Меню Закрыть

Наиболее вязкое масло применяют: Жидкие диэлектрики | Электроматериаловедение | Архивы

Содержание

Жидкие диэлектрики | Электроматериаловедение | Архивы

Страница 23 из 59

ГЛАВА XI. ЖИДКИЕ ДИЭЛЕКТРИКИ
§ 47. Классификация и назначение жидких диэлектриков
В качестве жидких электроизоляционных материалов в электротехнических устройствах применяют электроизоляционные минеральные масла и синтетические жидкие диэлектрики: совол и кремний — органические жидкости. Наибольшее применение имеют минеральные нефтяные масла. По характеру использования в качестве жидких диэлектриков нефтяные масла могут быть разделены на три группы:
масла для силовых трансформаторов и высоковольтных выключателей;
кабельные масла, используемые для пропитки бумажной изоляции высоковольтных кабелей;
конденсаторные масла, применяемые для пропитки бумажной изоляции конденсаторов. Для этой же цели в бумажно-масляных конденсаторах используют искусственную жидкость — совол.
Характерной особенностью всех жидкостей является то, что их молекулы обладают большей подвижностью по сравнению с молекулами твердого тела.

Чем выше температура жидкостей, тем подвижность их молекул больше. Это свойство жидкостей определяется их вязкостью. Большая подвижность молекул жидкостей обеспечивает им возможность заполнять различные пустоты и твердой изоляции. Минеральные масла хорошо пропитывают такие пористые электроизоляционные материалы, как картоны, бумаги, дерево и др. Будучи хорошими диэлектриками, минеральные масла, проникнув в поры такой изоляции, улучшают их электрические характеристики. Так, например, у пропитанной минеральным маслом бумаги резко возрастает по сравнению с непропитанной электрическая прочность Епр.
Минеральные масла при температурах около 70—80° С обладают небольшой вязкостью, поэтому частицы масла приобретают большую подвижность. Это позволяет использовать нефтяные масла в трансформаторах для охлаждения обмоток.
Масло в трансформаторах нагревается у обмоток и, притекая к холодным частям бака трансформатора, отдает им полученное тепло. Масло, имеющее большую вязкость, не обеспечит необходимого охлаждения трансформатора. На рис. 103 приведена кривая вязкости нефтяного трансформаторного масла в зависимости от температуры.
В высоковольтных трансформаторах нефтяное масло является не только теплопроводящей средой, но и главным электроизоляционным материалом. Оно заполняет пространство между обмотками трансформатора и тем самым усиливает изоляцию трансформатора. Выполняя эту роль, масло должно обладать в первую очередь большой электрической прочностью и малой величиной тангенса угла диэлектрических потерь.

Рис. 103. Вязкость трансформаторного масла в зависимости oттемпературы
В высоковольтных выключателях применяется то же самое масло, что и в трансформаторах. Здесь масло выполняет не только функцию жидкого диэлектрика, изолирующего части выключателя от стенок бака, но и среды, гасящей электрическую дугу, возникающую между контактами выключателя при отключении им высоковольтных сетей.

Процесс гашения электрической дуги состоит в следующем: при высокой температуре электрической дуги масло разлагается с выделением газов (водорода, ацетилена, этилена и др. ). Газы вытесняют масло из части объема около контактов выключателя и образуют здесь газонов пространство. Давление в этом газовом пространстве повышается, к результате чего горение дуги прекращается.
В электрических кабелях минеральное масло применяется в чистом виде без каких-либо растворенных в нем веществ или в виде пропиточного состава для пропитки бумажной изоляции. В последнем случае в минеральное масло вводят канифоль, которая растворяется в масле. В результате этого вязкость масла повышается и оно не перетекает в бумажной изоляции внутри ка беля.

§ 48. Минеральные электроизоляционные масла

Минеральные масла получают методом дробной перегонки нефти. Химический состав их определяется составом нефти. Все нефтяные масла являются смесью различных углеводородов парафинового (метанового), нафтенового и ароматического рядов. Углеводороды парафинового ряда представляют собой соединения углерода и водорода в виде молекул цепочечной структуры:

Как видно из этой формулы, цепочки могут быть различной длины в зависимости от количества соединенных между собой атомов углерода.

Углеводороды метанового ряда обладают хорошей химической стабильностью, т. е. стойкостью против окисления.
Нафтеновые углеводороды представляют собой соединения углерода с водородом в виде замкнутых колец с боковыми цепями.

Поэтому они часто называются циклическими углеводородами. Содержание их в масле достигает 70—85%.
Ароматические углеводороды тоже являются циклическими соединениями углерода с водородом, имеющими (аналогично нафтенам) небольшие боковые цепочки. Установлено, что удаление этих углеводородов из электроизоляционного масла приводит к его быстрому окислению, однако чрезмерное количество ароматических углеводородов в составе масел понижает температуру вспышки паров масла и вызывает выпадение осадков. В результате этого ухудшаются электрические характеристики масла. Количество ароматических углеводородов в масле регулируется в зависимости от химического состава нефти. Представителем ароматических соединений является бензол, химическая формула которого такова:

Как видно из этой формулы, ароматические соединения в отличие от нафтенов имеют так называемую двойную связь между атомами углерода, что обеспечивает их стойкость против окисления.
В состав электроизоляционных нефтяных масел входят еще другие компоненты — органические кислоты, смолистые вещества, сернистые соединения.

Изготовление масел из нефти — сложный технологический процесс, состоящий из ряда физико-химических операций. Содержащиеся в нефти отдельные ее части кипят при разных температурах и поэтому могут быть из нее удалены раздельно — путем нагрева в вакууме до разных температур. При температурах ниже  100° С из нефти выделяются легкие продукты: бензин, лигроин, керосин. Из оставшейся части, называемой мазутом, при температуре выше 300° С выделяется соляровое масло. Путем последовательной обработки масла кислотой и щелочью из него удаляют химически нестойкие соединения и получают электроизоляционное масло. Полученное масло промывают теплой дистиллированной водой, вводимой в масло в виде тонких струй. После отстоя и удаления посторонних продуктов промытое водой масло сушат и очищают отбеливающей глиной* от химически нестойких веществ. Для этого в масло вводят отбеливающие глины или земли.
Затем эго масло фильтруют, пропуская его через слои фильтровального картона, установленные в аппарате фильтр-прессе.
Трансформаторное масло выпускается двух марок: масло трансформаторное и масло трансформаторное с антиокислительной присадкой. В состав масла второй марки вводится вещество — антиокислительная присадка для стабилизации физико-химических свойств масла.
Все трансформаторные масла обычно делят на следующие группы:

  1. — не бывшее в эксплуатации свежее масло, полученное с завода-изготовителя;
  2. — чистое сухое масло. В эту группу входят:

а)  еще не бывшее в эксплуатации;
б)  масло, уже бывшее в эксплуатации, но восстановленное химически;

  1. — масло, находящееся в эксплуатации;

Таблица 27 Технические условия на свежее трансформаторное масло

* Некоторые глины и земли относятся к поверхностно-активным веществам, частицы которых поглощают из масла различные загрязнения (воду, смолистые вещества и др.

).

  1. — масло, изъятое из обращения и подлежащее восстановлению (регенерации).

Свежее трансформаторное масло перед заливкой его в аппараты и трансформаторы подвергается испытанию. Главные его характеристики приведены в табл. 27.
Как видно из таблицы, электрическая прочность свежего масла не нормируется. Эта характеристика нормируется «Правилами технической эксплуатации» лишь для сухого масла и масла, находящегося в эксплуатации.
Величины электрической прочности нормируются по величинам рабочих напряжений маслонаполненных аппаратов согласно табл. 28. Кроме того, для эксплуатационного масла температура вспышки должна быть не ниже 135° С, а кислотное число не выше 0,4 мг КОН/г.

Таблица 28
Пробивное напряжение сухого и эксплуатационного масла *

 

Рабочее напряжение аппарата, кВ

Название масла

до 15

до 35

до 220

до 50:j

Эксплуатационное, кВ

20

25

35

45

Свежее или регенерированное, кВ

25

30

40

50

* Пробой слоя толщиной 2,5 мм о стандартном пробойника (см. рис. 7G).
Большое количество электроизоляционных нефтяных масел используют также в производстве силовых кабелей с бумажной изоляцией.
В зависимости от конструкции кабелей масла делятся по вязкости, величине tg б и температуре застывания на следующие три группы: 1 — масла малой вязкости МН-2; 2 — масла средней вязкости С-110 и С-220; 3— масла вязкие П-28.
Маловязкое масло МН-2 применяется в маслонаполненных кабелях низкого и среднего давления (до 3 атм). Малая вязкость масла (около 9 сст при 50° С) для таких кабелей необходима, чтобы обеспечить подпитку кабеля маслом через сравнительно небольшие каналы в нем при всех эксплуатационных температурах.
Средневязкие масла С-110 и С-220 предназначаются для пропитки и заполнения маслонаполненных высоковольтных кабелей на напряжение 110 кВ и выше при давлении около 14 атм. Эти масла не содержат в своем составе ни ароматических углеводородов, ни асфальто-смолистых веществ. Они представляют собой технически чистую смесь нафтеновых и парафиновых углеводородов, поэтому обладают весьма устойчивыми электрическими характеристиками, особенно величиной tg б. Установлено, что чем больше вязкость таких масел, тем меньше величина tg б,
Наиболее вязкое масло применяется для кабелей с бумажной изоляцией до 35 кВ, у которых пропитывающим жидким веществом является масло П-28 с растворенной в нем канифолью. Вязкость этой маслоканифольной пропиточной массы должна иметь резко падающую кривую зависимости ее от температуры. В процессе производства кабеля при его пропитке при температурах 115—130°С необходима малая вязкость массы. В процессе эксплуатации при 65—80° С нужна, наоборот, высокая вязкость, затрудняющая передвижение пропиточной массы в кабеле, если он расположен вертикально или наклонно.
Наряду с высокой электрической прочностью для всех кабельных масел весьма важно, чтобы величина tg 6 была малой и с повышением температуры не возрастала бы резко.
Масла в кабелях соприкасаются с металлами — медью, свинцом, являющимися катализаторами их окисления, поэтому необходимо, чтобы они обладали высокой химической устойчивостью против окисления в эксплуатационных условиях. Кроме того, в высоковольтных маслонаполненных кабелях недопустимы газовые пузырьки, ослабляющие электрическую прочность изоляции кабеля. При высоких напряженностях электрического поля в кабелях нафтеновые и парафиновые углеводороды могут разлагаться и выделять водород, т. е. образовывать газовые пузырьки. В кабелях с вязкой пропиткой (П-28) такие газовые выделения поглощаются канифолью. В маслонаполненных кабелях с высоким давлением процесс ионизации, в результате которого выделяется водород, отсутствует или значительно ослаблен давлением. Поэтому газовыделение — важный показатель лишь для маслонаполненных кабелей низкого давления.
Таблица 29
Физические и электрические характеристики электроизоляционных масел *

Для высоковязкого масла П-28 данные; не приведены, так как оно применяется в кабелях и виде маслоканифольной массы. Для сравнения с величиной вязкости других масел следует указать» что его вязкость при 100е С наиболее высокая и равна 26—30 сст.
В табл. 29 приведены основные характеристики двух кабельных масел.
Применяемое в бумажно-масляных конденсаторах нефтяное масло служит электроизоляционным материалом, обеспечивающим высокие величины напряженности электрического поля. Поэтому для конденсаторного масла весьма важны электрические характеристики, а именно: малая величина tg 6, высокая электрическая прочность, большое удельное объемное сопротивление. Диэлектрическая проницаемость е жидких диэлектриков для конденсатора желательна большей величины, однако в нефтяных маслах этого достигнуть нельзя, так как эти масла — неполярные диэлектрики.
Конденсаторное масло получают в результате более тщательной очистки, чем трансформаторное масло. Очистка состоит из ряда последовательных химических обработок масла с помощью кислот, щелочей, промывки горячей водой и очистки отбеливающими глинами.

§ 49. Влияние примесей и физико-химических факторов на свойства электроизоляционных масел


Рис. 105. Зависимость электрическом прочности трансформаторного масла от содержания в нем воды (при разной температуре) ,
Свойства масел изменяются в зависимости от примесей, которые могут попасть в них в условиях эксплуатации, а также от температуры и других факторов.

Рис. 104. Зависимость электрической прочности трансформаторного масла от содержания в ней воды (при 25° С)
Следует указать, что электрическая прочность масла Епр снижается от содержания в нем воды и различных твердых примесей. Вода, попавшая в масло, может в нем раствориться в большом количестве (молекулярная вода). При понижении температуры эта растворенная вода выпадает, создавая мельчайшие капельки (эмульсионная вода), распространенные по всему объему масла.
Молекулярная вода оказывает на величину электрической прочности небольшое влияние. Эмульсионная же вода сильно снижает пробивную прочность EПр, что иллюстрируется рис. 104.
Если такую зависимость определить у одного и того же увлажненного масла при разных температурах, то величины Еар при более высокой температуре расположатся выше. Это объясняется тем, что при высокой температуре часть воды из эмульсионной перешла в молекулярную. Такая зависимость приведена па рис. 105.

Рис. 106. Зависимость пробивного напряжения трансформаторного масла от расстояния между электродами различной формы
Повышение температуры сухого масла снижает его электрическую прочность. Большое влияние на электрическую прочность масла и его пробивное напряжение Unp оказывают форма электродов и расстояние между ними. На рис. 10(5 показана зависимость пробивного напряжения трансформаторного масла от расстояния между электродами в виде шаров и закругленных пластин (кривая /) и пластин с острыми краями (кривая 2). На рисунке видно, что в последнем случае значения С/пр с увеличением расстояния между электродами значительно меньше, чем в первом случае. Это объясняется неоднородностью электрического поля, образуемого электродами с острыми краями.


Рис. 107. Зависимость тангенса ума диэлектрических потерь двух различных масел от температуры:
1 — бакинское свежее (очищенное) масло, 2 — эмбенское свежее очищенное масло; 3 — бакинское масло, бывшее б употреблении, 4 — эмбенское масло, бывшее в употреблении
Длительность воздействия напряжения также влияет на электрическую прочность. При импульсных напряжениях электрическая прочность масла выше, чем при переменном или постоянном напряжении. При увеличении внешнего давления прочность масла также увеличивается.
Величина тангенса угла диэлектрических потерь tg 6 у масел обусловлена их электропроводностью. С повышением температуры электропроводность увеличивается и аналогично этому нарастает tg б. Это хорошо видно на рис. 107, где приведены кривые зависимости tg 6 от температуры для двух различных масел. Кривые показывают, что увеличение tg б масел в случае их окисления происходит в результате повышения проводимости масел (графики 3 и 4 на рис. 107).
Все электроизоляционные масла должны обладать высокой стабильностью своих характеристик, которые могут изменяться, когда масло стареет. Старение масла в основном выражается в окислении его кислородом воздуха. Высокая температура в эксплуатационных условиях это окисление ускоряет. Старение масла ускоряется также металлическими катализаторами: медью, латунью, железом и другими металлами. Присутствие воды в масле ускоряет процесс его старения. При старении в масле образуются твердые смолообразные примеси, не растворимые и растворимые в горячем масле. Такие примеси выпадают в виде осадков на обмотках и других частях трансформатора, что затрудняет теплоотвод от нагретых частей. Будучи же растворенными в масле, примеси значительно ухудшают его электрические свойства. В процессе старения масла в нем образуются кислоты, которые могут вызвать разрушение изоляции обмоток.
Чтобы замедлить старение масел, в них вводят вещества, задерживающие окисление — ингибиторы *. Однако присадка ингибиторов не может полностью предохранить масло от окисления и старения. Поэтому электроизоляционные масла следует хранить и перевозить в сухой чистой таре, перекачивать их по чистым металлическим трубопроводам (но не по резиновым шлангам, которые, растворяясь, загрязняют масло). В условиях эксплуатации масло необходимо защищать от проникновения в него воздуха и влаги. Крышки маслонаполненных аппаратов должны плотно закрываться и иметь консерваторы, т. е. дополнительные бачки. Иногда в трансформаторах пространство над уровнем масла заполняют инертным газом, например азотом, который химически не действует на масло и защищает масло от окисления.

