии особенно рекомендуется к применению в турбированных и мультиклапанных двигателях, а ткже в двигателях с непосредственным впрыском.


Подбор масла

Виды лодочных моторов — полезная информация от «МедузаМоторс»

Главная Полезная информация Виды лодочных моторов

Выбирая лодочный мотор, человек, прежде всего, надеется на то, чтобы двигатель обладал заявленной мощностью, бесперебойно функционировал и эксплуатировался на протяжении длительного времени. При этом также важно, чтобы он соответствовал тем требованиям, которые будут к нему предъявляться.

Плавание на моторной лодке, это не гребля на деревянном плоту вдоль берега и не сноутюб на ватрушках. Это быстрая езда по воде, и любая неисправность лодочного двигателя может обернуться большими неприятностями.

Какими же бывают моторы для лодок?

В зависимости от топлива они бывают бензиновыми, дизельными, водометными и электрическими.

В последнее время в среде лодочников на слуху бензиновые лодочные моторы Ямаха. Это двигатели очень разной мощности (2-400 лошадиных сил).

Более экономными и долговечными являются дизельные моторы. Они используются для больших судов.

Перемещение по мелководью хорошо осуществлять на лодке с водометным мотором, который изготавливается на базе 2-х или 4-хтактного двигателя. Это безопасные моторы, позволяют подводить плавательное средство непосредственно к берегу и рекомендуются для любителей серфинга и водных лыж.

С целью защиты окружающей среды на многих водоемах вводятся запреты на ДВС. Поэтому начали появляться электрические лодочные моторы. Они менее мощные чем, например, моторы Gladiator, зато не создают шума и имеют достаточное количество лошадиных сил для небольшого прогулочного или рыболовного судна. Современные модели оснащаются системой автоматического и дистанционного управления, что очень удобно.

Двигатели внутреннего сгорания в свою очередь подразделяются на 2-тактные и 4-тактные. Первые отличаются компактностью, простотой в обслуживании. Вторые обладают более высоким ресурсом производительности и тихой работой. Четырехтактные моторы более экономичны своих двухтактных собратьев.

Сегодня на рынке представлены модели японских, американских и китайских производителей. Первые две категории отличаются высокой надежностью, но и немалой ценой. Китайские моторы являются полными аналогами оригиналов, но изготавливаются из металла низшего качества. Поэтому двигатели из Поднебесной несколько уступают оригинальным моделям японских и американских производителей, но зато они в два раза дешевле.

Солнцезащитные Системы: КАКИЕ БЫВАЮТ МОТОРЫ?

Перед тем как выбирать себе автоматизированные шторы или жалюзи, давайте разберемся, а какие в принципе бывают моторы для солнцезащитных систем и классифицируем их по нескольким признакам.

1.       ЭЛЕКТРИЧЕСКОЕ НАПРЯЖЕНИЕ.

Начнем, пожалуй, с того, что для открывания и закрывания различных типов изделий требуются разные тяговые силы. Так, например, для того чтобы перемещать полотно небольшой рулонной шторы, электропривод с большим усилием не потребуется, а вот для сдвижения плотной портьеры или деревянных жалюзи может понадобиться очень мощный двигатель.


Для солнцезащитных конструкций достаточно больших размеров и соответственно веса используются электромоторы, работающие от сети с напряжением 230В. Такими приводами оснащаются габаритные рулонные и римские шторы, электрокарнизы для тяжелых штор, горизонтальные деревянные жалюзи, маркизы и перголы.


Вертикальные тканевые жалюзи, шторы плиссе, горизонтальные алюминиевые жалюзи с шириной ламели 25мм, рулонные и римские шторы небольших размеров характеризуются относительно малым весом полотна, для его перемещения большое тяговое усилие необязательно. Большинство производителей электроприводов выпускают для таких систем моторы, работающие от напряжения 12 или 24В. Они, также, как и более мощные 230В аналоги, требуют подвода электрического кабеля, а вот для следующей категории двигателей проводка не нужна вообще.


Для подъема полотна совсем небольшой рулонной, римской или плиссированной шторы (чаще всего такие конструкции размещают на оконных створках) нужно совсем немного энергии, достаточно 8В или 12В мотора, оснащенного встроенным или внешним аккумулятором. Такие электроприводы считаются энергонезависимыми или беспроводными, они не требуют предварительного подведения проводки, а для обеспечения их постоянной работоспособности достаточно лишь подзаряжать аккумулятор системы раз в несколько месяцев.

2.       СПОСОБ УПРАВЛЕНИЯ.

Управление автоматическими шторами при помощи пульта ДУ – пожалуй, наиболее распространенный вариант на сегодняшний день. Дистанционная беспроводная передача управляющего сигнала в основном происходит двумя способами:

—          По радиоканалу

—          Через инфракрасный порт (используется гораздо реже)


Для управления электроприводом по радиоканалу необходимо специальное устройство – приемник радиосигнала, которое может быть для упрощения коммутации встроено в корпус двигателя. Такие моторы называют “привод со встроенным приемником радиосигнала”. Команду электропривод у на перемещение полотна шторы в этом случае может давать не только переносной пульт дистанционного управления, но и настенный радиовыключатель, а также различные датчики, работающие по этой технологии.


Вторым по частоте использования способом передачи управляющей команды двигателю является передача сигнала по проводам. В этом случае команда на открытие или закрытие шторы приходит к мотору от стационарного настенного выключателя или внешней управляющей системы по электрическому кабелю. Такая конструкция оправдана и чаще всего используется там, где радиосигнал может работать нестабильно: в помещениях больших размеров, при большой концентрации моторов в одной комнате, а также при наличии специальных устройств, препятствующих распространению радиоволн. Для подключения проводных электроприводов в отличие от вышеописанных требуется больше подготовительной работы, связанной с прокладкой электрических кабелей.


В последние годы все чаще солнцезащитные системы включают в перечень конструкций, которыми можно управлять с одного многофункционального пульта наряду с устройствами отопления, кондиционирования, освещения, обеспечения безопасности и т.п. Производители моторов учитывают этот факт, и разрабатывают электроприводы со встроенными интерфейсами для таких случаев. Количество систем “Умный Дом” сегодня на рынке сегодня очень большое, поэтому подбирая мотор для своих штор в сочетании с подобным управлением, обращайте внимание на то, чтобы привод был оснащен необходимым разъемом.

3.       ТИП УСТАНОВКИ


Маркизы, рулонные шторы, ряд других солнцезащитных систем имеют в своей конструкции трубу или вал, на который при сборке наматывается ткань или веревочные элементы. Двигатели для таких конструкций, как привило, размещаются внутри этих валов, поэтому называются внутривальными. Такой мотор не видим для глаза пользователя шторы, и в случае поломки необходимо полностью разбирать штору для замены электропривода.


Конструкция горизонтальных жалюзи, рафштор и римских штор и штор плиссе предусматривает прямоугольный карниз, в котором размещены основные элементы системы. У такого моторизированного изделия привод устанавливается внутри карнизного профиля, поэтому такие моторы называют внутрикарнизными. В этом случае двигатель частично виден, что, правда, не позволяет произвести его замену без разборки системы, но для пользователя в доступе находятся его основные регулировки.


В раздвижных шторных электрокарнизах и вертикальные жалюзи нет возможности разместить привод внутри профиля, поэтому он помещается снаружи, и считается внешним. Замена устройства в таких случаях удобна, и не представляет особенных сложностей даже для непрофессионала.


Количество показов: 1161

Audi отказалась от разработки двигателей внутреннего сгорания

Как рассказал немецкому изданию Automobilwoche глава Audi Маркус Дюсманн (Markus Duesmann), компания остановила все работы над новыми двигателями внутреннего сгорания. Это значит, что бензиновых и дизельных моторов следующего поколения не будет, хотя инженеры продолжат текущую модернизацию существующих моторов.

Предстоящее введение  в 2025 году стандарта Евро 7 с более жёсткими ограничениями на выбросы, несомненно, разделит автомобильный мир на две разные группы. С одной стороны, найдутся те, кто будет по-прежнему производить автомобили с двигателями внутреннего сгорания, хотя и сократит их ассортимент в связи с переходом на гибриды. На другой стороне, которая будет более многочисленной, окажутся те автопроизводители, у кого нет другого выбора, кроме как навсегда отказаться от двигателей внутреннего сгорания в пользу электродвигателей. К этой группе присоединилась Audi, официально объявив о завершении разработки двигателей внутреннего сгорания.

Генеральный директор немецкого бренда Маркус Дюсманн заявил, что разработка новых двигателей внутреннего сгорания более невозможна и что было бы лучше адаптировать существующие двигатели к будущим стандартам, прежде чем они будут окончательно сняты с производства. Это означает, что выпуск культовых двигателей TDI и TFSI на Audi близок к завершению, как и выпуск двух знаковых моделей Audi — R8 и TT, у которых не ожидается прямых преемников.

В ближайшие 5 лет Audi планирует вывести на рынок 20 электрических моделей. Бренд также объявил о намерении к концу десятилетия превратить основные модели, такие как A4 и A6, в полностью электрические автомобили.

Это ставит Audi на тот же путь, по которому планирует продвигаться конкурирующий бренд Mercedes. На прошлой неделе Маркус Шефер (Markus Schäfer), член совета директоров, ответственный за развитие Mercedes, заявил, что компания больше не будет разрабатывать двигатели внутреннего сгорания. «Это означает, что основная часть инвестиций теперь действительно может пойти на электромобили», — сообщил Шефер в интервью ресурсу Handelsblatt.

Если вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.

Лодочные моторы: типы, характеристики, управление

В виду большого количества моделей лодочных моторов с разными параметрами сложно определиться в выборе. Чтобы не ошибиться, нужно разбираться в параметрах и понимать подходит ли агрегат для эксплуатации в планируемых условиях.

Типы лодочных моторов


На современных лодках используются два типа двигателей – бензиновые (ДВС) и электрические.

Электрические моторы имеют небольшой вес и почти не шумят, проще по конструкции и дешевле в эксплуатации. Однако из-за того, что для мощных электромоторов потребовались бы слишком большие аккумуляторы они выпускаются маленькой мощности – до 5 л. с. (3677,5 Вт).

Кроме этого, в зависимости от емкости аккумулятора ограничена длительность плавания.


Электрические моторы обычно используют на водоемах где применение бензиновых двигателей запрещено по экологическим соображениям или где лишний шум нежелателен.

Диапазон мощностей ДВС намного шире, их хватает даже для эксплуатации на самых быстроходных и тяжелых судах. Дальность плавания значительно выше, чем на лодках с электромотором. Такие суда могут выходить в режим глиссирования, что снижает расход топлива. Однако подобные модели весят больше электрических. Кроме этого они дороже как сами по себе, так и в эксплуатации.

Двигатели отличаются и по своему назначению. Существуют классические лодочные моторы и вспомогательные.

  • Классические – используются в качестве источники основного хода. Это могут быть и небольшие моторы для одноместной лодки, и мощные, для большого катера или яхты;
  • Вспомогательные – используются на достаточно крупных судах как помощники при различных маневрах, поворотах, швартовке и других подобных случаях. Приводы имеют большую мощность, усиленный редуктор. Так же они могут использоваться в качестве классических лодочных моторов.


Существуют два типа конструкции, которая заставляет лодку перемещаться – это винт и турбина.

Винтовые

Винтовые конструкции используют вращение гребного винта. Модели могут быть использованы на всех видах водного транспорта, имеют несложную конструкцию и невысокую стоимость. Однако на мелководье вращающийся винт может задеть за дно или другой твердый предмет и поломаться.

Расстояние, на которое винт переместиться за один оборот без проскальзывания, называется шагом. Это основная характеристика винта, влияющая на нагрузку мотора. С увеличением шага винта скорость передвижения лодки увеличивается, и нагрузка на привод становится больше.

Проскальзывание винта это величина равная разнице между идеальным и реальным шагом винта.

Чем меньше проскальзывание, тем выше коэффициент полезного действия всего привода лодки.

От шага зависит и диаметр лопастей винта, эти два параметра взаимосвязаны и зависят от крутящего момента и мощности мотора.

Еще одна характеристика винта это количество лопастей. Чем больше лопастей, тем выше плавность хода и манёвренность. Однако при увеличении количества лопастей проскальзывание становится больше (увеличивается сопротивление воды) и эффективность привода уменьшается.

Следует учесть направление вращения винта. Вращение по ходу часовой стрелки при движении лодки вперед назвали правым, а в сторону противоположную движению часовой стрелки левым.

Стандартными являются винты с правым вращением, но если на лодке установлено два привода, винты должны крутиться в разные стороны, если винты будут совершать обороты в одну, сторону судно будет сносить при прямом положении руля.

Полезным устройством для судна с двумя моторами будет синхронизатор, который согласовывает работу обеих устройств, чтобы они работали совместно как один агрегат.

Для того, чтобы синхронизатор правильно работал, требуется использовать моторы одной модели.

Для того чтобы подобрать гребной винт нужно включить двигатель и подождать, пока он не выйдет на свою номинальную мощность, после измерить число оборотов в минуту тахометром на максимальных оборотах.

Если измеренное число вращения окажется меньше указанного в документации для данного мотора, нужно установить винт с меньшим шагом (это компенсирует нехватку оборотов). Уменьшение шага винта на один дюйм увеличивает количество оборотов на 200 об/мин.

Турбинные

В турбинном приводе винт спрятан в специальную трубу, он движет лодку за счет того, что засасывает воду с одной стороны трубы, после чего разгоняет ее винтом и выбрасывает с узкой стороны водомета. Такое расположение винта повышает безопасность использование судна в местах проведения водолазных работ, при катании на водных лыжах и вблизи пляжей.

Турбинные приводы идеально подходят для движения по мелководью, для их работы достаточно глубины в 30 сантиметров. Они более защищены от водорослей и плавающего в воде мусора. Суда, оборудованные турбинными конструкциями, отличаются мягкостью хода и небольшой вибрацией при работе на высоких и средних оборотах.

Требования к конструкции лодки при использовании турбинного привода:

  • Она должна иметь запас грузоподъемности, чтобы нести кроме мотора еще и водомет;
  • Лодка должна быть достаточно прочной, чтобы переходить в режим глиссирующего плавания;
  • Резиновая лодка должна иметь достаточно прочные боковые баллоны и днище.

