Меню Закрыть

Что такое роторный мотор: История роторных моторов Mazda — Читальный зал — Motor

Содержание

Что случилось с двигателем Ванкеля и куда он исчез с авторынка: Движение: Ценности: Lenta.ru

В этом году отмечается полувековой юбилей сразу двух знаковых для истории автомобилестроения моделей. Немецкий NSU Ro 80 и «японка» Mazda Cosmo стали первыми автомобилями с роторным двигателем, подходившими под определение «массовые». Но, увы, изобретенному инженерами фирмы NSU Ванкелем и Фройде новому типу двигателя внутреннего сгорания так и не удалось завоевать мир.

После создания в конце XIX столетия поршневого двигателя внутреннего сгорания прогресс в этой области пошел по пути разработки уже имеющейся концепции. Инженеры создавали все более мощные и совершенные двигатели, но суть оставалась все той же — в цилиндрическую камеру тем или иным способом попадало топливо, образовывавшиеся после сгорания топлива газы толкали поршень. И только в конце 1950-х два немецких инженера, работавшие в известной тогда своими мотоциклами фирме NSU Феликс Ванкель и Вальтер Фройде, предложили принципиально новую конструкцию.

В их двигателе цилиндры отсутствовали как класс: установленный на валу трехгранный ротор был жестко соединен с зубчатым колесом, входившим в зацепление с неподвижной шестерней — статором. По сравнению с обычным поршневым мотором внутреннего сгорания, двигатель Ванкеля (как он стал известен по имени одного из создателей) имел меньшие в 1,5-2 раза габариты, большую удельную мощность, меньшее число деталей (два-три десятка вместо нескольких сотен), а также — за счет отсутствия коленвала и шатунов — более высокие динамические показатели. Впрочем, были и недостатки, с которыми так и не удалось справиться за все время выпуска автомобилей с роторными двигателями: довольно высокий расход топлива на низких оборотах, повышенное потребление масла и сложность в производстве (из-за необходимости точности геометрических форм деталей).

NSU Spider

Фото: Science Museum / Globallookpress.com

Любопытно, что сам Ванкель не умел водить автомобиль и не имел водительских прав — поскольку с раннего детства страдал сильной близорукостью.

Это, впрочем, не помешало ему доработать первоначально мотоциклетный движок под нужды автопрома, и в 1964 году NSU выпустила первый в мире серийный роторный автомобиль — кабриолет NSU Spider на базе заднеприводной модели Sport Prinz. Машина выпускалась ограниченной серией (за три года было собрано 2375 экземпляров) и была довольно дорога, в пересчете на нынешние деньги — около 22 тысяч долларов за двухместную малолитражку длиной 3,6 метра.

В 1967 году на рынок вышли сразу две модели с роторными двигателями, ставшие действительно массовыми. NSU представила топовый седан Ro 80, а японская фирма Mazda — спортивное купе Cosmo, первое в полувековой череде машин с двигателем Ванкеля в своей линейке. Немецкая машина, увы, оказалась довольно капризной и «сырой», хотя и была признана «автомобилем года-1968» в Европе. Постоянные рекламации и необходимость дорогостоящего ремонта уже проданных авто привели компанию практически к банкротству — в 1969 году она была куплена концерном Volkswagen и слита в одно подразделение с маркой Audi.

Производство Ro 80 тем не менее продолжалось до 1977 года; всего было выпущено более 37 тысяч автомобилей. Передовой для конца 1960-х дизайн кузова, сперва не оцененный потребителями, оказал впоследствии влияние, в частности, на популярную модель Audi 100.

NSU Ro 80

Фото: CPC Collection / Alamy / Diomedia

Кстати, лицензию на «ванкель» купил и СССР. 140-сильным роторным двигателем оборудовались версии вазовских «пятерок» и «семерок» для милиции и КГБ. Внешне они не отличались от серийных машин, но на дороге демонстрировали необходимую резвость. В 1990-е малой серией выпускались и «гражданские» 2108 и 21099 с роторным мотором ВАЗ-415, также абсолютно идентичные по дизайну кузова с «нормальными». Обманчивая внешность породила множество шоферских легенд: неприметная «девятка» вдруг срывалась с места и обгоняла солидный BMW (разгон до сотни у роторной версии занимал 9 секунд, а максимальная скорость достигала 190 километров в час).

Экспериментировали с двигателем Ванкеля и французы из Citroen. Однако модель GS Birotor с двухроторным двигателем вышла на рынок в октябре 1973 года — точно в месяц начала крупнейшего нефтяного кризиса. Машина стоила на 70 процентов дороже стандартной модели GS с четырехцилиндровым мотором, а топлива потребляла больше, чем представительская DS. В результате удалось с большим трудом продать 847 экземпляров, после чего производство было свернуто.

В конечном счете на рынке «ванкелей» осталась только Mazda, продолжавшая совершенствовать двигатель и выпустившая около 20 моделей с роторным двигателем. Инженерам японской компании удалось повысить экономичность и снизить объем токсичных выхлопов (еще одна «врожденная болезнь» роторных двигателей), но даже со всеми усовершенствованиями последняя выпускавшаяся роторная модель, RX-8, не соответствовала нормам Евросоюза. В 2010 году ее прекратили продавать в Европе, а в 2012-м было свернуто производство и для других рынков. Спортивные роторные модели Mazda, однако, за почти полвека производства успели завоевать поклонников во многих странах, включая нашу. Вот что рассказывает о своей RX-8 москвич Олег, автолюбитель со стажем:

«Приобрести RX-8 я решил вовсе не из-за роторного двигателя, а скорее вопреки ему. Но ничего похожего на рынке тогда не было: полноценное четырехместное купе с дверями, которые по старой памяти именуют suicide doors — разве что Rolls-Royce. А еще эти «надбровные дуги» над передними колесами… Однако все, с кем я делился идеей, крутили пальцем у виска: «больше 30 тысяч ротор не ходит», «масла жрет столько же, сколько и бензина», «а бензина — как американский грузовик», «ниже нуля не заводится» и так далее. «Зато не угонят», — решил я. Машина пришла зимой, и первые же недели показали, что перемещение по заснеженной Москве не то что бы совсем невозможно, но требует очень крепких нервов — машина норовила уйти в занос в каждом повороте или забуксовать там, где легко проезжала любая переднеприводная малолитражка. Но, как назло, даже в лютый мороз заводилась исправно. Да и сколько той зимы.