Вязкость моторного масла: что такое, обозначения, стандарты

Учитывая большие объемы масла, используемого грузовиками и строительной техникой, фактор цены и ресурса смазочных материалов важен для бизнеса, особенно для крупных автопарков.

Это свойство прямо влияет на эффективность смазки, защиту от износа, а в холодном климате и на саму возможность запуска двигателя. Узлам, смазываемым принудительно маслонасосом, требуется обеспечение давления масла в определенных пределах, а оно находится в прямой пропорции с его вязкостью. Эффективность смазки разбрызгиванием (в первую очередь стенок цилиндров) зависит и от объема масла, выходящего через зазоры вкладышей, и от прочности масляной пленки, то есть вновь связана с вязкостью.

Появление в конструкции двигателей гидрокомпенсаторов, а затем и гидравлического привода фазовращателей также пришлось учитывать при составлении требований к вязкости моторного масла. Недостаточно вязкий продукт нарушает работу гидрокомпенсаторов, что выдает себя характерным стуком в механизме привода клапанов.

Зависимость вязкости от температуры

Моторное масло – это сложная по составу жидкость, состоящая из органических (базовое масло) и неорганических (часть пакета присадок) компонентов. У любого сорта материала есть ярко выраженная зависимость вязкости от температуры. По мере ее роста вязкость падает, снижается давление в масляной системе, уменьшается прочность масляной пленки. Поэтому при превышении определенной температуры масло может потерять это свойство настолько, что под нагрузкой трение в двигателе перейдет в сухое, а это неизбежно приведет к поломке.

При снижении температуры масло, напротив, густеет. Ухудшается прокачиваемость, возрастает сопротивление масляного фильтра, снижается объем масла, разбрызгиваемого в картере. При увеличении вязкости выше определенного порога становится невозможным запуск двигателя с помощью электростартера: его мощности не хватает, чтобы раскрутить коленчатый вал до нужных оборотов либо даже просто сдвинуть его с места.

Классическое минеральное базовое масло отличает наиболее ярко выраженная зависимость вязкости от температуры, то есть оно имеет минимальную ширину диапазона применяемости. По этой причине характеристики продукции приходится корректировать введением дополнительных присадок. Высококачественные синтетические базовые масла позволяют обеспечивать наиболее широкие границы применимости: при великолепных низкотемпературных свойствах масло не теряет способность смазывать и защищать мотор после прогрева и под нагрузкой.

Зависимость вязкости от срока службы смазочного материала

По мере эксплуатации масло неизбежно стареет, его вязкостные характеристики меняются:

  • окисляется и насыщается продуктами неполного сгорания топлива базовое масло;
  • разрушаются введенные в состав продукта стабилизаторы вязкости.

Для обеспечения нормальных интервалов замены масла необходимо, чтобы к концу срока его параметры оставались в пределах, заданных производителем двигателя. Старение масла становится к концу срока службы хорошо заметным: вязкость снижается, одновременно ухудшаются и низкотемпературные характеристики.

Используя высококачественные базовые масла и современные пакеты присадок, ROLF Lubricants GmbH может предложить продукцию не только со стандартными, но и с увеличенными сроками замены в соответствии со специфическими допусками автопроизводителей (например, BMW LL-01). В то же время намеренное увеличение интервалов замены, если оно прямо не оговорено в сервисной книжке для масел с конкретным допуском, не может быть рекомендовано.

Нужно учитывать, что сроки замены устанавливаются автопроизводителями для среднестатистических условий эксплуатации. В ряде случаев требуется сокращать интервалы обслуживания. Сюда относятся:

  • частые пробки, в которых двигатель работает на минимальных оборотах (наихудшие условия смазки) без набора километража на одометре;
  • жесткая эксплуатация (перегрузки, агрессивное вождение, внедорожная езда), когда возрастают темпы старения и окисления масла.

В таких условиях вязкостные свойства масла, как и другие эксплуатационные характеристики, уже могут выйти за установленные пределы быстрее, что ускорит рост износа двигателя. Именно поэтому в сервисных книжках обычно прямо предписываются сокращенные интервалы замены масла в описанных случаях.

Стандартизация вязкости смазочного материала

Для надежности смазки двигателя в первую очередь требуется, чтобы кинематическая вязкость масла при рабочей температуре находилась в определенных границах. Также особо оговаривается минимальная динамическая вязкость при повышенной температуре. При зимней же эксплуатации необходимо задать предельно высокую динамическую вязкость масла для определенной температуры, чтобы иметь уверенность в возможности прокрутки двигателя стартером и сохранении прокачиваемости материала насосом.

Общепринятая спецификация SAE J300 удобна и позволяет легко описывать и сравнивать вязкостные характеристики моторных масел. Ее принцип легко описывает простая таблица:

Группа классов вязкости

Маркировка по мере возрастания вязкости

Зимние масла

0W

10W

15W

20W

25W

Летние масла

20

30

40

50

60

Таким образом, для сравнения двух масел достаточно сопоставить индексы заявленных классов. У летних масел увеличение числового индекса гарантирует, что вязкость при 100 градусах Цельсия (условная рабочая температура двигателя) попадает в больший диапазон числовых значений, чем у масла с меньшим индексом. Для зимних продуктов рост индекса означает ухудшение низкотемпературных свойств и увеличение температуры, при которой нормирована динамическая вязкость.

Однако сезонные масла в большинстве климатических поясов в эксплуатации неудобны, так как требуют замены два раза в год, даже если материал еще не потерял свои свойства. При небольших сезонных пробегах это экономически невыгодно. Поэтому большинство современных моторных масел, в том числе и выпускаемых ROLF Lubricants GmbH, являются всесезонными. У них в маркировке класса вязкости через дефис указываются два индекса, например SAE 10W-40.

Поскольку по мере старения масла его вязкость при рабочей температуре мотора неизбежно снижается, хорошим признаком качества и ресурса считается близость кинематической вязкости свежего продукта при 100 °С к верхней границе, заданной указанным классом SAE. Например, для класса SAE 30 максимум вязкости по стандарту равен 12,5 мм2/с, а у моторных масел ROLF она составляет:

  • ROLF 3-SYNTHETIC 5W-30: 12,2 мм2/с;
  • ROLF GT 5W-30 SN/CF: 12,1 мм2/с;
  • ROLF JP SAE 0W-30 ILSAC GF-5/API SN: 11,7 мм2/с;
  • ROLF JP SAE 10W-30 ILSAC GF-5/API SN: 12,0 мм2/с.

Моторные масла ROLF

основные отличия и какое лучше выбрать — Полезная информация

В связи с тем что количество новых продуктов на рынке ГСМ увеличивается постоянно, потребителю важно понимать их особенности, чтобы отсеивать неподходящие. В наших предыдущих статьях мы посвятили достаточно времени расшифровке масла 5W-40, и сегодня поговорим о его отличиях от одного из наиболее популярных конкурентов: 5W-30. Мы расскажем о том, в чем каждый продукт проигрывает своему «оппоненту» и о том, могут ли они работать вместе.


Содержание:

  1. Почему важна вязкость моторного масла
  2. Несколько слов о сезонности масел
  3. Какие масла, 5W-30 или 5W-40, лучше использовать зимой?
  4. Какое масло лучше заливать летом?
  5. Синтетика или полусинтетика?
  6. Несколько слов о совместимости 5W-40 и 5W-30
  7. Резюме

Почему важна вязкость моторного масла

В нашей предыдущей статье мы уже упоминали о том, что классификация SAE была разработана Американским сообществом автомобильных инженеров (Society of Automotive Engineers). Впоследствие она стала обязательной для производителей масел по всему миру. В ее основе лежит разделение ГСМ на классы по признаку вязкости. Почему этот параметр был выбран из других, особенно с учетом того, что в другие спецификациях (API, ACEA) упор делается сосвмем на другое?

Важно!

Сегодня вы сможете выбрать масло по SAE вне зависимости от того, в какой стране мира находитесь. Оно будет соответствовать тем же стандартам.

  1. Если этот показатель будет слишком высок, масло потеряет свою текучесть и не сможет с достаточной скоростью прокачиваться по каналам системы смазки.
  2. Если же он будет слишком низок, то защитной пленке не будет хватать несущей способности, т.е. она не сможет сформироваться на элементах мотора.

Ситуация осложняется тем, что вязкость масла — нестабильная величина, которая подвержена изменениям. Основное влияние в этом случае оказывает температура окружающей среды. Чем она выше, тем менее вязким становится смазочный материал.

Можно ли создать такое масло, которое сохраняет оптимальные показатели при любых температурах? Вполне, так как речь все равно идет об ограниченном температурном диапазоне. Это значит, что у производителей есть два варианта:

Создать или узкоспециализированный продукт, который будет работать в относительно небольшом диапазоне, или более универсальный смазочный материал, который будет функционировать в условиях сезонных перепадов температур.

Именно так и поступают сейчас производители масел. На нашем сайте вы без труда сможете найти специальные сезонные или универсальные продукты. Для этого воспользуйтесь фильтром по температурному допуску или по маркировке SAE.

Несколько слов о сезонности масел

Если вы хотя бы раз заходили в автоцентр или специализированный магазин, то наверняка обращали внимание на то, что ГСМ делятся на 3 категории:

  • летние;
  • зимние;
  • всесезонные.

В чем разница между ними?

  • Летние масла обычно обладают достаточно высокой базовой вязкостью и рассчитаны на работу в условиях средних и высоких температур. Их обычно покупают в регионах, где не бывает холодов, или же на один сезон. Их преимуществом является то, что они формируют на элементах мотора плотную пленку, которая обеспечивает надежную защиту.
  • Зимние масла, напротив, отличаются низкой вязкостью. Даже в холодное время года они обладают достаточной текучестью, но защитный слой, который они образуют, уступает по плотности летним аналогам.
  • Всесезонные. В эту категорию входит большинство выпускаемых сегодня линеек масел. Эти продукты обеспечивают защиту двигателя в условиях как низких, так и высоких температур.

Как понять, к какой категории относится то или иное масло? Для этого нужно ориентироваться на маркировку по SAE. Допустимый диапазон температур можно определить по этой таблице:

Какие масла, 5W-30 или 5W-40, лучше использовать зимой?

Итак, давайте проведем краткую расшифровку каждой маркировки: Первая часть — 5W — позволяет сделать вывод о минимальной температуре, при которой показатели вязкости масла оптимальны для двигателя. У обоих классов масел они одинаковы. Согласно классификации SAE, минимальный температурный порог для них следующий: -35℃ — минимальная температура, при которой масло может прокачиваться по каналам; -30 ℃ — минимальная температура, при которой возможен безопасный запуск двигателя; -25 ℃ — средняя температура, при которой производители рекомендуют использовать масла 5W-30 и 5W-40. В результате мы можем сделать первый вывод:

Вывод 1:

В зимний период масла 5W-30 и 5W-40 имеют идентичные показатели при низких температурах и обеспечивают уверенный запуск двигателя до -30℃.

Это значит, что в холодное время года они практически полностью взаимозаменяемы.

Какое масло лучше заливать летом?

В теплое время года, когда температура воздуха, а значит и температура в двигателе, значительно выше, проявляются основные отличие масла 5w30 от 5w40. Именно в этом случае вопрос о том, какой из двух типов масел выбрать, становиться наиболее актуальным.

Если вы снова взглянете на таблицу из предыдущего абзаца, то сможете увидеть, что максимальная температура воздуха, при которой рекомендуется использовать ГСМ с маркировкой 5W-30, составляет +35℃. Для 5W-40 это значение несколько выше и составляет +40℃.

Что на практике означают эти цифры?

Вывод 2:

Масло 5W-40 имеет бОльшие показатели вязкости и образует достаточно плотную защитную пленку при более высокой температуре.

Для большинства современных автомобилей это безусловный плюс. Их двигатели в состоянии работать с вязкими ГСМ. Однако ориентироваться, в первую очередь, стоит именно на требования производителей, так как:

  1. Если показатель вязкости выше рекомендованного, образуется более плотная пленка, на которую не рассчитаны рабочие зазоры в двигателе. В результате масло не «обтекает» все узлы ДВС, а значит, не защищает некоторые его элементы. Это приводит к быстрому износу деталей, повышению температуры в двигателе, повышенному потреблению топлива. В конечном итоге это может привести к выходу мотора из строя и к дорогостоящему ремонту.
  2. Если показатель вязкости слишком низок, плотность пленки будет недостаточной, а значит она не сможет эффективно предотвращать износ элементов двигателя и защищать от трения. В результате вы сможете получить все негативные эффекты из предыдущего пункта.

Вывод 3:

В летний период стоит заливать масла 5W-40, но только при условии, что они рекомендованы производителем мотора вашего авто. Если в инструкции указан конкретный тип масла, предпочтение стоит отдать именно ему.

Синтетика или полусинтетика?

На рынке вы без труда найдете продукты 5W-40 и 5W-30 на различных основах. Проводить сравнение по вязкости в этом случае не требуется.

Важно!

Классификация по SAE не делает различий между синтетическими, минеральными и полусинтетическими маслами. В ней учитывается исключительно вязкость продукта.

Иными словами, и синтетическое, и полусинтетическое масло с маркировкой 5W-40 будет иметь оптимальную вязкость в своем температурном диапазоне. Вопрос только в том, какими средствами производитель будет добиваться этого эффекта.

Если же выбирать между синтетикой и полусинтетикой, лучше будет выбрать первый вариант. Несмотря на более высокую цену, такие продукты увеличивают периоды между заменами ГСМ и в целом обеспечивают более высокие показатели защиты двигателя. Более подробно об основах масел читайте в другой нашей статье.

Несколько слов о совместимости 5W-40 и 5W-30

Если вы попали в ситуацию, когда нужно срочно долить масло в двигатель, но продукта, которым вы обычно пользуетесь, под рукой нет, можно пойти на определенный риск. Разберемся подробнее:

  1. Если производитель ДВС допускает использование только 5W-40 или 5W-30, смешивание их даже в холодное время года приведет к изменению вязкости ГСМ и может привести к выходу двигателя из строя еще до того, как вы сможете слить временную смесь и залить новую.
  2. Если производитель допускает использование обоих типов масел, то ситуация будет значительно лучше. При смешивании вязкость итогового продукта изменится и будет находиться на уровне между 5W-40 и 5W-30. В холодное время года разница будет менее ощутима, так как низкотемпературные показатели у этих типов ГСМ совпадают. Летом ситуация будет иной. При высокой температуре разница между маслами будет более значительна для двигателя, но смеси будет достаточно для эффективной работы двигателя в течение непродолжительного времени.