На большие катера устанавливаются несъемные турбины, которые становятся частью корпуса. Управление судном осуществляется со штурвала при помощи электрического или гидравлического привода.

Для лодок поменьше устанавливаются съемные турбины. Управлять приводом можно с кормы румпелем и со штурвала.

Регулировка погружения винта

У электромоторов существует регулировка заглубления гребного винта без его наклона. У ДВС глубина погружения регулируется наклоном мотора относительно горизонтальной оси.

Недостаточное заглубление приведет к тому, что гребной винт будет находиться в зоне гидродинамической тени кормы и не сможет развить тягу. В результате судно даже с мощным мотором не наберет высокую скорость.

Если гребной винт расположить ниже оптимальной отметки это вызовет ненужные напряжения в конструкции привода, и система выхлопа будет действовать менее эффективно, что уменьшит развиваемую мощность, а при прохождении мели увеличится риск поломки устройства.

Физические параметры лодки и двигателя

Вес и габариты лодочного мотора

Вес и основные размеры двигателя зависят от мощности и отличительных черт конструкции – чем он мощнее, тем больше размеры. Его масса находится в пределах от 3 до 350 килограмм.
Вес агрегатов:

  • мощностью 6 лошадиных сил – 20 килограмм;
  • 8 лошадиных сил – 30 килограмм;
  • 35 лошадиных сил – 70 килограмм.

Вес ДВС указывается без учета топливного бака.

  • Электрические моторы весят меньше, чем ДВС.
  • Вес понадобится при расчете баланса лодки и ее полезной грузоподъемности.
  • Габариты должны находиться в соответствии с размерами лодки.

Для ДВС существенным параметром считается диаметр цилиндра. В продаже можно найти моторы с диаметром цилиндра 40 – 100 миллиметров.

С увеличением диаметра цилиндра увеличивается угловая скорость, но уменьшается крутящий момент.

Еще одной существенной характеристикой ДВС считается ход поршня. В продаже имеются двигатели с ходом поршня 30 – 100 миллиметров. При увеличении хода поршня увеличивается крутящий момент, но одновременно уменьшается скорость вращения.

При выборе мотора необходимо учитывать соотношение диаметра цилиндра к ходу поршня, у скоростных моделей это отношения стремится к единице.

Вес и длина лодки

Производители моторов указывают наибольший вес и длину лодки, для которой предназначено их устройство.

В данном случае учитывается вес не только корпуса лодки, но и снаряжения пассажиров и багажа.

Показатель не является жестким, но его соблюдение гарантирует наиболее эффективную работу привода.

Чем короче судно, тем больше следует загрузить нос, чтобы скомпенсировать вес двигателя, находящегося на корме.

Лодки длиной два метра рассчитаны на одного человека и могут выдерживать груз до 500 килограмм. При необходимости в такую лодку поместится до четырех человек. Трехметровые плавучие средства считаются наилучшим выбором для занятий рыбалкой или охотой. Лодки длиной четыре метра могут выдержать 6 человек.

Высота транса для лодочного мотора

Для того чтобы правильно подобрать лодочный привод нужно определить высоту транца судна.

Транцем называется задняя часть лодки, на которой устанавливается двигатель. Высота транца это расстояние от низа до верха судна.

Чтобы гребной винт был расположен на оптимальной глубине, высота транца должна быть равна рекомендованной для привода.


В характеристиках двигателя рекомендованная высота транца обозначается латинскими буквами:
  • S высота транса 380-450 миллиметров;
  • L высота транса 500-570 миллиметров;
  • X высота транса 600-640 миллиметров;
  • U высота транса 650-680 миллиметров;

Длина дейдвуда это расстояние от места монтажа двигателя до нижней точки транса. Между антикавитационной плитой и нижней точки транца должно быть 15-25мм. В некоторых случаях наилучшая глубина погружения гребного винта определяется опытным путем.

У отдельных электрических приводов длина дейдвуда регулируется, в таких случаях в паспорте двигателя указывается его максимальное значение.

Типы крепления лодочного мотора

Существуют четыре способа крепления:

  1. Жесткое – привод зафиксирован на транце лодки без возможности поворота в какую-либо сторону;
  2. Поворотное – поворачивается по своей вертикальной оси;
  3. Откидное – способен вращаться по горизонтальной оси;
  4. Поворотно откидное – поворачивается относительно горизонтальной и вертикальной оси.

Поворотно откидное крепление обеспечивает простоту управления судном, за счет вращения по вертикальной оси и смягчает удары подводной части конструкции о препятствие за счет вращения двигателя по горизонтальной оси.

Чтобы вибрация корпуса судна была меньше подвеска должна быть сделана из упругих материалов.

Подъем мотора

Для предотвращения повреждения винта при швартовке лодки на отмели требуется поднимать мотор из воды. Во время длительной стоянки подъем двигателя уменьшает повреждения от коррозии. Существуют два типа механизмов подъема – ручной и электрогидравлический.

  • Ручной механизм. Подъем осуществляется с помощью румпеля. Преимуществом является дешевизна и простота механизма подъема. Механизм нельзя использовать для подъема тяжелых мощных моделей.
  • Электрогидравлический механизм. Для подъема человеку достаточно нажать кнопку. Единственный недостаток – высокая стоимость, поэтому конструкция используются только для подъема мощных двигателей.

Характеристики лодочных моторов внутреннего сгорания

Количество цилиндров

Камера двигателя, в которой ходит поршень, называется цилиндром. Бензиновые моторы могут быть двухтактными или четырехтактными.

Двухтактные бензиновые. По своей конструкции примитивны. В качестве топлива применяется смесь бензина и масла. Соотношение масла и бензина должно быть строго определенным.

Если в смеси масла будет больше чем нужно, мотор будет чадить, а если меньше, греться.


Из-за того, что в выхлопных газах находится больше вредных веществ не желательно использовать устройства поблизости от мест купания.

Дорогие модели комплектуются автоматическими механизмами смешивания, которые избавляют человека от ручного труда.

Двухтактные двигатели являются более дешевыми в эксплуатации, если сравнивать их с четырехтактными.

Четырехтактные. Работают плавно, тише и мощнее двухтактных двигателей, а их габариты больше. Уровень выброса вредных веществ невысокий. С увеличением количества цилиндров растет плавность хода и уменьшается расход топлива. У многоцилиндровых устройств меньше чувствительность к весу судна.

С уменьшением количества цилиндров увеличивается надежность изделия, так как его конструкция упрощается. Моторы, которые имеют небольшое количество цилиндров, отличаются небольшими размерами и весом.

Таким образом:

  • Двухцилиндровый двигатель обеспечивает большую мощность при сравнительно небольших габаритах и весе, но его нельзя использовать в водоемах, в которых предъявляются повышенные требования к экологии.
  • Четырехцилиндровый двигатель устанавливается на судах, использующиеся для лова рыбы методом троллинга, они работают сравнительно тихо и стабильно на низких оборотах.

    Устанавливаются на судах имеющих большой вес и габариты.

Рабочий объем

Важной характеристикой бензинового двигателя является рабочий объем камеры сгорания, от него зависит потребление топлива и мощность привода. Для одноцилиндрового мотора вычисляется умножением площади поршня на его ход. Для многоцилиндровых бензиновых двигателей объем одного цилиндра следует умножить на количество цилиндров.

С увеличением рабочего объема увеличивается мощность, габариты мотора и расход горючего. Однако мощность зависит не только от рабочего объема, но и от других особенностей конструкции, например наличия турбонаддува и количества тактов.

Расход топлива

Величина, которая показывает, сколько горючего расходуется за один час работы двигателя, называется расход топлива. Чем выше мощность двигателя, тем больше он расходует бензина, поэтому нужно стремиться выбрать модель, которая при той же мощности имеет меньший расход.

Тип топлива

Это марка горючего, с наименьшим допустимым октановым числом, который можно заливать в двигатель.

Допустимо использовать горючее, имеющее более высокое октановое число, но следует исключить топливо с показателями ниже указанного.

Стойкость горючего к детонации определяется по его октановому числу. Детонация вредное явление, которое приводит к падению мощности, возрастанию нагрузок и увеличению концентрации вредных элементов в выхлопных газах. Она возникает при использовании в качестве топлива бензина, у которого октановое число ниже, чем указано в техническом паспорте двигателя.

Например, маркировка бензина в странах СНГ начинается с букв АИ, в Азиатско-Тихоокеанском регионе RON, а в Европе EURO. В любом случае после букв стоят цифры, которые указывают значение октанового числа. Чем выше требования к топливу предъявляет двигатель, тем оно больше. Модели способные работать на 90-м бензине, можно использовать с 92-м или 95-м, но нельзя с 87-м и 76-м. Самые неприхотливые устройства работают на 76-м бензине.

Топливный бак

Для хранения запаса горючего служат топливные баки. Чем больше объем бака, тем большее расстояние преодолеет судно без дозаправки.

Кроме этого, чем больше мощность двигателя, тем больше горючего он потребляет, и соответственно бак для топлива должен быть более емким.

Большие баки занимают много места на судне, следует учесть, что с увеличением размеров и емкости бака возрастает его вес.

Топливные баки бывают двух типов: встроенные и внешние.

  • Всторенные баки. Составляю одно целое с двигателем, что избавляет от необходимости сооружать отдельную систему подачи топлива. Однако это увеличивает вес и габариты агрегата, что негативно сказывается на управлении судном при помощи румпеля. Она не подходит для мощных устройств, потребляющие много бензина и требуют баков большой емкости. Встроенные баки обычно используются с двигателями, мощность которых не превышает 5 лошадиных сил;
  • Внешняя система подачи топлива. Горючее подается по специальному шлангу из стоящего отдельно бака. Устройство делает мотор легче и подвижнее и для мощных двигателей требующих большое количество топливо является единственным возможным решением.

Перед тем, как приступить к выбору бака, нужно знать, сколько топлива расходует мотор и, исходя из этого, рассчитывать нужный объем, ведь во время плавания вы не сможете дозаправиться. Следует обратить внимание на прочность материала, из которого изготовлен бак. Обычно баки изготавливают из алюминия или нержавеющей стали. Материал должен быть прочным, упругим и эластичным.

Если в качестве горючего используется керосин, то емкость для него должна обладать повышенной герметичностью, так как это вещество очень текучее.


Бак должен иметь воздушный штуцер сбрасывающий избыточное внутреннее давление, возникающее в солнечную погоду в результате нагревания стенок и испарения горючего.

Рекомендуется покупать баки с рельефным дном для скапливания конденсата. Обратите внимание на качество комплектующих – шлангов, уплотнителей, штуцера, ведь именно от этих деталей зависит герметичность всей конструкции.

Тип системы смазки

Моторное масло требуется для смазки бензиновых моторов, и с увеличением мощности привода требуется больше масла. Поэтому чем больше двигатель, тем больший объем бака для масла потребуется.

Существуют два типа смазки, используемые в бензиновых моторах, это ручная и раздельная.

Ручная смазка используется в самых простых конструкциях. При таком типе смесь готовится вручную, после чего топливо заливается в бак. При подготовке смеси самостоятельно, важно не ошибиться с пропорциями, чтобы двигатель не перегревался и не чадил.

Раздельная – используется в более дорогих моделях. При этом масло заливается в свой бак, а бензин в свой и смешивание производится при подаче топлива в рабочую камеру. Данный механизм позволяет правильно выдерживать пропорции составляющих топлива.

Система подачи топлива

Для поддачи в рабочую камеру подготовленной смеси из горючего и воздуха предназначена система для подачи горючего.

Существуют два варианта систем: карбюратор и электронный впрыск.

В карбюраторной, горючее вместе с воздухом всасывается в рабочую камеру цилиндра во время фазы впуска. Они нетребовательны к качеству топлива и стоят дешевле, чем устройства с электронным впрыском. Однако моторы, использующие такую систему, потребляют больше горючего и сложнее в запуске.

В системах с электронным впрыском горючее подается принудительно, через форсунки. Концентрация воздуха в смеси регулируется на основании показаний датчиков. В двигателях снижается расход топлива при той же мощности, кроме того они проще в запуске. Однако они имеют сложную конструкцию, и отремонтировать своими руками не получится.

Выхлопная система

Бывает двух типов:

  • над винтом,
  • через винт.

В самых простых конструкциях устроенных по принципу над винтом, газы сбрасываются непосредственно в воздух. Они самые простые и дешевые, но создают неудобства для людей находящихся в лодке из-за создаваемого ими шума и вредных выхлопов.

Более комфортным вариантом являются системы, в которых выхлопные газы сбрасываются в воду выше винта.

В системах через винт выхлопные газы сбрасываются в воду через ступицу винта. Они считаются наиболее технически совершенными, в них низкий уровень шума и лучше тяговые характеристики. Недостатком является высокая стоимость и сложность конструкции.

Запуск

В ДВС, устанавливаемых на судах, могут использоваться три типа стартеров: электрические, ручные и смешанные.

Для запуска двигателя с ручным механизмом человек управляющий судном должен дернуть за тросик, чтобы мотор заработал. Механизм меньше весит и более компактен, так как для ее работы не нужен аккумулятор. При использовании ручного механизма не нужно беспокоиться о том, заряжен ли аккумулятор.

Недостатком данной системы является то, что для запуска нужно приложить достаточно большую физическую силу.


Такой запуск применяется в приводах малой мощности.

В электрической системе для запуска применяется стартер, получающий питание от аккумулятора. Главное преимущество удобство запуска – нужно нажать кнопку или сделать поворот ключом в замке зажигания. Большие габариты и вес являются недостатком.

Устройства стоят достаточно дорого, применяются совместно с мощными двигателями, для которых использование ручных механизмов невозможно.

При смешанном типе в штатном режиме используется электрическая система, но имеется и ручной запуск на случай поломки либо разряженного аккумулятора. Смешанный тип запуска используется совместно с мощными двигателями, но не настолько, чтобы создать серьезные проблемы для ручного завода.

Смешанная система может быть использована на моделях мощностью 25 – 45 лошадиных сил.

Лодочные моторы с электронной системой зажигания

Для работы ДВС применяется система зажигания, воспламеняющая горючее при помощи электрической искры. Существуют два вида зажигания – механический и электронный.