Mazda RX-8

Фото: National Motor Museum / Heritage Images / Getty Images

Снег сошел, и Mazda, наконец, оказалась в своей стихии. Да, масло (каждую тысячу приходилось открывать капот и доливать до рисочки), да, расход (в особенно хорошие дни бывало и больше 20 литров на сотню), но все это компенсировалось возможностью обмануть слух окружающих и, раскрутив двигатель до 9000 оборотов, прикинуться гоночным мотоциклом. Точный руль, задний привод и 230 лошадиных сил превращали любую, еще не изобиловавшую тогда камерами дорогу, в гоночный трек практически без моего участия. Даже стоя под окном, машина, казалось, куда-то ехала. Из-под этого окна, разоблачив тем самым еще один миф, ее и угнали. К тому времени, несмотря на то, что роторного двигателя побаивались даже «официалы», машина прошла 70 тысяч километров без намеков на какие-либо неполадки.

Audi A1 E-Tron Concept

Фото: Adrian Moser / Bloomberg / Getty Images

Хотя производство серийных автомобилей с роторным двигателем прекратилось еще пять лет назад, разработчики, похоже, не собираются навсегда расставаться с «ванкелем». Перспективными в этом смысле представляются гибридные силовые установки — благодаря малому размеру роторно-поршневого двигателя. Так, Audi в 2010 году продемонстрировала в Женеве гибридный прототип A1 e-tron concept с 60-сильным электромотором и двигателем Ванкеля рабочим объемом всего 250 кубических сантиметров, развивающим мощность 20 лошадиных сил и выполняющим фактически функцию генераторной установки.

Роторный двигатель Ванкеля / Полезные статьи / Атлант М

Настоящие инженеры – народ неугомонный. Казалось бы, что можно придумать для автомобиля вместо поршневого двигателя, который давно изучен и имеет огромные возможности для модернизации, тем не менее, поиски новых конструктивных схем продолжались и продолжаются по сей день.

Причинами инженерной «неугомонности» служат некоторые врожденные недостатки поршневых двигателей внутреннего сгорания (ДВС), от которых не удастся избавиться полностью в принципе. И прежде всего, необходимость преобразования возвратно-поступательного движения поршней во вращательное, «на выходе». Это немедленно «тянет» за собой достаточно большие массогабаритные  параметры двигателя, в том числе из-за увесистого кривошипно-шатунного механизма. В свою очередь, работа этого механизма сопровождается вибрациями различных порядков, с которыми приходится бороться или с помощью мудреных опор/подушек двигателя, или с помощью балансирных валов, вращающихся в сторону, противоположную валу коленчатому. Полностью уравновесить традиционный поршневой ДВС и победить вибрации можно только в том случае, если он будет, к примеру, рядный шестицилиндровый. Сделать это можно, но опять «выползают» массогабаритные проблемы. Вот вы представляете себе рядный шестицилиндровый мотор под капотом, к примеру,Chevrolet Aveo? Я – нет. J Конечно, можно сделать рядную «шестерку» объемом 1.4 литра с цилиндрами меньше стакана. Но тогда цена Aveo приблизится к цене Captiva. Кто купит «малыша» за такие деньги?

Вот, примерно из таких соображений о недостатках поршневых ДВС и исходил немецкий инженер-двигателист Феликс Ванкель, создавая свою уникальную конструкцию в середине  прошлого века, названную, впоследствии, в его честь: Роторно-поршневой двигатель Ванкеля.

Как устроен роторно-поршневой двигатель, и как он работает хорошо видно на приведенной  ниже схеме:

Корпус двигателя – он же статор. Поршней в привычном понимании нет. Есть ротор-трехгранник, который вращается по сложной траектории в полостях статора, приводя во вращение выходной вал при помощи зубчатой передачи. И все! Никаких коленвалов, шатунов, поршней, а также вибраций от всего этого хозяйства. Плюс, в перспективе, малый вес. А еще один плюс, в придачу, это малая инерционность такого двигателя, то есть мгновенные набор и сброс оборотов, что есть очень хорошо для спортивных и псевдоспортивных автомобилей.

Преимущества конструкции Ванкеля оценили соотечественники из компании NSU (впоследствии вошла в состав Audi AG), и, в 1957-м году, пригласили конструктора на работу. Первым серийным автомобилем с двигателем Ванкеля стал открытый NSU Spider, покинувший заводские ворота NSU в 1958-м году. Хотя роторный двигатель имел всего 55 л.с. мощности, малый вес автомобиля (мотор-то вдвое легче традиционного поршневого!) позволял разгонять его до внушительных в те времена 150 км/ч! А знаете какой объем роторного мотора на этом автомобиле? Меньше «пол-литра»… 

На этом ни NSU, ни господин Ванкель не остановились. В 1967-м году появился NSU Ro80, семейный седан, роторный двигатель которого был уже двухсекционным (два статора, и два ротора на одном валу). Несмотря на «детский» рабочий объем в 995 «кубиков», этот агрегат развивал уже 115 л.с., что придавало автомобилю совершенно «не детскую» прыть скоростных и динамических характеристик.

Казалось бы, что все хорошо, и «болячки» традиционной конструктивной схемы преодолены. Тот же NSU Ro80 выпускался 10 лет, а лицензию на производство роторно-поршневых двигателей приобрело множество автомобильных концернов. Но у этой конструкции оказались свои, собственные «болячки», которые могли бы терпеть поклонники блестящих ходовых качеств и разгонной динамики, но не будут терпеть простые обыватели, пользователи автомобилей:

Во-первых, у роторных двигателей, несмотря на «детский» рабочий объем, оказался совершенно не детский аппетит. Для того же NSU Ro80, на 100 км городского пробега 12-15 литров бензина вынь да положь! Оно понятно, удельные, относительные параметры, такие как расход топлива на единицу мощности, а также мощность на единицу объема, они в порядке. Но не все же хотят «гонять»!

Во-вторых, большие потери на трение между роторами и статорами. А это, в свою очередь, говорит о том, что они быстро изнашиваются. К чему приводит такой износ в роторно-поршневом моторе догадаться нетрудно, если еще раз взглянуть на схемы: сложные профили ротора, непростая форма статора говорят о низкой ремонтопригодности, высокой стоимости ремонта. Учитывая, что ресурсные параметры, долговечность, оказались небольшими, это стало приговором для отказа абсолютного большинства концернов от серийного, массового производства и применения роторно-поршневых двигателей Ванкеля. 