Важно!

Если вы долили ГСМ разных классов по SAE, полученную смесь все равно рекомендуется слить при первой возможности. Дополнительно следует сменить масляный фильтр и провести промывку двигателя.

Резюме

Основным критерием при выборе масел между 5W-40 и 5W-30 должны быть рекомендации производителя двигателя. Если же разрешается использовать оба класса, то в большинстве случаев выигрывает более густой вариант, так как он обеспечивает лучшую защиту деталей ДВС.

В зимний период времени разница между 5W-40 и 5W-30 не так существенна, а в летний стоит ориентироваться на режим работы двигателя и особенности местного климата.

Наконец, смешивание масел различных классов возможно, но полученную смесь следует считать временной и слить при первой же возможности.

Моторное масло — какое выбрать? — журнал За рулем

Производитель рекомендует масло 0W-20, но на сервисе заливают более густое, с индексом 5W-40. Может ли это негативно сказаться на здоровье мотора?

Вязкостно-температурная характеристика моторного масла заметно влияет почти на все основные показатели двигателя. Мощность, момент, экономичность, ресурс — всё это рассчитывается разработчиками мотора под определенную вязкость масла. Ее классифицируют по системе SAE (англ. society of automotive engineers — сообщество автомобильных инженеров). Эта классификация оговаривает максимальную низкотемпературную вязкость, а также диапазон вязкости при 100 ºС. Но чтобы понять, какое масло выбрать, нужно для начала вспомнить, что скрывают «масляные» обозначения.

Обозначения и скрытый смысл

Работоспособность простейшего шарикового вискозиметра проще всего оценивать на маслах одного бренда, различающихся первой цифрой обозначения.

В нашем случае это масла 0W‑40, 5W‑40 и 10W‑40.

Работоспособность простейшего шарикового вискозиметра проще всего оценивать на маслах одного бренда, различающихся первой цифрой обозначения. В нашем случае это масла 0W‑40, 5W‑40 и 10W‑40.

Они весьма условны. Первая цифра говорит о минимальной температуре, на которую рассчитано масло. Если, например, впереди стоит ноль, то проворачивание коленвала гарантируется при температуре до —35 ºС, а прокачиваемость масла — аж до —40 ºС. Точнее говоря, производитель масла ручается, что при указанных температурах вязкость продукта не превысит определенных классификацией SAE значений.

Материалы по теме

Число после дефиса отвечает за высокие температуры: оно говорит о допустимом диапазоне изменения вязкости масла при 100 ºС. К примеру, для «двадцатки» производитель обещает вилку от 5,6 до 9,3 сСт, а для «сороковки» — от 12,6 до 16,3 сСт. Кроме того, это же число характеризует минимальную вязкость при 150 ºС.

Какая вязкость лучше?

На морозе всё понятно: с чересчур вязким маслом стартер не провернет мотор, а насос не сможет прокачать масло. И чем меньше первое число в обозначении, тем меньше износ двигателя при пуске. На работу прогретого мотора этот параметр не влияет.

При высоких температурах картина сложнее. Казалось бы, чем больше вязкость, тем лучше. Но это не так. Если зальете в мотор обычной легковушки «шестидесятку», вовсе для него не предназначенную, то, скорее всего, не только потеряете мощность, а еще и угробите двигатель. Но почему? Ведь вязкое масло должно лучше защищать детали от износа. Чем выше вязкость, тем толще слой масла в подшипниках и под поршневыми кольцами и, соответственно, ниже интенсивность износа.

Материалы по теме

Однако есть и другая сторона медали, связанная с низкой теплопроводностью масла. Ведь чем толще масляный слой, тем хуже тепло отводится от поршня, который при этом начинает перегреваться и расширяться. Растет и трение — так и до заклинивания ­недалеко.

Заметим, что второе число «работает» не только при трехзначных температурах, но и во время прогрева двигателя. Чем выше вязкость, тем больше потерь на трение. А вязкость зависит от температуры. Мы проводили исследования на эту тему (ЗР, № 3, 2008). И обнаружили, что при комнатной температуре разница по вязкости между «тридцаткой» и «пятидесяткой» почти двойная. А потому и расход топлива на более вязком масле во время прогрева будет выше.

Теперь главный вопрос: какое масло нужно именно моему мотору? К сожалению, современные исследования показали, что при выборе подходящего масла для определенного двигателя одного лишь соответствия SAE недостаточно. Нужна более точная «настройка», зависящая как от конструкции мотора, так и от условий его эксплуатации и степени износа.

Нынешней зимой можно было обойтись и без морозильника: за окном те же градусы, что и в камере.

Нынешней зимой можно было обойтись и без морозильника: за окном те же градусы, что и в камере.


Наглядная разница. Первым снижается шарик в масле 0W‑40, последним — в 10W‑40.

При комнатной температуре время «падения» шариков составляло соответственно 6, 7 и 12 секунд. При минус двадцати показатели резко подпрыгнули — стало 60, 80 и 160 секунд.

Наглядная разница. Первым снижается шарик в масле 0W‑40, последним — в 10W‑40. При комнатной температуре время «падения» шариков составляло соответственно 6, 7 и 12 секунд. При минус двадцати показатели резко подпрыгнули — стало 60, 80 и 160 секунд.


Что будет, если…

Материалы по теме

А зачем нужны все эти рассуждения, если правильный ответ давно известен? Заливайте исключительно то масло, которое вам рекомендует производитель автомобиля! Но ведь он старается, как правило, угодить максимальному количеству потребителей — вне зависимости от условий эксплуатации машины и ее возраста. К группе качества надо относиться с почтением: сказано SN — значит, ничего из группы SM лить нельзя. А вот с вязкостью в рамках дозволенного можно и поиграть. К примеру, для эксплуатации при низких температурах второе число в обозначении может быть чуть меньше рекомендованного инструкцией — скажем, 30 вместо 40. Это поможет несколько снизить расход топлива, потому что зимой масло прогревается дольше, чем летом, а аппетит при вязком масле будет, естественно, выше.

То же относится к машинам, которые живут в основном в городских условиях. Если мотор чаще работает на умеренных оборотах, то второе число в обозначении масла может быть чуть ниже по сравнению с рекомендованным для автомобиля, который чаще ездит по скоростным магистралям. Причина все в той же взаимосвязи толщины масляной пленки, температуры и трения. Сотрудники профильных лабораторий утверждают, что для каждого мотора и режима его работы существует оптимальная вязкость, снижающая механические потери.

Немножко самодеятельности

Впрочем, один вопрос остается. Насколько отличаются друг от друга рабочие характеристики масел с одинаковой вязкостью, но от разных производителей? Это вопрос, на который без лабораторных исследований ответить невозможно. Но многие автолюбители, особенно в холодных регионах, проводят собственные замеры, сооружая самодельные приборы для сравнительного определения вязкости. Самой наглядной конструкцией нам представляется шариковый вискозиметр. Время падения стального шарика в стеклянной трубке (ди­аметр шарика лишь чуть-чуть меньше ди­аметра трубки), заполненной маслом, косвенно говорит о вязкости продукта. Кстати, подобный принцип использован в профессиональных приборах, например в вискозиметре Гепплера. Мы смастерили такой же. Измерить точно, сколько в масле пуазов или сантистоксов, с его помощью не удастся, зато он позволяет наглядно сопоставить вязкость нескольких масел ­в идентичных условиях.

Материалы по теме

В какой из трубок стальной шарик быстрее достигнет дна, там вязкость жидкости ниже. И если к вам попадет канистра с маслом от неизвестного производителя, то организовать простейшие испытания будет совсем несложно. Скажем, в одну пробирку заливаем испытанное масло, в другую — новичка, затем помещаем всё это в морозильник (или даже в сугроб), а после выдержки переворачиваем пробирки и следим за плавным опусканием шариков. Где шарик опускается медленнее, там вязкость выше.

Нам игрушка понравилась сразу. Если при комнатной температуре шарики гуляют по трубке довольно шустро, то при минус тридцати (ниже мы не забирались) их подви­жность падает настолько, что сразу хочется пересесть на общественный транспорт: жалко мотор… В любом случае всем любителям поэкспериментировать с неизвестными маслами мы советуем соорудить себе нечто подобное, прежде чем заливать неведомую жидкость в мотор. Наглядность эксперимента гарантирована.

А вот на автомобиле экспериментировать не стоит. В любом случае настоятельно советуем прислушиваться к рекомендациям именно производителя мотора, а не масленщиков. В каких случаях и в каких пределах позволительно несколько отклоняться от них, мы рассказали выше.

НАША СПРАВКА

Различают динамическую вязкость и кинематическую вязкость. Динамическую измеряют в паскаль-секундах (Па·с), а также в пуазах (1 П = 0,1 Па·с). Она характеризует сопротивление, которое оказывает масло при попытке сдвигать один его слой относительно другого. Фактически это величина, обратная текучести. На практике чаще пользуются кинематической вязкостью, измеряемой в м²/с, стоксах (1 Ст = 10–4 м²/с) или сантистоксах (1 сСт = 10–6 м²/с. Кинематическая вязкость — это отношение ­динамической вязкости к плотности масла.

Как выбрать моторное масло? Советы экспертов

Производитель рекомендует масло 0W-20, но на сервисе заливают более густое, с индексом 5W-40. Может ли это негативно сказаться на здоровье мотора?

Как выбрать моторное масло? Советы экспертов

Как масло приобретает уникальные свойства

Покупая канистру масла, на еe этикетке мы, скорее всего, прочтeм: «улучшенная формула», «очищает от нагара», «на 20% лучше защищает от износа» или что-то похожее. За счeт чего достигаются такие свойства?

Существует так называемое базовое масло — это основа, которая имеет свой набор качеств. Подробнее о базовых маслах мы писали в предыдущей статье. Они снижают трение, охлаждают и смазывают. Но если добавить в базовое масло специфические соединения — присадки, можно улучшить одно или несколько свойств первичного нефтепродукта.

Свойства присадок


Все присадки должны решать несколько обязательных задач:
  • придавать маслу новые свойства;
  • растворяться в базовом масле;
  • не вступать в конфликт с другими присадками;
  • сохранять свои характеристики в условиях тяжeлой эксплуатации.

Процесс создания присадок — это отдельная отрасль химической промышленности. Чтобы смешать базовое масло с комплексом присадок, требуется специальное оборудование и точное соблюдение пропорций. Этот этап производства называют блендингом, от английского blending — «смешивать».

Соблюдение технологии блендинга — одно из наиболее важных условий при производстве масел. С какой скоростью подаeтся сырьe, температурный режим, последовательность подачи компонентов сырья (пакетов присадок, загустителей, депрессоров), мониторинг параметров, характеризующих «однородность» получаемой смеси на каждом этапе смешивания, и финишный контроль — всe это влияет на стабильную работу масла. Любое нарушение в технологической цепочке может негативно повлиять на свойства готового смазочного материала.

Львиную долю мирового рынка присадок занимают пять основных игроков: Lubrizol, BASF, Infineum, Afton и Chevron. Большинство компаний, занимающихся выпуском собственных смазочных жидкостей, покупают присадки у них. ЛУКОЙЛ — одна из немногих компаний на территории СНГ, которая не только закупает пакеты присадок у мировых лидеров, но и развивает собственное производство.

Виды присадок и их полезное действие


 В составе пакета присадок можно выделить три категории используемых соединений:
  • модификаторы — изменяют свойства масла;
  • присадки, защищающие масло;
  • присадки, защищающие поверхности трения.

Модификаторы


Присадки, улучшающие индекс вязкости, помогают маслу работать в различных температурных условиях. Чем выше индекс вязкости, тем лучше (не путать с вязкостью). Низкий индекс вязкости обозначает, что вязкость масла будет сильно зависеть от изменений температуры: масло станет слишком текучим при высокой температуре и слишком вязким при низкой.
Высокий индекс вязкости означает относительно небольшие изменения вязкости в широком диапазоне температур.

Депрессаторы или депрессорные присадки понижают температуру застывания масел. Парафиновые углеводороды, содержащиеся в маслах, при низких температурах выделяются в виде мелких кристаллов, отчего масло мутнеет и его подвижность постепенно снижается. Депрессаторы препятствуют кристаллизации парафина, тем самым сохраняя подвижность масла.

Присадки, защищающие масло

Противопенные присадки предотвращают возможное вспенивание масла. Пена существенно ухудшает способность масла смазывать и охлаждать двигатель, становится причиной повышенного шума, чрезмерного износа и повышенного расхода масла. Цель противопенных присадок — предотвратить смешивание большого количества воздуха с маслом.

Антиокислительные присадки (ингибиторы) комплексно защищают двигатель и масло. Ингибиторы, с одной стороны, защищают масло от окисления, с другой — двигатель от появления серной кислоты, которая возникала бы в результате окисления.

Присадки, защищающие поверхности трения

Противоизносные присадки (AW) вступают в химическую реакцию с базовым маслом, образуя барьерную плeнку, которая предотвращает износ металлических деталей при контакте друг с другом. Эти присадки также помогают защитить базовое масло от окисления, а металл — от коррозийных кислот.

Противозадирные присадки (EP) уменьшают вращающий момент трения и предохраняют поверхности от тяжeлых нагрузок с целью экономии энергии. Противозадирные присадки придают смазочным материалам особые скользящие свойства, которые подходят для трущихся поверхностей, работающих в масле (валов, коробок скоростей, тормозов и т.д.).

Модификаторы трения применяются для уменьшения коэффициента трения и усиления адсорбционной пленки на трущихся поверхностях деталей, что позволяет применять масла с пониженной вязкостью и уменьшать расход топлива.

Моющие присадки включают в себя детергенты и дисперсанты.

Детергенты препятствуют образованию высокотемпературных лакообразных и углеродистых отложений и нейтрализуют кислоты, образующиеся при сгорании топлива.

Дисперсанты противодействуют образованию и накоплению низкотемпературного шлама, поддерживая мелкие жeсткие частицы во взвешенном состоянии и препятствуя их оседанию на компонентах двигателя.

Антикоррозийные присадки образуют защитную плeнку, которая препятствует возникновению ржавчины на металлических частях. Ржавчина, в свою очередь, может появляться из-за комбинированного попадания воды, кислорода и различных окислов.

Помимо всех вышеперечисленных, существуют составы, которые сторонние производители рекомендуют добавлять в готовое масло. Стоит напомнить, что все необходимые присадки уже добавлены в масло на стадии производства. Самостоятельное добавление присадок чревато непредсказуемыми последствиями: добавленная присадка разбавит тщательно выверенный состав, и никто не даст гарантии, как поведeт себя итоговая смесь. Шанс того, что именно ваш автомобиль нуждается в использовании дополнительных присадок крайне мал, и производитель обязательно указал бы это в руководстве по эксплуатации.

Как выбрать масло

Выбору масла всегда уделяется пристальное внимание автолюбителей. Как разобраться во всех тонкостях при покупке масла, мы уже рассказывали в одной из наших статей.