Преимущества электронной системы зажигания по сравнению с механической:

  • Создает сильную и устойчивую искру;
  • Экономит горючее;
  • Обеспечивает стабильный запуск;
  • Надежно работает на малых оборотах;
  • Более долговечно.

Лодочные моторы с турбонаддувом

В двигателях с турбонаддувом энергия выхлопных газов используется для нагнетания в цилиндры горючей смеси. В рабочую камеру при каждом такте попадает больше топлива, мощность возрастает без увеличения рабочего объема конструкции.

Двигатель с турбонаддувом будет занимать меньше места по сравнению с моделями той же мощности, но без него.

Устройства являются более экологичными, так как они обеспечивают полное сгорание топлива и поэтому их выхлопы содержат меньше вредных веществ.

При использовании необходимо неукоснительно соблюдать правила эксплуатации.

Генератор

В конструкции любого бензинового ДВС присутствует генератор, который вырабатывает электрическую энергию, необходимую для работы системы зажигания. Однако не ко всякому генератору можно подключить внешние устройства. Питание от него удобнее, чем от аккумулятора и многие системы эхолокации, навигации, радиосвязи и другие рассчитаны на питание именно от генератора.

Стандартное напряжение на выходе генератора 12 вольт.

Одна из характеристик генератора – максимальный вырабатываемый ток (мощность, измеряется в амперах), чем он больше, тем больше различных устройств можно подключить к генератору.

Характеристики электромоторов

Тяга

Для электрических лодочных моторов указывают движущую силу, которую он может создать или тягу. Этот параметр измеряется в килограммах и служит объективным показателем возможностей мотора.

Параметр тяги нужно учитывать при выборе веса лодки. Тяга измеряется в фунтах (1 фунт = 0,453 кг). Расчеты данного параметра достаточно сложны и определяются по существующим таблицам, опираясь на вес лодки.

Аккумулятор

Аккумуляторы служат в качестве источников питания электромоторов. Мотор может быть рассчитан на питание от источника напряжением в 12 или 24 вольта, а все, наиболее распространенные аккумуляторы выдают напряжение 12 вольт.

Поэтому для питания двигателя работающего от источника напряжения в 24 вольт нужно два аккумулятора, которые включают последовательно (важно – аккумуляторы должны быть идентичными по параметрам и одного производителя).

Для электрических лодочных приводов существуют два типа аккумуляторов: стартовые и тяговые.

Стартовые аккумуляторы способны выдавать большие значения тока, но только на протяжении короткого промежутка времени. При длительной работе происходит глубокая разрядка аккумуляторов, и они становятся непригодными для дальнейшей эксплуатации.

Тяговые аккумуляторы отлично выдерживают полный разряд и лучше приспособлены для работы в качестве источника тока для лодочных электрических двигателей.

Тяговые аккумуляторы послужат в 6-10 раз дольше стартовых.

Существуют тяговые аккумуляторы с гелевидным электролитом, который защищает пластины от вибрации и протечек при наклоне, батарея имеет высокую прочность. Даже через месяц, после того, как он полностью разрядится, аккумуляторы зарядятся на сто процентов своей первоначальной емкости.

Максимальный ток

Чем больше мощность двигателя, тем выше потребляемый максимальный ток, он важен при выборе аккумулятора. Максимальный ток разрядки аккумулятора должен быть больше максимального тока потребляемого мотором на 15-20%.

Зная емкость аккумуляторов и потребление мотора можно рассчитать время работы. Для этого нужно емкость аккумулятора разделит на потребляемый ток.

Например, при полностью заряженном аккумуляторе емкостью 80 ампер в час и двигателе, у которого максимальный ток равен 20 ампер двигатель будет работать 4 часа.

Важные характеристики

Мощность

Мощность двигателей измеряется в лошадиных силах. Это справедливо как при использовании бензиновых, так и электрических моделей. Это связанно с тем, что на рынке лодочных моторов известность завоевали бензиновые двигатели, и поэтому производители электрических изделий показывают мощность в лошадиных силах.

В техническом паспорте некоторых электромоторов мощность написана в киловаттах.

Чтобы перевести киловатты в лошадиные силы нужно умножить мощность в киловаттах на 1,3596.

Маркировка изделий производителей западных стран и СНГ отличаются. В технических характеристиках моторов произведенных в СНГ указываются максимальные данные на выходном валу привода. Западные производители указывают в паспорте мощность на гребном валу.

Таким образом, производители СНГ не учитывают потери на передачу движения от вала мотора до гребного вала, и поэтому мощность Западных приводов, при одинаковых значениях, будет немного выше.

Для того чтобы развить высокую скорость нужен сильный двигатель. Также он нужен для тяжелого судна с большой грузоподъемностью. Но с увеличением мощности привода растет и его вес, цена и расход топлива. Превышать мощность мотора, написанную в техническом паспорте лодки опасно по двум причинам:

  1. Лодка может не выдержать разгона до высоких скоростей;
  2. Транец лодки не рассчитан на большой вес.

С учетом эффективности и безопасности рекомендуется выбирать мотор, мощность которого составляет 60 – 80% максимально возможной для лодки.

Как выбрать мощность лодочного мотора

Для лодок, длинной не превышающих 3 метров, и на борту которых одновременно находится не более одного человека, подойдут двигатели мощностью 2 – 4 лошадиные силы.

На небольших и средних судах длиной до 4 метров устанавливаются модели в 5 – 8 лошадиных сил. Эти моторы удобны в транспортировке, так как их вес не превышает 30 килограмм. Устройства могут вывести маленькие лодки в особый режим – глиссирования. В таком режиме, только незначительная часть дна касается воды, а большая часть парит в воздухе. Это намного снижает сопротивление передвижению и нагрузку на двигатель.

Самыми популярными являются модели мощностью от 10 до 20 лошадиных сил, которые устанавливаются на лодки, длина которых находится в диапазоне 3 – 5 метров, а вес от 50 до 300 килограмм.


Их модно использовать для рыбалки, перевозки грузов на большие расстояния. Эти двигатели обеспечивают движение лодки с несколькими пассажирами и грузом.

Для лодок, длина которых достигает 6 метров (но не более), рекомендуется приобретать модели мощностью от 25 до 35 лошадиных сил. Лодки с таким мотором могут развивать скорость до 40 километров в час и выходить в режим глиссирования даже при большой загрузке.

Лодки длиной более 6 метров, служащие для перевозки больших грузов, и способные плавать с высокой скоростью, оснащены приводом мощностью 40-45 лошадиных сил. Они способны развивать скорость 50 километров в час.

На катера и яхты длиной 5 – 8 метров выбирают модели мощностью 90 – 140 лошадиных сил. Двигатели обеспечивают скорость судна, превышающую 100 километров в час, и применяются на значительных водных пространствах, также могут применяться для плавания в море.

На маленьких круизных судах и яхтах применяются моторы, мощность которых превышает 140 лошадиных сил.

Существуют три режима передвижения судна по воде:

  1. Водоизмещающий, в этом режиме плавают лодки с мотором малой мощности на небольшой скорости. Это самый неэкономичный режим из-за большого трения днища о поверхность воды;
  2. Переходный, это промежуточный режим, в котором лодка еще не вышла в режим глиссирования, но нос уже начинает приподниматься над водой. Обычно данный режим характерен для лодок, движущихся со скоростью 16 – 18 километров в час.
  3. Глиссирующий режим характерен для лодок, движущихся со скоростью более 20 километров в час. В этом режиме площадь соприкосновения дна с водой достигает минимума.

Судно при таком движении не раздвигает воду, а удерживается на ее поверхности подъемной силой, создаваемой за счет скорости передвижения. Затраты энергии, для достижения глиссирования больше, чем для поддержания такого движения.

Для того, чтобы судно могла войти в режим глиссирования оно должна иметь мощный двигатель и плоское дно.

Скорость необходимая для выхода в данный режим зависит от конструкции дна лодки, ее веса, распределения груза, гребного винта и двигателя.

Аварийный выключатель

Аварийный выключатель мотора предназначен для того, чтобы заглушить мотор при падении за борт человека управляющего судном, и таким образом, он предотвращает несчастный случай, причиной которого может стать неуправляемая лодка.

В комплектацию аварийного выключателя входит шнур, который крепится к запястью с помощью специального крепления. Когда человек сильно дергает за шнур в момент падения за борт, происходит аварийное отключение двигателя.

Максимальное число оборотов в минуту

При увеличении частоты вращения мотора увеличивается скорость судна. Количество оборотов винта лодки зависит от передаточного числа редуктора и шага винта. Однако на скорость судна кроме числа оборотов влияет еще множество факторов: конструкция винта, мощность двигателя и т.д.

Следует учесть, что модели с большим числом оборотов издают больше шума при своей работе.

В некоторых двигателях для защиты от перегрузки встроена система ограничения оборотов. При увеличении температуры выше критической автоматика снижает обороты, что позволяет агрегату остыть – скорость судна при этом падает, но двигатель остается неповрежденным.

В некоторых приводах встроена система стабилизация скорости судна. Она полезна в случаях, когда судно должно двигаться с постоянной скоростью без рывков, например при ловле рыбы методом троллинга. Недостаток – высокая стоимость.

Редуктор лодочного мотора

В лодочных приводах используется редуктор для понижения числа оборотов винта. Скорость винта равна величине угловой скорости вращения вала мотора деленной на передаточное число редуктора. Данный параметр не имеет большого практического значения и является справочным. Основные параметры привода, такие как мощность, тяга и другие практически не зависят от передаточного числа редуктора.

Внутри редуктора имеются трущиеся детали, которые время от времени нужно смазывать специальным трансмиссионным маслом. Хотя редуктор защищен от воды сальниками, со временем вода все равно попадает внутрь.

Поэтому рекомендуется для смазки редуктора использовать специальные масла, которые имеют в своем составе специальные антиэмульсионные присадки.

Производители не рекомендуют использовать обычные масла, которые используются для смазки коробки передач в автомобилях. Экономия на качественном масле закончиться дорогостоящим ремонтом редуктора.

Количество скоростей

Изменение скоростей привода, как передних, так и задних очень просто можно сделать для электрических моторов.

Для изменения скоростей в приводах использующих бензиновые двигатели служит коробка передач, что значительно усложняет конструкцию. В современных приводах обычно бывает реализовано от 2 до 5 скоростей.

Охлаждение лодочного мотора

Системы охлаждения бывают двух типов:

  1. Воздушное,
  2. Водяное.

Воздушная система охлаждения бывает:

  1. активная использующая вентилятор,
  2. пассивная с радиаторами.

Это очень простая конструкция и ее эффективность невысока. Применяется для двигателей, мощность которых меньше 15 лошадиных сил.

Плюс воздушной системы то, что ее можно использовать на водоемах с грязной водой.

Водяная система охлаждения использует воду из водоема и после использования сбрасывается за борт. Ее нельзя использовать, если вода за бортом сильно загрязнена. Данная конструкция более эффективны, чем воздушная и применяется в приводах большой мощности, однако она дороже и сложнее.

Передача

Система передач предназначена для измерения скорости и направления движения судна. Может находиться в трех положениях «передняя», «задняя» и «нейтрал».

«Передняя» передача включена при движении вперед, может иметь несколько скоростей.

При включении «задней» винт вращается в обратную сторону и заставляет судно двигаться в противоположную сторону. Эта функция отсутствует у дешевых моделей. «Задняя» передача удобна при экстренном торможении и маневрировании на небольшом пространстве. В электрических двигателях осуществляется за счет изменения полярности питания мотора.

При включенной «нейтральной» передачи вращение не передается от двигателя на вал и лодка не будет двигаться при работающем моторе. Система полезна в бензиновых моделях, так как их запуск достаточно сложная процедура. В электрических двигателях пуск и остановка не представляют никаких проблем, поэтому обычно не применяется для данных типов приводов.

Производить запуск двигателя нужно только с выключенной передачей, так как в противном случае запуск вызывает перегрузки в узлах конструкции привода и способствует рывку судна и столкновению с берегом или падению за борт людей.


Поэтому в некоторых моделях для предотвращения несчастных случаев предусмотрена система не дающая завести двигатель, если включена передача.

Индикаторы


Для того чтобы человек, управляющий судном мог следить за состояние привода, на лодку могут быть установлены дополнительные индикаторы. Если в паспорте мотора заявлена совместимость с индикатором, то это означает, что в конструкции присутствует датчик, а для снятия с него показаний индикатор нужно приобрести отдельно.

Наиболее часто на судах присутствуют:

  • Спидометр определяет скорость передвижения судна относительно поверхности воды. Так как он определяет скорость передвижения судна относительно воды, а не берега, при быстром течении его показания значительно отличаются от фактической скорости передвижения судна относительно суши;
  • Тахометр показывает угловую скорость вращения мотора и используется для контроля режима работы;
  • Счетчик моточасов демонстрирует время работы двигателя. Данные получаемые с этого датчик нужны для того чтобы определить общий ресурс. Кроме этого процедуры технического обслуживания, замены масла и т.д. также выполняется после того, как двигатель отработал определенное количество часов;
  • Индикатор давления масла нужен для того, чтобы вовремя предупредить о неполадках в системе смазки или о необходимости выполнить процедуру смены масла, потому что отсутствие масла грозит преждевременным износом мотора и даже аварией из-за его заклинивания;
  • Индикатор температуры масла предупреждает о чрезмерном его перегреве. Когда масло нагревается да температуры выше допустимой оно теряет свои свойтства и не выполняет возложенных на него задач. Кроме этого резкое увеличение температуры сигнализирует о неполадках в механизме привода;
  • Индикатор уровня масла показывает, сколько масла осталось в моторе и предупреждает, в случае необходимости, о необходимости пополнить его запасы;
  • Индикатор заряда аккумулятора показывает уровень зарядки аккумулятора, с его помощью можно приблизительно рассчитать время работы электрического двигателя. В электрическом приводе он играет ту же роль, что и индикатор остатков топлива в бензиновом. Такими индикаторами могут оснащаться не только электрические, но и бензиновые двигатели с электрической системой запуска, чтобы можно было осуществлять контроль состояние аккумулятора и своевременно его заряжать;
  • Индикатор остатков топлива демонстрирует, сколько горючего осталось в баке. Информация получаемого с этого датчика не совсем точна, но ее достаточно для практического применения;
  • Индикатор расхода топлива демонстрирует, сколько горючего расходует двигатель при данном режиме работы в данный момент. По его показаниям, а также по показаниям индикатора остатков топлива, можно определить, какое время способен проработать мотор при данном режиме работы;
  • Индикатор перегрева двигателя сигнализирует о повышении температуры выше предельно допустимой. Перегрев становится причиной различных неприятностей. Например, заклинивание или даже возгорание мотора, и это не зависит от причин его вызвавших, был ли он вызван технической неисправностью или естественной причиной, например, перегрев под воздействием прямых солнечных лучей;
  • Индикатор превышения количества оборотов двигателя предупреждает о превышении частоты вращения выходного вала выше предельно допустимой. Отличается от тахометра тем, что не показывает частоту вращения вала, а только сигнализирует о превышении;
  • Индикатор положения тримма, показывает текущее положение «ноги» двигателя. При наличии данного индикатора человеку управляющему судном не нужно постоянно присматриваться к устройству;
  • Индикатор положения дросселя, выдает информацию о том, в каком положении находится дроссель, а значит, в каком режиме работает двигатель. С его помощью можно диагностировать неполадки привода;
  • Индикатор, сигнализирующий о наличии в горючем воды, предупреждает о попадании в топливо посторонней жидкости, что ведет к снижению мощности и перебоям в работе, или может стать причиной гидроудара, который серьезно повредит мотор.