Что касается мелкосерийного производства роторных моторов, то оно было освоено и в СССР, на ВАЗе, где выпускали мелкие партии автомобилей для спецслужб, в целях обеспечения контроля за перемещением иностранных граждан по нашим дорогам, за «Мерседесами» и «Вольво» которых на обычных, советских легковушках было не угнаться.

Впрочем, на нашей планете есть один автопроизводитель, который сумел минимизировать проблемы роторно-поршневых моторов и продолжает серийное производство агрессивно выглядящих купе с двухсекционными агрегатами Ванкеля. Это Mazda Motor. А модель, производимая в настоящее время, называется RX-8. Этот «сумасшедший» легкий, заднеприводный автомобиль, роторный мотор которого имеет всего 1.3 литра объемом, разгоняется до сотни за 6-6.5 секунды благодаря мощности «Ванкеля» от 192 л.с. (есть версии и помощнее). И при соответствующем уходе и заботе работать роторно-поршневые двигатели Mazda RX-8 могут сто и более тысяч километров, за что японским двигателистам честь и хвала. Но экономичности, низких эксплуатационных затрат и, тем более, стоимости ремонта они не обещали. 

Вот такой вот расклад по роторно-поршневым двигателям.

Американцы приспособят роторные двигатели к гибридным аэротакси

Роторный двигатель X-Engine

LiquidPiston

Американская компания LiquidPiston получила контракт ВВС США на доработку роторных двигателей X-Engine и X-Mini мощностью 50 и 5 лошадиных сил соответственно, к использованию в составе генераторов гибридных аэротакси. Как пишет Aviation Week, работы будут проводиться в рамках программы ВВС США Agility Prime.

Программа Agility Prime стартовала в апреле 2020 года. По итогам программы военные могут получить технологии, позволяющие снизить затраты на техническое обслуживание техники и время, необходимое на ее ремонт, а также разработки в области автоматического беспилотного полета, технологии снижения шумности авиационной техники и распределенные двигательные установки.

Кроме того, военные рассчитывают получить технологии, которые позволят сделать летательные аппараты независимыми от инфраструктуры, в том числе и взлетно-посадочных полос. Программа Agility Prime непосредственно связана с тендером на быстрое прототипирование и проведение испытаний электрических и гибридных летательных аппаратов с вертикальными взлетом и посадкой.


В рамках соглашения с ВВС США LiquidPiston должна будет доработать роторные двигатели таким образом, чтобы их можно было установить на гибридные аэротакси. Кроме того, компания должна будет изучить особенности работы таких двигателей при разных погодных условиях и на разных высотах полета.

LiquidPiston занимается разработкой роторных двигателей с 2016 года. Эти силовые установки оснащены воздушным охлаждением и являются мультитопливными. Двигатели работают по дизельному циклу, то есть воспламенение воздушно-топливной смеси происходит за счет ее сжатия.

В 2020 году Армия США заключила с американской компанией LiquidPiston контракты на разработку роторных двигателей для разных классов летательных аппаратов. Соглашение предусматривает разработку компактного роторного двигателя для использования в составе гибридных двигательных установок для беспилотников и создание мотора, который можно будет использовать в качестве вспомогательной силовой установки для вертолетов.

Василий Сычёв

Mazda может вернуть в серию роторный мотор уже в ближайшие годы

A CENTURY OF DEFYING CONVENTION: MAZDA 1920-2020
Mazda RX-7: Redefining rotary-powered driving fun
Leverkusen, 06/04/2020

The joy of driving, lightweight design and the rotary engine: three elements that define Mazda’s DNA – and continue to fascinate the team at the Hiroshima-based carmaker. One Mazda stands out from all the rest for giving all these elements a new level of meaning, cementing the compact rotary engined sports car in the minds of driving enthusiasts in Europe and around the world.

That model? The Mazda RX-7. Launched in 1978, Mazda’s first mass-market sports car would go on to become the best-selling rotary powered vehicle in history. And it also propelled the brand’s success on the race track to unprecedented levels.

The distinctive howl of the RX-7’s twin-rotor powerplant rocked race tracks in Europe and beyond from the beginning, winning the British Saloon Car Championship’s 1,600-2,300cm3 class in 1980 and 1981 and demonstrating its reliability by capturing the chequered flag at the 24 Hours of Spa, also in 1981. It was a golden age elsewhere, too. In the US, the RX-7 won over 100 IMSA races, more than any other model of any brand, dominating the GTU class (under 2,500cm3 ) including the 24 Hours of Daytona for an unparalleled 12 consecutive years (from 1982-93). The RX-7 also proved itself in the Australian Endurance Championship, winning from1982 through 1984, as well as that country’s Bathurst 12 Hour (champion 1992-95).

 

Proven on the raceway

This extensive experience gained racing the RX-7 would flow into the 710PS four-rotor Mazda 787B, which shocked the piston-powered racing establishment in 1991 by driving to victory at the illustrious 24 Hours of Le Mans. It remains the only winning car without a piston engine, and unquestionably one of the greatest moments in the history of rotary power.

The achievement is all the more astounding considering that the future of the rotary engine was in jeopardy when Mazda began developing the RX-7. The carmaker had offered rotaries in most of its models until the oil crisis of 1973-74, when skyrocketing fuel prices pushed the peppy but thirsty powerplants out of favour with consumers. Mazda decided to drop the engines for most of its sedans, hatchbacks and wagons, and might have abandoned them entirely – as had every other carmaker. But then-head of R&D Kenichi Yamamoto resisted, arguing how crucial a differentiator the rotary was for the company.

Yamamoto, who led the team of engineers that developed Mazda’s first rotary engines in the 1960s, set out to overhaul the existing 12A engine and significantly improve fuel economy. Among other things, his team added more durable apex seals – a problem spot – and improved lubrication. They then helped design the ideal vehicle for it. Small and light yet smooth running, powerful and rev-happy, the rotary was perfect for a sports car. And the RX-7, a sleek, low-slung coupe with a wedge-shaped nose and wraparound window on the rear hatch, was built specifically for this engine.

 

Creating a rotary icon

The first RX-7 generation (“FB” platform), which went on sale in Japan in 1978 before arriving in Europe the following year, was an immediate sensation. With a kerb weight of just over 1 tonne, the 12A’s 100-135PS (depending on market) went a long way in terms of performance. The front mid-engine layout – the compact engine sat behind the front axle – driving the rear wheels with near-perfect weight distribution also delivered amazing handling. The aerodynamic RX-7 punched well above its price class and was tremendously fun to drive, delivering a special connection between the driver and car. The 1,146cm3 twin-rotor 12A was later joined by 160PS turbo version for Japan, while North America got a slightly larger 13B powerplant with fuel injection.