И всe же напомним: зная допуски и изучив маркировку, можно подобрать масло, не переплачивая за именитый автомобильный бренд на этикетке. К тому же вы сможете выбрать смазочный материал, исходя исключительно из ваших условий эксплуатации.

Прежде всего в рамках допусков можно «поиграть с вязкостью». Для эксплуатации зимой второе число в маркировке масла может быть чуть меньше: например, 30 вместо 40 (5W-30 против 5W-40). Это поможет снизить расход топлива, так как зимой масло прогревается дольше, чем летом, и при более вязком масле двигатель потребляет больше топлива.

Похожая схема работает в условиях городской езды или движении по загородной трассе. Если мотор чаще работает на умеренных оборотах, то второе число в обозначении масла может быть чуть ниже по сравнению с рекомендациями для автомобиля, который чаще ездит по скоростным магистралям.

Что касается масел с использованием узкоспециальных присадок, то выбор исключительно за вами. Для высокофорсированных двигателей стоит выбрать масло, устойчивое к работе на предельных режимах, для раритетных автомобилей, которым больше 30 лет, подойдут масла с большим индексом вязкости, а для закоксованных двигателей необходимы масла с очищающими свойствами.

Для помощи с выбором на нашем сайте существует удобный онлайн-подборщик: достаточно задать параметры «вид техники — марка — модель», и вам будут предложены все подходящие масла согласно международным стандартам и допускам автопроизводителей.

Моторное масло SAE 30 🚗 Особенности, расшифровка SAE 30

Содержание:

Ассортимент автомагазинов представлен большим разнообразием горюче-смазочных материалов. Значительную нишу занимает моторное масло, которое за счет циркуляции защищает двигатель от перегрева и снижает трение деталей, повышает эффективность применения антифриза. Его важность для нормальной работы автомобиля сложно переоценить, достаточно правильно подобрать нужный по составу продукт. Для этого предусмотрена классификация и маркировка смазки по вязкости, которая является основной характеристикой. Она определяет качество масляной пленки, образующейся на поверхности трущихся деталей двигателя для защиты металлических поверхностей от сухого трения, что снижает износ и увеличивает рабочий ресурс агрегата. Важно отметить, что пленка должна сохранять свои свойства и целостность даже при тяжелых условиях эксплуатации, противостоять высоким температурам и давлению. Именно от вязкости зависит смазочная способность масла.

Загадочное SAE

SAE, или Society of Automotive Engineers, – именно так называется Американское общество инженеров автомобилестроения. Аббревиатуру стали применять и для системы классификации вязкости масел. Любая смазочная жидкость, произведенная по установленной технологии, соответствует регламенту вязкости. Установленная система помогает автолюбителям определить выбор смазки для конкретной модели двигателя. Границы применения зависят от колебаний параметра вязкости при изменении температурного режима эксплуатации. Зимние масла производятся наименее вязкими и имеют в маркировке индекс W, например, SAE 15W. Летние смазки самые густые и вязкие. Они обозначаются цифрой, которая указывает на вязкость. Чем она больше, тем выше параметр. Для всесезонных масел применяется два числа и литера W, где первое указывает на вязкость при отрицательной температуре, а второе при положительной. Такая смазка имеет средний уровень вязкости. На упаковках можно встретить символику типа SAE 5W-40, SAE 10W-30.

Моторное масло SAE 30

SAE 30 – это минеральное моторное масло для летнего сезона и теплого климата. Оно достаточно вязкое, что обеспечивает хорошую смазку двигателя с образованием плотной масляной пленки. Продукт подходит для четырехтактных бензиновых или дизельных двигателей, для моторов мотоциклов и газонокосилок. Такую смазку еще применяют для ретроавтомобилей, машин с большим пробегом и старым, изношенным двигателем. В случае использования масла SAE 30 в умеренном климате следует соблюдать осторожность и при снижении температуры вовремя заменить. В таких условиях смазывающая способность резко снижается, а в морозную погоду масло просто замерзнет. Продолжение эксплуатации способно привести к поломке двигателя.

Особенности смазки

Моторное масло SAE 30 отличается высокими техническими характеристиками. Предназначено для эксплуатации при температуре в диапазоне от +5 до +25 °С. Смазка имеет уровень вязкости 9,4–12,4 в единицах сантистоксах, который подтверждается экспериментально. Для этого нефтепродукт отливают в небольшую емкость с отверстием. Тестируемый параметр будет зависеть от времени, за которое масло полностью вытечет. Преимущества масла SAE 30:

  • стабильная масляная пленка, необходимая для предотвращения коррозионных процессов и снижения износа трущихся деталей;
  • отсутствие склонности к пенообразованию;
  • высокое значение щелочного числа, которое минимизирует образование нагара;
  • обеспечение оптимальной очистки деталей и узлов двигателя;
  • надежная защита мотора от перегрева и негативных процессов.

Предложение от компании SINTEC

Компания SINTEC – отечественный производитель моторных автомобильных масел с лидирующими позициями на рынке. Продукция отличается высоким качеством, которое успели оценить наши клиенты России и зарубежья. При изготовлении автохимии применяются передовые технологии и инновационные разработки, что позволило предприятию получить сертификаты соответствия и стать участником Европейской системы менеджмента качества моторных масел.

Масло SINTEC PLATINUM SAE 5W-30 API SN/CF

Продукт соответствует требованиям Renault RN 0700 / 0710, Porsche A40, BMW Longlife-01 и VW 502 00 / 505 00. Относится к синтетическим всесезонным смазкам. Применяется для дизельных и бензиновых двигателей, установленных на легковых и грузовых автомобилях.

Смазка содержит пакет ультрасовременных присадок, которые придают ей отличные смазывающие характеристики при повышенных температурах и предотвращают появление отложений на стенках двигателя внутреннего сгорания. Масло обладает антиокислительными свойствами, продлевающими срок службы и интервалы между сменами жидкости.

Для получения консультации и технической поддержки обращайтесь к специалистам компании через социальные сети или онлайн-сервисы.

Зачем нужно моторное масло

Моторное масло обеспечивает смазку всех движущихся деталей двигателя, покрывая их защитной пленкой, которая сокращаяет износ и трение, следовательно более энергии передается на колеса. Также, оно предохраняет детали двигателя от грязи, вредных отложений и от коррозии. И, в конце концов, масло освежает двигатель, отводя излишнее тепло от камеры сгорания и передает его вниз, на поддон картера.

Виды масел

Минеральные масла – это простые масла, которыми человек использует уже десятилетиями. Они производятся путем очистки сырого масла и после чего смешиваются с различными присадками, такими как предотвращающие воспитание осадка препараты, улучшители вязкости и препараты, предотвращающие износ. Они сравнительно дешевы и показатели у них средние. Синтетические масла. Синтетические масла всецело производятся в лаборатории путем трудных химических процессов и стоят дороже. Синтетические масла больше термостойкие, другими словами они дольше сохраняют вязкость и не теряют своих качеств при больше высоких температурах, чем минеральные масла. Полусинтетические масла. Данный тип масел – смесь 2 первых, в среднем в соотношении 70-80% минерального масла и 20-30% синтетического масла. Что такое вязкость и индекс вязкости? Вязкость – это мера плотности масла и его способности циркуляции при конкретных температурах. Вообще чем плотнее масло, тем повыше его вязкость и чем ниже плотность масла, тем меньше его вязкость. Это свойство масел сведено в шкалу, которая называется индексом вязкости. Индекс вязкости заявляет про то, насколько уменьшится плотность масла при нагреве. Чем повыше индекс, тем меньше уменьшится плотность масла при нагреве. Небольшие количества в индексе указывают на менее плотные масла (с меньшей вязкостью), а большие – на больше плотные (с большей вязкостью) Индекс вязкости демонстрирует, как меняются качества масла при конкретных условиях. Чрезмерно вязкое масло может не попадать на нужные детали двигателя, тем более при низких температурах, а пленка, создаваемая им, может порваться на высоких оборотах. Тогда, когда масло чрезмерно жидкое (не вязкое), пленка, создаваемая им, исчезает при высоких температурах.

Cезонные и всесезонные масла

Существует 2 типа моторных масел: сезонные и всесезонные. Сезонные масла в среднем применяются при сравнительно стабильных температурах (или в специализированных условиях), другими словами такие масла не имеют возможности соответствовать требованиям в одно и тоже время и зимой, и летом. Сегодня применяются как правило всесезонные масла. Они подходят для разных температур, в следствии этого имеют все шансы использоваться и зимой, и летом. Плотное масло при низкой температуре превратится в желе, в случае если не добавить конкретные полимеры. Для того, чтобы данного не произошло, всесезонные масла изготавливаются путем добавления специализированных полимеров к маслам с мелкой плотностью, следовательно, они довольно жидкие, для того, чтобы функционировать при низких температурах, хотя всецело функциональны и при высоких температурах. Всесезонное моторное масло – это такое масло, качества которого искусственно изменены, для того, чтобы уменьшить перемены качеств, связанные с изменениями температуры. Всесезонное масло владеет меньшей вязкостью при низких температурах и большей при высоких, чем сезонное масло.

Следовательно, в случае если автомашина не применяется на протяжении нескольких часов, моторное масло стекает в картер двигателя и при запуске двигателя требуется особый промежуток времени (несколько микросекунд), для того, чтобы масло в который раз распределилось по всем деталям двигателя, требующим смазки. Поскольку всесезонное масло остается больше жидким при низких температурах, оно достигает разных деталей двигателя быстрее, чем сезонное масло, уменьшая этим износ двигателя при запуске.

Всесезонные масла нередко обеспечивают экономию топлива в 1,5-3% по сравнению с сезонными маслами.

Всесезонные масла обеспечивают одну из лучших защиту двигателя по сравнению с сезонными маслами как при низких, так и при высоких температурах, поскольку сохраняют оптимальную вязкость при каждой температуре работы двигателя.

Как действуют всесезонные масла?

Специализированная присадка для улучшения индекса вязкости. Представьте себе очень длинную нитку, которая при низких температурах тесно свернута в небольшой шарик и свободно плавает в масле, не оказывая практически практически никакого влияния на вязкостные данные масла. При высоких температурах данный шарик разворачивается и занимает намного больший объем масла. Это эффективно предотвращает уменьшение вязкости масла, поскольку эти шарики из молекул развернулись и заняли немалый объем.

При низких температурах данный полимер сворачивается, а масло свободно течет в соответствии с нижним показателем вязкости (напр., 5W-30) По мере нагревания масла полимер разворачивается в длинные цепочки и предотвращает уменьшение вязкости масла. Следовательно, масло с индексом 5W не будет менее вязким, чем масло с индексом 30 при нагреве. Выходит так, как будто применяется 2 различных масла, зимнее и летнее, в одном. При выборе базового масла зимой ориентируетесь на наиболее низкую возможную температуру, а летом — на наиболее высокую. В случае если разрешают температуры, подбирайте плотное базовое масло с мелким диапазоном, поскольку чем шире диапазон, тем более в масле полимеров, а они не могут быть полезны двигателю.

Выбор степени вязкости

Более популярными являются следующие классификации вязкости моторного масла:

Классификация SAE

Классификация SAE проводится по вязкости при низкой и высокой температуре смазочного препараты. Обозначается 2 цифрами, разделенными буквой W (означает «зима»)

Первое количество, в последствии которого стоит W, обозначает вязкость при низкой температуре: 5W, 10W, 15W. Чем меньше количество, тем больше жидким при низкой температуре станет масло, тем легче станет проходить запуск двигателя.

Второе количество обозначает вязкость при высокой температуре: 30, 40, 50. Чем более количество, тем больше вязким станет нагретое масло.

Ниже приведены примеры выбора моторного масла исходя их температуры находящейся вокруг среды:

При минимальной температуре…………. Выбор по классификации SAE для легкового автомашины. 0ºС (32F)…………………………………5W-30 10W-30 10W-40 20W-50. -18ºС (0F)…………………………………5W-30 10W-30 10W-40. ниже -18ºС…………………………………5W-30.

При выборе базового масла зимой ориентируетесь на наиболее низкую возможную температуру, а летом — на наиболее высокую. В случае если разрешают температуры, подбирайте плотное базовое масло с мелким диапазоном, поскольку чем шире диапазон, тем более в масле полимеров, а они не могут быть полезны двигателю.

Другие классификации:

Классификация API (американская)

Характеристика масла обозначены 2 буквами. Первая буква обозначает, предназначено ли масло для бензинового (S) или же дизельного (C) двигателя. Вторая буква обозначает значение технических данных в соответствующей группе: A – минимальный значение и для бензинового, и для дизельного, а J (для бензинового) и F (для дизельного) – предельный значение.

Бензиновый двигатель: (минимальный КПД) SA..SB..SC..SD..SE..SF..SG..SH..SJ (максимальный КПД) Дизель: (минимальный КПД) CA..CB..CC..CD..CE..CF (максимальный КПД) Классификация ACEA (европейская):

Данные масла обозначаются буквой и цифрой.

По классификации ACEA имеются 3 категории:

A для бензиновых двигателей, B для дизельных двигателей, E для дизельных двигателей автомобилей для платных перевозок и грузовиков.

Значение данных смазки обозначается следующей за буквой цифрой:

1 масла для экономии топлива. 2 универсальные масла. 3 масла с высокой производительностью. К примеру: А1 значит экономящее топливо масло для бензинового двигателя, а А3 – масло с высокой производительностью для бензинового двигателя.

Выбор степени вязкости масла зависит от немалых моментов, к примеру, от температуры находящейся вокруг среды, пробега двигателя, зазоров в подшипнике и поршнях и режима работы. Общее правило: надлежит использовать масло с минимально возможной вязкостью, коие обеспечит надежную сепарацию металлических деталей. Все, что более данного минимального количества, приведет к потере энергии в следствии трения и уменьшит способность масла распределяться при любых температурах. Впрочем при определении требований к вязкости надлежит рассматривать отдельно разные синтетические масла.

Смешиваем 2 различных вида

Считается, что синтетические масла совместимы с простыми минеральными маслами, в следствии этого можно перемешивать 2 различных типа. Впрочем, в целях предотвращения утечек и в конечном итоге производительности двигателя я рекомендую выбрать одно масла с самого начала и в дальнейшем пользоваться только им. Ведомо, что состав минеральных масел отличается от синтетических и что прокладки и уплотнители, работавшие с минеральным маслом, начинают протекать при контакте с синтетическим маслом. В следствии этого перед тем, как залить другое масло, надлежит пользоваться промывочным маслом. Да, промывочное масло удалит все осадки и растворит все минеральные отложения в двигателе и вам может показаться, что можно заливать синтетическое масло. Хотя жидкое промывочное масло может удалить все отложения, коие с годами накопились и не выделяют прокладкам и уплотнителям протекать. Известны случаи, когдаже двигатели с пробегом больше 250000 км трудились без трудностей, а в последствии промывки за месяц пришли в негодность. В следствии этого выберите масло с самого начала, в случае надобности промойте двигатель и никогда не меняйте тип масла. Надлежит заменять только данные масла, в случае если, к примеру, существенно поменялся температурный диапазон, поскольку вязкость масла обязана соответствовать условиям использования автомашины, находящейся вокруг среды и климату. На данный момент есть разные присадки, немалые из коие афишируются по вечерам по телевидению, убеждая, что они – самые одни из лучших. Сейчас подумайте вот о чем. Нефтяные фирмы расходуют раз в год миллионы $ на улучшение масел, производители автомобилей — также. Во-первых, можете ли вы довериться, что существует какая-то магическая формула, и нефтяные фирмы, тратящие раз в год миллионы $ на лабораторные тесты, в коих задействованы одни из лучших специалисты-химики, не сумели сыскать данную формулу, а данный производитель присадок сыскал? Во-вторых, в случае если они на самом деле трудятся и не наносят ущерба двигателю, то отчего производители автомобилей помещают канистру с присадкой в каждый сошедший с конвейера автомашина? Следовательно они улучшают производительность двигателя и сокращают потребление топлива. В-третьих, ни на лучшей данных известных присадок не значится название крупной нефтяной или же специализирующейся на маслах фирмы.

Какая связь между смазкой и потреблением топлива

Вязкость масла зависит от внутреннего трения в масле: чем более вязкость, тем более внутреннее трение. При использовании масла с мелкой вязкостью (например, SAE 0W-30) уменьшаются потери, вызванные внутренним трением в смазке, а потребление горючего на некоторое количество процентов снижается. Впрочем надлежит быть внимательным, данный тип масла подходит не для всех двигателей.

Нечистое масло – симптом трудностей с двигателем?

Нет, это не симптом трудностей с двигателем. Это в общем-то неплохой символ. Это означает, что ваше масло выполняет свои функции: собирает осадок и поддерживает его во взвешенном состоянии, для того, чтобы он не оседал на деталях двигателя. Когдаже вы заменяете это нечистое масло (и масляный фильтр), вы удаляете данный осадок.

Как проверить значение масла в двигателе?

Для того, чтобы получить верную оценку значения масла, двигатель обязан быть чуть-чуть прогрет. Проводите проверку значение масла на ровной поверхности. Подождите по меньшей мере 5 мин. в последствии такого, как вы заглушили двигатель. Выньте масляный щуп. Вытрите его. Поставьте обратно и подождите некоторое количество секунд, в последующие дни в который раз достаньте его. Проверьте значение сравнительно отметок MIN и MAX. Вам надлежит долить масло, в случае если его значение ниже отметки MAX. Добавляйте масло постепенно. В который раз проверьте значение и повторите эти воздействия, пока же он не достигнет отметки MAX. Хотя значение масла не может превышать нее! Поставьте масляный щуп на место. Проводите проверку значение масла каждые 2000 км.

На данный момент есть разные присадки, немалые из коие афишируются по вечерам по телевидению, убеждая, что они – самые одни из лучших. Сейчас подумайте вот о чем. Нефтяные фирмы расходуют раз в год миллионы $ на улучшение масел, производители автомобилей — также. Во-первых, можете ли вы довериться, что существует какая-то магическая формула, и нефтяные фирмы, тратящие раз в год миллионы $ на лабораторные тесты, в коих задействованы одни из лучших специалисты-химики, не сумели сыскать данную формулу, а данный производитель присадок сыскал? Во-вторых, в случае если они на самом деле трудятся и не наносят ущерба двигателю, то отчего производители автомобилей помещают канистру с присадкой в каждый сошедший с конвейера автомашина? Следовательно они улучшают производительность двигателя и сокращают потребление топлива. В-третьих, ни на лучшей данных известных присадок не значится название крупной нефтяной или же специализирующейся на маслах фирмы.

Тефлон

Поначалу может показаться, что кое-какие присадки действуют, хотя те, в коих присутствуют такие препараты, как тефлон, имеют все шансы засорять масляный фильтр и масло не станет поступать в двигатель. Химическая фирма DuPont, коей принадлежит открытие и права на эксплуатацию тефлона, отмечает: «тефлон не может быть полезен в виде ингредиента для присадок в масло или же для масел, использующихся в двигателе внутреннего сгорания».

Цинк

Другой тип присадок имеет цинк. Цинк применяется как присадка, предотвращающая износ. Он на самом деле может быть полезен, когдаже металлические детали двигателя соприкасаются друг с другом, что ни в коем случае не имеет возможности случится при нормальной работе. Любое моторное масло неплохого бренда уже имеет довольно цинка, так зачем добавлять еще? Большее число цинка не обеспечит вам одну из лучших защиту, оно по-простому продлит защиту, в случае если значение соприкосновения металлических деталей ненормально высок. В случае если вы добавите банку присадки с цинком в масло, то у вас на клапанах образуется осадок, а на свечах зажигания – нагар и отложения, поверьте мне.

Какая связь между смазкой и потреблением топлива?

Вязкость масла зависит от внутреннего трения в масле. чем более вязкость, тем более внутреннее трение. При использовании масла с мелкой вязкостью (например, SAE 0W-30) уменьшаются потери, вызванные внутренним трением в смазке. а потребление горючего на некоторое количество процентов улучшается. Впрочем надлежит быть внимательным, данный тип масла подходит не для всех двигателей.

Нечистое масло – симптом трудностей с двигателем?

Нет, это не симптом трудностей с двигателем. Это в общем-то неплохой символ. Это означает, что ваше масло выполняет свои функции: собирает отложения и поддерживает их во взвешенном состоянии, для того, чтобы они не оседали на деталях двигателя. Когдаже вы заменяете это нечистое масло (и масляный фильтр), вы удаляете данный осадок.

Как проверить значение масла в двигателе?

Для того, чтобы получить верную оценку значения масла, двигатель обязан быть чуть-чуть прогрет. Проводите проверку значение масла на ровной поверхности. Подождите по меньшей мере мин. в последствии такого, как вы заглушили двигатель. Выньте масляный щуп. Вытрите его. Поставьте обратно и подождите некоторое количество секунд, в последующие дни в который раз достаньте его. Проверьте значение сравнительно отметок MIN и MAX. Вам надлежит долить масло, в случае если его значение ниже отметки MAX. Добавляйте масло постепенно. В который раз проверьте значение и повторите эти воздействия, пока же он не достигнет отметки MAX. Хотя значение масла не может превышать нее! Выньте масляный щуп. Проводите проверку значение масла каждые 2000 км.

Вывод

Каждое масло разрабатывается для оптимального результата, в следствии этого добавление присадок может привести к противным последствиям. По-простому выберите один из лучших бренд, практически постоянно используйте только им, а когдаже запускаете двигатель, прогрейте его 15 сек перед тем, как трогаться, так вы будете не сомневаются, что масло немного нагрелось и попало на самые значимые детали двигателя, и только после этого нажимайте на педаль газа. Каждый производитель в данный момент говорит, что двигатель не нужно прогревать перед началом движения, хотя подразумевается, что не непременно ждать, пока же двигатель разогреется до нормальной температуры.

Вернуться

Объяснение вязкости масла

Понимание того, что такое вязкость масла, и знание того, как определить правильную вязкость масла для вашего автомобиля, жизненно важно для обеспечения защиты вашего двигателя. В этой статье я расскажу о различных типах вязкости масла и о том, как найти подходящее масло для своего автомобиля.

Что такое масло Вязкость

Вязкость, в общем смысле, является мерой сопротивления любой жидкости течению. Чтобы быть более конкретным, есть два способа измерения вязкости: кинематическая вязкость или динамическая вязкость.

Кинематическая вязкость — это сопротивление жидкости течению и сдвигу под действием силы тяжести. Если вязкость данной смазки ниже, она будет течь быстрее. Например, если вы нальете две емкости, одну наполненную водой, а другую сиропом, вы заметите, что вода течет быстрее из-за ее более низкой вязкости. Кроме того, класс вязкости масла при высоких температурах определяется его кинематической вязкостью. Отсюда цифра «30» в синтетическом масле 5W-30.

В качестве альтернативы существует динамическая вязкость, которая, по сути, представляет собой количество энергии, необходимое для перемещения объекта через смазку.Динамическая вязкость измеряется с помощью теста Cold Crank Simulator и используется для определения класса вязкости масла при низких температурах. Это будет «5W» в синтетическом моторном масле Amsoil XL 5W-30.

Кроме того, вы должны знать, что такое индекс вязкости (VI). Индекс вязкости показывает, насколько вязкость смазочного материала изменяется из-за колебаний температуры. Коэффициент вязкости масла измеряется при 40 ° C и 100 ° C. ЕСЛИ вязкость жидкости не сильно меняется между этими температурами, у нее будет более высокий индекс вязкости, и наоборот.Вы можете найти индекс вязкости моторного масла Amsoil в его техническом паспорте. Синтетические продукты Amsoil обычно имеют высокий индекс вязкости, что делает их более стабильными, чем продукты конкурентов. Узнайте больше о преимуществах синтетического моторного масла Amsoil.

Как вязкость влияет на ваш двигатель?

Вязкость — самое важное свойство масла с точки зрения защиты двигателя. Вязкость определяет, как смазка вашего двигателя будет реагировать на изменения скорости, давления и температуры.

Например, в холодные зимние месяцы может быть трудно завести машину с утра. Это связано с тем, что при более низких температурах смазочные материалы загустевают, и для их циркуляции требуется больше энергии из-за уменьшения потока. В результате коленчатый вал вашего автомобиля должен проталкивать густое масло, чтобы вращаться достаточно быстро, чтобы ваш автомобиль завелся. Это может привести к износу компонентов вашего двигателя. Однако, когда погода теплее, масло становится тоньше и легче циркулирует.Продукция Amsoil предлагает широкий выбор для соответствия любому двигателю.

Что произойдет, если использовать масло неправильной вязкости?

В зависимости от того, является ли вязкость вашего масла слишком высокой или слишком низкой, вы можете столкнуться с несколькими проблемами, такими как низкая экономия топлива, повышенный износ двигателя и повышенное химическое разложение.

Масло с низкой вязкостью

Моторное масло с низкой вязкостью может быть слишком жидким и со временем может поставить под угрозу защиту вашего двигателя.Тонкая смазка может быть не в состоянии должным образом заполнить зазоры между компонентами двигателя, чтобы предотвратить контакт между ними.


Эти эффекты могут усугубляться чрезмерной жарой и стрессом. При повышении температуры масло становится более жидким. Если ваше масло уже тоньше, чем должно быть для вашего автомобиля, то чрезвычайно высокие температуры могут привести к тому, что ваше моторное масло не сможет образовать достаточно толстую пленку, чтобы предотвратить контакт металла с металлом.

Слишком жидкое масло для вашего автомобиля может привести к износу компонентов двигателя и привести к недостаточному давлению масла.

Масло высокой вязкости

Многие потребители ошибаются, полагая, что моторные масла с более высокой вязкостью всегда являются лучшим вариантом, поскольку они обычно обеспечивают лучшую защиту от износа. Тем не менее, это не всегда так.

Во-первых, более густое масло гораздо труднее циркулировать по двигателю, что снижает расход топлива в вашем автомобиле. Это также может затруднить запуск вашего автомобиля, что может увеличить износ двигателя.

Подобно тому, как более жидкие масла становятся еще хуже в теплую погоду, недостатки более густого масла становятся более важными в холодные месяцы. Когда температура падает, масло становится более густым, что может вызвать значительную нагрузку на аккумулятор и даже лишить вас возможности завести двигатель.

Наконец, высоковязкое масло не способно передавать тепло между компонентами двигателя так легко, как низковязкое масло. Более того, более густое масло может повысить внутренние рабочие температуры, что в конечном итоге может привести к отказу двигателя, поскольку масляные каналы блокируются шламом.

Как выбрать подходящее масло для вашего автомобиля

Как уже упоминалось в этой статье, очень важно выбрать масло с идеальной вязкостью для вашего автомобиля, чтобы защитить двигатель от износа. К счастью, определение вязкости, необходимой для вашего автомобиля, должно быть относительно простым.

В руководстве по эксплуатации вашего автомобиля должно быть указано, какую вязкость масла вы должны использовать для своего двигателя. Часто в руководстве может быть указано несколько вариантов на выбор в зависимости от погоды.Например, он может порекомендовать синтетическое масло 5W-30 для более теплой погоды и масло 0W-30 для более холодной погоды. Продукты Amsoil указывают вязкость масла на лицевой стороне упаковки.

Кроме того, вы должны понимать, что означают числа, обозначающие разную вязкость. Например, «5W» в 5W-30 относится к способности смазки течь при низких температурах. Чем ниже это число, тем легче будет течь в холодную погоду. Между тем, «30» в 5W-30 указывает на способность жидкости течь при нормальной рабочей температуре автомобиля, которая составляет 100 ° C.Если это число больше, это означает, что масло останется более густым при рабочей температуре. Таким образом, в приведенном выше примере 5W-30 и 0W-30 оба будут работать одинаково при рабочей температуре, в то время как последний будет лучше течь в холодную погоду.

Понимание последствий использования масел различной вязкости чрезвычайно важно для обеспечения долговечности вашего автомобиля и его двигателя. Хотя необходимо учитывать дополнительные факторы, например, как часто следует менять масло, вязкость масла должна быть одним из ваших главных приоритетов при техническом обслуживании автомобиля.К счастью, моторное масло Amsoil входит в широкий спектр продуктов, подходящих для любого транспортного средства.

Если у вас есть дополнительные вопросы относительно масла Amsoil или различных типов моторных масел, свяжитесь с нами на BuyGreatOil.com.


Вязкость масла — как это измеряется и регистрируется

По данным Общества трибологов и инженеров по смазкам (STLE), вязкость — одно из важнейших физических свойств масла. Часто это один из первых параметров, измеряемых большинством лабораторий по анализу масла, поскольку он важен для состояния масла и смазки.Но что мы на самом деле имеем в виду, когда говорим о вязкости масла?

Вязкость смазочного масла обычно измеряется и определяется двумя способами: либо на основе его кинематической вязкости, либо на основе его абсолютной (динамической) вязкости. Хотя описания могут показаться похожими, между ними есть важные различия.

Рис. 1. Вискозиметр с капиллярной трубкой

Кинематическая вязкость масла определяется как его сопротивление течению и сдвигу под действием силы тяжести.Представьте, что один стакан наполняется турбинным маслом, а другой — густым трансмиссионным маслом. Какой из стаканов потечет быстрее, если его наклонить набок? Турбинное масло будет течь быстрее, поскольку относительные скорости потока зависят от кинематической вязкости масла.

Теперь рассмотрим абсолютную вязкость. Чтобы измерить абсолютную вязкость, вставьте металлический стержень в те же два стакана. Используйте стержень, чтобы перемешать масло, а затем измерьте усилие, необходимое для перемешивания каждого масла с одинаковой скоростью. Сила, необходимая для перемешивания трансмиссионного масла, будет больше, чем сила, необходимая для перемешивания турбинного масла.

Основываясь на этом наблюдении, может возникнуть соблазн сказать, что трансмиссионное масло требует большего усилия для перемешивания, поскольку оно имеет более высокую вязкость, чем турбинное масло. Однако в этом примере измеряется сопротивление масла течению и сдвигу из-за внутреннего трения, поэтому правильнее сказать, что трансмиссионное масло имеет более высокую абсолютную вязкость, чем турбинное масло, поскольку для перемешивания требуется большее усилие. трансмиссионное масло.