Управление

Разновидности систем управления

Управления производится румпелем или дистанционно. Существуют комбинированные приводы, управление которыми осуществляется как румпелем, так и дистанционно.

Румпель используется для управления двигателями малой и средней мощности. Он конструктивно выполнен в виде рычага. На румпеле находится ручка дросселя, с помощью которой регулируется подача топлива и кнопка остановки двигателя. Также румпель используется для выбора направления движения судна.

При таком способе, человек управляющий судном, должен все время находиться возле двигателя. Данные системы управления недороги, имеют несложную конструкцию и достаточно функциональны. У электрических моделей для регулировки скоростей существует специальный переключатель.

Наиболее удобное положение для управления лодкой выбирают, изменяя наклон румпеля. Поэтому следует искать привод с максимально возможным наклоном.

В дистанционной системе органы управления выведены на нос судна. Ее устанавливают на достаточно дорогих лодках, поэтому перед тем как покупать привод с дистанционным управлением следует убедиться, что его можно смонтировать на вашем судне.

Двигатели, которые могут управляться как при помощи румпеля, так и дистанционно стоят дорого и устанавливаются на судах топ класса.

Дистанционные системы управления судном

Существуют три типа рулевого управления:

  • механическое,
  • электрическое,
  • гидравлическое.

В механическом управлении рулем, управление осуществляется с помощью тросов положенных вдоль борта. При повороте руля трос наматывается на шестерню рулевого редуктора, что вызывает поворот привода. Такая система стоит недорого и ее легко смонтировать самому.

Однако механизм имеет небольшой срок службы и для управления тяжелыми и мощными двигателями необходимо прикладывать значительные усилия.

Гидравлическая дистанционная система управления применяется на судах с двигателями мощностью более 150 лошадиных сил. Положительные качества: усилие, прикладываемое при управлении судном очень маленькое, такой механизм можно использовать на судах с несколькими двигателями, она имеет высокую надежность, к ней подключается автопилот. Недостаток только один – высокая стоимость.

Электрическая система позволяет отказаться от тросов, пульт управления связан с двигателем посредством кабеля, по которому передаются сигналы, а они приводят в действие поршни гидроцилиндров. Это устройство дает возможность синхронно управлять несколькими устройствами одновременно.

Эксплуатация

Лодочные приводы, предназначенные для эксплуатации в пресноводных водоемах, не рекомендуется использовать в морской воде. В морской воде применяются специальные конструкции с повышенной защитой от коррозии.

Передвижение по мелководью

В отдельных моделях приводов, для предотвращения контакта винта с водорослями и илом, предусмотрена регулировка глубины погружения мотора. Для передвижения по мелководью лучше использовать турбинный двигатель.

Чехол сумка для транспортировки

При перевозке двигателя в автомобиле чехол лодочного мотора защитит багажник от масла, которое могло остаться в агрегате, от водорослей, тины и другого мусора. Кроме этого чехол защищает сам мотор от царапин, сколов, ударов и продлит срок его службы.

Существует два типа чехлов сумок:

  1. Предназначенные для хранения двигателей – изготавливаются из крепкой водонепроницаемой ткани и снабжаются застежкой;
  2. Для транспортировки – обычно комплектуются специальными вставками, которые предохраняют двигатель от различных повреждений. Для их изготовления используется, прочная водонепроницаема ткань, которая не позволяет влаги и грязи попасть внутрь.

При выборе сумки нужно обратить внимание на такие моменты:

  • Сумка должна подходить для вашей модели, то есть максимально повторять ее форму, для того чтобы мотор не болтался в сумке во время его транспортировки.
  • Чехол должен быть изготовлен из водонепроницаемой ткани высокой прочности и укомплектован специальными вставками, чтобы защитить двигатель во время транспортировки.
Реклама от спонсоров: // // //

Что такое мотор? | Сервоприводы и контроллеры машин | Продукты и решения

Что такое мотор?

Словарь описывает: «Двигатель — это машина, преобразующая электрическую энергию в механическую». Другими словами, электрическая энергия — это «батарея», а механическая энергия — это «вращение». Для физического объяснения мотора хорошо подходит хорошо известное «правило левой руки Флеминга». Когда электрический ток течет по электрическому проводу, помещенному между двумя магнитами, обращенными друг к другу, он создает силу.Электрический ток, магнитное поле и движение соответственно применяются в перпендикулярных направлениях друг к другу, как когда вы разводите средний палец (электрический ток), указательный палец (магнитное поле) и большой палец (сила) левой руки соответственно по взаимно ортогональным осям.

Тогда почему электрический ток, протекающий по электрическому проводу, создает силу? Это потому, что, когда электрический ток течет по электрическому проводу, вокруг него создается магнитное поле. Магнитное поле притягивает или отталкивает магнитное поле от магнитов, которые создают силу для перемещения электрического провода.Электрическая энергия здесь — это «электрический ток», а механическая энергия — это «сила».

Начало моторов

В 1831 году британский физик Майкл Фарадей открыл закон электромагнитной индукции, согласно которому электрический ток течет при перемещении магнитов в катушке с воздушным сердечником. Закон электромагнитной индукции доказал, что электрическая энергия и механическая энергия взаимно преобразованы. Говорят, что это катализатор изобретения двигателей.В те дни Великобритания переживала период первой промышленной революции, и паровая энергия была движущей силой революции. Никто не мог признать важность двигателей, которые работали с электричеством в те дни без электросети.

На пути к практичным моторам

Никола Тесла

С момента открытия Фарадеем электромагнитной индукции люди изобрели ряд двигателей.В 1834 году Томас Давенпорт изобрел практический двигатель постоянного тока. После этого югославскому инженеру-электрику, позже ставшему американцем Никола Тесла, пришла в голову идея управлять двигателями переменным током. В 1882 году идея принципа вращающегося магнитного поля внезапно поразила его голову, когда он гулял в парке. В 1887 году он закончил практический двухфазный двигатель переменного тока (асинхронный двигатель), использующий вращающееся магнитное поле. С тех пор были разработаны технологии переменного тока, такие как трансформатор, трехфазная трехпроводная система, а также электросети.Чем доступнее становилось электричество, тем шире использовались двигатели.

Благодаря прорыву Tesla теперь мы можем наслаждаться жизнью с помощью электричества и двигателей. Кстати, когда-то Тесла работал в компании, которой руководил великий изобретатель Эдисон, он вступил в конфликт с Эдисоном и покинул компанию в течение одного года. Тесла оставил слова, цинично искажающие слова Эдисона: «Гений — это 1 процент вдохновения и 99 процентов напрасных усилий».

Отечественное производство моторов и выезд Yaskawa Electric

Первый заказ размещен асинхронный двигатель

Говорят, что первый двигатель, использованный в Японии, был для лифта (вмещал 15-20 человек, работал до 8 этажа) в Ryōunkaku, первом небоскребе в западном стиле в Японии, открытом в 1890 году в Асакуса, Токио.Не говоря уже о том, что такой технологии для разработки и производства двигателей в Японии не было, в лифте использовался 15-сильный двигатель (двигатель постоянного тока), купленный в Америке. Хотя утверждается, что лифт прекратил работу в течение 1 года из-за частых поломок, это стало эпизодом, продемонстрировавшим стремление людей к моторизации.

В 1890-х годах в Японии начали использовать импортные двигатели, например, для насосов в шахтах. Поскольку уровень промышленных технологий в Японии в то время был значительно ниже, чем в Европе и Америке, большинство электрических устройств было импортным.Однако говорят, что они часто выходили из строя. Итак, двигатели отечественного производства постепенно набирали обороты.

В 1895 году был выпущен первый двигатель (асинхронный двигатель), произведенный в Японии. Затем, в 1915 году, Yaskawa Electric была основана как компания, которая производила и продавала электрические продукты, произведенные исключительно в Японии, и в 1917 году запустила первый заказ на асинхронный двигатель. С этого момента операторы угольных шахт начали размещать заказы на двигатели Yaskawa для их насосы и тягачи.

Различные виды и особенности двигателей

Через 180 лет после появления двигателей его характеристики и удобство использования значительно улучшились благодаря прогрессу в разработке и производстве технологий и материалов, а также электроники. Существуют различные способы вызова двигателей в зависимости от категоризации функций и структур, таких как серводвигатель для его точной работы по командам, линейный двигатель для его линейного движения, вибрационный двигатель для его вибрации для уведомления о входящем вызове на мобильном телефоне и мотор-редуктор для комбинированного редуктора.У двигателей также есть несколько названий, хотя их конструкция одинакова. Начиная с двигателя для угольной шахты, теперь, когда двигатели Yaskawa Electric находят применение в самых разных областях, таких как промышленное оборудование, роботы и электромобили (EV). Например, в приведенном ниже списке показаны несколько названий, используемых в двигателях для электромобилей. Люди назвали моторы, чтобы обозначить отличия от других, в результате осталось много названий для моторов. Это такой сложный фон, но вместе с тем «доказательство диверсификации автомобильной промышленности».”

Категоризация двигателей

Двигатели постоянного тока пропускают через него постоянный ток (DC), а двигатели переменного тока пропускают через него переменный ток. Бесщеточный электродвигатель постоянного тока — это электродвигатель постоянного тока, в котором вместо щетки и коммутатора используется полупроводниковый переключающий элемент. Универсальный двигатель может вращать двигатель на высокой скорости с электричеством 100 В переменного тока для домашних хозяйств, удерживая ту же щетку и коммутатор для двигателей постоянного тока. Помимо этого, есть шаговый двигатель, который движется с прямоугольным потоком тока, и реактивный двигатель с переключаемым сопротивлением.Ультразвуковой двигатель — это специальный двигатель, который работает путем вибрации пьезоэлектрической керамики при приложении высокочастотного напряжения.

1) Двигатели постоянного тока

Двигатель, который многие японские ученики использовали в своих научных экспериментах в начальной школе, был электродвигателем постоянного тока. Это самый популярный двигатель, используемый в моделях бытовой электроники и вибрационных двигателях в мобильных телефонах. Чтобы примерно объяснить устройство двигателей, в нем есть ротор и статор.Ротор — это часть, соединенная с валом, а статор — это неподвижная часть, которая составляет внешнюю часть.

Статор двигателей постоянного тока удерживает постоянные магниты и щетки, которые подают электрический ток на ротор, а ротор удерживает обмотки и коммутатор. Как только щетки подают постоянный ток на коммутатор, электрический ток начинает течь через обмотки, подключенные к коммутатору, и создает крутящий момент. Здесь обмотки и коммутатор имеют механизм протекания электрического тока таким образом, что крутящий момент остается на одном уровне.Самая большая особенность двигателя постоянного тока — его удобство использования с сухими элементами. Вы можете изменить направление вращения, просто изменив подключение проводов двигателя. Вот почему двигатели постоянного тока получили широкое распространение.

2) Бесщеточные двигатели постоянного тока

Бесщеточный двигатель постоянного тока можно описать как «двигатель без щеток, хотя он имеет характеристики, аналогичные двигателю постоянного тока». Он содержит обмотки статора и постоянные магниты в роторе в качестве своей структуры. В нем нет щеток и коммутатора, которые раньше были в двигателях постоянного тока, вместо этого он удерживает полупроводниковый переключающий элемент вне двигателя.Он работает, чтобы постоянно протекать постоянный ток через две из трех фаз обмоток, фазы U, V и W. Он переключает поток тока в соответствии с положением постоянных магнитов, обнаруженным, например, датчиком элемента Холла, и продолжает генерировать то же самое. уровень крутящего момента.

3) Синхронные двигатели

С другой стороны, синхронный двигатель работает синусоидально, используя информацию, обнаруженную датчиком угла, прикрепленным к краю ротора. Синхронный двигатель назван в честь механизма, в котором вращение магнитного поля, создаваемого трехфазными обмотками, синхронизируется с вращением ротора.Конструкция синхронных двигателей в основном такая же, как и у бесщеточных двигателей постоянного тока. Поэтому люди часто принимают синхронные двигатели за бесщеточные двигатели постоянного тока и наоборот.

Одной из особенностей синхронных двигателей и бесщеточных двигателей постоянного тока является то, что они способны предотвращать износ щеток и электрические шумы. Они также могут уменьшаться в размерах, иметь высокую производительность и высокую эффективность за счет использования сильных редкоземельных магнитов. Благодаря этим характеристикам, существует широкий спектр применения, например, в информационных устройствах, бытовой электронике, автомобильных двигателях и серводвигателях.Говорят, что на двигатели постоянного тока приходится 70%, а общее количество бесщеточных двигателей постоянного тока и синхронных двигателей составляет 20% от общего количества произведенных малогабаритных двигателей.

4) Асинхронные двигатели

Принцип вращения асинхронных двигателей основан на «вращениях Араго», открытых французским физиком Араго. Это явление заключается в том, что когда вы помещаете алюминиевый диск между U-образным магнитом и перемещаете магнит в направлении вращения, алюминиевый диск начинает вращаться в том же направлении с небольшой задержкой по времени.Когда магнитное поле U-образного магнита изменяется на алюминиевом диске, спиральный электрический ток течет через алюминиевый диск (закон электромагнитной индукции), и действие тока и магнитного поля U-образного магнита генерирует электромагнитную силу. Асинхронные двигатели — это изобретение, применяемое во вращении Араго.

Статор асинхронных двигателей имеет в своем составе трехфазные обмотки. А на роторе находится алюминиевая деталь в виде клетки (корпусный проводник).Когда вы управляете трехфазными обмотками синусоидальной волной, она генерирует магнитное поле, которое вращается с определенной частотой. Затем, как и в принципе вращения Араго, электрический ток течет через проводник с короткозамкнутым ротором, который воспринимает изменения магнитного поля, и ротор начинает вращаться с небольшой задержкой по времени.

Асинхронные двигатели

менее эффективны по сравнению с бесщеточными двигателями постоянного тока и синхронными двигателями, в которых используются постоянные магниты, однако у них есть другие особенности, например, они применимы к коммерческому трехфазному источнику питания переменного тока 200 В, с возможностью вращения без датчика Холла или датчик угла поворота, который трудно сломать, может эффективно работать с приводом переменного тока и обеспечивать большую мощность при использовании крупногабаритного двигателя.Таким образом, существует множество вариантов использования асинхронных двигателей в промышленной сфере и транспортных средствах. Подобно биоразнообразию, у нас есть множество двигателей, которые имеют широкий диапазон природы в зависимости от различия структур и распределения материалов.

Электродвигатель — Energy Education

Рисунок 1. Электродвигатель от старого пылесоса. [1] Рисунок 2. Электрический ротор. [2]

Электродвигатель — это устройство, используемое для преобразования электричества в механическую энергию, противоположное электрическому генератору.Они работают с использованием принципов электромагнетизма, которые показывают, что сила прилагается, когда электрический ток присутствует в магнитном поле. Эта сила создает крутящий момент на проволочной петле, присутствующей в магнитном поле, которая заставляет двигатель вращаться и выполнять полезную работу. Двигатели используются в широком спектре приложений, таких как вентиляторы, электроинструменты, бытовая техника, электромобили и гибридные автомобили.

Как они работают

Двигатели

имеют множество различных рабочих частей, чтобы они постоянно вращались, обеспечивая необходимую мощность.Двигатели могут работать от постоянного (DC) или переменного (AC) тока, и оба имеют свои преимущества и недостатки. Для целей этой статьи будет проанализирован двигатель постоянного тока, чтобы прочитать о двигателях переменного тока, нажмите здесь.

Основные части двигателя постоянного тока включают: [3]

  • Статор: Неподвижная часть двигателя, а именно магнит. Электромагниты часто используются для увеличения мощности.
  • Ротор: Катушка, которая установлена ​​на оси и вращается с высокой скоростью, обеспечивая систему механической энергией вращения.
  • Коммутатор: Этот компонент является ключевым в двигателях постоянного тока, и его можно увидеть на рисунках 3 и 4. Без него ротор не смог бы вращаться непрерывно из-за противодействующих сил, создаваемых изменяющимся током. Коммутатор позволяет ротору вращаться, меняя направление тока каждый раз, когда катушка делает пол-оборота.
  • Щетки: Они подключаются к клеммам источника питания, позволяя электроэнергии течь в коммутатор.
  • Двигатель постоянного тока
  • Рисунок 3: Базовая установка двигателя постоянного тока. [3]

  • Рисунок 4: Анимация двигателя в действии. Коммутатор вращается, чтобы ротор вращался непрерывно. [3]

Список литературы

Типы двигателей и принцип их работы (для коммерческого и промышленного применения)

Двигатели — это механические или электромеханические устройства, преобразующие энергию в движение.Энергия в форме электрической, гидравлической или пневматической преобразуется во вращательное или линейное движение, а затем выводится на вал или другой компонент передачи энергии, где она обеспечивает полезную работу. Электродвигатели включают разновидности переменного или постоянного тока, которые далее подразделяются на электродвигатели специального назначения, включая мотор-редукторы, шаговые двигатели, серводвигатели и линейные двигатели. Гидравлические и пневматические двигатели используют жидкость (масло, воздух) в качестве движущей силы. Химические двигатели включают подвесные двигатели для использования на лодках и ракетных двигателях, оба из которых используют внутреннее сгорание и часто называются двигателями.Электродвигатель, используемый для приведения в движение небольших рыболовных судов, называется троллинговым двигателем. Ни одна из этой последней группы здесь не обсуждается.

Типы двигателей (и принцип их работы)

Двигатели переменного тока

Двигатели переменного тока

— это электромеханические устройства, приводимые в действие переменным током для создания вращательного движения. Вращение обеспечивает механическую работу для привода других вращающихся машин, таких как насосы. Стандартные размеры корпуса доступны в широком диапазоне мощностей, чтобы облегчить взаимозаменяемость. Корпуса могут варьироваться от простых открытых конструкций до взрывозащищенных невентилируемых конструкций, обычно полностью закрытые с вентиляторным охлаждением (TEFC).Международная рейтинговая система также предписывает уровни охлаждения и защиты. Двигатели переменного тока составляют значительную часть используемых сегодня двигателей и приводят в действие насосы, вентиляторы, компрессоры и т. Д. Диапазон размеров от машин с малой мощностью до 20 000 л.с. Двигатели переменного тока будут одно- или трехфазными.

Трехфазные машины классифицируются по конструкции ротора: с короткозамкнутым ротором или с фазным ротором. В конструкции с короткозамкнутым ротором используются медные или алюминиевые стержни ротора, закороченные концевыми кольцами, и в определенном смысле они представляют собой настоящие индукционные машины — своего рода вращающийся трансформатор.Роторы с обмоткой используют проволоку, количество полюсов ротора равно количеству полюсов статора, а контактные кольца обеспечивают метод вставки сопротивления для запуска и для изменения скорости. Пуск трехфазных машин при полном напряжении или через линию возможен примерно до 200 л.с., после чего часто требуется метод пониженного напряжения, особенно для двигателей, которые запускаются часто, из-за заметного падения напряжения, влияющего на освещение. , двигатели прочие и др.

Однофазные двигатели используются в основном в диапазонах дробных л.с.Они не запускаются автоматически и могут быть сгруппированы по способу запуска. Наиболее широко используемая конструкция — двигатель с расщепленной фазой — использует две обмотки статора для получения пары несимметричных токов обмотки, при этом вспомогательная обмотка отключается, когда двигатель приближается к синхронной скорости. Конденсаторный двигатель вставляет конденсатор во вспомогательную обмотку, который в случае конденсаторной пусковой машины выпадает, когда двигатель приближается к рабочей скорости, а в случае двухзначного конденсаторного двигателя переключается на второй конденсатор по мере приближения. скорость бега.В конструкции постоянного разделенного конденсатора вспомогательная обмотка и конденсатор остаются под напряжением на рабочей скорости. Наконец, двигатель с экранированными полюсами использует неравномерно разделенные полюса с экранирующими катушками, которые заставляют вращающееся поле перемещаться в направлении заштрихованного полюса (т. Е. Необратимо). Двигатели с расщепленными полюсами — одни из самых дешевых из однофазных машин. В синхронизирующих устройствах используются синхронные однофазные двигатели.

Для получения дополнительной информации ознакомьтесь с нашей полной статьей о типах двигателей переменного тока.

Двигатели постоянного тока

Двигатели постоянного тока — это электромеханические устройства, приводимые в действие постоянным током для создания вращательного движения. Движение обеспечивает вращательную работу для приведения в движение других вращающихся машин, таких как подъемники, с разными скоростями. Определенные схемы проводки могут создавать сильный крутящий момент на низкой скорости, что делает их пригодными в качестве тяговых двигателей для локомотивов, хотя они в значительной степени были заменены двигателями с регулируемой частотой вращения. Точно так же двигатели для гольф-каров неуклонно переделываются от щеточных конструкций к более продвинутым формам с электронными приводами.Стандартные размеры корпуса доступны в широком диапазоне мощностей, чтобы облегчить взаимозаменяемость. Корпуса могут быть от простых открытых конструкций до взрывозащищенных невентилируемых. Международная рейтинговая система также предписывает уровни охлаждения и защиты. Двигатели постоянного тока находят множество применений в игрушках и потребительских товарах и широко используются автопроизводителями. Они находят применение на лифтах, вилочных электропогрузчиках и конвейерах, где нагрузки с постоянным крутящим моментом являются нормальным явлением. Двигатели постоянного тока доступны в щеточном и бесщеточном исполнении (с постоянными магнитами), причем последние требуют для работы электронных приводов и контроллеров.

Традиционные щеточные двигатели постоянного тока классифицируются на основе возбуждения, используемого в обмотке возбуждения, с тремя основными различиями: шунтирующие, последовательные и составные. Шунтовые двигатели имеют низкий пусковой момент, низкую перегрузочную способность, минимальное изменение скорости в ответ на нагрузку и плохую стабильность при нулевой нагрузке. Серийные двигатели обладают высокими пусковыми моментами, высокой перегрузочной способностью, значительным изменением скорости в зависимости от нагрузки и хорошей стабильностью при нулевой нагрузке. Составные двигатели находятся где-то между двумя другими по характеристикам, хотя они тоже остаются стабильными при нулевой нагрузке.

Для двигателей постоянного тока мощностью более 3/4 л.с. необходимо использовать стартеры для ограничения пускового тока во избежание возгорания коммутаторов.

Мотор-редукторы

Мотор-редукторы

— это электромеханические устройства, приводимые в действие переменным или постоянным током для создания вращательного движения. Движение обеспечивает вращательную работу, которая затем понижается через встроенный редуктор для привода других вращающихся машин, таких как конвейеры или упаковочные машины. Мотор-редукторы используются там, где требуется, чтобы двигатели и редукторы скорости обеспечивали высокий крутящий момент на низких скоростях.За счет интеграции двух компонентов мотор-редукторы достигают КПД по размеру, устраняют внешние муфты, улучшают сопротивление смыванию и т. Д. Часто редукторы взаимозаменяемы между производителями. Хотя мотор-редукторы редко используются для больших двигателей, они довольно часто имеют дробную мощность. Они доступны с различными типами выходных валов с выбором среди двигателей переменного тока, щеточных и бесщеточных двигателей постоянного тока.

Шаговые двигатели

Шаговые двигатели

— это электромеханические устройства, приводимые в действие переменным током для создания вращательного движения и позиционирования.Как правило, шаговые двигатели не включают в себя контур обратной связи, как серводвигатели, а вместо этого достигают управления положением, поворачивая ротор двигателя на дискретное количество шагов. Они специфичны для приложений управления движением. Шаговые двигатели используются в приложениях позиционирования, где важно удерживать позицию, и используются на упаковочных машинах, принтерах и т. Д., Где потеря положения из-за перегрузки не критична и где важна экономия.

Серводвигатели

Серводвигатели

— это электромеханические устройства, приводимые в действие переменным или постоянным током для создания вращательного движения и позиционирования.Серводвигатели используют контур обратной связи для управления радиальным положением ротора двигателя относительно его статора. Они специфичны для приложений управления движением. Серводвигатели используются в приложениях для позиционирования, где первостепенное значение имеет плавное управляемое движение, например, в промышленных роботах. Во втором примере упаковочная машина может использовать серводвигатель для индексации точного количества упаковочной пленки в зону формования, где в прошлом такая подача могла регулироваться с помощью механического индексатора с приводом от двигателя.

Линейные двигатели

Линейные двигатели

— это электромеханические устройства, приводимые в действие переменным или постоянным током для создания линейного, а не вращательного движения. Линейное движение полезно в приложениях, где можно использовать воздушный цилиндр, но где требуется большая точность и позиционная обратная связь, или где движение может изменяться от хода к ходу. Конфигурация двигателя и форма движка / ползуна также могут быть проблемой. Линейные двигатели используются в упаковочных машинах, сборочных машинах, подъемно-транспортном оборудовании и в различных областях медицинского оборудования.

Пневматические двигатели

Пневматические двигатели

— это механические устройства, приводимые в действие давлением воздуха для создания вращательного движения. Движение обеспечивает вращательную работу для привода других вращающихся машин, таких как приемные бобины и инструменты. Пневматические двигатели используются там, где есть источник сжатого воздуха, и там, где необходим постоянный крутящий момент независимо от скорости, например, на приемной бобине на упаковочной машине. Они также используются во взрывоопасных средах, где считаются искробезопасными.

Гидравлические двигатели

Гидравлические двигатели

— это механические устройства, приводимые в действие жидкостью для создания вращательного движения. Движение обеспечивает вращательную работу для привода других вращающихся элементов, таких как ведущие колеса экскаватора тяжелого оборудования. Гидравлические двигатели широко используются в строительной технике, где требуется вращательное движение от компактного устройства, а гидравлическая энергия уже доступна. Гидравлические двигатели могут быть лопастными, шестеренчатыми или поршневыми, как и гидравлические насосы. Двигатели LSHT или низкоскоростные двигатели с высоким крутящим моментом доступны у некоторых производителей.Модифицированный лопаточный двигатель, называемый роторным двигателем абатмента, имеет меньшее трение и лучшее уплотнение, чем эквивалентный лопастный двигатель.

Различные области применения двигателей и отрасли промышленности

Среди двигателей переменного, постоянного, шестеренчатого, пневматического и гидравлического двигателей они обеспечивают вращательное движение, а шаговые, сервомоторы и линейные двигатели обеспечивают позиционирование. Электродвигатель переменного тока — вероятный выбор для привода насоса; двигатель постоянного тока хорошо подходит для привода барабана крана, где важна регулируемая скорость; мотор-редукторы выполняют те же функции, что и двигатели постоянного и переменного тока без покрытия, за исключением того, что они имеют встроенные редукторы; а воздушные и гидравлические двигатели удовлетворяют аналогичные потребности в ситуациях, когда электричество нецелесообразно или неприемлемо.

Позиционирование — это область трех других типов, что означает, что эти типы используются там, где элементы машин должны быть перемещены в точные места. В то время как машины вращательного движения охватывают весь спектр размеров от очень маленьких субфракционных единиц HP до самых больших машин, превышающих NEMA, шаговые, сервоприводы и линейные двигатели обычно имеют максимальную мощность в несколько лошадиных сил и превосходят в меньших размерах.

Трехфазные асинхронные двигатели переменного тока широко используются в промышленности. В них используются роторы с короткозамкнутым ротором (бесщеточные), которые создают магнитные поля в обмотках полюсов, которые затем взаимодействуют с магнитными полями обмоток статора, вызывая вращение.Скорость двигателя переменного тока зависит от количества полюсов и частоты приложенного напряжения, особенно часто встречаются 1800 (4-полюсный) и 3600 об / мин (2-полюсный). Фактическая скорость немного отстает от номинальной скорости вращающегося магнитного поля или линейной скорости и зависит от нагрузки. Синхронные двигатели переменного тока точно соответствуют скорости вращающегося поля, независимо от нагрузки, но их применение обычно ограничивается особыми случаями, когда это важно, например, в двигателях-генераторах. Другой синхронный двигатель, так называемый двигатель переменного тока с постоянными магнитами, использует ту же технологию с постоянными магнитами, что и бесщеточные конструкции постоянного тока, для создания синхронных двигателей переменного тока, которые доступны в дробных и интегральных размерах л.с.Для этих двигателей требуются электронные приводы. Двигатели переменного тока по своей сути не подходят для управления скоростью, хотя существует ряд методов как в конструкции двигателя (с фазным ротором), так и в схеме контроллера, чтобы сделать возможным управление скоростью. Несколько обмоток — это один из способов получения двухскоростного асинхронного двигателя. Частотно-регулируемые приводы могут обеспечивать плавную регулировку скорости. Также доступны различные пускатели, такие как устройства плавного пуска, которые помогают снизить воздействие запуска двигателя, например, на бутылки на конвейерной линии.

Другой электродвигатель переменного тока, получивший название универсального или электродвигателя переменного тока серии , используется во многих устройствах, таких как пылесосы, дрели, вакуумные системы и т. Д. Он использует те же щетки и коммутатор, что и электродвигатель постоянного тока, но может работать от переменного тока. ток также, потому что направление переключения тока возбуждения в точности совпадает с направлением коммутируемого тока якоря. Они имеют тенденцию к шуму при работе и лучше всего подходят для периодического использования, например, в электроинструментах из-за износа щеток, но они могут регулировать скорость.

Двигатели постоянного тока предлагают внутреннее регулирование скорости благодаря своей конструкции и использованию нечастотного постоянного тока в качестве движущей силы. В двигателе постоянного тока обычно используются щетки для подачи постоянного тока на ротор. Контролируя уровень постоянного напряжения, оператор может напрямую управлять скоростью двигателя. Двигатели постоянного тока этой конструкции, иногда называемые коллекторными двигателями для установленного на валу коммутатора, на котором движутся щетки, используются в автомобилях и в основном в небольших приложениях.В своих больших размерах они используются в приложениях, где регулирование скорости является обязательным: подъемники и краны, станки, прессы и т. Д. С появлением более сильных магнитов стали популярными двигатели постоянного тока с постоянными магнитами, которые обходятся без щеток. Эти двигатели несколько ограничены по размеру, примерно в одну лошадиную силу в верхней части, и для их электронного переключения требуются приводы. Прорези между зубьями обмотки статора вызывают явление, известное как «зубчатость», а конструкция без зазоров представляет собой попытку преодолеть это явление.Доступны определенные конструкции с постоянными магнитами, которые обеспечивают высокий крутящий момент на низких скоростях, например, двигатели BLDC типа «блины», которые особенно подходят для роботизированных приложений. Существуют также небольшие двигатели постоянного тока, называемые микродвигателями, которые используются в электронных устройствах и т.п., часто питающихся от батареи.

Мотор-редукторы доступны как блоки переменного тока, так и постоянного тока, как правило, в небольших размерах, где практично тесное соединение двигателя и коробки передач. Мотор-редукторы доступны с различными редукторами, такими как параллельный вал, прямой угол, планетарный редуктор и т. Д.

Шаговые двигатели предназначены для позиционирования. В их роторах используются постоянные магниты, которыми можно управлять через дискретные промежутки времени, возбуждая поле статора. Шаговый двигатель нуждается в контроллере / приводе для работы. Шаговые двигатели обычно имеют угол поворота 1,8 или менее градусов для каждого шага, но они могут быть дополнительно подразделены за счет использования так называемых микрошаговых контроллеров. Конструкция двигателя также играет роль в разрешающей способности шагового двигателя — количестве шагов на оборот — при этом 5-фазные двигатели предлагают большее количество шагов, чем 2-фазные двигатели.Шаговые двигатели обеспечивают относительно недорогой способ имитации позиционирования сервоприводов, хотя, как правило, им не хватает обратной связи по положению. Шаговые двигатели обычно могут удерживать нагрузку в остановленном состоянии, что является преимуществом для приложений позиционирования.

Серводвигатели — это позиционеры с истинной обратной связью, которые включают энкодеры для передачи информации о положении обратно на свои контроллеры. Они контролируют как скорость, так и точность за счет использования контуров обратной связи. Специальный серводвигатель, называемый моментным двигателем, предназначен для приложения крутящего момента к валу без обязательного его вращения, что может потребоваться для поддержания постоянного натяжения на натяжителе полотна.Конструкция позволяет двигателю создавать крутящий момент при остановке без перегрева. Его также можно использовать для прямого доступа к индексным таблицам.

Линейные двигатели лучше всего рассматривать как роторные двигатели, которые были «развернуты» для создания роторов, движущихся по линейным путям. Обычно они управляются сервоприводом, но также могут быть основаны на шаговом двигателе и использоваться для позиционирования и точного управления скоростью, чего нельзя достичь с помощью более дешевых средств, таких как воздушные цилиндры и т. Д. Некоторые производители предлагают линейные двигатели, которые также могут вращаться.Как и для любого серво- или шагового двигателя, для линейных двигателей требуются электронные приводы / контроллеры.

Пневматические двигатели просто приводятся в действие воздухом, а не электричеством и обычно используются в пневматических инструментах, таких как пневматические ключи и т. Д. Пневматические двигатели используются там, где требуется постоянный крутящий момент, например, на приемных барабанах на машинах для обработки полотна. Они также используются во взрывоопасных средах, поскольку считаются искробезопасными. Скорость пневмодвигателя можно несколько изменить, дросселируя впускной клапан, что дает возможность бесплатно регулировать скорость, например, при использовании на подъемнике.

Гидравлические двигатели приводятся в действие гидравлической жидкостью и обычно используются на вращающихся элементах строительного оборудования, например, на колесных двигателях. Они мощные для своего размера, легко переворачиваются и регулируются по скорости. Для них требуются источники гидравлической энергии, которая на строительной технике с приводом от двигателя обычно осуществляется в виде гидравлических насосов / систем. Стационарные станции с меньшей вероятностью будут иметь гидравлическую энергию, доступную в качестве коммунальных услуг, поскольку они будут использовать сжатый воздух, но для них доступны так называемые гидравлические силовые агрегаты.

Рекомендации

Двигатели переменного и постоянного тока доступны в стандартных типоразмерах NEMA, что делает эти двигатели взаимозаменяемыми. Их иногда называют интегральными агрегатами высокого давления или просто средними машинами. Двигатели также бывают в виде дробных блоков HP, получивших название FHP или, проще говоря, малых, и имеют нестандартную конструкцию за пределами встроенных рамок NEMA, иногда называемых большими машинами. IEC предлагает аналогичные стандартизированные моторные корпуса и подразделения метрических размеров.

Варианты защиты

обычно указываются в одной из двух форм: кода или классификации NEMA и кода IEC.Большинство двигателей представляют собой полностью закрытые двигатели с вентиляторным охлаждением, сокращенно TEFC, но существует множество разновидностей от открытых, каплезащищенных (ODP) до полностью закрытых, невентилируемых (TENV). Код IEC обеспечивает аналогичную классификацию с помощью двузначного цифрового кода, первый из которых определяет защиту корпуса от твердых предметов, а второй — уровень защиты от проникновения влаги. Например, двигатель со степенью защиты IP67 считается пыленепроницаемым и водонепроницаемым. Погружные двигатели, охлаждаемые иммерсивной жидкостью, доступны для скважинных насосов и т.п.

NEMA также делает различие между двигателями, работающими в непрерывном и прерывистом режиме. Двигатель с прерывистым режимом работы спроектирован для нечастого использования с достаточным охлаждением между пусками, как это может быть в случае с воздушным компрессором нижнего уровня, который также имеет рабочий цикл менее 100%. Также существует пятибуквенная рейтинговая система NEMA для описания работы двигателя, например «A», которая может использоваться для вентилятора, который не нужно запускать под нагрузкой, или «C», который подходит для конвейер, который, вероятно, запустился бы под нагрузкой.

Эти же коды могут применяться и к другим типам двигателей, особенно к редукторным, шаговым и серводвигателям.

Варианты монтажа включают монтаж на основании или на лапах и лицевой монтаж. В первом варианте двигатели поддерживаются на собственных основаниях — часто на одной раме с приводным оборудованием, тогда как во втором варианте двигатели прикреплены к корпусам ведомого оборудования, что иногда используется с насосами. Некоторые двигатели специально разработаны для работы в вертикальной ориентации.Эти так называемые специализированные двигатели предназначены для привода насосов и особенно подходят для работы в ограниченном пространстве, например, на борту судов.

Номинальные значения скорости и мощности являются основными характеристиками для определения двигателей ротационного типа. Количество фаз тоже важно, обычно одна или три.

Важные атрибуты и критерии выбора

Тип двигателя

Для блоков переменного тока основной выбор — между асинхронными и синхронными машинами. Двигатели с тормозом — это асинхронные машины со встроенными тормозами, которые могут удерживать нагруженный двигатель на месте.Для машин постоянного тока основной выбор — между бесщеточными агрегатами и теми, которые используют щетки. Мотор-редукторы предлагают многие из этих вариантов.

Ориентация на отрасль / предполагаемое применение

Многие двигатели предназначены для использования в обычных условиях, в то время как некоторые из них обладают специальными функциями или характеристиками, позволяющими использовать их в определенных областях применения. NEMA определяет множество двигателей специального назначения, в том числе для вентиляторов и воздуходувок, деревообрабатывающих станков и т. Д. Производители часто классифицируют свои двигатели специального назначения по этим линиям, т.е.например, работа на ферме, система отопления, вентиляции и кондиционирования воздуха, промывка и т. д. Специалисты по спецификации двигателей могут полагаться на эти атрибуты, чтобы сузить выбор, выходя за пределы диапазона двигателей общего назначения. Один пример — 400 Гц. двигатели, предназначенные для авиационной и космической техники. В некоторых приложениях, например, в вибраторах для погрузочно-разгрузочных работ, могут использоваться электрические или пневматические двигатели.

Вращение вала

Обычно трехфазные асинхронные двигатели реверсивны. Многие из них могут работать в противоположном направлении, переключая провода в месте их подключения к двигателю.Некоторые двигатели, особенно небольшие синхронные двигатели, используемые для управления заслонкой и т. Д., Являются однонаправленными, но часто могут быть указаны как вращение по часовой стрелке или против часовой стрелки. Вращение двигателя обычно определяется, если смотреть со стороны привода (DE), то есть конца двигателя на стороне нагрузки или соединенной стороне. Для нереверсивных двигателей постоянного тока, однофазных двигателей переменного тока, синхронных и универсальных двигателей обычное направление — CW.

Напряжение двигателя

Двигатели среднего напряжения обычно работают от 2300 или 4000 вольт.Меньшие трехфазные двигатели общего назначения могут работать от источников питания 208–230 или 460 вольт. Однофазные двигатели обычно работают от источника питания 115 или 230 В.

Класс NEMA Расчетный рейтинг

NEMA поддерживает ряд номинальных характеристик двигателя, в которых указывается изоляция и превышение температуры, которое он должен выдерживать.

Конструкция вала

Валы двигателей и могут быть заказаны со шпоночными пазами или плоскими шлицами для крепления муфт и т. Д. Они также могут быть короче стандартных валов. Валы также могут иметь резьбу для крепления резьбовых крепежных элементов.

Ресурсы

Торговые ассоциации

Нормы и стандарты

Стандартов на двигатели

слишком много, чтобы их перечислить, но читатель может обратиться к организациям по стандартизации, таким как NEMA, IEC и NFPA (Nat’l Fluid Power Assn.), За их всеобъемлющими сборниками стандартов на двигатели. Выборка включает:

  • Размеры крепления гидронасоса / двигателя и привода SAE J744
  • Двигатели и генераторы NEMA MG1
  • Малые электродвигатели NEMA SEM S1
  • IEC 60034 Вращающиеся электрические машины
  • NEMA ICS 16 Двигатели с управлением движением / положением, управление, обратная связь

Внешние ссылки

Сводка

Это руководство дает общее представление об электродвигателях и двигателях с гидравлическим приводом, а также об их выборе и использовании в различных средах.Для получения дополнительной информации о дополнительных продуктах обратитесь к другим нашим руководствам или посетите платформу Thomas Supplier Discovery Platform, чтобы найти потенциальные источники или просмотреть подробную информацию о конкретных продуктах.

Прочие изделия из двигателей

Больше от Machinery, Tools & Supplies

Как работают моторы и как выбрать мотор для любого проекта

Как работают двигатели и как выбрать правильный двигатель

Моторы можно найти практически везде. Это руководство поможет вам изучить основы электродвигателей, доступные типы и способы выбора правильного электродвигателя.Основные вопросы, на которые нужно ответить при принятии решения о том, какой двигатель лучше всего подходит для применения, — это какой тип выбрать и какие характеристики имеют значение.

Как работают моторы?

Электродвигатели работают, преобразуя электрическую энергию в механическую энергию для создания движения. Сила создается внутри двигателя за счет взаимодействия между магнитным полем и переменным (AC) или постоянным (DC) током обмотки. С увеличением силы тока увеличивается и сила магнитного поля.Помните о законе Ома (V = I * R); напряжение должно увеличиваться, чтобы поддерживать тот же ток при увеличении сопротивления.

Электродвигатели имеют множество применений. Обычные промышленные применения включают воздуходувки, станки и электроинструменты, вентиляторы и насосы. Любители обычно используют двигатели в небольших приложениях, требующих движения, таких как робототехника или модули с колесами.