The second-generation RX-7 (“FC”) introduced in 1985 featured a Porsche-inspired design and a number of performance improvements such as Mazda’s DTSS (Dynamic Tracking Suspension System) and turbocharging. Forced induction, it turns out, is very well suited to rotary engines thanks to their exhaust flow characteristics, and quite effective for boosting mid-range torque. The 1.3-litre 13B was standard for all markets now, and although the RX-7 would be offered in Europe initially with a naturally aspirated 150PS engine, 180PS and later 200PS twin-scroll turbo versions would follow. The higher-powered model could achieve a 6sec 0-100km/h time and a top speed of 240km/h.

The third and final generation (“FD”) that arrived in 1992 was a genuine performance car. A new sequential twin turbocharger boosted output from the latest 13B engine to 239PS on the European version. Said by fans to be the best handling of all RX-7s, the 5.3sec 0-100km/h sprint and 250km/h top speed (limited) put the 1,300kg two-seater in a league with high-end sports cars – fitting for the brand that had just won at Le Mans. Unfortunately, the RX-7 was discontinued in most of Europe by 1996 due to emissions regulations, although Mazda continued to produce cars for right-hand drive markets, eventually boosting power output on later Japan-only models to as high as 280PS.

 

Smashing record after record

The year 2002 marked the end of one of the most exceptional sports cars in history. A total of 811,634 were produced between 1978 and 2002, by far the most of any rotary model. Along the way, modified versions of each generation set land speed records in their class at the Bonneville Salt Flats in the US in 1978 (FB, 296km/h), 1986 (FC, 383.7km/h) and 1995 (FD, 389km/h).

The RX-7 spirit lives on. In the Mazda RX-8, which followed in 2003, and by laying the foundation for many engineering innovations to come. Among these were hydrogen-powered rotary Mazdas like the RX-8 Hydrogen RE, which ran on either h3 or petrol, and the Mazda Premacy Hydrogen RE Hybrid, an MPV featuring an electric drive motor and a dual-fuel rotary. Later, the company developed a prototype Mazda2 EV with a small single-rotor engine used as a range extender. A similar system could find its way onto the Mazda MX-30, a brand new battery electric crossover SUV arriving at dealerships this year.

Particularly among enthusiasts, the RX-7 remains the icon of rotary powered sports cars and indeed rotary production cars. Mazda made great leaps with the RX-7 in terms of lightweight engineering, sporty design and driving fun, expertise it has applied to and evolved for every current Mazda model. The vehicle that perhaps best embodies Mazda’s reputation for and dedication to the unconventional, the RX-7 continues to influence designers and engineers working on the Mazdas of tomorrow.

Устройство автомобиля. Роторно-поршневой двигатель. Конец истории?

Автомобили с роторно-поршневыми двигателями впору заносить в Красную книгу: в 2011 году закончился выпуск последней в этом ряду модели Mazda RX-8. А ведь полвека назад за подобными моторами видели будущее – большая литровая мощность, высокие обороты, компактные размеры… Что же пошло не так?

Заглянув под капот роторного автомобиля впервые, недоумеваешь: а мотор-то где? Сквозь дебри навесных агрегатов виднеется лишь непонятный цилиндр. По своей конструкции роторно-поршневой двигатель (РПД) и вправду кардинально отличается от привычных нам поршневых моторов, хотя в обоих случаях осуществляется один и тот же четырехтактный цикл – впуск, сжатие, рабочий ход и выпуск. Разница лишь в том, что у роторного двигателя нет ни поршней с шатунами, ни системы газораспределения. Вместо них – треугольный ротор, совершающий сложное планетарное движение.

Плюсы и минусы

Вращаясь одновременно вокруг собственной оси и вокруг центральной шестерни, ротор своими вершинами описывает хитрую поверхность корпуса, образуя три отдельные камеры сгорания. Объем каждой из них, ограниченный корпусом и гранью ротора, за один оборот меняется от максимального к минимальному четыре раза, позволяя реализовать четырехтактный цикл. Функции же газораспределения осуществляются путем перекрывания впускных и выпускных окон самим ротором – подобно двухтактным поршневым моторам. И никаких распредвалов, клапанов и цепей! Отсюда и поразительная компактность роторных агрегатов: при сопоставимой мощности они оказываются примерно вдвое короче и настолько же легче поршневых, упрощая задачу компоновки автомобиля.

Не доставляют проблем и вибрации – единственная центробежная сила уравновешивается двумя противовесами на валу. Вспышки, правда, происходят не часто: поскольку выходной вал вращается в три раза быстрее ротора, то одному обороту вала соответствует одна вспышка или один рабочий ход, что эквивалентно двухцилиндровому поршневому двигателю. Но двухсекционные РПД, то есть фактически сдвоенные моторы, работающие на общий вал, имеют уже две вспышки на оборот, как четырехцилиндровый двигатель. При этом пульсации крутящего момента оказываются даже меньше, поскольку рабочий ход у РПД длится в течение 270° поворота вала против 180° у поршневого. В результате по плавности работы двухсекционный мотор близок к рядной «шестерке».

А вот с мощностью все уже не так однозначно. Конструкция РПД позволяет добиться отличного наполнения камер сгорания: на торцевой или боковой поверхности можно разместить сразу несколько впускных окон, снижая общее сопротивление впускного тракта – в моторе Mazda RX-8 таких окон аж пять штук на секцию! Причем открываются они очень быстро, что способствует проявлению эффекта динамического напора, дополнительно улучшающего наполнение на определенных оборотах.

Две стороны медали

Роторные двигатели часто нахваливают за хорошую за оборотистость – та же Mazda RX-8 способна загонять стрелку тахометра к 9000 об/мин. Однако мало кто вспоминает, что с такой скоростью вращается лишь выходной вал, а сам ротор крутится в три раза медленнее – всего 3000 об/мин. В поршневом же двигателе на каждый оборот коленвала приходится движение поршней вверх-вниз, а потому даже привычные 6000–7000 об/мин оказываются гораздо большим достижением, нежели 9000 об/мин роторного мотора.

Однако сам процесс сгорания протекает крайне плохо. Сильно вытянутая серповидная камера обладает значительными потерями тепла и не обеспечивает полного сгорания топлива по краям. Частично улучшить воспламенение помогает установка двух свечей зажигания, но за это приходится расплачиваться повышенным прорывом газов в соседнюю камеру в момент пересечения торцом ротора свечных отверстий. Иными словами, роторный мотор способен втянуть большое количество топливно-воздушной смеси, но эффективно извлечь из нее полезную энергию не может.