Для ньютоновских жидкостей абсолютная и кинематическая вязкость связаны с удельным весом масла.Однако для других масел, таких как масла, содержащие полимерные улучшители индекса вязкости (VI), или сильно загрязненные или деградированные жидкости, это соотношение не выполняется и может привести к ошибкам, если мы не знаем о различиях между абсолютной и кинематической вязкостью. .

Для более подробного обсуждения абсолютной и кинематической вязкости см. Статью Дрю Тройера «Общие сведения об абсолютной и кинематической вязкости».

Метод испытания вискозиметра с капиллярной трубкой

Самый распространенный метод определения кинематической вязкости в лаборатории — это вискозиметр с капиллярной трубкой (рис. 1).В этом методе проба масла помещается в стеклянную капиллярную U-образную трубку, и проба всасывается через трубку с помощью всасывания, пока не достигнет начального положения, указанного на стороне трубки.

Затем происходит всасывание, позволяя образцу течь обратно через трубку под действием силы тяжести. Узкая капиллярная секция трубки регулирует расход масла; более вязкие сорта масла растекаются дольше, чем более жидкие сорта масла. Эта процедура описана в ASTM D445 и ISO 3104.

Поскольку расход определяется сопротивлением масла, протекающего под действием силы тяжести через капиллярную трубку, в этом тесте фактически измеряется кинематическая вязкость масла. Вязкость обычно указывается в сантистоксах (сСт), что эквивалентно мм2 / с в единицах СИ, и рассчитывается исходя из времени, которое требуется маслу для протекания от начальной точки до точки остановки, с использованием калибровочной константы, предоставленной для каждой трубки.

В большинстве коммерческих лабораторий по анализу масла метод вискозиметра с капиллярной трубкой, описанный в ASTM D445 (ISO 3104), модифицируется и автоматизируется с использованием ряда имеющихся в продаже автоматических вискозиметров.При правильном использовании эти вискозиметры способны воспроизводить аналогичный уровень точности, достигаемый методом ручного вискозиметра с капиллярной трубкой.

Заявление о вязкости масла бессмысленно, если не определена температура, при которой вязкость была измерена. Обычно вязкость указывается при одной из двух температур: 40 ° C (100 ° F) или 100 ° C (212 ° F). Для большинства индустриальных масел принято измерять кинематическую вязкость при 40 ° C, поскольку это основа для системы классификации вязкости ISO (ISO 3448).

Аналогичным образом, большинство моторных масел обычно измеряются при 100 ° C, поскольку система классификации моторных масел SAE (SAE J300) ссылается на кинематическую вязкость при 100 ° C (таблица 1). Кроме того, температура 100 ° C снижает нарастание помех при измерениях для загрязнения моторного масла сажей.

Рис. 2. Ротационный вискозиметр

Метод испытания роторным вискозиметром

Менее распространенный метод определения вязкости масла использует роторный вискозиметр.В этом методе испытаний масло помещается в стеклянную трубку, помещенную в изолированный блок при фиксированной температуре (рис. 2).

Затем металлический шпиндель вращается в масле с фиксированной частотой вращения, и измеряется крутящий момент, необходимый для вращения шпинделя. Абсолютная вязкость масла может быть определена на основе внутреннего сопротивления вращению, обеспечиваемого сдвигающим напряжением масла. Абсолютная вязкость указывается в сантипуазах (сП), что эквивалентно мПа · с в единицах СИ.

Этот метод обычно называют методом Брукфилда и описан в ASTM D2983.

Хотя абсолютная вязкость и вискозиметр Брукфилда используются реже, чем кинематическая вязкость, при разработке моторных масел. Например, обозначение «W», которое используется для обозначения масел, подходящих для использования при более низких температурах, частично основано на вязкости по Брукфилду при различных температурах (Таблица 2).

Основанное на SAE J300 всесезонное моторное масло, обозначенное как SAE 15W-40, должно поэтому соответствовать пределам кинематической вязкости при повышенных температурах в соответствии с таблицей 1 и минимальным требованиям для запуска холодного двигателя, как показано в таблице 2.

Индекс вязкости

Еще одно важное свойство масла — индекс вязкости (VI). Индекс вязкости — это безразмерное число, используемое для обозначения температурной зависимости кинематической вязкости масла.

Он основан на сравнении кинематической вязкости испытуемого масла при 40 ° C с кинематической вязкостью двух эталонных масел, одно из которых имеет индекс вязкости 0, а другое — 100 единиц (рис. та же вязкость при 100ºC, что и тестовое масло.Таблицы для расчета VI на основе измеренной кинематической вязкости масла при 40 ° C и 100 ° C приведены в ASTM D2270.


Рисунок 3. Определение индекса вязкости (VI)

На рис. 3 показано, что масло, кинематическая вязкость которого изменяется в меньшей степени при изменении температуры, будет иметь более высокий индекс вязкости, чем масло с большим изменением вязкости в том же диапазоне температур.

Для большинства парафиновых промышленных масел на минеральной основе селективной очистки типичные ИВ находятся в диапазоне от 90 до 105.Однако многие минеральные масла высокой степени очистки, синтетические масла и масла с улучшенным индексом вязкости имеют ИВ, превышающие 100. Фактически, синтетические масла типа PAO обычно имеют ИИ в диапазоне от 130 до 150.

Мониторинг и анализ вязкости

Мониторинг и отслеживание вязкости, возможно, является одним из наиболее важных компонентов любой программы анализа масла. Даже небольшие изменения вязкости могут усиливаться при рабочих температурах до такой степени, что масло больше не может обеспечивать адекватную смазку.

Типичные пределы промышленного масла устанавливаются на уровне ± 5 процентов для предосторожности и ± 10 процентов для критических, хотя для тяжелых условий эксплуатации и чрезвычайно критических систем должны быть поставлены еще более жесткие цели.

Значительное снижение вязкости может привести к:

  • Потеря масляной пленки, вызывающая чрезмерный износ
  • Повышенное механическое трение, вызывающее чрезмерное потребление энергии n Выделение тепла из-за механического трения n Внутренняя или внешняя утечка
  • Повышенная чувствительность к загрязнению частицами за счет уменьшения масляной пленки
  • Разрушение масляной пленки при высоких температурах, высоких нагрузках или при пусках или остановках.

Аналогичным образом, слишком высокая вязкость может привести к:

  • Чрезмерное тепловыделение, приводящее к окислению масла, образованию шлама и нагара
  • Газовая кавитация из-за недостаточного потока масла к насосам и подшипникам
  • Недостаток смазки из-за недостаточного потока масла
  • Масляный венчик в опорных подшипниках
  • Чрезмерное потребление энергии для преодоления жидкостного трения
  • Плохая деэмульгируемость или деэмульгируемость воздуха
  • Плохая прокачиваемость при холодном пуске.

Каждый раз, когда наблюдается значительное изменение вязкости, необходимо всегда исследовать и устранять первопричину проблемы. Изменения вязкости могут быть результатом изменения химического состава базового масла (изменение молекулярной структуры масла) или попадания в него загрязняющих веществ (таблица 3).

Изменения вязкости могут потребовать дополнительных испытаний, таких как: кислотное число (AN) или инфракрасная спектроскопия с преобразованием Фурье (FTIR), чтобы подтвердить начальное окисление; тестирование на загрязняющие вещества для выявления признаков попадания воды, сажи или гликоля; или другие, менее часто используемые тесты, такие как ультрацентрифужный тест или газовая хроматография (ГХ), для выявления изменения химического состава базового масла.

Вязкость — важное физическое свойство, которое необходимо тщательно контролировать и контролировать, поскольку оно влияет на масло и влияет на срок службы оборудования.

Независимо от того, измеряете ли вязкость на месте с помощью одного из многих местных приборов для анализа масла, способных точно определять изменения вязкости, или отправляете ли пробы в обычную внешнюю лабораторию, важно знать, как определяется вязкость и как изменения могут повлиять на надежность оборудования.Необходимо проявлять упреждающий подход к определению состояния источника жизненной силы оборудования — масла!

Что означает вязкость (и как она влияет на ваш двигатель)? — Блог AMSOIL

Вязкость моторного масла является мерой его сопротивления течению. Масло с низкой вязкостью (например, 0W-20) течет быстрее, чем масло с высокой вязкостью (например, 20W-50).

Для иллюстрации представьте себе воду и мед.При наливании из емкости вода течет намного быстрее меда.

Это потому, что, когда на жидкость действуют внешние силы (например, сила тяжести), молекулы внутри жидкости движутся друг против друга, что приводит к трению молекул, которое препятствует потоку.

Вязкость — это мера внутреннего трения или его сопротивления потоку.

Полезно думать об этом в следующих терминах:

  • Тонкие и легкие описывают жидкости с низкой вязкостью
  • Толстые и тяжелые описывают жидкости с высокой вязкостью

Диаграмма вязкости моторных масел

Вязкость моторного масла часто указывается с помощью диаграммы J-300 Общества автомобильных инженеров (SAE).В таблице показаны минимальные и максимальные допустимые пороговые значения, которым должно соответствовать моторное масло, чтобы соответствовать указанной вязкости.

Зимний рейтинг масла, или «W», определяется на основе его характеристик холостого хода, которые имитируют вращение двигателя при все более низких температурах. Также измеряется способность масла течь при все более низких температурах. Чем ниже рейтинг «W» (например, 0W), тем быстрее масло течет в холодном состоянии и тем легче двигатель запускается.

Второе число (например, «20» в 5W-20) определяется на основе вязкости масла, когда двигатель достигает рабочей температуры, или 100 ° C (212 ° F).

Что означает вязкость для защиты двигателя?

Итак, что все это значит для защиты вашего двигателя?

Проще говоря, вязкость — это самое важное свойство смазки. То, как оно реагирует на изменения температуры, давления или скорости, определяет, насколько хорошо масло защищает ваш автомобиль.

Смазки со слишком низкой вязкостью для вашего двигателя могут вызвать…

  • Повышенное трение жидкости, снижение экономии топлива
  • Повышенные рабочие температуры, ускорение разложения масла
  • Плохой запуск при низких температурах

Масло загустевает в холодном состоянии…

Когда температура зимой падает, моторное масло густеет, течет медленнее и требует больше энергии для циркуляции.

Вот почему может быть сложнее завести машину холодным зимним утром — коленчатый вал должен пройти через холодное густое масло, прежде чем он начнет вращаться достаточно быстро для запуска двигателя.

Посмотрите видео, чтобы увидеть разницу в текучести на холоде между синтетическим моторным маслом AMSOIL и обычным моторным маслом.

Если масло течет медленнее, компоненты двигателя могут быть подвержены износу до тех пор, пока масло не нагреется достаточно, чтобы течь по двигателю.

Как видно из видео, в этом отношении синтетика превосходит обычное масло.

Вот почему зимой лучше использовать масло с более низкой вязкостью, если это разрешено производителем вашего автомобиля.

… и тоньше в горячем состоянии

Когда температура резко повышается, происходит обратное.

Допустим, вы буксируете кемпер по шоссе в разгар лета.

Из-за сильного тепла, выделяемого вашим двигателем, масло становится жидким.Если он станет слишком тонким, он не сможет должным образом разделить металлические компоненты во время работы, что приведет к износу.

Чем выше вязкость смазочного материала, тем большее давление или нагрузку оно может выдерживать и тем лучше поддерживает разделение движущихся частей.

Но у этих отношений есть пределы. Если вязкость слишком высока, он не будет течь так легко, и ваш двигатель будет работать больше и сжигать больше топлива.

Для разных автомобилей требуется разная вязкость

Главное — использовать смазку с правильной вязкостью для конкретного применения.

Не только это, но вы хотите использовать смазку, которая не загустевает в холодном состоянии, но сохраняет способность защищать от износа в горячем состоянии.

Синтетические смазочные материалы, такие как синтетические смазочные материалы AMSOIL, обеспечивают лучшую текучесть при понижении температуры и улучшенную защиту после того, как ваш двигатель достигнет рабочей температуры.

Производители автомобилей указывают в инструкции по эксплуатации, какое моторное масло следует использовать с вязкостью.

Вы всегда можете использовать Руководство по продукту AMSOIL, чтобы найти эту информацию.Но имейте в виду, что требования к вязкости вашего автомобиля могут измениться, если вы измените двигатель.

Первоначально опубликовано 2 сентября 2016 г.

Абсолютная вязкость растительных масел при различных температурах и диапазоне скоростей сдвига от 64,5 до 4835 с − 1

Было проведено исследование для определения влияния более высоких скоростей сдвига (от 64,5 до 4835 с −1 ) на абсолютную вязкость масла. разные растительные масла при разных температурах (от 26 до 90 ° C).Абсолютную вязкость различных растительных масел определяли с помощью вискозиметра Лами RM100, вращающегося вискозиметра с коаксиальным цилиндром. Крутящий момент каждого образца при разных температурах регистрировали при разных скоростях сдвига. На основании реограмм (график зависимости среднего напряжения сдвига от скорости сдвига) все исследованные растительные масла оказались ньютоновскими жидкостями. Масло рисовых отрубей было наиболее вязким (0,0398 Па · с при 38 ° C), а масло грецкого ореха было наименее вязким (0,0296 Па · с при 38 ° C) среди исследованных масел.Используемый более высокий диапазон сдвига не оказал значительного влияния на абсолютную вязкость растительных масел при различных температурах. Абсолютная вязкость растительных масел снижается с повышением температуры и может соответствовать соотношению типа Аррениуса. Энергия активации для различных растительных масел составляла от 21 до 30 кДж / моль. Арахисовое и сафлоровое масла имели самую высокую и самую низкую энергии активации соответственно. Это означает, что для изменения вязкости арахисового масла требовалось больше энергии.

1. Введение

Масла и жиры являются основными материалами для маргарина, шортенинга, салатного масла и других специальных или специализированных продуктов, которые стали важными ингредиентами при приготовлении или переработке пищи в домашних условиях, в ресторанах или на производстве продуктов питания [1] . Большинство пищевых масел и жиров, ежегодно производимых во всем мире, получают из растительных источников и называются растительными маслами [2].

Обычными коммерчески доступными растительными маслами являются рапсовое, кукурузное, оливковое, арахисовое, соевое, подсолнечное и другие [1, 3].Есть также ряд новых растительных масел, таких как виноградные косточки, рисовые отруби, орех макадамия и многие другие [4–6].

Вязкость масла обычно измеряется и определяется двумя способами: на основе абсолютной вязкости или кинематической вязкости. Абсолютная вязкость масла — это его сопротивление течению и сдвигу из-за внутреннего трения, и она измеряется в единицах СИ — Па · с. Напротив, кинематическая вязкость масла — это его сопротивление течению и сдвигу под действием силы тяжести, и она измеряется в единицах СИ: м 2 / с.Кинематическая вязкость масла может быть получена путем деления абсолютной вязкости масла на соответствующую плотность [7].

Хорошо известно, что температура оказывает сильное влияние на вязкость жидкостей, причем вязкость обычно уменьшается с повышением температуры [8]. Модель Аррениуса обычно используется для описания зависимости температурной зависимости от вязкости растительного масла [9].

Абсолютная вязкость жидкостей является важным свойством, необходимым для работы агрегата потока жидкости и теплопередачи.Это включает перекачивание, измерение расхода, теплообмен, стерилизацию, замораживание и многие другие операции [7].

Уже опубликован ряд исследований о влиянии температуры на абсолютную вязкость растительных масел [9–13]. Однако все эти исследования были получены в очень ограниченном диапазоне скорости сдвига 120 с -1 или ниже. Использование более высоких скоростей сдвига для растительных масел может повлиять на их вязкость. Следовательно, существует необходимость определения вязкости масел в более широком диапазоне скоростей сдвига (64.5 до 4835 с -1 ) и оценить их влияние на вязкость масла.

2. Материалы и методы
2.1. Материалы

Различные растительные масла были приобретены в местных супермаркетах и ​​специализированных магазинах. Эти растительные масла включают масло авокадо (холодного отжима), масло канолы, масло виноградных косточек, масло ореха макадамии (холодного отжима), оливковое масло (смесь холодного отжима и рафинированного), арахисовое масло, рапсовое масло (холодного отжима), масло рисовых отрубей. , сафлоровое масло (холодного отжима), кунжутное масло, соевое масло, подсолнечное масло и масло грецкого ореха (холодного отжима).Все масла перед анализом хранили при комнатной температуре (около 20 ° C) в темном месте. В таблице 1 показано содержание энергии и жира, а также состав жирных кислот различных используемых масел. На этикетке кунжутного масла указано только общее содержание жира и насыщенные жирные кислоты. Используемые растительные масла имеют энергетическую ценность от 3350 до 3770 кДж / 100 мл, а общее содержание жира составляет от 90,5 до 100 г / 100 мл.

19,0 903,8

Масло Энергия (кДж / 100 мл) Общий жир (г / 100 мл) Жирные кислоты (%)
Насыщенные Полиненасыщенные Мононенасыщенные

Авокадо (C) 3370 91.0 14,3 11,0 74,7
Рапс 3770 92,0 6,5 35,9 57,6
Семена винограда 91,5
Орех макадамия (C) 3360 91,0 16,5 2,2 81,3
Оливка (C + R) 3390 91.5 15,3 9,8 74,9
Арахис 3770 92,0 18,5 20,6 60,9
Семена рапса (C) 3700 3700 65,2
Рисовые отруби 3373 91,0 22,3 35,4 42,3
Сафлор (C) 3404 92.0 10,0 73,0 17,0
Кунжут 3350 90,5 16,0
Соя 3770 92,0
Подсолнечник 3770 92,0 13,0 68,5 18,5
Орех (C) 3690 100.0 9,0 70,0 21,0

C: холодный отжим; R: изысканный.
2.2. Экспериментальные методы

Абсолютные вязкости различных растительных масел определяли с использованием вискозиметра Lamy RM100 (Lamy, Франция), вращающегося вискозиметра с коаксиальным цилиндром. Примерно 25 мл масла помещали во внешний цилиндр Tube DIN 1, а затем вставляли боб MK Din-9.Радиус трубки составляет 16,25 мм, а радиус боба — 15,5 мм. Длина боба 54 мм. Правильный режим был установлен для соответствующей измерительной системы (MS 19), а время измерения было зафиксировано на 60 секундах. Циркуляционная водяная баня была установлена ​​на ° C, ° C, ° C, ° C, ° C, ° C и ° C для поддержания постоянной температуры для измерения вязкости. Крутящий момент каждого образца при различных температурах регистрировали в диапазоне скорости сдвига () от 64,5 до 4835 с -1 . Все вискозиметрические измерения образцов проводили в трех экземплярах.Каждая реплика запускалась дважды; скорость сдвига в первом прогоне была увеличена с 64,5 до 4835 с -1 , а скорость сдвига во втором прогоне была уменьшена с 4835 до 64,5 с -1 . Среднее значение крутящего момента двух прогонов было записано для каждой повторности при заданной скорости сдвига. Напряжение сдвига было получено из где = напряжение сдвига (Па), = отношение к, = радиус трубы (м), = радиус боба (м), = длина боба (м), и = значение крутящего момента (Н · м).

Абсолютная вязкость масел была получена из наклона линейной регрессии напряжения сдвига () от скорости сдвига () на основе уравнения Ньютона [14], как показано ниже: где = точка пересечения линейной регрессии, которая должна быть приблизительно равна нулю, и = абсолютная вязкость (Па · с)

2.3. Температурная зависимость абсолютной вязкости

Влияние температуры на абсолютную вязкость следует уравнению типа Аррениуса [7], которое можно использовать для расчета энергии активации: Уравнение (3) можно записать в регрессионной форме, как показано ниже: где = коэффициент консистенции (Па · с), = предэкспоненциальная постоянная (Па · с), = энергия активации (Дж / моль), = газовая постоянная (8,314 Дж / (моль · К)) и = абсолютная температура (К).

Энергию активации можно получить из наклона уравнения регрессии.

2.4. Анализ данных

Программное обеспечение Office Excel 2013 использовалось для выполнения линейных регрессий для получения абсолютной вязкости и энергии активации масел. Были получены средние абсолютные значения вязкости различных масел при разных температурах вместе со стандартными ошибками.

Средняя относительная процентная ошибка (MRPE) использовалась для оценки адекватности выведенных уравнений типа Аррениуса при прогнозировании абсолютной вязкости различных растительных масел при различных температурах, как указано в Diamante et al.[15].

3. Результаты и обсуждение
3.1. Реограммы различных растительных масел

Анализируемые растительные масла были получены из следующих растительных материалов: злаки (рисовые отруби), семена цветов (сафлор и подсолнечник), мякоть плодов (авокадо), семена фруктов (виноградные косточки), семена стручков (канола). , рапс, кунжут и соя), цельные фрукты (оливки) и орехи (арахис, макадамия и грецкий орех). На рисунке 1 показаны реограммы типичных растительных масел при различных температурах с самым низким (масло грецкого ореха) и самым высоким (масло рисовых отрубей) напряжениями сдвига.Реограммы для других растительных масел вели себя так же и попали в диапазон напряжений сдвига масел грецких орехов и рисовых отрубей. Результаты показывают, что напряжение сдвига увеличивается со скоростью сдвига для всех растительных масел и при всех температурах. Следует отметить, что все графики имеют прямые линии, что убедительно свидетельствует о том, что все растительные масла были ньютоновскими жидкостями [14]. То же наблюдение было сделано и для других растительных масел, не показанных здесь. Кроме того, напряжение сдвига уменьшается с повышением температуры при постоянной скорости сдвига.Это происходило из-за более сильного теплового движения между молекулами масла, уменьшения межмолекулярных сил, облегчения потока между ними и снижения вязкости [10].


3.2. Абсолютная вязкость различных растительных масел

Абсолютные вязкости измеренных растительных масел сведены в Таблицу 2. Также показаны диапазон коэффициента детерминации () для каждого масла и температуры. Значения для всех растительных масел и температуры были очень высокими (выше 0.99), что свидетельствует о том, что все экспериментальные данные попадают на прямые линии. Масло рисовых отрубей давало стабильно высокие абсолютные вязкости, тогда как масло грецкого ореха давало стабильно низкие вязкости при всех температурах по сравнению с другими растительными маслами. Все значения вязкости растительных масел уменьшаются с повышением температуры. Это явление было объяснено ранее в предыдущем разделе. Все стандартные ошибки были очень низкими, что означает, что полученные значения вязкости были очень стабильными. Такое же влияние температуры на абсолютную вязкость растительных масел наблюдали также Fasina и Colley [9], Santos et al.[10], Абрамович и Клофутар [11], Штеффе [12] и Нуреддини и др. [13] для различных растительных масел при разных температурах.

3 33

Масло Температура (° C) Абсолютная вязкость (Па · с)

Авокадо 26 99 1,0000
38 0,9996–1,0000
50 0.9997–1.0000

Канола 30 0,9997–1,0000
50 0,9993–0,9998
90
90
Виноградные косточки 26 0,9997–1,0000
38 0,9999-1,0000
50 0.9995–1,0000

Орех макадамия 26 0,9998-0,9998
38 0,9816–1,0000
50
50

Оливковое 26 0,9997–1.0000
38 0,9994–1.0000
50 0.9997–1.0000
70 0.9990–0.9992

Арахис 26 0,9992–0.9996
54 0,9998-0,9999

Рапс 26 0,9998-0,9999
38 1.0000-1.0000
50 0.9972–0.9998

Рисовые отруби 26 0.9996-0.9997
38
50 0,9997–0,9999

Сафлор 26 0,9998–1,0000
38 0.9989–1.0000
50 0,9992–0,9996

Кунжут 26 0,9999-0,9999
38
38 900 50 0,9995–0,9999

Соя 30 0,9993–1,0000
50 0.9996–0,9998
90 0,9905–0,9980

Подсолнечник 26 0,9998-0,9999
38 900,99 50 0,9975–0,9993

Орех 26 0,9998-0,9999
38 0.9989–1.0000
50 0.9975–0.9972

В таблице 3 приведены экспериментальные и опубликованные [9, 12, 13] абсолютные вязкости различных растительных масел при различных температурах. . Результаты показывают, что большинство экспериментальных значений различных изученных растительных масел были сопоставимы с опубликованными значениями при тех же температурах. Экспериментальные абсолютные вязкости некоторых растительных масел также были сопоставимы с литературными данными даже при разных температурах, если учесть влияние температуры на вязкость масла.Как правило, экспериментальная вязкость конкретного масла и температура были ниже по сравнению с опубликованными данными при более низкой температуре, что совпадает с теорией. Результаты показали, что используемый более высокий диапазон сдвига не влияет на абсолютную вязкость растительных масел при различных температурах.

900 Ссылка 1: Штеффе [12]; Ссылка 2: Noureddini et al.[13]; Ссылка 3: Фасина и Колли [9].
900 Арахис 0,0574 900 0,0251 0232

Масло Температура (° C) Абсолютная вязкость (Па · с)
Экспериментальная * Опубликованная Ref1 Опубликованная Ref2 Опубликованная Ref3

Оливковое 40 0.0341 0,0363 0,0463 (35 ° C)
70 0,0157 0,0124 0,0181 (65 ° C)

0,0565 (21 ° C)
38 0,0380 0,0387 0,0456 (35 ° C)
54 0,0236 0.0268 0,0275 (50 ° C)

Рапс 38 0,0376 0,0449
50 0,0305 900 ° 900 C)

Сафлор 26 0,0445 0,0522 (25 ° C)
38 0.0299 0,0286 0,0353 (35 ° C)

Кунжут 38 0,0351 0,0324 0,0411 (35 ° C)

5

0,0248

Соя 30 0,0405 0,0406 0,0386 (35 ° C)
50. 0,0206 0,0233 (49 ° C) 0,0236
90 0,0098 0,0078 0,0095 (82 ° C) 0,0087 (95 ° C)

Подсолнечник 38 0,0323 0,0311
50 0,0234 0,0250

Результаты показывают, что среди изученных растительных масел масло рисовых отрубей (0,0398 Па · с при 38 ° C) было наиболее вязким, за ним следовало масло ореха макадамии (0,0394 Па · с при 38 ° C), в то время как масло грецкого ореха (0,0296 Па · с при 38 ° C) было наименее вязким, за ним следовало сафлоровое масло (0,0299 Па · с при 38 ° C). Как правило, такая же тенденция наблюдалась и при других температурах. Остальные растительные масла имеют вязкость, которая находится в диапазоне от масел рисовых отрубей и грецких орехов с вязкостью от 0.0311 до 0,0380 Па · с при 38 ° C.

Изучая таблицу 1, было обнаружено, что, когда количество насыщенных жирных кислот в растительном масле было выше 16%, абсолютная вязкость была выше. Однако не было никакой корреляции с абсолютной вязкостью, когда насыщенные жирные кислоты были ниже 16%. Это согласуется с результатами Kim et al. [16], которые также обнаружили ту же тенденцию для различных изученных ими растительных масел.

3.3. Температурная зависимость абсолютной вязкости

Абсолютные вязкости различных растительных масел были связаны с температурой с использованием соотношения типа Аррениуса с использованием (4) и были определены их наклоны, пересечения и коэффициенты определения.

Наклон регрессии использовался при получении энергии активации для каждого растительного масла. Значения регрессии Аррениуса и полученные энергии активации различных растительных масел, а также опубликованные значения [9] для энергий активации выбранных растительных масел показаны в таблице 4.

903 903 903

Масло Коэффициент определения Энергия активации (кДж / моль)
Экспериментальный Опубликованный * % Разница

Авокадо 0.9617 (4,0%) # 22,28
Рапс 0,9950 21,95 23,20 5,69
Виноградные семена 0,9976 0,9976 0,9976
Орех макадамия 1,0000 25,53
Оливка 0,9976 24,57 24.63 0,24
Арахис 0,9878 (5,0%) # 29,69 24,45 17,65
Рапс 0,9652 (4,9%)

Рисовые отруби 0,9998 25,14
Сафлор 0,9812 (3,3%) # 20,88 21.76 4,21
Кунжут 0,9991 24,73 23,38 5,46
Соя 0,9996 21,58 22,95 23,40 5,03
Орех 0,9991 24,73 21,47 13,18

Фасина и Колли [9]; средняя относительная ошибка в процентах.

Значения для всех растительных масел были высокими (выше 0,96), что позволяет предположить, что уравнение типа Аррениуса можно использовать для связи вязкости с температурой. Полученные уравнения типа Аррениуса были дополнительно оценены для растительных масел со значениями ниже 0,99 с использованием средней относительной процентной ошибки (MRPE), и результаты показаны в скобках рядом со значениями в таблице 4. Понятно, что уравнения со значениями больше, чем 0,99 будет иметь более низкие значения MRPE.Результаты показывают, что выбранные растительные масла со значениями ниже 0,99 имеют значения MRPE 5% или меньше. Для большинства инженерных приложений приемлемы значения MRPE 10% или ниже.

Экспериментальные энергии активации для абсолютной вязкости различных растительных масел находились в диапазоне от 21 до 30 кДж / моль. Арахисовое и сафлоровое масла имели самую высокую и самую низкую энергии активации соответственно. Это означает, что для изменения вязкости арахисового масла требовалось больше энергии.

Практически все экспериментальные значения различных растительных масел были сопоставимы с опубликованными данными Fasina и Colley [9], за исключением масел виноградных косточек, арахиса и грецкого ореха, процентные различия которых составляют 13-17%. Различия, наблюдаемые для этих растительных масел, вероятно, были связаны со способом приготовления масел, использованных в исследовании (холодный отжим, горячий отжим и экстракция растворителем). Лю и др. [17] показали, что процесс экстракции влияет на реологические свойства рапсового масла.

4. Выводы

На основании реограмм все исследованные растительные масла оказались ньютоновскими жидкостями. Масло рисовых отрубей было наиболее вязким, за ним следовало масло ореха макадамии, тогда как масло грецкого ореха было наименее вязким, за ним следовало масло виноградных косточек среди исследованных масел. Используемый более высокий диапазон сдвига (от 64,5 до 4835 с -1 ) не оказывал значительного влияния на абсолютную вязкость растительных масел при различных температурах. Абсолютная вязкость растительных масел уменьшается с повышением температуры и может соответствовать соотношению типа Аррениуса.Значения энергии активации для абсолютной вязкости различных растительных масел находились в диапазоне от 21 до 30 кДж / моль. Арахисовое и сафлоровое масла имели самую высокую и самую низкую энергии активации соответственно.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов в отношении публикации данной статьи.

Вязкость масла и марки масла

Вязкость моторного масла

Вязкость моторного масла означает, насколько легко масло течет при определенной температуре.Жидкие масла имеют более низкую вязкость и легче текут при низких температурах, чем более густые масла с более высокой вязкостью. Разжиженные масла уменьшают трение в двигателях и помогают двигателям быстро запускаться в холодную погоду. Густые масла лучше сохраняют прочность пленки и давление масла при высоких температурах и нагрузках.

Измерение вязкости моторного масла

Общество автомобильных инженеров разработало шкалу как для моторных (марок моторных масел), так и для трансмиссионных масел.

Вязкость обозначается по общепринятой классификации «XW-XX».Число перед буквой «W» (зима) обозначает текучесть (вязкость) масла при нулевом градусе Фаренгейта (-17,8 градуса Цельсия). Чем меньше число, тем меньше загустевает масло в холодную погоду.

Цифры после «XW» обозначают вязкость при 100 градусах Цельсия и показывают устойчивость масла к разжижению при высоких температурах.

Например, масло класса 5W-30 в холодную погоду загустевает меньше, чем масло класса 10W-30. Масло марки 5W-30 быстрее разжижается при высоких температурах по сравнению с маслами марки 5W-40.

Зимой и для автомобилей, эксплуатируемых в более прохладных регионах, в вашем двигателе будет полезно использовать масло с низкой зимней вязкостью. Летом и в более жарких регионах ваш двигатель получит больше пользы от масла с более высокой вязкостью при 100 градусах Цельсия.

При сравнении масел важно учитывать место эксплуатации автомобиля. Разжиженные масла, которые менее склонны к загустеванию при низких температурах, помогут вам быстрее запустить двигатель зимой, а густые масла, которые менее склонны к разжижению при высоких температурах, помогут вашему двигателю работать лучше летом.В результате масла 0W-20 и 5W-30 были разработаны для более холодного климата, а масла 15W-40 и 20W-50 были разработаны для более жаркого климата.

Часто задаваемые вопросы о типах, массе и вязкости масла

Если у вас есть вопросы, касающиеся характеристик моторного масла, синтетических масел или того, как утилизировать отработанное масло, вы можете получить ответы на них ниже. Во-первых, сузьте варианты, выбрав категорию, наиболее близкую к вашему вопросу.

Часто задаваемые вопросы о типах, весе и вязкости масла

Можно ли менять вес моторного масла, например, с 5W-20 на 10W-30?

Это зависит от обстоятельств.Некоторые производители автомобилей предоставляют ряд рекомендуемых классов вязкости моторного масла в зависимости от температуры наружного воздуха, при которой эксплуатируется автомобиль. Другие производители рекомендуют использовать моторное масло только одного класса вязкости. Для достижения наилучших характеристик двигателя всегда следуйте рекомендациям производителя, содержащимся в руководстве по эксплуатации вашего автомобиля.

Можно ли использовать 5W-30 в автомобиле, если в руководстве по эксплуатации указано использование 5W-20?

Valvoline не рекомендует этого делать. Использование более тяжелого сорта, чем рекомендуется, может привести к снижению расхода топлива, увеличению нагрузки на двигатель и, в конечном итоге, сокращению срока его службы.Использование более легкого сплава, чем рекомендовано, может привести к чрезмерному механическому износу и сокращению срока службы двигателя. Для достижения максимальной производительности двигателя соблюдайте рекомендованную вязкость моторного масла и график технического обслуживания, приведенный в руководстве по эксплуатации вашего автомобиля.

Что означает буква «w» в марке моторного масла?

Буква «w» в моторном масле означает зиму. Первое число в классификации масел относится к вязкости в холодную погоду. Чем ниже это число, тем менее вязким будет ваше масло при низких температурах.Например, моторное масло 5W будет течь лучше при более низких температурах, чем моторное масло 15W. Более высокое число после «w» относится к вязкости в жаркую погоду или к тому, насколько жидким является ваше масло при высоких температурах. Чем выше число, тем гуще масло при указанной температуре.

Густое масло лучше?

В некоторых случаях более густое масло можно использовать для компенсации увеличенных зазоров подшипников (зазоров между подшипником и вращающимся валом), которые возникли за эти годы.Большое изменение зазоров подшипников может привести к ухудшению смазки. Для достижения наилучших характеристик всегда следуйте рекомендациям по вязкости моторного масла в руководстве по эксплуатации вашего автомобиля.

Когда имеет смысл использовать обычное масло (SAE30) вместо всесезонного (5W-30)?

Масло прямого веса никогда не рекомендуется для использования в системе, требующей мультивязкого масла. Масла прямого веса обычно рекомендуются для небольших двигателей или старых автомобилей, которые были произведены до того, как были произведены многовязкие масла.

Вредно ли для двигателя моего автомобиля смена типа моторного масла (обычное, синтетическое и т. Д.)?

Обычные синтетические смеси, синтетические моторные масла и моторные масла с большим пробегом совместимы и не повредят двигатель вашего автомобиля. Для достижения максимальной производительности двигателя следуйте рекомендациям по типу моторного масла, приведенным в руководстве по эксплуатации вашего автомобиля.

Правда ли, что в старых автомобилях можно использовать только обычное масло?

Нужно ли мне ждать, пока моя машина не пробегет 75 000 миль, прежде чем я смогу использовать MaxLife?

Моторное масло

Valvoline MaxLife разработано для автомобилей с большим пробегом от 75 000 миль и более.Однако вполне допустимо использовать моторное масло с большим пробегом в новых или подержанных автомобилях с пробегом менее 75 000 миль.

Всегда ли MaxLife было моторным маслом на синтетической основе?

Моторное масло MaxLife Synthetic Blend фактически является тем же продуктом, что и обычное масло MaxLife. MaxLife всегда была смесью синтетических масел; мы только что маркируем продукт таким образом. Пока вы использовали MaxLife, вы использовали смешанные синтетические масла.

Чем полностью синтетические моторные масла Valvoline по сравнению с Mobil 1 и Amsoil?

Полностью синтетические моторные масла

Valvoline соответствуют и превосходят те же спецификации, что и эти два продукта.

Полностью синтетические моторные масла Valvoline — это высокоэффективные высококачественные масла, в состав которых входят полностью синтетические базовые масла и присадки высшего уровня, обеспечивающие повышенный уровень производительности. Все полностью синтетические моторные масла Valvoline имеют лицензию API для обеспечения качества для автомобилей в Северной Америке. Мы специально разработали Valvoline SynPower 5w40 для применения в высокопроизводительных европейских или дизельных легковых автомобилях, и это масло имеет специальные одобрения OEM, такие как Mercedes Benz, Volkswagen, Porsche и BMW.Наши североамериканские SynPower 5w20, 5w30 и 10w30 превышают требования ILSAC GF-5 и имеют маркировку API звездообразования на передней этикетке. Полностью синтетические моторные масла Valvoline разработаны с дополнительным содержанием детергентов и антиоксидантов, обеспечивающих отличную защиту от отложений и нагрева.

Вязкость | Густое и жидкое масло вязкостью

Вязкость жидкости также можно определить по измеренному сопротивлению. Вы можете думать об этом как об энергии, необходимой для перемещения объекта через жидкость.Чтобы размешать воду ложкой, требуется мало энергии. Однако, чтобы размешать мед той же ложкой, требуется значительно больше энергии. Для описания этого используется термин «кажущаяся вязкость», который выражается в единицах, известных как сантипуаз (сП). Другие способы обозначения вязкости жидкости в более общих общих терминах — тонкая, легкая и низкая, и предполагают, что жидкость течет легко, например, вода. Такие термины, как густой, тяжелый и высокий, предполагают, что жидкость демонстрирует сильное сопротивление течению в таком примере, как мед.

Вязкость очень важна, потому что она напрямую связана с несущей способностью жидкости. Чем выше вязкость жидкости, тем большие нагрузки она может выдерживать. Вязкость жидкости должна быть достаточной для разделения движущихся частей при рабочих температурах оборудования. Зная, что вязкость жидкости напрямую связана с ее способностью выдерживать нагрузку, можно подумать, что чем более вязкая жидкость, тем лучше она может смазывать и защищать. Дело в том, что использование жидкости с высокой вязкостью может быть столь же вредным, как и использование слишком легкого масла.Если вы используете масло слишком низкой вязкости, происходит контакт металла с металлом, плохая герметизация и повышенный расход масла. При использовании слишком высокой вязкости масла увеличивается трение жидкости, что приводит к снижению энергоэффективности, повышению рабочих температур и затрудненному запуску, особенно при низких температурах. Главное — выбрать не слишком легкую и не слишком тяжелую жидкость.

Жидкости сгущаются при понижении температуры и разжижаются при повышении температуры (как свечной воск). Степень их изменения указывается их индексом вязкости (VI).Число индекса вязкости указывает степень изменения вязкости масла в заданном диапазоне температур, в настоящее время 40-100 ° C. Масло с высоким индексом вязкости, скажем 160, будет выглядеть и вести себя одинаково при этих двух температурах. Однако масло с низким индексом вязкости, скажем, 90, было бы совершенно другим, поскольку оно становилось бы очень жидким и жидким и легко текло бы при высоких температурах, подобно меду, если бы его нагревали до температуры выше комнатной. Вот почему существуют всесезонные масла.

Улучшители индекса вязкости

Небольшой объем высококачественного улучшителя индекса вязкости улучшает функциональность моторного масла.Высококачественные моторные масла содержат от четырех до шести процентов улучшителей индекса вязкости. Из-за присущего им высокого индекса вязкости синтетическим маслам требуется меньше, чем нефтяным маслам.

В обоих типах масла присадка, улучшающая индекс вязкости, позволяет маслу работать в широком диапазоне температур, а его боковые группы могут увеличивать экономию топлива, обеспечивать диспергируемость, улучшать пусковые характеристики при холодном пуске или снижать расход масла. Но наступает момент, когда улучшители индекса вязкости становятся слишком хорошей вещью — и несколько производителей смазочных материалов, возможно, нарушили этот пункт, предложив свои недавно предложенные синтетические материалы.

Улучшители индекса вязкости, известные как полимеры, химические вещества, типичными для которых являются длинные повторяющиеся цепочки молекул, появившиеся в лаборатории в конце 1940-х годов. В основных цепях добавок, улучшающих индекс вязкости, может быть до 2000 атомов углерода. Базовые масла моторных масел содержат от 20 до 50 атомов углерода в основных цепях, и основные различия в добавках, улучшающих индекс вязкости, происходят из их боковых групп, которые различаются по химическому составу или размеру. Например; некоторые боковые цепи улучшителя индекса вязкости обеспечивают диспергируемость, а другие — нет.

С добавками, улучшающими индекс вязкости, возникают две важные проблемы, обе из-за запутывания их длинноцепочечной структуры. Из-за временного притяжения между несмежными молекулами запутанные цепи сгущают масло при низких температурах и препятствуют прокачиванию масла при низких температурах. Когда запутанные полимерные цепи подвергаются высокому сдвигу, они склонны к разрыву, что называется «обратным сдвигом». Масло, которое отслоилось, имеет постоянную потерю вязкости и больше не обеспечивает толстую масляную пленку для защиты при работе на высоких скоростях, высоких нагрузках или при высоких температурах.Высокие скорости сдвига возникают в областях, где масло проходит через узкие каналы в двигателе, например, между поршневыми кольцами и стенками цилиндра.

Универсальные масла неодинаково подвержены обратному сдвигу или загустению при низких температурах, их способность противостоять этим суровым условиям окружающей среды зависит от качества химического состава присадки, улучшающей индекс вязкости. Недорогие базовые масла, как правило, содержат присадки, улучшающие индекс вязкости. В состав масел высшего качества, таких как синтетические моторные масла AMSOIL, входят присадки, улучшающие индекс вязкости, устойчивые к сдвигу, которые улучшают характеристики масла при высоких и низких температурах.

Универсальные масла

Чтобы сделать масло 5W-50, производитель начинает с базового масла с низкой вязкостью и добавляет относительно большой объем улучшителя индекса вязкости (до 15 процентов). Увеличивая объем улучшителя индекса вязкости, производители уменьшают относительный объем некоторых других компонентов в масле. Например, при меньшем количестве базовых масел некоторые основные смазочные свойства теряются. С другой стороны, при меньшем количестве присадок двигатель становится более уязвимым к окислению, пусковому износу или коррозионным повреждениям.

Кроме того, тяжелые масла класса 50 имеют большее внутреннее трение, чем более легкие масла; следовательно, двигатель потребляет больше топлива, чем если бы смазка была легче, то есть 30 или 20 класса. Кроме того, чем быстрее работает двигатель, тем больше мощности теряется на трение, что еще больше усугубляет неэффективность. Ни один производитель автомобилей не рекомендует масла с широким диапазоном вязкости, большинство из них рекомендует, например, вязкость 5W-20, 5W-30 или 10W-30. Современные двигатели имеют чрезвычайно узкие зазоры, примерно вдвое меньше, чем у автомобилей, построенных всего десять лет назад.Масло одного размера (всесезонное) не подходит всем.

По-видимому, некоторые производители считают, что универсальный подход — это просто удовлетворить автомобилистов, интересующихся синтетикой. Но один размер не подходит всем. Гоночным автомобилям может потребоваться масло 50 вес., Но не 5W — если они не участвуют в гонках в холодную погоду. Легковым автомобилям часто требуется мощность 5W, но не 50, потому что допуски их компонентов слишком жесткие для масла массой 50 мас. И приготовление широкого сорта масла влияет не только на вязкость, но и на всю рецептуру.

Проблема универсального подхода в том, что один размер не подходит вообще. Масла широкого класса не подходят ни одному автомобилю и могут причинить вред. AMSOIL производит обширную линейку проверенных классов синтетической вязкости для удовлетворения потребностей любого применения; они не подходят для всех моторных масел.

Visco-Talk

Сэр Исаак Ньютон дал нам основную концепцию вязкости: величина внутренней силы трения в текущей жидкости равна произведению площади поверхности жидкости, градиента скорости и константы, называемой коэффициентом вязкости, которая варьируется от жидкости к жидкости.В зависимости от их поведения в присутствии сдвига жидкости обозначаются как ньютоновские или неньютоновские в честь сэра Исаака Ньютона.

Жан Леонард Мари Пуазей вывел формулу для скорости потока через трубку, исходя из размеров трубки, разности давлений и коэффициента вязкости жидкости. Его вклад в поле выражается в единицах коэффициента вязкости — пуазе.

Сэр Фредерик Уилфрид Скотт Стоукс показал, что объект, свободно падающий в вязкой жидкости, сначала ускоряется, а затем достигает постоянной скорости, известной как конечная скорость.Когда достигается конечная скорость, направленной вниз силе тяжести, действующей на объект, в точности противодействует восходящая сила вязкости жидкости. Конечная скорость объекта может использоваться для вычисления коэффициента вязкости жидкости. Важное значение для определения вязкости масла. Классы кинематической вязкости определяются путем измерения скорости потока жидкости под действием силы тяжести из капиллярной трубки — единицы измерения, известной как сток.

Добавить комментарий

Ваш адрес email не будет опубликован.