Типы двигателей:

Существует много типов двигателей постоянного тока , но наиболее распространены щеточные или бесщеточные.Также существуют вибрационные двигатели, шаговые двигатели и серводвигатели.

Щеточные двигатели постоянного тока являются одними из самых простых и используются во многих бытовых приборах, игрушках и автомобилях. Они используют контактные щетки, которые подключаются к коммутатору для изменения направления тока. Они недороги в производстве, просты в управлении и обладают отличным крутящим моментом на низких скоростях (измеряется в оборотах в минуту или об / мин). Некоторые недостатки заключаются в том, что они требуют постоянного обслуживания для замены изношенных щеток, имеют ограниченную скорость из-за нагрева щеток и могут создавать электромагнитный шум из-за искрения щеток.


Щеточный двигатель постоянного тока

Бесщеточные двигатели постоянного тока используют постоянные магниты в роторном узле. Они популярны на рынке хобби для применения в самолетах и ​​наземных транспортных средствах. Они более эффективны, требуют меньше обслуживания, производят меньше шума и имеют более высокую удельную мощность, чем щеточные двигатели постоянного тока. Они также могут производиться серийно и напоминать двигатель переменного тока с постоянной частотой вращения, за исключением того, что они питаются от постоянного тока. Однако есть несколько недостатков, в том числе то, что ими трудно управлять без специального регулятора, и они требуют низких пусковых нагрузок и специализированных редукторов в приводных приложениях, что приводит к более высоким капитальным затратам, сложности и экологическим ограничениям.


Бесщеточный двигатель постоянного тока

Вибрационные двигатели используются в приложениях, требующих вибрации, например, в мобильных телефонах или игровых контроллерах. Они генерируются электродвигателем и имеют неуравновешенную массу на приводном валу, которая вызывает вибрацию. Их также можно использовать в неэлектронных зуммерах, которые вибрируют для звуковой сигнализации или для сигналов тревоги или дверных звонков.


Вибрационный двигатель

Когда требуется точное позиционирование, шаговые двигатели — ваш друг.Они используются в принтерах, станках и системах управления технологическими процессами и рассчитаны на высокий удерживающий момент, что дает пользователю возможность переходить от одного шага к другому. У них есть система контроллера, которая определяет положение посредством сигнальных импульсов, отправляемых драйверу, который интерпретирует их и передает пропорциональное напряжение на двигатель. Их относительно просто изготовить и контролировать, но они постоянно потребляют максимальный ток. Расстояние небольшого шага ограничивает максимальную скорость, и шаги можно пропустить при высоких нагрузках.


Шаговый двигатель

Серводвигатели — еще один популярный двигатель на рынке хобби, который используется для неточного управления положением. Их популярные приложения включают приложения дистанционного управления, такие как игрушечные радиоуправляемые автомобили и робототехника. Они состоят из двигателя, потенциометра и схемы управления и в основном управляются с помощью широтно-импульсной модуляции (ШИМ), посредством отправки электрических импульсов на провод управления. Сервоприводы могут быть как переменного, так и постоянного тока. Сервоприводы переменного тока могут справляться с более высокими скачками тока и используются в промышленном оборудовании, тогда как сервоприводы постоянного тока предназначены для небольших любительских приложений.Чтобы узнать больше о сервомоторах, ознакомьтесь с нашей статьей How Servo Motors Work .

Существует три основных типа двигателей переменного тока: асинхронные, синхронные и промышленные.
Асинхронные двигатели называются асинхронными двигателями, поскольку они не вращаются с одинаковой постоянной скоростью или не медленнее, чем указанная частота. Скольжение , разница между фактической и синхронной скоростью, необходимо для создания крутящего момента , крутящего момента, вызывающего вращение, в асинхронных двигателях.Магнитное поле, окружающее ротор этих двигателей, создается индуцированным током.

Ротор синхронных двигателей вращается с постоянной скоростью при подаче переменного тока. Их магнитное поле создается постоянными магнитами. Промышленные двигатели предназначены для трехфазных систем с высокой мощностью, таких как конвейеры или воздуходувки. Двигатели переменного тока также можно найти в бытовой технике и других приложениях, таких как часы, вентиляторы и дисководы.

Что нужно учитывать при покупке мотора:

При выборе двигателя необходимо обратить внимание на несколько характеристик, но наиболее важными являются напряжение, ток, крутящий момент и скорость (об / мин).

Ток — это то, что питает двигатель, и слишком большой ток приведет к его повреждению. Для двигателей постоянного тока важны рабочий ток и ток остановки. Рабочий ток — это средняя величина тока, которую двигатель может потреблять при типичном крутящем моменте. Ток останова обеспечивает достаточный крутящий момент для двигателя, чтобы работать со скоростью останова, или 0 об / мин. Это максимальный ток, который двигатель может потреблять, а также максимальная мощность, умноженная на номинальное напряжение. Радиаторы важны, если двигатель постоянно работает или работает с напряжением выше номинального, чтобы катушки не плавились.

Напряжение используется для поддержания протекания чистого тока в одном направлении и для преодоления обратного тока. Чем выше напряжение, тем выше крутящий момент. Номинальное напряжение двигателя постоянного тока указывает на наиболее эффективное напряжение во время работы. Обязательно подайте рекомендованное напряжение. Если вы приложите слишком мало вольт, двигатель не будет работать, тогда как слишком большое напряжение может привести к короткому замыканию обмоток, что приведет к потере мощности или полному разрушению.

Рабочие значения и значения остановки также необходимо учитывать с крутящим моментом.Рабочий крутящий момент — это величина крутящего момента, которую двигатель был разработан, а крутящий момент при остановке — это величина крутящего момента, возникающая при подаче мощности от скорости остановки. Вы всегда должны смотреть на требуемый рабочий крутящий момент, но в некоторых случаях вам потребуется знать, насколько далеко вы можете толкнуть двигатель. Например, для колесного робота хороший крутящий момент равен хорошему ускорению, но вы должны убедиться, что крутящий момент сваливания достаточно высок, чтобы поднять вес робота. В этом случае крутящий момент важнее скорости.

Скорость или скорость (об / мин) может быть сложной для двигателей. Общее правило состоит в том, что двигатели наиболее эффективно работают на самых высоких скоростях, но это не всегда возможно, если требуется передача. Добавление шестерен снизит эффективность двигателя, поэтому примите во внимание снижение скорости и крутящего момента.

Это основные принципы, которые следует учитывать при выборе двигателя. Подумайте о назначении приложения и о том, какой ток он использует, чтобы выбрать подходящий тип двигателя. Технические характеристики приложения, такие как напряжение, ток, крутящий момент и скорость, будут определять, какой двигатель наиболее подходит, поэтому обязательно обратите внимание на его требования.

Есть ли у вас дополнительные советы по выбору двигателей? Дайте нам знать по телефону [адрес электронной почты защищен] .

Электродвигатели

Что внутри электродвигателя?

Катушка ротора

Катушка сделана из медной проволоки, потому что медь — отличный проводник. Он наматывается на арматуру. Катушка становится электромагнитом, когда через нее протекает ток.

Арматура

Якорь поддерживает катушку и может помочь сделать электромагнит сильнее.Это делает мотор более эффективным.

Постоянные магниты

Есть два постоянных магнита. Они создают постоянное магнитное поле, так что катушка будет вращаться, когда в ней протекает ток.

Некоторые двигатели имеют электромагниты вместо постоянных магнитов (Рисунок 9). Они сделаны из большего количества катушек медной проволоки.

Коммутатор

Каждый конец катушки подключен к одной из двух половин коммутатора. Коммутатор меняет местами контакты каждые пол-оборота.Ротор на Рисунке 8 имеет две катушки, поэтому для него необходимы четыре сегмента коммутатора.

Щетки

Щетки давят на коммутатор. Они поддерживают контакт с коммутатором, даже если он вращается. Ток течет в двигатель и выходит через щетки. В настоящих двигателях щетки сделаны из угля.

S тележка

Каркас из магнитного материала связывает два постоянных магнита и, по сути, превращает их в один подковообразный магнит.

Рисунок 6: Детали модели двигателя постоянного тока. Двигатели постоянного тока с питанием от низковольтных батарей приводят в движение моторизованные игрушки. Их легко разобрать. Вы можете обнаружить, что они используют несколько катушек и имеют соответствующий многосегментный коммутатор.

Рисунок 7 — Простой двухполюсный двигатель постоянного тока (один N и один S).

Почему он поворачивается?

На странице, посвященной электромагнитам, показано, как катушка с проволокой становится магнитом, когда через нее протекает электрический ток.Катушка двигателя, намотанная на якорь, становится электромагнитом, но электромагнит находится внутри второго постоянного магнитного поля. Эти поля взаимодействуют как два стержневых магнита. Результатом является притяжение или отталкивание, в зависимости от текущего направления. Ток течет в одном направлении справа от катушки и в противоположном направлении слева.

Сила, действующая на провод, направлена ​​под прямым углом к ​​магнитному полю, а также под прямым углом к ​​току. Это называется моторным эффектом.Правило Флеминга использует ваши пальцы, расположенные под прямым углом друг к другу, чтобы предсказать силу, действующую на провод в магнитном поле. Для моторов вы используете левую руку.

См. Рисунок 7. Когда ток включен, он течет в направлении зеленой стрелки и вызывает силу, направленную вверх. Попытайтесь совместить схему левой рукой. Поскольку он течет обратно вниз с другой стороны в противоположном направлении, он вызывает силу, направленную вниз. Двигайте рукой, чтобы соответствовать этому направлению. Силы объединяются, чтобы вращать катушку.

Это может работать только на пол-оборота. Разъем с разрезным кольцом, называемый коммутатором, меняет местами соединения, чтобы можно было начать следующую половину оборота. Это происходит на каждые пол-оборота, поэтому двигатель вращается. Электрический ток через щетки подается в катушку.

Так работает электродвигатель постоянного тока. Электродвигатели переменного тока более сложны, но по-прежнему действует правило Флеминга.

Все о моторах | Конструкция машины

На первый взгляд моторы кажутся сложными машинами, и на самом деле так оно и есть.Но принцип работы электромагнетизма относительно прост, понятен даже старшеклассникам. Помимо различий, современные моторные технологии очень похожи и вполне понятны.

Происхождение самых первых двигателей — машин, преобразующих электрическую энергию в механическую — можно проследить до конструкций, разработанных Майклом Фарадеем. В 1831 году Фарадей сформулировал фундаментальные концепции электромагнитной индукции, отметив, что проводник с током в магнитном поле воспринимает силу, пропорциональную силе поля и току, проходящему через него.

Конструкция электродвигателя, как тогда, так и сейчас, основана на размещении проводников в магнитном поле. Проводники, конечно, имеют форму обмоток с множеством витков провода, каждый из которых вносит свой вклад в интенсивность электромагнитного воздействия. Фарадей указал, что чем больше сила тока, тем большую силу (крутящий момент) можно ожидать. Таким образом, движение, конечная цель, является результатом притяжения друг к другу двух магнитных полей (одно на роторе, другое на статоре). Эта концепция является основой всех конструкций двигателей постоянного и переменного тока и отправной точкой для современной инженерии движения.

ABC’S ac

Двигатели переменного тока — наиболее широко используемые двигатели в мире. По сути, это устройства с постоянной скоростью, определяемой числом магнитных полюсов и входной частотой. В целом существует два типа двигателей переменного тока — асинхронные и синхронные.

Асинхронные двигатели можно рассматривать как тип трансформатора, первичная обмотка которого соответствует статору, а вторичная — ротору. Подача напряжения на «первичную обмотку» делает две вещи: проталкивает ток через статор, вызывая ток в роторе.Другими словами, он создает магнитное поле в статоре, создавая второе поле на роторе. Взаимодействие этих двух полей заставляет ротор двигаться.

Скорость магнитного поля вокруг статора определяет скорость ротора. Ротор будет пытаться следовать за полем статора, но будет «проскальзывать», особенно при приложении нагрузки. Поэтому асинхронные двигатели всегда работают медленнее, чем вращающееся поле статора.

Статор асинхронного двигателя состоит из стальных пластин и витков медной проволоки.С другой стороны, ротор обычно изготавливается из многослойных пластин с большими прорезями на периферии. В роторе с короткозамкнутым ротором щели заполнены медными или алюминиевыми стержнями, закороченными токопроводящими торцевыми крышками. Эта «цельная» отливка обычно включает в себя встроенные лопасти вентилятора для циркуляции воздуха для охлаждения.

Стандартные асинхронные двигатели работают с «постоянной» скоростью, определяемой стандартной частотой сети. Однако есть способы контролировать скорость. Микропроцессорные приводы, использующие технологию векторного управления, например, манипулируют величиной магнитного потока в полях ротора и статора, достигая своего рода отклика на переменное скольжение.При наличии соответствующего датчика обратной связи этот метод управления применим даже в приложениях для позиционирования.

Хотя об очень сложных задачах, таких как быстрое позиционирование старт-стоп, не может быть и речи, некоторые приложения индексации, тем не менее, выполнимы. Однако ограничивающим фактором является тепло. По мере увеличения размера двигателя, чтобы контролировать температуру — более крупные двигатели лучше охлаждаются — отношение крутящего момента к моменту инерции становится недопустимым для скорости.

Преимущества асинхронных двигателей хорошо известны, включая низкую начальную стоимость, доступность стандартных размеров, надежность и тихую работу без вибрации.

Синхронные двигатели аналогичны асинхронным двигателям, но отличаются в основном конструкцией ротора. Роторы предназначены для вращения с той же скоростью, что и поле статора, отсюда и название «синхронный». В основном существует два типа синхронных двигателей: с самовозбуждением (например, асинхронные двигатели) и с прямым возбуждением с использованием постоянных магнитов.

Самовозбуждающиеся синхронные двигатели (иногда называемые реактивными синхронными двигателями) используют ротор с выемками или зубьями на периферии.Количество выемок соответствует количеству полюсов статора. Часто выемки или зубцы называют «выступающими полюсами», что отражает тот факт, что они создают легкий путь, почти ручку, для поля магнитного потока, тем самым позволяя ротору блокироваться и работать с той же скоростью, что и вращающееся поле.

Синхронные двигатели с прямым возбуждением (иногда называемые гистерезисными синхронными двигателями или синхронными двигателями с постоянными магнитами переменного тока) используют ротор из сплава с постоянным магнитом. Постоянные полюса, по сути, являются «выступающими полюсами» и, следовательно, предотвращают скольжение.

Продолжить на странице 2

Важным фактором для синхронных двигателей является «угол сцепления», то есть небольшое расстояние, на которое ротор отстает от поля статора. Этот угол увеличивается с нагрузкой, и если нагрузка превышает возможности двигателя, ротор увязнет, ​​в конечном итоге выйдя из синхронизма.

Синхронные двигатели обычно работают в разомкнутом контуре, обеспечивая абсолютную постоянную скорость для заданной нагрузки в пределах угла сцепления или крутящего момента «отрыва».Однако двигатели не являются самозапускающимися, им требуются конденсаторные или пусковые обмотки с расщепленной фазой (или специальные средства управления), которые постепенно увеличивают частоту и напряжение, чтобы ротор двигался.

Синхронные двигатели могут использоваться для регулирования скорости с добавлением устройства обратной связи. Они также приспособлены для борьбы с переносчиками болезней. Однако в целом ротор больше, чем у эквивалентного серводвигателя, что означает более медленный отклик для возрастающих приложений.

Типы постоянного тока

Существует много типов двигателей постоянного тока — щеточные и бесщеточные, шаговые, с параллельной обмоткой и с последовательной обмоткой — но все они имеют одну общую черту: простое управление скоростью.Это делает их естественными для приложений позиционирования сервоприводов и управления скоростью.

Двигатели с параллельной обмоткой имеют параллельные обмотки ротора и статора. Статор может подключаться к тому же источнику питания, что и ротор, или он может возбуждаться индивидуально. При отдельных источниках питания напряжение ротора можно изменять — относительно постоянного напряжения статора — для регулировки скорости.

Параллельное или параллельное соединение между ротором и статором обеспечивает относительно ровную кривую скорость-крутящий момент с хорошим регулированием скорости в широком диапазоне нагрузок.Однако из-за размагничивания двигателям постоянного тока с параллельной обмоткой не хватает пускового момента, как у других типов обмоток постоянного тока.

Двигатели с последовательной обмоткой соединяют обмотки ротора и статора последовательно. Это создает два сильных поля, создающих высокий пусковой крутящий момент. Типичные области применения включают краны и подъемники; Применения, которых следует избегать, — это те, в которых двигатель может потерять нагрузку и «разлететься».

Двигатели с комбинированной обмоткой , напротив, используют как параллельное, так и последовательное соединение.Соотношение между полями ротора и статора определяет форму кривой скорость-крутящий момент. В общем, небольшие составные двигатели имеют сильное шунтирующее поле и слабое последовательное поле, что приводит к высокому пусковому крутящему моменту и относительно ровному отклику скорости-крутящего момента. Применение реверсирования в некоторой степени непрактично, поскольку необходимо переключать полярность обеих обмоток, что требует больших силовых цепей.

Занять позицию

Для позиционирования требуются специальные двигатели. Шаговый, вектор переменного тока, сервопривод постоянного тока и бесщеточный постоянный и переменный ток являются одними из наиболее распространенных вариантов.

Шаговые двигатели — это электромеханические устройства, которые преобразуют цифровые входы (с помощью контроллера) в аналоговое движение. Хотя существует много типов — с активированным соленоидом, с переменным сопротивлением, постоянным магнитом и синхронной индукцией — все они индексируются с фиксированными угловыми приращениями при запрограммированном включении. Другими словами, вместо непрерывного движения шаговый двигатель выполняет серию дискретных угловых перемещений одинаковой величины.

Шаговые двигатели

особенно хорошо подходят для приложений, в которых управляющие сигналы появляются в виде последовательности импульсов.Один импульс заставляет двигатель увеличивать один угол движения; десять импульсов равны десяти шагам и так далее.

В большинстве шаговых двигателей используется разомкнутый контур, который, к сожалению, вызывает колебания. Для лечения обычно требуется сложная «замыкающая петля» схема или устройство обратной связи. Даже при этом шаговые двигатели ограничены примерно 1 л.с. и 2000 об / мин.

Принцип работы разомкнутой системы лучше всего проиллюстрировать на примере. Предположим, что в приложении для сортировки контейнеров используется шаговый двигатель.Все идет так, как ожидалось, пока двигатель может отключиться на одно приращение за импульс. Но если механизм заклинивает и шаговый двигатель не может двигаться, контроллер может не знать о проблеме и будет продолжать посылать импульсы, которые по сути игнорируются. Нетрудно представить, что в конечном итоге, если система теряет слишком много шагов, она может помещать в одну корзину предметы, которые на самом деле предназначены для другой.

Двигатели постоянного тока с постоянным магнитом (PMDC) — популярный выбор для приложений с инкрементом (старт-стоп).И при соответствующей обратной связи они весьма эффективны в сервоуправлении с обратной связью.

Магнитный двигатель двигателя с постоянным постоянным током состоит из поля статора, исходящего от постоянных магнитов, и поля ротора, индуцированного током, проходящим через коммутатор или схему переключения в узел ротора. Поле статора неподвижно, а поле ротора движется. Каждый раз, когда два поля почти выравниваются, коммутатор переключает ток ротора. Пока поле ротора не догоняет поле статора, ротор будет продолжать движение.Скорость вращения, как быстро вращается ротор, зависит от силы поля ротора; чем больше напряжение, тем быстрее вращается ротор.

Продолжить на странице 3

Двигатели

PMDC имеют линейные кривые скорость-крутящий момент с относительно высоким пусковым (ускоряющим) крутящим моментом. Линейность обязана постоянным магнитам; поток, создающий крутящий момент в поле статора, остается постоянным на всех скоростях. Двигатели с постоянным постоянным током «фунт за фунт» довольно мощные и подходят для приложений быстрого позиционирования.

Бесщеточные сервоприводы могут быть постоянного или переменного тока в зависимости от устройства обратной связи и схемы управления. Например, с датчиками Холла трехфазный бесщеточный двигатель обычно запитывает две из трех обмоток двигателя одновременно. Чтобы совершить один механический оборот, контроллер должен последовательно пройти шесть секций коммутации, подавая на каждую из них постоянное напряжение. Величина постоянного тока прямо пропорциональна рабочей скорости, отсюда и термин «бесщеточный постоянный ток».

Обратная связь энкодера используется в приложениях, требующих данных о местоположении.Некоторые энкодеры доступны с выходами Холла, которые используются для коммутации.

Обратная связь резольвера

также предоставляет данные о положении, но метод управления отличается. Здесь синусоидальная форма волны применяется к обмоткам двигателя, что дает начало термину «бесщеточный переменный ток». Преимущество перед бесщеточным двигателем постоянного тока заключается в том, что при одинаковом крутящем моменте бесщеточный двигатель переменного тока потребляет меньший ток. Поэтому контроллер обычно меньше и дешевле. Этого следовало ожидать, когда трехфазная обмотка запитана трехфазным синусоидальным током.

Бесщеточные двигатели быстрые, вырабатывают большой крутящий момент в небольшом корпусе и имеют небольшую инерцию, что приводит к более быстрому ускорению. Они также хороши на низких скоростях (вплоть до нулевой скорости) и обеспечивают длительный и надежный срок службы без обслуживания в сложных приложениях.

Джон Мазуркевич — директор по разработке двигателей Baldor Electric Co., Ft. Смит, Арк.

Статьи по теме

Муфты электромагнитные
С учетом электромагнитных задержек

Электродвигатель | Британника

Самый простой тип асинхронного двигателя показан на рисунке в разрезе.Трехфазный набор обмоток статора вставлен в пазы в железе статора. Эти обмотки могут быть подключены по схеме «звезда», обычно без внешнего подключения к нейтральной точке, или по схеме «треугольник». Ротор состоит из цилиндрического стального сердечника с проводниками, размещенными в пазах по всей поверхности. В наиболее обычной форме эти проводники ротора соединены вместе на каждом конце ротора токопроводящим концевым кольцом.

Поперечное сечение трехфазного асинхронного двигателя.

Британская энциклопедия, Inc.

Основы работы асинхронного двигателя могут быть разработаны, сначала предположив, что обмотки статора подключены к трехфазному источнику питания и что набор из трех синусоидальных токов, показанных на рисунке, протекает в обмотках статора. На этом рисунке показано влияние этих токов на создание магнитного поля через воздушный зазор машины в течение шести мгновений цикла. Для простоты показана только центральная токопроводящая петля для каждой фазной обмотки.В момент t 1 на рисунке, ток в фазе a является максимально положительным, тогда как ток в фазах b и c составляет половину отрицательного значения. Результатом является магнитное поле с приблизительно синусоидальным распределением вокруг воздушного зазора с максимальным значением наружу вверху и максимальным значением внутрь внизу. В момент времени t 2 на рисунке (т. Е. Одна шестая цикла позже), ток в фазе c является максимально отрицательным, в то время как в фазе b и фазе a составляет половину значения положительный.Результатом, как показано на рисунке для t 2 , снова является синусоидально распределенное магнитное поле, но повернутое на 60 ° против часовой стрелки. Исследование распределения тока для t 3 , t 4 , t 5 и t 6 показывает, что магнитное поле продолжает вращаться с течением времени. Поле совершает один оборот за один цикл токов статора. Таким образом, совокупный эффект трех равных синусоидальных токов, равномерно смещенных во времени и протекающих в трех обмотках статора, равномерно смещенных в угловом положении, должен создать вращающееся магнитное поле с постоянной величиной и механической угловой скоростью, которая зависит от частоты электроснабжение.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Вращательное движение магнитного поля относительно проводников ротора вызывает индуцирование напряжения в каждом из них, пропорциональное величине и скорости поля относительно проводников. Поскольку проводники ротора закорочены вместе на каждом конце, в результате в этих проводниках будут протекать токи. В простейшем режиме работы эти токи будут примерно равны индуцированному напряжению, деленному на сопротивление проводника.На этом рисунке показана диаграмма токов ротора для моментов времени t 1 рисунка. Видно, что токи приблизительно синусоидально распределены по периферии ротора и расположены так, чтобы создавать вращающий момент против часовой стрелки на роторе (то есть вращающий момент в том же направлении, что и вращение поля). Этот крутящий момент ускоряет ротор и вращает механическую нагрузку. По мере увеличения скорости вращения ротора его скорость относительно скорости вращающегося поля уменьшается.Таким образом, индуцированное напряжение уменьшается, что приводит к пропорциональному снижению тока в проводнике ротора и крутящего момента. Скорость ротора достигает постоянного значения, когда крутящий момент, создаваемый токами ротора, равен крутящему моменту, необходимому на этой скорости для нагрузки, без избыточного крутящего момента, доступного для ускорения объединенной инерции нагрузки и двигателя.

Вращающееся поле и токи, которые оно создает в короткозамкнутых проводниках ротора.

Британская энциклопедия, Inc.

Механическая выходная мощность должна обеспечиваться входной электрической мощностью. Первоначальных токов статора, показанных на рисунке, достаточно для создания вращающегося магнитного поля. Чтобы поддерживать это вращающееся поле в присутствии токов ротора, показанных на рисунке, необходимо, чтобы обмотки статора несли дополнительную составляющую синусоидального тока такой величины и фазы, чтобы нейтрализовать влияние магнитного поля, которое в противном случае могло бы возникнуть. токами ротора на рисунке.Общий ток статора в каждой фазной обмотке является суммой синусоидальной составляющей, создающей магнитное поле, и другой синусоиды, опережающей первую на четверть цикла, или 90 °, для обеспечения необходимой электрической мощности. Вторая, или силовая, составляющая тока находится в фазе с напряжением, приложенным к статору, в то время как первая, или намагничивающая, составляющая отстает от приложенного напряжения на четверть цикла или 90 °. При номинальной нагрузке эта намагничивающая составляющая обычно находится в диапазоне 0.От 4 до 0,6 величины силовой составляющей.

Большинство трехфазных асинхронных двигателей работают с обмотками статора, подключенными непосредственно к трехфазному источнику питания постоянного напряжения и постоянной частоты. Типичные напряжения питания находятся в диапазоне от 230 вольт между фазами для двигателей относительно небольшой мощности (например, от 0,5 до 50 киловатт) до примерно 15 киловольт между фазами для двигателей большой мощности до примерно 10 мегаватт.

За исключением небольшого падения напряжения на сопротивлении обмотки статора, напряжение питания согласуется со скоростью изменения магнитного потока в статоре машины во времени.Таким образом, при питании с постоянной частотой и постоянным напряжением величина вращающегося магнитного поля остается постоянной, а крутящий момент примерно пропорционален силовой составляющей тока питания.

В асинхронном двигателе, показанном на предыдущих рисунках, магнитное поле вращается на один оборот за каждый цикл частоты питания. Для источника с частотой 60 Гц скорость поля составляет 60 оборотов в секунду или 3600 оборотов в минуту. Скорость ротора меньше скорости поля на величину, достаточную для того, чтобы индуцировать необходимое напряжение в проводниках ротора для создания тока ротора, необходимого для момента нагрузки.При полной нагрузке скорость обычно на 0,5–5 процентов ниже скорости поля (часто называемая синхронной скоростью), причем более высокий процент применяется к двигателям меньшего размера. Эта разница в скорости часто называется скольжением.

Другие синхронные скорости могут быть получены с источником постоянной частоты, построив машину с большим количеством пар магнитных полюсов, в отличие от двухполюсной конструкции, показанной на рисунке. Возможные значения скорости магнитного поля в оборотах в минуту: 120 f / p ​​, где f — частота в герцах (циклов в секунду), а p ​​ — количество полюсов (которое должно быть четное число).Данный железный каркас может быть намотан для любого из нескольких возможных количеств пар полюсов с помощью катушек, охватывающих угол приблизительно (360/ p ​​) °. Крутящий момент, доступный от рамы машины, останется неизменным, поскольку он пропорционален произведению магнитного поля и допустимого тока катушки. Таким образом, номинальная мощность рамы, являющаяся произведением крутящего момента и скорости, будет примерно обратно пропорциональна количеству пар полюсов. Наиболее распространенные синхронные скорости для двигателей с частотой 60 Гц — 1800 и 1200 оборотов в минуту.

Добавить комментарий

Ваш адрес email не будет опубликован.