Одни головоломки

Получается, что за счет отличного наполнения РПД оказывается все-таки сопоставим по литровой мощности с поршневым мотором, одновременно сильно уступая ему в экономичности. Тем не менее в равенство литровой мощности поначалу трудно поверить. Какой поршневой агрегат сравнится c ротором Mazda RX-8, выдающим 230 л.с. с двух секций общим объемом 1,3 л.? Это же 176 «лошадей» с литра!

Так-то оно так, но нужно помнить, что за один оборот вала роторный двигатель отрабатывает весь рабочий объем, а поршневой – только половину, причем и тот и другой способны выдать за этот оборот полную мощность. Таким образом, при сравнении удельной мощности объем поршневого двигателя справедливо делить на два. Возьмем, например, Nissan 350Z – одного из конкурентов RX-8. Его 300-сильный V6 имеет объем 3,5 л, то есть 1,75 л на одном обороте и 171 «лошадку» с литра. Практически как у RX-8! При этом, несмотря на 30-процентное преимущество в мощности и чуть более тяжелый кузов, он расходует столько же топлива в смешанном цикле, сколько и RX-8.

Пытаясь как-то снизить расход топлива в роторе, инженеры пробовали применить непосредственный впрыск, но неудачная форма камеры сгорания мешала организовать вихревое смесеобразование, лишая возможности работы на обедненной смеси. Задумывались и о дизельном топливе, но успеха это направление тоже не принесло: слишком велики нагрузки на ротор, да и уплотнение рабочих камер организовать труднее, ведь степень сжатия должна быть почти в два раза больше.

А уплотнения и без того, отдельная головная боль. Если в поршневом двигателе кольца всегда находятся под одним и тем же углом к поверхности трения, то в роторном рабочий угол радиальных пластин постоянно меняется. Меняется и усилие их прижима к поверхности корпуса – оно определяется центробежной силой, а потому сильно зависит от оборотов. А как организовать их смазку? Только впрыскиванием масла в рабочую камеру подобно двухтактным поршневым моторам. Но это влечет значительный расход масла на угар (около 1 л на 1000 км) и повышает риск закоксовывания уплотнений. Достаточно сказать, что именно из-за того, что оказалось невозможно хорошо герметизировать рабочие камеры, было отброшено множество других более замысловатых роторных конструкций, обладавших рядом преимуществ. В привычном же нам РПД задачу удалось до некоторой степени решить, хотя уплотнения все же остаются слабым местом мотора.

Автора!

Создателем известного нам РПД принято считать Феликса Ванкеля, однако сам он предлагал несколько иную конструкцию: в его двигателе ротор и корпус вращались вокруг неподвижного вала. Такая схема упрощала работу уплотнительных соединений камер сгорания и не требовала противовесов для уравновешивания, хотя при этом возникали огромные проблемы с подводом впускных и выпускных каналов, а также с передачей напряжения на вращающие свечи. Поэтому в серию пошел РПД, предложенный Вальтером Фройде, в то время как Ванкель сосредоточился на исследованиях механических уплотнений.

Проблемы доставляет и очень неравномерный нагрев корпуса. Это в поршневом двигателе вспышки чередуются по цилиндрам, а после рабочего хода камера охлаждается на такте впуска. В роторном же вспышки происходят только в одной части двигателя, причем происходят постоянно, в то время как противоположная часть непрерывно охлаждается всасываемым воздухом. Такой перепад температур деформирует картер двигателя, заставляя еще на этапе проектирования учитывать это отклонение формы в процессе прогрева. Разумеется, все это не способствует лучшей работе уплотнительных соединений и долговечности материалов. В итоге преимущества конструктивной простоты РПД нивелируются его малым ресурсом – пробег до капремонта редко превышает 100 тыс. км.

Окончательным же приговором роторным двигателям стала экология. Низкая экономичность означает большие выбросы CO2, а неоптимальный процесс сгорания повышает уровни токсичных соединений, к которым подмешиваются еще и продукты горения масла. И все это на фоне повального стремления к экологической чистоте, на что автопроизводители расходуют огромные средства. В результате даже Mazda, потратившая немало усилий на раскрутку роторной идеологии, была вынуждена от нее отказаться.

Конец истории? Видимо, да. Но окончательно прощаться с роторными моторами все же рано: пускай им уже и не занять основное место под капотом, они вполне могут быть востребованы в качестве резервного генератора для подзарядки батарей электромобиля. Впрочем, все ДВС со временем ожидает та же участь. 

Автор
Олег Карелов, эксперт по подбору автомобилей AutoTechnic.su
Издание
Автопанорама №4 2015

Проходной роторно-поршневой двигатель — Энергетика и промышленность России — № 08 (124) апрель 2009 года — WWW.EPRUSSIA.RU

Газета «Энергетика и промышленность России» | № 08 (124) апрель 2009 года

Однако бурный рост потребления таких мощностей требует высокого качества преобразователей энергии, поскольку их работа связана с нагрузкой на окружающую среду.

Поршневые ДВС сейчас уже не справляются с требованиями, которые предъявляются к тепловым преобразователям индивидуального пользования. В поисках подходящей им замены изобретатели все чаще обращаются к роторным машинам. Но пока из всех автомобильных фирм только «Мазда» решилась поставить на поток роторный двигатель Ванкеля.

По массогабаритным показателям такой двигатель значительно превосходит поршневые двигатели, имеет меньше деталей. Однако его широкое использование сдерживается рядом существенных причин. К главным из них можно отнести малый ресурс работы двигателя, которого хватает от силы на 100 000 километров пробега.

В то же время основные технические характеристики роторного варианта теплового преобразователя близки к характеристикам газотурбинной техники и при этом обладают экономичностью поршневого двигателя.

Это заставляет изобретателей искать варианты, в которых будут совмещены преимущества различных систем.

Как известно, роторно-порш­невой двигатель Ванкеля состоит из корпуса, в котором вершины треугольного ротора совершают эпитрохоидную траекторию, обеспечивая необходимые замкнутые полости переменного объема для сжатия рабочего тела, системы подвода тепловой энергии и механизма преобразования последней в энергию вращающегося вала.

Анализируя работу двигателя Ванкеля, можно заметить, что вершины треугольного ротора совершают свою траекторию под воздействием линии эпитрохоиды корпуса – в отличие от ДВС, где смену направления движения поршня определяет коленчатый вал.

Массивный же ротор, имея большую скорость, оказывает значительное сопротивление на сложных поворотах линии эпитрохоиды и, несмотря на обильную смазку, быстро изнашивает трущиеся детали двигателя. Помимо этого, вершины ротора, имеющие малую контактную поверхность, скользят под разными углами по трущейся поверхности корпуса, что ведет к еще большей скорости разрушения уплотнений.

Однако, к сожалению, линия эпитрохоиды совместно с эксцентриковым механизмом является конструктивной особенностью роторного поршневого двигателя Ванкеля, и на сегодняшний день схема Ванкеля лучшее решение для роторно-поршневого двигателя, несмотря на невысокий ресурс. Приходится признать, что дальнейшее улучшение характеристик двигателя Ванкеля может быть осуществлено лишь с помощью применения еще более дорогостоящих материалов – при незначительной эффективности самого двигателя.

Но есть и другое решение проблемы создания замкнутых полостей переменного объема, в полной мере использующее все преимущества роторно-поршневого механизма.

Оно осуществляется путем установки плотной разделительной стенки в радиальной плоскости цилиндрического корпуса. Стенка откроется в нужный момент и пропустит рабочую часть ротора в точку начала оборота.

В этом случае ротор жестко связан с выходным валом, определяющим траекторию движения ротора без возвратно поступательной составляющей. Трение вращающегося ротора по цилиндрическому корпусу позволит создать большую площадь контакта трущихся поверхностей с неизменным углом касания. В итоге трущиеся поверхности не испытывают паразитного давления; параллельно с этим значительно улучшается уплотнение за счет увеличения поверхности контакта и снижается вибрация двигателя.

Здесь единственным относительно сложным узлом двигателя, который требует технической проработки и испытания, является уплотнительная стенка, пропускающая зуб ротора после завершения цикла.

Реализовать ее можно, установив на пути ротора дополнительный синхронно вращающийся цилиндр, охваченный корпусом. Он работает как вращающаяся часть подшипника скольжения, имеющего паз, который, развернувшись, пропускает зуб ротора словно через турникет.

Работа пропускного цилиндра при совершении рабочего хода заключается только в создании надежных уплотнений между камерами – в двух направлениях цилиндра. Одно проходит по линии скольжения цилиндра в корпусе с характеристиками подшипника скольжения – и здесь уплотнительная способность цилиндра сомнений не вызывает.

На втором направлении уплотнения цилиндр катится по поверхности малого радиуса ротора. Это наиболее сложный участок уплотнения с характеристиками, подобными роликовому или игольчатому подшипнику, который и является основой работы над пропускным РПД.

Автору представляется, что, с технической точки зрения, на пути к созданию перспективного роторного двигателя, свободного от недостатков РПД Ванкеля, стоит лишь вопрос уплотнения между катящимися цилиндрами. Переход же зуба через паз цилиндра происходит в технологическое время при отсутствии давления между камерами. Схема боковых уплотнений успешно решается в РПД Ванкеля, и ее можно позаимствовать.

Вторым отличием проходного РПД является компоновка функциональных узлов по схеме газотурбинного двигателя.

Выделение компрессора камеры сгорания и преобразователя в отдельные конструктивные узлы может значительно улучшить экологические показатели выхлопных газов, поскольку топливо будет сгорать в специально приспособленной камере, где легко можно поддерживать расход температуры и давление рабочего тела. Учитывая разные условия работы компрессора и преобразователя, появится возможность оптимизации узлов под конкретную задачу сжатия воздуха или преобразования энергии полученного горячего газа.

Mazda MX-30 примерит мотор Ванкеля в роли генератора — ДРАЙВ

Кроссовер MX-30 приводится в движение 143-сильным (264 Н•м) элекромотором. Его тяговая батарея ёмкостью 35,5 кВт•ч обеспечивает паспортный запас хода в 209 км. Числа могут быть уточнены ближе к запуску продаж.

Рассказывая о своих достижениях за сто лет, компания Mazda уделила немало внимания роторно-поршневым двигателям. В релизе, посвящённом юбилею, сделано признание: маленький односекционный мотор Ванкеля может найти свой путь в недра электрокара Mazda MX-30. Ранее о применении на электрических легковушках роторного мотора в роли так называемого расширителя дальности хода японцы говорили без указания моделей. Впервые компания напрямую связала такую технологию именно с MX-30.

В Японии электрический паркетник ожидается во второй половине 2020-го, а в Европе — в 2021 году. Сроки превращения машины в гибрид последовательного типа японцы не огласили, просто намекнув, что такая модификация рассматривается.

Применение двигателя Ванкеля в качестве бортового генератора компания не раз отрабатывала на прототипах. Такой приём использовался в опытных минивэнах Premacy Hydrogen RE Hybrid (версия 2007 года). В них битопливный (бензин/водород) двухсекционный роторный двигатель 1.3 вырабатывал ток для зарядки батареи, а колёса приводились электромотором.

В 2013 году японцы разработали прототип Mazda 2 RE (Rotary Engine). В роли генератора выступал односекционный РПД с рабочим объёмом 0,33 л и мощностью 38 «лошадок». Машине полагался десятилитровый бензобак, который почти удваивал пробег на зарядке/заправке (380 км против 200 км) в сравнении с электрокаром Demio EV, послужившим основой. Последний щеголял электромотором с отдачей в 102 л.с., 150 Н•м и литиево-ионной батареей ёмкостью 20 кВт•ч.

Если верить патенту 2018 года, роторно-поршневой мотор разместится под полом багажника, причём ось двигателя будет вертикальной, а генератор расположится рядом и будет связан с двигателем Ванкеля ремнём. Такая компоновка позволяет сделать всю систему очень небольшой по высоте.

А вот крупных двигателей Ванкеля в роли основных на маздах можно не ждать. Во всяком случае, в обозримом будущем. По неофициальным данным, если гипотетическое купе с условным обозначением Mazda RX-9 (то есть серийная интерпретация концепта RX-Vision 2015 года) будет выпущено на рынок, то не с роторно-поршневым мотором, а с рядной «шестёркой».

Что такое роторные двигатели и в каких автомобилях они есть?

Роторные двигатели могут звучать как что-то из ушедшей эпохи, и это потому, что в целом так оно и есть. Когда-то считавшиеся самыми эффективными и элегантными двигателями, они были заменены поршневыми двигателями несколько десятилетий назад, главным образом по экономическим и экологическим причинам. Но с новостями о том, что Mazda разрабатывает новый роторный двигатель для своих гибридных моделей, может ли этот тип двигателя вернуться?

Чтобы выяснить это, мы подробно рассмотрим роторные двигатели, включая то, как они работают, в чем их преимущества и какие автомобили работают с этим типом двигателей. Используйте приведенные ниже ссылки для навигации по руководству.

Быстрые ссылки

Что такое роторный двигатель?

Роторный двигатель — это тип двигателя внутреннего сгорания, который используется для питания всех видов транспортных средств, от легковых и грузовых автомобилей до лодок и самолетов. Роторные двигатели существуют уже несколько десятилетий и были одним из наиболее широко используемых типов двигателей примерно до 1920-х годов.

Подобно обычному поршневому двигателю, роторные двигатели выполняют четыре функции для привода транспортного средства: впуск, сжатие, сгорание и выпуск.Однако они работают совершенно иначе, чем стандартные движки, к которым мы привыкли.

Итак, как же работают роторные двигатели? Вот пошаговый взгляд на то, как выглядит цикл сгорания в роторном двигателе:

  • Впуск — как и в стандартном поршневом двигателе, воздух втягивается в двигатель через впускной клапан, прежде чем попасть в салон. камера через впускной канал.
  • Компрессия — ротор треугольной формы внутри камеры создает три газонепроницаемых уплотнения; они эффективно выполняют ту же работу, что и поршни в обычном двигателе.Когда ротор вращается, его уникальная форма означает, что эти три объема газа расширяются и сжимаются, втягивая в систему больше воздуха и топлива.
  • Сгорание — при пике давления внутри каждой из трех газовых камер смесь топлива и воздуха воспламеняется, производя мощность, которая передается на трансмиссию через выходной вал.
  • Выхлоп — выхлопное отверстие в корпусе двигателя отводит газы, где они выходят через стандартную выхлопную трубу.

Процесс роторного двигателя очень похож на то, что происходит в традиционном поршневом цилиндровом двигателе. Отличие в том, что вместо поршней здесь ротор треугольной формы, а вместо цилиндров — корпус, напоминающий овал.

Всасывание

По мере того, как ротор перемещается внутри корпуса, небольшой воздушный карман расширяется в больший, создавая тем самым вакуум.Этот вакуум поступает во впускные каналы, из которых воздух и топливо затем всасываются в камеру сгорания.

Сжатие

Ротор продолжает вращаться, сжимая топливовоздушную смесь относительно плоской стороны корпуса ротора.

1 МБ

Благодарю Итана Смейла за эпический GIF!

Мощность

Две свечи зажигания используются для воспламенения топливовоздушной смеси, помогая ускорить процесс сгорания и обеспечить сгорание большей части топлива, и это заставляет ротор продолжать вращаться.

Выхлоп

Подобно такту впуска, ротор перемещается до тех пор, пока не станут доступны выпускные отверстия, а затем выхлопные газы под высоким давлением вытесняются наружу, когда ротор закрывается из корпуса.

Важно понимать, что в отличие от поршневого цилиндрового двигателя в одном корпусе ротора все эти события происходят почти одновременно. Это означает, что при всасывании одной части ротора также происходит рабочий такт, что приводит к очень плавной подаче мощности и большому количеству мощности в небольшом корпусе.

2. Какие преимущества дает двигатель Ванкеля?

Удельная масса

Одним из самых больших преимуществ роторного двигателя был его размер.Двигатель 13B Mazda RX-7 занимал около одного кубического фута объема, но вырабатывал значительную мощность для своих небольших размеров.

Меньше движущихся частей

Часто в инженерии самое простое решение оказывается одним из лучших. Роторный двигатель резко сокращает количество деталей, необходимых для сгорания, при этом всего три основных компонента вращаются в двухроторном двигателе.

Плавный и высокие обороты

Роторный двигатель не имеет возвратно-поступательной массы, как клапаны или поршни в традиционном двигателе.Это приводит к невероятно сбалансированному двигателю с плавной подачей мощности и способности развивать высокие обороты, не беспокоясь о таких вещах, как клапан-поплавок.

3. Почему умер роторный двигатель?

Mazda RX-8 2011 года стала последним серийным автомобилем с ротором Ванкеля 1.3-х литровый Ренезис. Независимо от того, соответствовал ли RX-8 названию роторного двигателя, мы все прослезились из-за потери этого инновационного и уникального подхода к внутреннему сгоранию. Что нанесло последний удар? RX-8 не соответствовал нормам выбросов Евро-5, и поэтому после 2010 года он больше не мог продаваться в Европе. Хотя в штатах он оставался законным, продажи значительно упали, поскольку модель существует с 2004 года.

Какие недостатки у поворотной конструкции?

Всего три основных движущихся части в двухроторном двигателе Ванкеля

Низкий тепловой КПД

Из-за длинной камеры сгорания и уникальной формы тепловой КПД двигателя был относительно ниже по сравнению с поршневыми аналогами.Это также часто приводило к выходу несгоревшего топлива из выхлопных газов (отсюда тенденция роторных двигателей к обратному воспламенению, что, очевидно, столь же круто, сколь и неэффективно).

Burn Baby Burn

Роторный двигатель по своей конструкции сжигает масло. Во впускном коллекторе есть масляные распылители, а также форсунки для распыления масла непосредственно в камеру сгорания. Это не только означает, что водитель должен регулярно проверять уровни масла, чтобы поддерживать надлежащую смазку ротора, но также означает, что из выхлопной трубы выходит больше вредных веществ.А окружающая среда ненавидит плохое.

Это отверстие в корпусе — это то место, куда масло непосредственно впрыскивается во время впускного «такта» двигателя.

Уплотнение ротора

Еще одна проблема, которая также может повлиять на выбросы: сложно герметизировать ротор, когда он находится в очень разных температурах.Помните, что всасывание и сгорание происходят одновременно, но в очень разных местах корпуса. Это означает, что верхняя часть корпуса относительно холодная, а нижняя часть намного горячее. С точки зрения герметичности это проблематично, поскольку вы пытаетесь создать уплотнение «металл-металл» с металлами, которые работают при существенно разных температурах. Использование рубашек для охлаждающей жидкости, чтобы помочь выровнять тепловую нагрузку, эту проблему можно уменьшить, но никогда полностью не уменьшить.

Выбросы

Если сложить все вместе, ротор погаснет. Сочетание неэффективного сгорания, внутреннего сгорания масла и проблем с герметизацией приводит к тому, что двигатель не может конкурировать с сегодняшними стандартами по выбросам или экономии топлива.

Чем отличается RX-8 от конкурентов?

Печально известное верхнее уплотнение ротора RX-7 13B

В моем видео, описывающем недостатки RX-8, зрители справедливо отметили, что я сравнивал автомобили 2015 модельного года с моделью 2011 года с точки зрения экономии топлива, что было несправедливо со стороны Mazda.Давайте исправим это неправильно, используя RX-8 первого года выпуска.

Автомобиль Объем двигателя Вес Мощность MPG Общий рейтинг
2004 Мазда RX-8 1.3л Ванкель 3053 фунта (1385 кг) 197-238 л.с. (авто / человек) 18 миль на галлон (13 л / 100 км)
2004 VW GTI 1,8 л I4 2934 (1330 кг) 180 л.с. 9,8 л / 100 км (24 миль на галлон)
2004 Корвет 5,7 л V8 3214 фунтов (1458 кг) 350 л.с. 20 миль на галлон (11.8 л / 100 км)

Как вы можете видеть выше, RX-8 не очень хорош с точки зрения экономии топлива. Corvette со значительно более мощным двигателем, мощностью на 47 процентов и массой на 5 процентов по-прежнему обеспечивает меньшую экономию топлива на 11 процентов. Также стоит упомянуть, что это был первый год выпуска модели RX-8, в то время как двигатели Corvette и GTI использовались с предыдущих лет.Проще говоря, о RX-8 нельзя сказать ничего хорошего с точки зрения экономии топлива. Хотя покупатель не обязательно может рассматривать это как отрицательный момент, без учета выбросов нет автомобиля, который можно было бы купить.

Стоит отметить, что с момента первой публикации этой статьи Mazda объявила, что вернет роторные двигатели, но только в качестве небольших расширителей запаса хода в электромобилях. Другими словами, ничего, что не взорвется.

Что такое роторный двигатель и почему нацисты изобрели верхние уплотнения?

Вы перестали пускать слюни, как собака Павлова? Я уверен, что нет.Но просмотр видео, на котором Mazda демонстрирует безумную гонку 787 в Ле-Мане, передаёт лишь небольшую часть гоночной родословной этого ротора.

На протяжении многих лет Mazda использовала двух-, трех- и четырехроторные роторные двигатели для ряда различных приложений, включая гоночные автомобили высшего уровня IMSA, прототипы, такие как автомобили 767 и 787, автомобили с открытыми колесами и секретный прототип ралли Группы B с двухроторным RX-7 со скоростью 11000 об / мин. Первая роторная победа Mazda произошла в 1972 году, когда двухроторный спортивный автомобиль RX-2 выиграл гонку IMSA RS в Лайм-Рок-парке.

Mazda добилась успеха в своей серии RX, выиграв гонки с RX-2, RX-3 и RX-7. А с появлением RX-7 он продолжил победную серию, вырвав подиум в своем классе в течение 10 лет на 24-часовой гонке Daytona. Кроме того, в период с 1980 по 1987 год он также выигрывал чемпионат IMSA Grand Touring Championship объемом менее двух литров каждый год.

Однако наибольшая известность ротора в гонках пришлась на 1991 год, когда прототип гоночного автомобиля 787B с четырьмя роторами, показанный на видео выше, безоговорочно выиграл 24 часа Ле-Мана.Mazda стала не только первым и единственным роторным двигателем, выигравшим знаменитую гонку, но и первым японским конструктором, выигравшим эту гонку. Аккуратный!

Какие модели в настоящее время оснащены ротором?

Нет. Mazda держала его в живых столько, сколько могла, но его исключили из модельного ряда в 2012 году, когда RX-8 был снят с производства. Mazda заявляет, что возвращает роторный двигатель, хотя он будет использоваться в качестве расширителя диапазона в одном из будущих гибридных автомобилей компании. Не совсем триумфальное возвращение легендарного двигателя.

Узнайте, как управлять своим Ротари в Skip Barber Racing School.

Изучить поведение, причуды и индивидуальность вашего автомобиля можно самостоятельно, но не на пустом месте. Пропущенная точка торможения или фиксация цели на том дереве может означать погнутый бампер или серьезные медицинские счета. Зачем рисковать, если вы можете безопасно научиться водить свой роторный автомобиль у профессионалов школы вождения Skip Barber Race Car Driving School?

Drive стал партнером легендарной школы гонок Skip Barber, чтобы гарантировать, что при первом включении зажигания зажигания вы не полетите в канаву.

Часто задаваемые вопросы о роторном двигателе

У вас есть вопросы, У Drive есть ответы!

Q: Почему Иисус ненавидит ротари?

A: Их используют исключительно грешники. Слава сатане!

Q: Хорошо, но может ли роторный двигатель работать на дизельном топливе?

A: Роторный двигатель может работать на нескольких различных видах топлива, включая дизельное топливо, этанол, метанол, спирт и старый бензин. Он не потечет на слезах, собранных после похода к механику.

Q: Итак, сколько оборотов в минуту может вращаться роторный двигатель?

A: Все.

Q: Но правда.

A: Большинство уличных роторных машин развивают скорость около 8000–8500 об / мин. Однако гоночные двигатели, подобные упомянутым выше, будут иметь частоту вращения выше 10 000 об / мин.

Q: Тогда сколько уплотнений вершины имеет роторный двигатель?

A: Три на ротор.

Q: Боюсь спросить, но сколько стоит починка уплотнений апекса?

A: Начните с того, что дайте механику 2000 долларов, а затем будьте готовы раскошелиться на многие тысячи после этого, пока вы не станете бедным и живете в фургоне у реки.

Интересные факты о поворотных устройствах

Вы знаете, что вам нужно больше фактов о поворотных устройствах!

  • Кто-то построил крошечный прозрачный ротор, который вращался до 18 000 об / мин.
  • Mazda когда-то построила двигатель NA Miata с роторным двигателем, который использовал водород в качестве источника топлива! Он, очевидно, не взлетел.
  • RX-7 был первым серийным автомобилем с последовательным двойным турбонаддувом.
  • Кто-то однажды взял роторный двигатель и заменил его на Ferrari 456 GT.
  • Suzuki когда-то построил и продал роторный мотоцикл под названием RE5, и легендарный дизайнер Джорджетто Джуджаро модернизировал его.

Давайте поговорим, комментарий ниже, чтобы поговорить с редакторами

The Drive!

Мы здесь, чтобы быть экспертами во всем, что связано с практическими рекомендациями.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *