Меню Закрыть

Принцип работы двс кратко: Принцип работы двс кратко

Содержание

Принцип работы двс кратко

Двигатель внутреннего сгорания — один из ключевых элементов конструкции транспортного средства. Он представляет собой внушительный агрегат, принцип работы двигателя внутреннего сгорания основывается на изменении энергии для действия определенных частей агрегата.

Виды моторов

Существует три вида двигателей, встречаемых в транспортных средствах:

  • поршневой
  • роторно-поршневой
  • газотурбинный

Большой популярностью пользуется первый вариант моторов. На некоторые модели автомобилей устанавливают так поршневые двигатели с четырьмя тактами. Вызвана такая популярность тем, что подобные агрегаты стоят дешевле, имеют небольшой вес и подходят для использования практически во всех машинах вне зависимости от производства.

Если говорить простыми словами, то двигатель автомобиля — это особый механизм, способный изменить энергию тепла, превратив ее в механическую энергию, благодаря чему удается обеспечить работу множества элементов конструкции автомобиля, а также его систем.

Изучить принцип действия мотора не составит труда. Например, поршневые ДВС делятся на двух- и четырехтактные агрегаты. Четырехтактными двигатели называют потому, что в одном рабочем цикле элемента поршень двигается четыре раза (такта). Подробнее о том, что представляют собой такты, написано далее.

Устройство мотора

Прежде, чем разбираться с принципом работы, стоит сначала понять, как устроен силовой агрегат и что входит в его конструкцию. Так как поршневые считаются наиболее востребованными, рассматриваться будет именно такое устройство. К основным деталям следует отнести:

  1. Цилиндры, образующие отдельный блок
  2. Головку блока с ГРМ
  3. Кривошипно-шатунный механизм

Последний приводит в движение коленчатый вал, заставляя его вращаться. Механизм передает валу энергию, получаемую от двигающегося поршня, который в несколько тактов меняет свое положение. Движение поршня регулирует энергия тепла, возникающая в результате горения топлива.

Невозможно представить и организовать движение силового агрегата без установленных в нем механизмов. Так, например, ГРМ меняет положение клапанов, за счет чего удается обеспечить регулярную подачу топлива, впуская и выпуская определенные составы. Система поступления новых газов и выхода отработавших налажена.

Работа двигателя возможна только при одновременной работе всех включенных в конструкцию деталей, механизмов и других элементов. Также вместе с ними должны бесперебойно действовать следующие системы:

  • зажигания, основная роль которой заключается в воспламенении топлива,
  • содержащего также воздух;
  • впускная, регулирующая своевременную подачу воздуха внутрь цилиндра;
  • топливная, благодаря которой удается обеспечить подачу топлива для сгорания и дальнейшей работы транспорта;
  • система смазки, снижающая износ трущихся деталей конструкции во время их работы;
  • выхлопная, посредством действия которой удается удалить отработавшие газы, в результате чего снижается их токсичность.

Также работает система охлаждения, регулирующая температуру внутри агрегата и следящая за тем, чтобы она была оптимальной.

Рабочий цикл ДВС

Основной цикл мотора подразумевает выполнение четырех основных тактов. Именно о них и пойдет речь дальше по тексту.

Первый такт: впуск

Начальный — движение кулачков, которые являются частью конструкции распределительного вала. Они меняют воздействуют на клапан впуска, заставляя его открыться.

Далее, вслед за открывшимся клапаном, с места двигается поршень. Деталь постепенно перемещается из крайнего верхнего положения в крайнее нижнее. Воздух внутри цилиндра в связи с уменьшением пространства поршнем становится более разреженным, благодаря чему становится возможным поступление подготовленной рабочей смеси.

После этого поршень начинает действовать на коленвал через шатун, вследствие чего вал поворачивается на 180 градусов. Сам поршень уже достигает своего критического нижнего положения, и на этом моменте начинается второй такт.

Второй такт: сжатие

Он подразумевает дальнейшее сжатие смеси, находящейся внутри цилиндра. Клапан впуска закрывается, и поршень меняет свое направление, двигаясь вверх. Воздух в связи с уменьшением пространства начинает сжиматься, а рабочая смесь — нагреваться. Когда второй такт подходит к концу, в действие приходит система зажигания. Ее основное назначение — подача на свечу заряда электричества для образования искры. Именно эта искра поджигает сжатую смесь из топлива и воздуха, приводя к ее воспламенению.

Отдельно стоит рассмотреть, как зажигается топливо у дизельного ДВС. Как только завершается сжатие, начинает поступать мелкораспыленное дизельное топливо через форсунку внутрь камеры. Впоследствии горючее вещество перемешивается с воздухом внутри, благодаря чему происходит воспламенение.

Что касается карбюраторного двигателя со стандартным топливом, то на втором такте коленчатый вал успевает сделать полный оборот.

Третий такт: рабочий ход

Третий такт называется рабочим ходом. Газы, оставшиеся после сгорания смеси, начинают толкать поршень, перемещая его вниз. Полученная деталью энергия передается коленвалу, и тот снова поворачивается, но уже на половину оборота.

Четвертый такт: выпуск

Четвертый такт — выпуск оставшихся газов. Когда такт только начинается, кулачок меняет положение на этот раз выпускного клапана, открывая его. Это способствует началу движения поршня наверх, вследствие чего из цилиндра начинают выходить отработавшие газы.

Интересно, что на современных моделях транспортных средств ДВС оборудованы не одним цилиндром, а несколькими. Благодаря их слаженной работе обеспечивается более качественная работа мотора и систем машины. При этом в каждом цилиндре единовременно выполняются разные такты. Так, например, в одном цилиндре вовсю идет рабочий ход, а во втором — коленчатый вал еще только совершает оборот. Подобная конструкция также:

  • избавляет от ненужных вибраций;
  • уравновешивает силы, которые действуют на работу коленвала;
  • организует ровную работу мотора.

Ввиду компактности двигатели с несколькими цилиндрами изготавливают не рядными, а V-образными. Также существует форма оппозитных двигателей, которые часто можно встретить на автомобилях производства Subaru. Такое решение позволяет сэкономить много места под капотом.

Как работает двухтактный мотор

Выше было упомянуто, что поршневые двигатели делятся как на 4-тактные, так и на 2-тактные. Принцип работы вторых немного отличается от того, что был описан ранее. Да и само устройство такого агрегата значительно проще предыдущей конструкции. В двухтактном агрегате всего два окна в цилиндре — впускное и выпускное. Второе расположено чуть выше первого, и сейчас будет объяснено, для чего это.

Поршень при начале первого такта, до этого перекрывавший впускное окно, начинает двигаться наверх, в результате чего перекрывает собой окно впуска топлива. Поршень в это же время продолжает опускаться, что приводит к сжатию рабочей смеси. Как только деталь достигает нужного положения, на свече образуется первая искра, и созданная смесь тут же поджигается, воспламеняясь. Впускное окно к этому моменту уже открывается. Оно пропускает очередную порцию топлива и воздуха, продолжая работу механизма.

Начало второго такта характеризуется сменой направления движения поршня — он начинает перемещаться вниз. На него действуют газы, стремящиеся расширить имеющееся пространство. Поршень перемещается, открывая впускное окно, и оставшиеся после сгорания смеси газы уходят, пропуская внутрь новую порцию топлива.

Какая-то часть рабочей смеси также покидает цилиндр через открытый выпускной клапан. Поэтому становится понятным, почему двухтактные двигатели требуют такого количества топлива.

Преимущества и недостатки

Преимуществом двухтактных поршневых агрегатов является достижение большой мощности при небольшом рабочем объеме, если сравнивать их с четырехтактными. Однако владелец авто будет страдать от внушительных расходов топлива, из-за чего в скором времени в его голове возникнет идея поменять агрегат.

Также плюсами двухтактных ДВС можно назвать простую конструкцию, понятную и равномерную работу, маленький вес и компактный размер. К минусам следует отнести грязный выхлоп, нехватку различных систем, а также быстрый износ деталей конструкции. Довольно часто владельцы машин с таким двигателем жалуются на перегрев агрегата и его поломку.

На автомобилях устанавливают поршневые двигатели внутреннего сгорания (ДВС), у которых топливо сгорает внутри цилиндра. В основу их действия положено свойство газов расширяться при нагревании. Рассмотрим принцип устройства и работы двигателя внутреннего сгорания (ДВС), а также его рабочие циклы.

🔧 Рабочий цикл четырехтактного бензинового двигателя

Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу. Если рабочий цикл совершается за два хода поршня, т. е. за один оборот коленчатого вала, то такой двигатель называется двухтактным.

Автомобильные двигатели работают, как правило, по четырехтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения (рабочего хода) и выпуска.

• Принцип работы ДВС (для просмотра нажмите на кнопку иллюстрации — Фото 2-5

Крайние положения поршня, при которых он наиболее удален от оси коленчатого вала или приближен к ней, называются верхней и нижней «мертвыми» точками (ВМТ и НМТ). Подробнее в статье «как устроены бензиновые и дизельные двигатели».

Впуск. По мере того, как коленчатый вал двигателя делает первый полуоборот, поршень перемещается от ВМТ к НМТ, впускной клапан открыт, выпускной клапан закрыт. В цилиндре создается разряжение, вследствие чего свежий заряд горючей смеси, состоящий из паров бензина и воздуха, засасывается через впускной газопровод в цилиндр и, смешиваясь с остаточными отработавшими газами, образует рабочую смесь.

Сжатие. После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала (второй полуоборот) поршень перемещается от НМТ к ВМТ при закрытых клапанах. По мере уменьшения объема температура и давление рабочей смеси повышаются.

Расширение или рабочий ход. В конце такта сжатия рабочая смесь воспламеняется от электрической искры и быстро сгорает, вследствие чего температура и давление образующихся газов резко возрастает, поршень при этом перемещается от ВМТ к НМТ. В процессе такта расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип приводит во вращение коленчатый вал.

При расширении газы совершают полезную работу, поэтому ход поршня при третьем полуобороте коленчатого вала называют рабочим ходом. В конце рабочего хода поршня, при нахождении его около НМТ открывается выпускной клапан, давление в цилиндре снижается до 0.3 — 0.75 МПа, а температура до 950 — 1200оС.

Выпуск. При четвертом полуобороте коленчатого вала поршень перемещается от НМТ к ВМТ. При этом выпускной клапан открыт, и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной газопровод.

🔧 Рабочий цикл четырехтактного дизеля

В отличие от бензинового двигателя, при такте «впуск» в цилиндры дизеля поступает чистый воздух. Во время такта «сжатие» воздух нагревается до 600оС. В конце этого такта в цилиндр впрыскивается определенная порция топлива, которое самовоспламеняется.

Впуск. При движении поршня от ВМТ к НМТ вследствие образующегося разряжения из воздушного фильтра в цилиндр через открытый впускной клапан поступает атмосферный воздух. Давление воздуха в цилиндре составляет 0.08 — 0.095 МПа, а температура 40 — 60°С.

Сжатие. Поршень движется от НМТ к ВМТ; впускной и выпускной клапаны закрыты, вследствие этого перемещающийся вверх поршень сжимает поступивший воздух. Для воспламенения топлива необходимо, чтобы температура сжатого воздуха была выше температуры самовоспламенения топлива. При ходе поршня к ВМТ цилиндр через форсунку впрыскивается дизельное топливо, подаваемое топливным насосом.

Расширение или рабочий ход. Впрыснутое в конце такта сжатия топливо, перемешиваясь с нагретым воздухом, воспламеняется, и начинается процесс сгорания, характеризующийся быстрым повышением температуры и давления. При этом максимальное давление газов достигает 6 — 9 МПа, а температура 1800 — 2000°С. Под действием давления газов поршень перемещается от ВМТ в НМТ — происходит рабочий ход. Около НМТ давление снижается до 0.3 — 0.5 МПа, а температура до 700 — 900оС.

Выпуск. Поршень перемещается от НМТ в ВМТ и через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра. Давление газов снижается до 0.11 — 0.12 МПа, а температура до 500-700оС. После окончания такта выпуска при дальнейшем вращении коленчатого вала рабочий цикл повторяется в той же последовательности.

🔧 Принцип работы многоцилиндровых двигателей

На автомобилях устанавливают многоцилиндровые двигатели. Чтобы многоцилиндровый двигатель работал равномерно, такты расширения должны следовать через равные углы поворота коленчатого вала (т. е. через равные промежутки времени).

Последовательность чередования одноименных тактов в цилиндрах называют порядком работы двигателя. Порядок работы большинства четырехцилиндровых двигателей 1-3-4-2 или 1-2-4-3. Это означает, что после рабочего хода в первом цилиндре следующий рабочий ход происходит в третьем, затем в четвертом и, наконец, во втором цилиндре. Определенная последовательность соблюдается и в других многоцилиндровых двигателях.

• Диаграмма работы двигателя по схеме 1-2-4-3 Фото 6

Многоцилиндровые двигатели бывают рядными и V-образными. В рядных двигателях цилиндры расположены вертикально, а в V-образных — под углом. Последние характеризуются меньшей габаритной длиной по сравнению с первыми. Современные восьмицилиндровые двигатели выполняют двухрядными с V-образным расположением цилиндров.

Вот уже около ста лет повсюду в мире основным силовым агрегатом на автомобилях и мотоциклах, тракторах и комбайнах, прочей технике является двигатель внутреннего сгорания. Придя в начале двадцатого века на смену двигателям внешнего сгорания (паровым), он и в веке двадцать первом остаётся наиболее экономически эффективным видом мотора. В данной статье мы подробно рассмотрим устройство, принцип работы различных видов ДВС и его основных вспомогательных систем.

Определение и общие особенности работы ДВС

Главная особенность любого двигателя внутреннего сгорания состоит в том, что топливо воспламеняется непосредственно внутри его рабочей камеры, а не в дополнительных внешних носителях. В процессе работы химическая и тепловая энергия от сгорания топлива преобразуется в механическую работу. Принцип работы ДВС основан на физическом эффекте теплового расширения газов, которое образуется в процессе сгорания топливно-воздушной смеси под давлением внутри цилиндров двигателя.

Классификация двигателей внутреннего сгорания

В процессе эволюции ДВС выделились следующие, доказавшие свою эффективность, типы данных моторов:

  • Поршневые двигатели внутреннего сгорания. В них рабочая камера находится внутри цилиндров, а тепловая энергия преобразуется в механическую работу посредством кривошипно-шатунного механизма, передающего энергию движения на коленчатый вал. Поршневые моторы делятся, в свою очередь, на
  • карбюраторные, в которых воздушно-топливная смесь формируется в карбюраторе, впрыскивается в цилиндр и воспламеняется там искрой от свечи зажигания;

Технику с прочими видами ДВС можно вносить в Красную книгу. В наше время автомобили с роторно-поршневыми двигателями делает только «Mazda». Опытную серию автомашин с газотурбинным двигателем выпускал «Chrysler», но было это в 60-х годах, и более к этому вопросу никто из автопроизводителей не возвращался. В СССР газотурбинными двигателями оснащались танки «Т-80» и десантные корабли «Зубр», но в дальнейшем решено было отказаться от данного типа моторов. В связи с этим, подробно остановимся на «завоевавших мировое господство» поршневых двигателях внутреннего сгорания.

Устройство двигателя внутреннего сгорания

Корпус двигателя объединяет в единый организм:

  • блок цилиндров, внутри камер сгорания которых воспламеняется топливно-воздушная смесь, а газы от этого сгорания приводят в движение поршни;
  • кривошипно-шатунный механизм, который передаёт энергию движения на коленчатый вал;
  • газораспределительный механизм, который призван обеспечивать своевременное открытие/закрытие клапанов для впуска/выпуска горючей смеси и отработанных газов;
  • система подачи («впрыска») и воспламенения («зажигания») топливно-воздушной смеси;
  • система удаления продуктов горения (выхлопных газов).

Четырёхтактный двигатель внутреннего сгорания в разрезе

При пуске двигателя в его цилиндры через впускные клапаны впрыскивается воздушно-топливная смесь и воспламеняется там от искры свечи зажигания. При сгорании и тепловом расширении газов от избыточного давления поршень приходит в движение, передавая механическую работу на вращение коленвала.

Работа поршневого двигателя внутреннего сгорания осуществляется циклически. Данные циклы повторяются с частотой несколько сотен раз в минуту. Это обеспечивает непрерывное поступательное вращение выходящего из двигателя коленчатого вала.

Принципы работы ДВС

— Принцип работы двухтактного двигателя

Когда происходит запуск двигателя, поршень, увлекаемый поворотом коленчатого вала, приходит в движение. Как только он достигает своей нижней мёртвой точки (НМТ) и переходит к движению вверх, в камеру сгорания цилиндра подаётся топливно-воздушную смесь.

В своём движении вверх поршень сжимает её. В момент достижения поршнем его верхней мёртвой точки (ВМТ) искра от свечи электронного зажигания воспламеняет топливно-воздушную смесь. Моментально расширяясь, пары горящего топлива стремительно толкают поршень обратно к нижней мёртвой точке.

В это время открывается выпускной клапан, через который раскалённые выхлопные газы удаляются из камеры сгорания. Снова пройдя НМТ, поршень возобновляет своё движение к ВМТ. За это время коленчатый вал совершает один оборот.

При новом движении поршня опять открывается канал впуска топливно-воздушной смеси, которая замещает весь объём вышедших отработанных газов, и весь процесс повторяется заново. Ввиду того, что работа поршня в подобных моторах ограничивается двумя тактами, он совершает гораздо меньшее, чем в четырёхтактном двигателе, количество движений за определённую единицу времени. Минимизируются потери на трение. Однако выделяется большая тепловая энергия, и двухтактные двигатели быстрей и сильнее греются.

В двухтактных двигателях поршень заменяет собой клапанный механизм газораспределения, в ходе своего движения в определённые моменты открывая и закрывая рабочие отверстия впуска и выпуска в цилиндре. Худший, по сравнению с четырёхтактным двигателем, газообмен является главным недостатком двухтактной системы ДВС. В момент удаления выхлопных газов теряется определённый процент не только рабочего вещества, но и мощности.

— Принцип работы четырёхтактного двигателя

Данных недостатков лишены четырёхтактные ДВС, которые, в различных вариантах, и устанавливаются на практически все современные автомобили, трактора и прочую технику. В них впуск/ выпуск горючей смеси/выхлопных газов осуществляются в виде отдельных рабочих процессов, а не совмещены со сжатием и расширением, как в двухтактных. При помощи газораспределительного механизма обеспечивается механическая синхронность работы впускных и выпускных клапанов с оборотами коленвала. В четырёхтактном двигателе впрыск топливно-воздушной смеси происходит только после полного удаления отработанных газов и закрытия выпускных клапанов.

Процесс работы двигателя внутреннего сгорания

Каждый такт работы составляет один ход поршня в пределах от верхней до нижней мёртвых точек. При этом двигатель проходит через следующие фазы работы:

  • Такт первый, впуск. Поршень совершает движение от верхней к нижней мёртвой точке. В это время внутри цилиндра возникает разряжение, открывается впускной клапан и поступает топливно-воздушная смесь. В завершение впуска давление в полости цилиндра составляет в пределах от 0,07 до 0,095 Мпа; температура — от 80 до 120 градусов Цельсия.
  • Такт второй, сжатие. При движении поршня от нижней к верхней мёртвой точке и закрытых впускном и выпускном клапане происходит сжатие горючей смеси в полости цилиндра. Этот процесс сопровождается повышением давления до 1,2—1,7 Мпа, а температуры — до 300-400 градусов Цельсия.
  • Такт третий, расширение. Топливно-воздушная смесь воспламеняется. Это сопровождается выделением значительного количества тепловой энергии. Температура в полости цилиндра резко возрастает до 2,5 тысяч градусов по Цельсию. Под давлением поршень быстро движется к своей нижней мёртвой точке. Показатель давления при этом составляет от 4 до 6 Мпа.
  • Такт четвёртый, выпуск. Во время обратного движения поршня к верхней мёртвой точке открывается выпускной клапан, через который выхлопные газы выталкиваются из цилиндра в выпускной трубопровод, а затем и в окружающую среду. Показатели давление в завершающей стадии цикла составляют 0,1-0,12 Мпа; температуры — 600-900 градусов по Цельсию.

Вспомогательные системы двигателя внутреннего сгорания

— Система зажигания

Система зажигания является частью электрооборудования машины и предназначена для обеспечения искры, воспламеняющей топливно-воздушную смесь в рабочей камере цилиндра. Составными частями системы зажигания являются:

  • Источник питания. Во время запуска двигателя таковым является аккумуляторная батарея, а во время его работы — генератор.
  • Включатель, или замок зажигания. Это ранее механическое, а в последние годы всё чаще электрическое контактное устройство для подачи электронапряжения.
  • Накопитель энергии. Катушка, или автотрансформатор — узел, предназначенный для накопления и преобразования энергии, достаточной для возникновения нужного разряда между электродами свечи зажигания.
  • Распределитель зажигания (трамблёр). Устройство, предназначенное для распределения импульса высокого напряжения по проводам, ведущим к свечам каждого из цилиндров.

Система зажигания ДВС

— Впускная система

Система впуска ДВС предназначена для бесперебойной подачи в мотор атмосферного воздуха, для его смешивания с топливом и приготовления горючей смеси. Следует отметить, что в карбюраторных двигателях прошлого впускная система состоит из воздуховода и воздушного фильтра. И всё. В состав впускной системы современных автомобилей, тракторов и прочей техники входят:

  • Воздухозаборник. Представляет собою патрубок удобной для каждого конкретного двигателя формы. Через него атмосферный воздух всасывается внутрь двигателя, посредством разницы в показателях давления в атмосфере и в двигателе, где при движении поршней возникает разрежение.
  • Воздушный фильтр. Это расходный материал, предназначенный для очистки поступающего в мотор воздуха от пыли и твёрдых частиц, их задержки на фильтре.
  • Дроссельная заслонка. Воздушный клапан, предназначенный для регулирования подачи нужного количества воздуха. Механически она активируется нажатием на педаль газа, а в современной технике — при помощи электроники.
  • Впускной коллектор. Распределяет поток воздуха по цилиндрам мотора. Для придания воздушному потоку нужного распределения используются специальные впускные заслонки и вакуумный усилитель.
  • Топливный бак — ёмкость для хранения бензина или дизтоплива, с устройством для забора горючего (насосом).
  • Топливопроводы — комплекс трубок и шлангов, по которым к двигателю поступает его «пища».
  • Устройство смесеобразования, то есть карбюратор или инжектор — специальный механизм для приготовления топливно-воздушной смеси и её впрыска в ДВС.
  • Электронный блок управления (ЭБУ) смесеобразованием и впрыском — в инжекторных двигателях это устройство «отвечает» за синхронную и эффективную работу по образованию и подаче горючей смеси в мотор.
  • Топливный насос — электрическое устройство для нагнетания бензина или солярки в топливопровод.
  • Топливный фильтр — расходный материал для дополнительной очистки топлива в процессе его транспортировки от бака к мотору.

Схема топливной системы ДВС

— Система смазки

Предназначение системы смазки ДВС — уменьшение силы трения и её разрушительного воздействия на детали; отведение части излишнего тепла; удаление продуктов нагара и износа; защита металла от коррозии. Система смазки ДВС включает в себя:

  • Поддон картера — резервуар для хранения моторного масла. Уровень масла в поддоне контролируется не только специальным щупом, но и датчиком.
  • Масляный насос — качает масло из поддона и подаёт его к нужным деталям двигателя через специальные просверленные каналы-«магистрали». Под действием силы тяжести масло стекает со смазанных деталей вниз, обратно в поддон картера, накапливается там, и цикл смазки повторяется снова.
  • Масляный фильтр задерживает и удаляет из моторного масла твёрдые частицы, образующиеся из нагара и продуктов износа деталей. Фильтрующий элемент всегда меняется на новый вместе с каждой заменой моторного масла.
  • Масляный радиатор предназначен для охлаждения моторного масла, с помощью жидкости из системы охлаждения двигателя.

— Выхлопная система

Выхлопная система ДВС служит для удаления отработанных газов и уменьшения шумности работы мотора. В современной технике выхлопная система состоит из следующих деталей (по порядку выхода отработанных газов из мотора):

  • Выпускной коллектор. Это система труб из жаропрочного чугуна, которая принимает раскалённые отработанные газы, гасит их первичный колебательный процесс и отправляет далее, в приёмную трубу.
  • Приёмная труба — изогнутый газоотвод из огнестойкого металла, в народе именуемый «штанами».
  • Резонатор, или, говоря народным языком, «банка» глушителя — ёмкость, в которой происходит разделение выхлопных газов и снижение их скорости.
  • Катализатор — устройство, предназначенное для очистки выхлопных газов и их нейтрадизации.
  • Глушитель — ёмкость с комплексом специальных перегородок, предназначенных для многократного изменения направления движения потока газов и, соответственно, их шумности.

Выхлопная система ДВС

— Система охлаждения

Если на мопедах, мотороллерах и недорогих мотоциклах до сих пор применяется воздушная система охлаждения двигателя — встречным потоком воздуха, то для более мощной техники её, разумеется, недостаточно. Здесь работает жидкостная система охлаждения, предназначенная для забирания излишнего тепла у мотора и снижения тепловых нагрузок на его детали.

  • Радиатор системы охлаждения служит для отдачи избыточного тепла в окружающую среду. Он состоит из большого количества изогнутых аллюминиевых трубок, с рёбрами для дополнительной теплоотдачи.
  • Вентилятор предназначен для усиления охлаждающего эффекта на радиатор от встречного потока воздуха.
  • Водяной насос (помпа) — «гоняет» охлаждающую жидкость по «малому» и «большому» кругам, обеспечивая её циркуляцию через двигатель и радиатор.
  • Термостат — специальный клапан, обеспечивающий оптимальную температуру охлаждающей жидкости путём запуска её по «малому кругу», минуя радиатор (при холодном двигателе) и по «большому кругу», через радиатор — при прогретом двигателе.

Слаженная работа данных вспомогательных систем обеспечивает максимальную отдачу от двигателя внутреннего сгорания и его надёжность.

В заключение необходимо отметить, что в обозримом будущем не предвидится появления достойных конкурентов двигателю внутреннего сгорания. Есть все основания утверждать, что в своём современном, усовершенствованном виде, он ещё несколько десятилетий останется господствующим видом мотора во всех отраслях мировой экономики.

Принцип работы и рабочие циклы двигателя автомобиля (ДВС)

На автомобилях устанавливают двигатели внутреннего сгорания (ДВС), у которых топливо сгорает внутри цилиндра. В основу положено свойство газов расширяться при нагревании. Рассмотрим принцип работы двигателя и его рабочие циклы.

Рабочий цикл четырехтактного бензинового двигателя

Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу. Если рабочий цикл совершается за два хода поршня, т.е. за один оборот коленчатого вала, то такой двигатель называется двухтактным. Автомобильные двигатели работают, как правило, по четырехтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения (рабочего хода) и выпуска.

Крайние положения поршня, при которых он наиболее удален от оси коленчатого вала или приближен к ней, называются верхней и нижней «мертвыми» точками (ВМТ и НМТ).

Принцип работы ДВС — схематично

1. Впуск

По мере того, как коленчатый вал двигателя делает первый полуоборот, поршень перемещается от ВМТ к НМТ, впускной клапан открыт, выпускной клапан закрыт. В цилиндре создается разряжение, вследствие чего свежий заряд горючей смеси, состоящий из паров бензина и воздуха, засасывается через впускной газопровод в цилиндр и, смешиваясь с остаточными отработавшими газами, образует рабочую смесь.

2. Сжатие

После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала (второй полуоборот) поршень перемещается от НМТ к ВМТ при закрытых клапанах. По мере уменьшения объема температура и давление рабочей смеси повышаются.

3. Расширение или рабочий ход

В конце такта сжатия рабочая смесь воспламеняется от электрической искры и быстро сгорает, вследствие чего температура и давление образующихся газов резко возрастает, поршень при этом перемещается от ВМТ к НМТ. В процессе такта расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип приводит во вращение коленчатый вал.

При расширении газы совершают полезную работу, поэтому ход поршня при третьем полуобороте коленчатого вала называют рабочим ходом. В конце рабочего хода поршня, при нахождении его около НМТ открывается выпускной клапан, давление в цилиндре снижается до 0.3 — 0.75 МПа, а температура до 950 — 1200оС.

4. Выпуск

При четвертом полуобороте коленчатого вала поршень перемещается от НМТ к ВМТ. При этом выпускной клапан открыт, и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной газопровод.

Рабочий цикл четырехтактного дизеля

В отличие от бензинового двигателя, при такте «впуск» в цилиндры дизеля поступает чистый воздух. Во время такта «сжатие» воздух нагревается до 600оС. В конце этого такта в цилиндр впрыскивается определенная порция топлива, которое самовоспламеняется.


Впуск

При движении поршня от ВМТ к НМТ вследствие образующегося разряжения из воздушного фильтра в цилиндр через открытый впускной клапан поступает атмосферный воздух. Давление воздуха в цилиндре составляет 0.08 — 0.095 МПа, а температура 40 — 60°С.

Сжатие

Поршень движется от НМТ к ВМТ; впускной и выпускной клапаны закрыты, вследствие этого перемещающийся вверх поршень сжимает поступивший воздух. Для воспламенения топлива необходимо, чтобы температура сжатого воздуха была выше температуры самовоспламенения топлива. При ходе поршня к ВМТ цилиндр через форсунку впрыскивается дизельное топливо, подаваемое топливным насосом.

Расширение или рабочий ход

Впрыснутое в конце такта сжатия топливо, перемешиваясь с нагретым воздухом, воспламеняется, и начинается процесс сгорания, характеризующийся быстрым повышением температуры и давления. При этом максимальное давление газов достигает 6 — 9 МПа, а температура 1800 — 2000°С. Под действием давления газов поршень перемещается от ВМТ в НМТ — происходит рабочий ход. Около НМТ давление снижается до 0.3 — 0.5 МПа, а температура до 700 — 900оС.

Выпуск

Поршень перемещается от НМТ в ВМТ и через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра. Давление газов снижается до 0.11 — 0.12 МПа, а температура до 500-700оС. После окончания такта выпуска при дальнейшем вращении коленчатого вала рабочий цикл повторяется в той же последовательности.

Принцип работы многоцилиндровых двигателей

На автомобилях устанавливают многоцилиндровые двигатели. Чтобы многоцилиндровый двигатель работал равномерно, такты расширения должны следовать через равные углы поворота коленчатого вала (т. е. через равные промежутки времени).
Последовательность чередования одноименных тактов в цилиндрах называют порядком работы двигателя. Порядок работы большинства четырехцилиндровых двигателей 1-3-4-2 или 1-2-4-3. Значит после рабочего хода в первом цилиндре следующий происходит в третьем, затем в четвертом и, наконец, во втором цилиндре. Определенная последовательность соблюдается и в других многоцилиндровых двигателях.

Диаграмма работы двигателя по схеме 1-2-4-3

Многоцилиндровые двигатели бывают рядными и V-образными. В рядных двигателях цилиндры расположены вертикально, а в V-образных — под углом. Последние характеризуются меньшей габаритной длиной по сравнению с первыми. Современные восьмицилиндровые двигатели выполняют двухрядными с V-образным расположением цилиндров.

Бензиновый двигатель внутреннего сгорания: принцип работы

В основе принципа работы любого двигателя внутреннего сгорания лежит воспламенение небольшого количества топлива, обязательно высокоэнергетического, в небольшом замкнутом пространстве. При этом выделяется большое количество энергии, в виде теплового расширения нагретых газов. Так как давление под поршнем равно нормальному атмосферному, а компрессия в цилиндре намного превышает его, то под действием разницы давлений поршень совершает движение.

Бензиновый двигатель внутреннего сгорания: принцип работы

Для того чтобы двигатель внутреннего сгорания постоянно производил полезную механическую энергию, камеру сгорания цилиндра необходимо циклично заполнять новыми дозами воздушно-топливной смеси. В результате, поршень приводит в действие коленчатый вал, который и придает движение колесам автомобиля.

Двигатели почти всех современных автомобилей являются четырёхтактными по своему циклу работы, и энергия, полученная от сжигания бензина, почти полностью преобразовывается в полезную. Цикл Отто, так называется подобный принцип, по имени Николауса Отто, изобретателя двигателя внутреннего сгорания (1867 год).

Схема работы бензинового двигателя внутреннего сгорания:

— такт впуска;

— такт сжатия;

— рабочий такт;

— такт выпуска.

Главным элементом двигателя внутреннего сгорания является поршень, который связан шатуном с коленчатым валом. Так называемый, кривошипно-шатунный механизм, преобразующий прямолинейное возвратно-поступательное движение поршня в радиальное движение коленвала.

Ниже более подробно расписан рабочий цикл бензинового двигателя:

1. Такт впуска

Поршень опускается из верхней крайней точки в нижнюю крайнюю точку, при этом кулачки распределительного вала открывают впускной клапан, и через него воздушно-топливная смесь поступает из карбюратора в камеру сгорания цилиндра. Когда поршень доходит до нижней мертвой точки, впускной клапан закрывается.

2. Такт сжатия

Поршень возвращается из нижней мертвой точки в верхнюю, сжимая топливную смесь. При этом существенно увеличивается температура смеси. Когда поршень доходит до верхней крайней точки, свеча зажигания воспламеняет сжатую рабочую смесь.

3. Рабочий такт

Воспламененная горючая смесь сгорает при высокой температуре, образовавшиеся газы моментально расширяются и толкают поршень вниз. Впускной и выпускной клапаны, во время этого такта, закрыты.

4. Такт выпуска

Коленвал продолжает вращаться по инерции, поршень идет в верхнюю мертвую точку. В то же время открывается клапан выпуска, и поршень вытесняет отработанные газы в выхлопную трубу. Когда он достигает верхней крайней точки, выпуск закрывается.

Следующий такт необязательно должен начинаться после окончания предыдущего. Такая ситуация, когда одновременно открыты оба клапана (впуска и выпуска), называется перекрытием клапанов. Это необходимо для эффективного наполнения цилиндра воздушно-топливным соединением, а также для более результативной очистки цилиндров от выхлопных газов. После этого рабочий цикл повторяется.

 

Отличительной особенностью двигателя внутреннего сгорания является то, что поршень двигается прямолинейно, а движение, осуществляющееся при сгорании топливной смеси, — вращательное. Линейный ход поршней преобразовывается в поворотное движение, необходимое для работы колес автомобиля, при помощи коленчатого вала.

Ниже рассмотрены основные элементы двигателя, которые принимают участие в преобразовании тепловой энергии в механическую.

1. Свеча зажигания

Искровая свеча вырабатывает электрическую искру, которая воспламеняет воздушно-топливную смесь. Для равномерной и бесперебойной работы поршня искра должна появляться в заданный момент времени.

2. Клапаны

Выпускные и впускные клапаны закрываются и открываются в заданный момент, впуская воздух в цилиндр и выпуская отработанные газы. Во время процесса горения топливной смеси оба клапана закрыты. Клапан выпуска открывается до достижения поршня крайней нижней точки и остается открытым до прохождения поршня к верхней крайней точке. К этому моменту впускной уже будет открыт.

3. Поршень

Образующиеся во время сгорания топливной смеси горячие газы выдавливают поршень, передавая энергию через шатун и палец коленвалу. Для сохранения компрессии в цилиндрах на поршень устанавливаются уплотняющие кольца, изготовленные из высокопрочного чугуна. Для повышения износостойкости поршневые кольца покрываются тонким слоем пористого хрома. К основным характеристикам колец относятся следующие показатели: высота, наружный диаметр, радиальная толщина, форма разреза в стыке и упругость. Внешний диаметр поршневого кольца должен соответствовать внутреннему диаметру цилиндра. В настоящее время применяются узкие кольца (высотой — 1,5-2 мм) и широкие (высотой — 2,5-3 мм). Первые более надежны при частом движении поршня. Радиальная толщина увеличивается с возрастанием диаметра цилиндра. Износ поршневых колец происходит, в среднем, через каждые 3 тысячи километров пробега.

4. Шатун

Шатун соединяет коленчатый вал с поршнем. Вращение шатуна является двухсторонним, это нужно для того, чтобы его угол мог изменяться в зависимости от местоположения поршня, обеспечивая движение коленвала. Обычно шатуны бывают стальными, иногда — алюминиевыми.

5. Коленчатый вал

Поворот коленчатого вала осуществляется вследствие вертикального хода поршня. Коленвал приводит в движение колеса автомобиля.

 

Современные двигатели внутреннего сгорания делятся на два типа: карбюраторные и инжекторные.

В карбюраторном двигателе процесс приготовления воздушно-топливной смеси происходит в специальном устройстве — карбюраторе. В нем, используя аэродинамическую силу, горючее смешивается с воздушным потоком, засасываемым двигателем.

В инжекторном типе двигателя топливо впрыскивается под давлением в поток воздуха при помощи специальных форсунок. Дозировка горючего происходит при помощи электронного блока управления, который открывает форсунку электрическими импульсами. В двигателях устаревшей конструкции, этот процесс происходит с использованием специфической механической системы. Последний тип почти полностью вытеснил устаревшие карбюраторные силовые агрегаты. Это произошло из-за современных экологических стандартов, которые устанавливают высокие нормы чистоты выхлопных газов. Что повлекло за собой внедрение новых эффективных нейтрализаторов выхлопа (каталитических конвертеров или катализаторов). Такие системы нейтрализации требуют постоянного состава отработанных газов, который могут обеспечить только инжекторные системы впрыска топлива, контролируемые электронным блоком управления. Нормальная работа катализатора обеспечивается исключительно при соблюдении стабильного состава выхлопных газов. Необходимостью этого является то, что он требует содержания определенных пропорций кислорода в отработанных газах. Для соблюдения подобных условий в таких системах катализации обязательно устанавливается кислородный датчик (лямбда-зонд), который анализирует процент содержания кислорода в выхлопных газах и контролирует точность пропорций оксида азота, несгоревших остатков топлива и углеводородов.

 

Основными вспомогательными системами являются:

Система зажигания. Отвечает за поджигание топливной смеси в нужный момент. Она бывает контактной, бесконтактной и микропроцессорной. Система контактного типа состоит из распределителя-прерывателя, катушки, выключателя зажигания и свечей. Бесконтактная система аналогична предыдущей, только вместо прерывателя стоит индукционный датчик. Управление системой зажигания микропроцессорного типа осуществляется специальным компьютерным блоком, в ее состав входит датчик положения коленвала, коммутатор, блок управления зажиганием, катушки, датчик температуры двигателя и свечи. В двигателях с инжекторной системой к ней добавляется еще датчик положения дроссельной заслонки и термоанемометрический датчик массового расхода воздуха.

Система запуска двигателя. Состоит из специального электромотора (стартера), подключенного к аккумулятору, или механического стартера, использующего физические усилия человека. Применение этой системы объясняется тем, что для запуска рабочего цикла двигателя необходимо, чтобы коленчатый вал произвел хотя бы один оборот.

Система выпуска выхлопных газов. Обеспечивает своевременное удаление продуктов горения топливной смеси из цилиндров. Включает в себя выпускной коллектор, катализатор и глушитель.

Система приготовления воздушно-топливной смеси. Предназначена для приготовления и впрыска смеси горючего с воздухом, в камеру сгорания цилиндров двигателя. Может быть карбюраторной или инжекторной.

Система охлаждения. Современная система состоит из вентилятора, радиатора, термостата, расширительного бачка, жидкостного насоса, датчика температуры, рубашки и головки охлаждения блока цилиндров. Предназначена для создания и поддержания приемлемого температурного режима работы ДВС. Обеспечивает отвод тепла от цилиндров клапанной системы и поршневой группы. Может быть воздушной, жидкостной или гибридной.

Система смазки. Состоит из масляного фильтра, маслонасоса с маслоприемником, каналов в блоке и головках цилиндров для впрыска масла под высоким давлением, поддона картера. Предназначена для подачи автомобильного масла с целью уменьшения трения и охлаждения, к взаимодействующим деталям двигателя. Также циркуляция масла смывает нагар и продукты механического износа.

Источник: Авто Релиз.ру.

Как работают 4-тактные двигатели | Briggs & Stratton

Хотите знать, как работает двигатель малого объема? В этом видеоролике подробно описывается то, как работают 4-тактные двигатели Briggs & Stratton для обеспечения максимальной мощности ваших газонокосилок & наружного оборудования.

Четырехтактные двигатели Briggs & Stratton являются лучшими в мире с точки зрения производительности и качества. Это связано с верхним расположением клапанов в 4-тактных двигателях. Она максимально увеличивает мощность вашего двигателя Briggs & Stratton, что в свою очередь повышает производительность вашей газонокосилки или другого наружного силового оборудования.

Процесс работы 4-тактного двигателя

  • Этап 1: Такт впуска
    Во время такта впуска воздух и топливо проходят через карбюратор и попадают в поршень при открытии впускного клапана. Клапан закрывается, отсекая подачу воздушно-топливной смеси, когда поршень достигает нижней части такта.
  • Этап 2: Такт компрессии
    Теперь, когда топливо находится в камере компрессии, двигатель максимизирует создаваемую мощность, сжимая это топливо в меньшем пространстве. Поршень возвращается наверх в верхнюю точку, захватывая воздушно-топливную смесь между поршнем и головкой цилиндров. Эффективность четырехтактных двигателей Briggs & Stratton обеспечивается за счет максимальной компрессии на этом этапе.
  • Этап 3: Рабочий ход
    Теперь, когда воздушно-топливная смесь сжата, самое время добавить искру. Катушка зажигания создает высокое напряжение, которое разряжается в камере свечей зажигания. Как только воздушно-топливная смесь загорается, горячий воздух заставляет поршень опуститься вниз цилиндра.
  • Этап 4: Такт выхлопа
    Последним этапом в четырехтактном двигателе является такт выхлопа. Когда поршень выталкивает отработанные газы из камеры, открывается выпускной клапан. Как только этот процесс завершается, закрывается выпускной клапан и открывается впускной клапан, чтобы снова запустить процесс.

Для повторения каждого цикла требуется два оборота коленчатого вала. Интересно, как двигатель малого объема продолжает работать, когда только один из 4-х тактов создает мощность? Во время рабочего хода маховик получает толчок. Создаваемые импульс и инерция поддерживают его движение между рабочими тактами.

Принципы работы простейшего одноцилиндрового двигателя внутреннего сгорания

В этой статье будут рассмотрены принципы работы простейшего одноцилиндрового двигателя внутреннего сгорания. Этот двигатель взят для простоты понятия физических процессов, для того чтобы понять, как работают все подобные двигатели. На самом деле всё намного сложнее каждый процесс имеет столько особенностей, что и у специалистов, хорошо знающих работу двигателя, часто возникают споры по многим вопросам. Но все бензиновые двигатели (двигатели с принудительным зажиганием) работают на основе принципов, впервые описанных немецким инженером Отто.

Двигатель нужен для обеспечения автомобиля (если это не стационарный двигатель) механической энергией. Двигатель создаёт эту энергию. Но из школьного курса физики известно, что энергия не возникает из ничего и не исчезает бесследно. Что же является источником механической энергии, вырабатываемой двигателем, какую энергию он преобразует в механическую? Источником энергии двигателя внутреннего сгорания является энергия межмолекулярных связей углеводородного топлива, сгорающего в цилиндрах двигателя. Во время сгорания углеводородного топлива происходит разрыв этих связей с большим выделением тепловой энергии, которую двигатель и преобразует в механическую энергию в форме вращательного движения.

Для химических реакций, происходящих при сгорании топлива, требуется окислитель. Для этого используется кислород, содержащийся в окружающем атмосферном воздухе. Воздух это смесь газов, кислорода в этой смеси приблизительно 21%. В цилиндрах двигателя сгорает смесь топлива с воздухом. В идеальном случае все молекулы углеводородов, поданные в цилиндр, сгорая, соединяются со всеми молекулами кислорода, поданными в цилиндр во время одного рабочего цикла. То есть после процесса сгорания в цилиндре двигателя не должно остаться не одной молекулы топлива, и не одной свободной молекулы кислорода.

Химические реакции, во время которых полностью используются все активные вещества, называются стехиометрическими. Во время стехиометрического процесса для полного сгорания всех молекул 1-го килограмма топлива необходимо использовать приблизительно 14,7 килограммов воздуха. Это идеальный процесс, но реально при работе двигателя на различных режимах обеспечить его достаточно трудно, тем более что на некоторых режимах двигатель будет работать устойчиво, только если смесь отличается от стехиометрической.

Разобравшись, откуда берётся механическая энергия, приступим к изучению принципов работы двигателя. Как уже было отмечено ранее, здесь будет рассматриваться работа четырёхтактного двигателя внутреннего сгорания, работающего по циклу Отто. Основным признаком цикла Отто можно назвать то, что перед воспламенением топливовоздушная смесь предварительно сжимается, а зажигание смеси происходит от постороннего источника – в современных двигателях только при помощи электрической искры.

За время становления и развития двигателя внутреннего сгорания было изобретено очень много различных конструкций и, разумеется, двигатель, работающий на принципах цикла Отто, был далеко не единственный. Из двигателей с возвратной поступательным движением поршня можно назвать двигатель, работающий по циклу Аткинсона, а из двигателей с круговым движением поршня наиболее известен роторно-поршневой двигатель Ванкеля. Существует большое количество вообще экзотических конструкций. Но все они не получили широкого практического применения. Более 99,9% используемых в настоящее время двигателей внутреннего сгорания работают по циклу Отто, (в данной статье сюда будут отнесены и дизельные двигатели) которые в свою очередь подразделяются на двигатели с электрическим воспламенением смеси и дизельные двигатели, с компрессионным воспламенением смеси.

Принципы работы таких двигателей и будут рассмотрены в этой статье.

И бензиновые и дизельные двигатели могут быть не только четырёхтактными, но и двухтактными. В настоящее время двухтактные двигатели на автомобиле не применяются, поэтому в данной главе они рассматриваться не будут.

Прежде чем рассматривать принципы работы двигателя рассмотрим, из каких основных деталей он состоит.

Основные детали простейшего ДВС

  1. Цилиндр.
  2. Поршень.
  3. Камера сгорания.
  4. Шатун.
  5. Коленчатый вал.
  6. Впускной канал.
  7. Впускной клапан.
  8. Впускной распределительный вал.
  9. Выпускной канал.
  10. Выпускной клапан.
  11. Выпускной распределительный вал.
  12. Свеча зажигания.
  13. Топливная форсунка (не показана).
  14. Маховик двигателя (не показан).

1. Цилиндр – основа двигателя, именно в нём происходит процесс сгорания топлива, цилиндр является направляющим элементом для движения поршня.

2. Поршень – деталь, перемещающаяся в цилиндре под воздействием расширяющихся газов или под воздействием кривошипно-шатунного механизма. Условно примем, что скользящее соединение, между поршнем и стенками цилиндра абсолютно герметично, то есть, ни какие газа не могут просочиться через это соединение.

3. Камера сгорания – пространство над поршнем, когда поршень находится в самой верхней точке своего хода (ВМТ).

4. Шатун – это стержень, передающий усилие от поршня к кривошипу коленчатого вала и, наоборот, от коленчатого вала к поршню.

5. Коленчатый вал – служит для преобразования возвратно-поступательного движения поршня во вращательное, именно такое движение наиболее удобно для использования.

6. Впускной канал – канал, по которому топливовоздушная смесь поступает в цилиндр двигателя.

7. Впускной клапан – соединяет впускной канал с цилиндром двигателя. Условно принимаем, что в закрытом состоянии клапан полностью герметичен, а в открытом состоянии он не оказывает сопротивление проходу топливовоздушной смеси в цилиндр двигателя.

8. Впускной распределительный вал – открывает и закрывает впускной клапан в нужное время.

9. Выпускной канал – канал, по которому отработавшие газы выводятся из двигателя в атмосферу.

10. Выпускной клапан – соединяет выпускной канал с цилиндром двигателя. Условно принимаем, что в закрытом состоянии клапан полностью герметичен, а в открытом состоянии он не оказывает сопротивление проходу отработавших газов из цилиндра двигателя.

11. Выпускной распределительный вал – открывает и закрывает выпускной клапан в нужное время.

12. Свеча зажигания – служит для воспламенения сжатой топливовоздушной смеси в необходимое время.

13. Топливная форсунка – служит для распыления топлива в воздухе, поступающем в цилиндр двигателя.

14. Маховик двигателя – служит для необходимого перемещения поршня за счёт сил инерции во время всех тактов, кроме рабочего.

Далее придётся понять и запомнить довольно много специальных терминов, но сейчас упомянем, без полного объяснения, только некоторые.

1 — Верхняя мёртвая точка (ВМТ) – точка в которой поршень останавливается при изменении направления своего движения вверх цилиндра на движение вниз.

2 — Нижняя мёртвая точка (НМТ) – точка в которой поршень останавливается при изменении направления своего движения вниз цилиндра на движение вверх.

3 — Ход поршня – расстояние, проходимое поршнем при перемещении от ВМТ к НМТ или наоборот.

4 — Такт двигателя – перемещение поршня от одной мёртвой точки к другой. Во время каждого такта коленчатый вал двигателя совершает половину оборота (180?).

5 — Цикл – периодичное повторение четырёх тактов двигателя во время работы. Полный цикл двигателя состоит из четырёх тактов и совершается за два полных оборота коленчатого вала (720?).

Принципы работы простейшего одноцилиндрового четырёхтактного двигателя:

1 — Такт всасывания

(поступления топливовоздушной смеси в цилиндр).

Впускной клапан открыт.
Выпускной клапан закрыт.

Под воздействием внешнего усилия (стартёра двигателя, заводной ручки или инерции маховика), передаваемого поршню шатуном, поршень перемещается от ВМТ к НМТ. Поскольку соединение между поршнем и цилиндром полностью герметично, в пространстве над поршнем образуется пониженное давление (разрежение). Под воздействием атмосферного давления воздух через впускной канал, и открытый впускной клапан, начинает поступать в цилиндр двигателя. В это время топливная форсунка распыляет в поступающем воздухе необходимое количество топлива, в результате чего в цилиндр поступает горючая топливовоздушная смесь.

При достижении поршнем НМТ впускной клапан закрывается.

2 — Такт сжатия.

Оба клапана закрыты.

Под воздействием внешнего усилия поршень перемещается из НМТ к ВМТ. При этом в цилиндре происходит сжатие топливовоздушной смеси. По окончании такта сжатия, когда поршень встаёт в положении ВМТ, вся топливовоздушная смесь находится в сжатом состоянии в камере сгорания.

В это время свеча зажигания при помощи электрической искры воспламеняет сжатую топливовоздушную смесь. В дизельном двигателе в камеру сгорания при помощи топливной форсунки впрыскивается мелко распылённое топливо. В результате чего в обоих случаях происходит воспламенение смеси.

3 — Рабочий такт.

Оба клапана закрыты.

При сгорании топливовоздушной смеси в цилиндре резко поднимается температура и, главное, давление. Это давление равномерно давит во все стороны, но стенки камеры сгорания и цилиндра рассчитаны на это давления. А вод давление, оказываемое расширяющимися газами на поршень, днище которого является нижней частью камеры сгорания, заставляет поршень перемещаться вниз от ВМТ к НМТ. Это усилие через шатун передаётся на кривошип коленчатого вала, который преобразует поступательное движение поршня во вращательное движение.

При достижении поршнем НМТ открывается выпускной клапан.

4 — Такт выпуска.

Впускной клапан закрыт.
Выпускной клапан закрыт.

Под воздействием внешнего усилия, передаваемого на поршень через шатун, поршень перемещается из положения НМТ в положение ВМТ. Во время этого перемещения поршень вытесняет из цилиндра отработавшие газы через открытый выпускной клапан в выпускной канал и далее в атмосферу.

И так, мы рассмотрели полный цикл двигателя, состоящий из четырех тактов. Далее этот цикл повторяется бесконечно, пока двигатель не будет выключен или не закончится бензин в баке автомобиля.

Наверное, Вы обратили внимание, что из четырёх тактов полезным является только один – рабочий такт. Именно во время этого такта вырабатывается необходимая энергия. Все другие такты являются вспомогательными. Возможно, такая конструкция может показаться не эффективной, но лучшего, по всем показателям, пока ничего не изобретено. Да, существуют двухтактные двигатели, в которых полный цикл осуществляется за один поворот коленчатого вала. Существует роторно-поршневой двигатель Ванкеля, в котором вообще нет деталей, совершающих возвратно-поступательное движение, но этим конструкциям, при некоторых преимуществах, присущи свои недостатки, поэтому двигатели, работающие по четырёхтактному циклу Отто, в настоящее время имеют практически монопольное распространение в мире. И какой-либо замены им, в обозримом будущем, реально не предвидится.

Дизельный двигатель.

Двигатель, изобретённый немецким изобретателем Рудольфом Дизелем, очень похож и по конструкции и принципам работы на двигатель, работающий на бензине, описанный ранее. Но есть одно существенное различие. В этом двигателе воспламенение топливовоздушной смеси происходит не при помощи электрической искры, а за счёт контакта топлива с горячим воздухом находящемся в цилиндре. Такое воспламенение рабочей смеси называется компрессионным зажиганием. А откуда в цилиндре взялся горячий воздух, где его подогрели? Разумеется, никто его нарочно не грел. Если Вам когда-либо приходилось накачивать ручным насосом шину велосипеда, или автомобиля, вы могли обратить внимание, что довольно быстро насос начинает нагреваться. И вообще из школьного курса физики известно, что при сжатии все газы нагреваются, а воздух есть ничто иное, как смесь газов. Сжатие воздуха в двигателе происходит очень быстро, поэтому к концу такта сжатия воздух, находящийся в цилиндре дизельного двигателя, имеет очень высокую температуру (700 ? 900?С).

Поскольку физический процесс немного отличается от описанного ранее бензинового двигателя, в конструкции дизельного двигателя имеются некоторые отличия. Главное отличие в более высокой степени сжатия. У дизельного двигателя отсутствует свеча зажигания, вместо неё непосредственно в головку блока цилиндров вставлена топливная форсунка, разумеется, во впускном канале топливная форсунка отсутствует. В отличие от бензинового двигателя, в цилиндры которого во время такта всасывания поступает смесь бензина с воздухом, цилиндры дизельного воздуха поступает чистый воздух. При достижении поршнем ВМТ во время такта сжатия, в камере сгорания дизельного двигателя находится сжатый воздух, имеющий высокую температуру. И в то время, когда в бензиновом двигателе происходит воспламенение смеси при помощи электрической свечи, в камеру сгорания дизельного двигателя под большим давлением впрыскивается мелко распылённое дизельное топливо. Соприкасаясь с горячим воздухом, находящимся в камере сгорания, топливо воспламеняется.

Запомните основные отличия дизельного двигателя от бензинового.

1 – Топливо в дизельном двигателе воспламеняется не при помощи электрической искры, а за счёт контакта топлива с воздухом, имеющим высокую температуру.

2 – Регулировка крутящего момента и мощности двигателя осуществляется за счёт изменения качества, а не количества топливовоздушной смеси, поэтому в дизельном двигателе отсутствует дроссельная заслонка, регулирующая количество поступающего в цилиндры двигателя воздуха. То есть крутящий момент изменяется количеством впрыскивания топлива без изменения объёма всасываемого воздуха.

Не путайте дизельный двигатель с современными бензиновыми двигателями, с непосредственным впрыском. В этих двигателях топливная форсунка перенесена из впускного канала на головку двигателя, но не вместо свечи зажигания, а установлена совместно с ней. В этом случае топливная форсунка впрыскивает топливо непосредственно в цилиндр. Топливовоздушная смесь в таком двигателе воспламеняется не при помощи компрессионного зажигания, а при помощи электрической искры. А имеющаяся во впускном тракте дроссельная заслонка регулирует количество воздуха, поступающего в цилиндр.

Мы рассмотрели принципы работы простейшего одноцилиндрового двигателя, поняли, как возникает необходимая нам механическая энергия, но для простоты объяснения пришлось прибегнуть очень ко многим упрощениям. Например, клапаны открываются или закрываются не точно в ВМТ или НМТ. Свеча бензинового двигателя воспламеняет смесь или топливная форсунка дизельного двигателя нагнетает топливо в цилиндр не совсем точно при нахождении поршня в ВМТ. Да и двигатель, чаще всего имеет не один, а несколько цилиндров, от 1-го до 16, в автомобильной промышленности, а авиации или на флоте встречались двигатели, имеющие 64 цилиндра. Но основой любого двигателя является цилиндр.

Ранее были рассмотрены некоторые термины, имеющие отношение к цилиндру двигателя, теперь придётся их рассмотреть более подробно и познакомиться с некоторыми новыми.

1. Радиус кривошипа.

Расстояние между осями коренных и шатунных шеек коленчатого вала.
Коренными называются шейки коленчатого вала, в которых вал вращается в блоке цилиндров двигателя.
Шатунными называются шейки, к которым подсоединены шатуны поршней.
Для образования кривошипа ось коренных шеек смещена относительно оси шатунных шеек.
Радиус кривошипа является очень важным конструкционным параметром двигателя. Изменяя радиус кривошипа можно подобрать необходимое соотношение между крутящим моментом и максимальными оборотами двигателя, при неизменном объёме цилиндра.
(Обычно измеряется в миллиметрах)

2. Ход поршня:
Ход поршня, то есть расстояние между НМТ и ВМТ, равен удвоенной величине радиуса кривошипа.

3. Диаметр цилиндра:

Это диаметр внутреннего отверстия цилиндра. Условно принимаем, что диаметр поршня равен диаметру цилиндра.
(Обычно измеряется в миллиметрах)

4. Рабочий объём цилиндра:
Рабочим объёмом цилиндра называется объём, вытесняемый поршнем при перемещении от НМТ к ВМТ.
(Обычно измеряется в кубических сантиметрах (см?) или литрах.)
Рабочий объём цилиндра равен произведению хода поршня на площадь днища поршня.

5. Объём камеры сгорания.
Это объем пространства, находящегося над поршнем, во время нахождения поршня в ВМТ.
(Обычно измеряется в кубических сантиметрах.)
Камера сгорания большинства двигателей имеет сложную форму, поэтому определить её точный объём расчётным методом сложно. Для определения объёма камеры сгорания применяются различные методы прямого измерения.

6. Полный объём цилиндра.
Это сумма объёма камеры сгорания и рабочего объёма цилиндра.
(Обычно измеряется в кубических сантиметрах или литрах.)
Полный объём многоцилиндрового двигателя равен полному объёму одного цилиндра умноженному на количество цилиндров двигателя.

7. Степень сжатия.
Это соотношение полного объёма цилиндра к объёму камеры сгорания. Другими словами это соотношение объёма цилиндра в сумме с объёмом камеры сгорания, когда поршень находится НМТ к объёму пространства, расположенному над поршнем, когда поршень находится в положении ВМТ.
(Безразмерная единица)

8. Соотношение диаметра цилиндра к величине хода поршня:
Является очень важным параметром при конструировании двигателя внутреннего сгорания. Двигатели, в которых ход поршня больше диаметра цилиндра называются длиноходными, двигатели, в которых ход поршня меньше диаметра цилиндра, называются короткоходными.

Значение степени сжатия.

Степень сжатия это один из очень важных технических показателей двигателя внутреннего сгорания, поэтому рассмотрим его более подробно. В общем, повышение степени сжатия поднимает эффективность работы двигателя внутреннего сгорания, то есть при сгорании равного объёма топлива двигатель производит больше механической энергии. При повышенной степени сжатия молекулы топлива физически приближаются друг к другу. При этом топливовоздушная смесь имеет более высокую температуру, в результате чего достигается лучшее испарение частичек топлива и их более равномерное перемешивание с воздухом. Для каждого типа бензина имеется предельное значение степени сжатия. Чем выше октановое число бензина, тем выше степень сжатия, при которой может работать двигатель. При превышении допустимой степени сжатия и, соответственно температуры в камере сгорания, двигатель начинает работать с детонацией (самопроизвольное воспламенение смеси). Процесс детонации достаточно сложный, поэтому, на данном этапе, ограничимся пониманием, что причиной детонации является неправильное сгорание топливовоздушной смеси. При работе двигателя с детонацией резко уменьшается эффективность работы двигателя, и более того, возросшие ударные нагрузки могут привести к разрушению двигателя. Сильные стуки во время работы двигателя являются признаком детонации. Этот режим работы очень вреден для двигателя.

Современные электронные системы управления двигателем практически исключили работу двигателя с детонацией, но те, кому пришлось ездить на автомобилях с двигателями, не имеющих электронных систем управления, помнят, что режим детонации возникал довольно часто.

Раньше для повышения октанового числа бензина применялись специальные присадки на основе свинца. Применение этих присадок позволяло поднять степень сжатия до 12,5:1, но сейчас, в соответствии с законодательными нормами по охране окружающей среды, по причине того, что свинец наносит большой вред окружающей среде, применение присадок на основе свинца запрещено.

Степень сжатия современных бензиновых двигателей равна 10:1 ? 11:1. Величина степени сжатия может изменяться не только от качества предполагаемого к использованию бензина, но и от конструкции двигателя. Современные двигатели, имеющие систему управления двигателя с датчиком детонации, позволяют поднять степень сжатия до 13:1. Такие системы управления, регулируя угол опережения зажигания в каждом отдельном цилиндре, на основе информации, полученной от датчика детонации, позволяют двигателю работать на грани возникновения детонации, но не допускают её. Двигатели с непосредственным впрыском бензина в камеру сгорания из-за особенностей процессов, протекающих в цилиндре, тоже могут работать с повышенной степенью сжатия.

Поскольку воспламенение топлива в дизельных двигателях происходит за счёт нагрева воздуха, находящегося в цилиндре, степень сжатия дизельных двигателей выше, чем бензиновых. Степень сжатия дизельных двигателей лежит в диапазоне 14:1 ? 23:1.

Двигатели с принудительным нагнетанием воздуха в цилиндры (турбокомпрессор или механический нагнетатель), как бензиновые, так и дизельные, имеют более низкую степень сжатия по сравнению с атмосферными двигателями. Это вызвано тем, что перед началом такта сжатия в цилиндре находится большая масса воздуха (и топлива). Слишком высокое давление в цилиндре в конце такта сжатия может привести к разрушению двигателя.

Ранее отмечалось, что повышение степени сжатия явление, в целом, очень желательное, но в действительности всё несколько сложнее. Двигатель внутреннего сгорания, особенно автомобильный, постоянно работает на различных режимах скорости вращения и нагрузок. Научные исследования в данной области показали, что на некоторых режимах двигатель эффективней работает с более низкой степенью сжатия, а на других режимах степень сжатия может быть повышена без риска нанесения повреждений двигателю. Некоторые производители попытались создать двигатель с изменяемой во время работы степенью сжатия. Пионером в этой области, добившимся заметных результатов, был шведский производитель автомобилей SAAB. Работы в этом направлении проводились и другими производителями автомобилей. Но до настоящего времени серийные автомобили с изменяемой степенью сжатия на рынке отсутствуют. Очевидно, это будет следующим направлением повышения эффективности двигателя внутреннего сгорания.

Ранее были рассмотрены некоторые термины, определяющие геометрические показатели двигателя. Далее запомним некоторые термины, определяющие работу двигателя внутреннего сгорания, как простейшего одноцилиндрового, так более сложных двигателей.

  1. Мощность двигателя. Измеряется в киловаттах (кВт) или в старых, для некоторых более привычных единицах измерения, лошадиных силах (л.с.)
  2. Крутящий момент. Измеряется в ньютонах на метр (Н•м).
  3. Удельная литровая мощность. Измеряется отношением максимальной мощности двигателя к рабочему объёму цилиндров двигателя (кВт/литр)
  4. Удельная весовая мощность. Измеряется отношением максимальной мощности двигателя к весу двигателя (кВт/Кг).
  5. Топливная эффективность. Измеряется массой топлива, которое необходимо потратить на выработку мощности в один киловатт в течение часа (гр/кВт*час)
  6. Скорость вращения. В автомобилестроении, как и во многих других областях техники, скорость (частота) вращения коленчатого вала измеряется в оборотах в минуту (об/мин).

За прошедшие более чем сто лет с момента изобретения двигателя внутреннего сгорания (ДВС) количество его конструкций было столь велико, что их не только описать невозможно, их просто никто даже перечислить не сможет, да и задачи такой, в общем, нет. Четко понимая общие принципы работы ДВС (кратко описанные в данной статье), можно разобраться в любой конструкции.

Е.Н. Жарцов

Основы двигателя внутреннего сгорания

| Министерство энергетики

Двигатели внутреннего сгорания обеспечивают исключительную управляемость и долговечность, от них в Соединенных Штатах полагается более 250 миллионов транспортных средств, работающих по шоссе. Наряду с бензином или дизельным топливом они также могут использовать возобновляемые или альтернативные виды топлива (например, природный газ, пропан, биодизель или этанол). Их также можно комбинировать с гибридными электрическими силовыми агрегатами для повышения экономии топлива или подключаемыми гибридными электрическими системами для расширения ассортимента гибридных электромобилей.

Как работает двигатель внутреннего сгорания?

Горение, также известное как горение, является основным химическим процессом высвобождения энергии из топливно-воздушной смеси. В двигателе внутреннего сгорания (ДВС) воспламенение и сгорание топлива происходит внутри самого двигателя. Затем двигатель частично преобразует энергию сгорания в работу. Двигатель состоит из неподвижного цилиндра и подвижного поршня. Расширяющиеся газы сгорания толкают поршень, который, в свою очередь, вращает коленчатый вал.В конечном счете, это движение приводит в движение колеса автомобиля через систему шестерен трансмиссии.

В настоящее время производятся два типа двигателей внутреннего сгорания: бензиновый двигатель с искровым зажиганием и дизельный двигатель с воспламенением от сжатия. Большинство из них представляют собой четырехтактные двигатели, а это означает, что для завершения цикла требуется четыре хода поршня. Цикл включает четыре различных процесса: впуск, сжатие, сгорание, рабочий ход и выпуск.

Бензиновые двигатели с искровым зажиганием и дизельные двигатели с воспламенением от сжатия различаются по способу подачи и воспламенения топлива.В двигателе с искровым зажиганием топливо смешивается с воздухом, а затем вводится в цилиндр во время процесса впуска. После того, как поршень сжимает топливно-воздушную смесь, искра воспламеняет ее, вызывая возгорание. Расширение дымовых газов толкает поршень во время рабочего хода. В дизельном двигателе только воздух всасывается в двигатель, а затем сжимается. Затем дизельные двигатели распыляют топливо в горячий сжатый воздух с подходящей дозированной скоростью, вызывая его возгорание.

Улучшение двигателей внутреннего сгорания

За последние 30 лет исследования и разработки помогли производителям снизить выбросы ДВС определенных загрязняющих веществ, таких как оксиды азота (NOx) и твердые частицы (PM), более чем на 99%, чтобы соответствовать стандартам выбросов EPA. .Исследования также привели к улучшению характеристик ДВС (мощность в лошадиных силах и время разгона 0-60 миль в час) и эффективности, помогая производителям поддерживать или увеличивать экономию топлива.

Узнайте больше о наших передовых исследованиях и разработках двигателей внутреннего сгорания, направленных на повышение энергоэффективности двигателей внутреннего сгорания с минимальными выбросами.

Принцип работы двигателей внутреннего сгорания

Для правильной работы двигателя он должен непрерывно выполнять некоторый цикл операций.Принцип работы двигателей с искровым зажиганием (SI) был изобретен Николаусом А. Отто в 1876 году; поэтому двигатель SI также называют двигателем Отто. Принцип работы двигателя с воспламенением от сжатия (CI) был обнаружен Рудольфом Дизелем в 1892 году, поэтому двигатель CI также называют дизельным двигателем.

Принцип работы двигателей SI и CI практически одинаков, за исключением процесса сгорания топлива, который происходит в обоих двигателях. В двигателях SI сжигание топлива происходит за счет искры, генерируемой свечой зажигания, расположенной в головке блока цилиндров.Топливо сжимается до высокого давления, и его сгорание происходит при постоянном объеме. В двигателях с ХИ сгорание топлива происходит из-за сжатия топлива до чрезмерно высокого давления, что не требует наличия искры для инициирования воспламенения топлива. В этом случае сгорание топлива происходит при постоянном давлении.

Двигатели SI и CI могут работать как с двухтактным, так и с четырехтактным циклом. Оба цикла описаны ниже:

  1. Четырехтактный двигатель : В четырехтактном двигателе цикл работы двигателя завершается за четыре хода поршня внутри цилиндра.Четыре такта 4-тактного двигателя: всасывание топлива, сжатие топлива, такт расширения или рабочего хода и такт выпуска. В 4-тактных двигателях мощность вырабатывается, когда поршень совершает такт расширения. За четыре такта двигателя совершается два оборота коленчатого вала двигателя.

  2. Двухтактный двигатель : В случае двухтактного двигателя такты всасывания и сжатия происходят одновременно. Точно так же такты расширения и выпуска происходят одновременно.Мощность вырабатывается во время такта расширения. По завершении двух ходов поршня производится один оборот коленчатого вала двигателя.

В 4-тактных двигателях топливо сжигается один раз за два оборота колеса, а в 2-тактном двигателе топливо сжигается один раз за один оборот колеса. Следовательно, эффективность 4-тактных двигателей выше, чем у 2-тактных двигателей. Однако мощность двухтактных двигателей больше, чем у четырехтактных.

Краткая история двигателя внутреннего сгорания — _ памятует

18 апреля 2019 г.

Вы можете ходить пешком, верхом на лошади или путешествовать в экипаже — после изобретения колеса возможности для путешествий по суше стали доступны человечеству почти не эволюционировал в течение 4000 лет.Это не изменилось до появления новаторов и изобретателей в конце 19 века. После того, как железная дорога позволила перевозить большое количество людей и товаров в отличном стиле, именно двигатель внутреннего сгорания коренным образом изменил индивидуальную мобильность. Наша краткая история двигателя внутреннего сгорания связана с рассказом о том, как он был изобретен, как он стал использоваться в первых автомобилях и что было сделано для снижения рисков, связанных с этой инновацией в области высокоскоростной мобильной связи.

Однажды в августе 1888 года жители Вислоха, Брухзаля и Дурлаха имели все основания удивляться: трехколесная повозка, напоминавшая нечто среднее между конной повозкой и велосипедом, катилась по улицам их городов. . За исключением того, что лошадей поблизости не было. И трое пассажиров, женщина и двое молодых людей, похоже, не крутили педали. Транспортное средство, по-видимому, двигалось на собственном ходу, управляемом рукояткой, которую женщина держала.Женщину звали Берта Бенц, подростками — ее сыновья Ричард и Ойген, а транспортным средством — запатентованный Бенц автомобиль № 3.

Карл Бенц, муж Берты, запатентовал первую версию автомобиля еще в 1886 году и представил его широкой публике в июле того же года во время тест-драйва в Мангейме. «Не может быть никаких сомнений в том, что этот моторизованный велосипед скоро обретет множество друзей», — таково было эйфорическое заявление Neue Badische Landeszeitung 4 июня 1886 года.И все же первоначальные попытки найти покупателей, готовых вложить деньги в этот «бензиновый вагон», не увенчались успехом, а экономический успех оказался недостижимым. Чтобы оживить упавшее настроение мужа и убедить современников в практичности нового транспортного средства, Берта Бенц решила провести тщательный тест-драйв, хотя и не предупредив заранее своего колеблющегося мужа. Утром она и ее сыновья выехали на 104-километровую дорогу из Мангейма в свой родной город Пфорцхайм, куда они благополучно доехали через 12 часов 57 минут.

Эта поездка считается первой поездкой на дальние расстояния в истории автомобилестроения и по сей день отмечается как «Маршрут памяти Берты Бенц». Насколько велико было в то время рекламное воздействие, все еще остается предметом споров среди исследователей. Одно можно сказать наверняка: после этого запатентованный автомобиль Benz начал свой медленный, но верный путь в гору к коммерческому успеху. К 1893 году было продано 69 автомобилей, в основном в США, Англии и особенно во Франции, где благодаря хорошим дорогам первые автолюбители не были так сильно потрясены.На рубеже веков компания Benz & Cie. Уже поставила 1709 экземпляров своих автомобилей. Количество сотрудников превысило 430 человек, что в десять раз больше.

Страница не найдена | MIT

Перейти к содержанию ↓
  • Образование
  • Исследовать
  • Инновации
  • Прием + помощь
  • Студенческая жизнь
  • Новости
  • Выпускников
  • О MIT
  • Подробнее ↓
    • Прием + помощь
    • Студенческая жизнь
    • Новости
    • Выпускников
    • О Массачусетском технологическом институте
Меню ↓ Поиск Меню Ой, похоже, мы не смогли найти то, что вы искали!
Попробуйте поискать что-нибудь еще! Что вы ищете? Увидеть больше результатов

Предложения или отзывы?

Вот как работает двигатель вашего автомобиля

Для большинства людей автомобиль — это вещь, которую они заправляют бензином, который перемещает их из точки А в точку Б.Но вы когда-нибудь останавливались и думали: как это на самом деле делает ? Что заставляет его двигаться? Если вы еще не приняли электромобиль в качестве повседневного водителя, магия в том, как сводится к двигателю внутреннего сгорания — той штуке, которая шумит под капотом. Но как именно работает двигатель?

В частности, двигатель внутреннего сгорания является тепловым двигателем в том смысле, что он преобразует энергию тепла горящего бензина в механическую работу или крутящий момент. Этот крутящий момент применяется к колесам, чтобы заставить машину двигаться.И если вы не водите старинный двухтактный Saab (который звучит как старая бензопила и изрыгает масляный дым из выхлопных газов), ваш двигатель работает по одним и тем же основным принципам, независимо от того, управляете ли вы Ford или Ferrari.

Двигатели имеют поршни, которые перемещаются вверх и вниз внутри металлических трубок, называемых цилиндрами. Представьте, что вы едете на велосипеде: ваши ноги двигаются вверх и вниз, чтобы крутить педали. Поршни соединены стержнями (они похожи на ваши голени) с коленчатым валом, и они перемещаются вверх и вниз, чтобы вращать коленчатый вал двигателя, так же, как ваши ноги вращают велосипед, который, в свою очередь, приводит в действие ведущее колесо велосипеда или ведущие колеса автомобиля. .В зависимости от транспортного средства в двигателе обычно бывает от двух до 12 цилиндров, в каждом из которых поршень перемещается вверх и вниз.

Откуда исходит мощность двигателя

Эти поршни движутся вверх и вниз тысячи крошечных контролируемых взрывов, происходящих каждую минуту, создаваемых смешиванием топлива с кислородом и воспламенением смеси. Каждый раз, когда топливо воспламеняется, называется тактом сгорания или силовым ходом. Тепло и расширяющиеся газы от этого мини-взрыва толкают поршень вниз в цилиндре.

Почти все современные двигатели внутреннего сгорания (для простоты, мы сосредоточимся здесь на бензиновых силовых установках) относятся к четырехтактным. Помимо такта сгорания, который толкает поршень вниз из верхней части цилиндра, есть еще три хода: впуск, сжатие и выпуск.

Двигателям необходим воздух (а именно кислород) для сжигания топлива. Во время такта впуска клапаны открываются, позволяя поршню действовать как шприц, когда он движется вниз, втягивая окружающий воздух через систему впуска двигателя.Когда поршень достигает нижней точки своего хода, впускные клапаны закрываются, эффективно уплотняя цилиндр для такта сжатия, который проходит в направлении, противоположном такту впуска. Движение поршня вверх сжимает всасываемый заряд.

Четыре такта четырехтактного двигателя

Getty Images

В самых современных двигателях бензин впрыскивается непосредственно в цилиндры в верхней части такта сжатия.(Другие двигатели предварительно смешивают воздух и топливо во время такта впуска.) В любом случае, непосредственно перед тем, как поршень достигнет верхней точки своего хода, известной как верхняя мертвая точка, свечи зажигания воспламеняют смесь воздуха и топлива.

Возникающее в результате расширение горячих горящих газов толкает поршень в противоположном направлении (вниз) во время такта сгорания. Это ход, при котором колеса вашего автомобиля крутятся, как когда вы нажимаете на педали велосипеда. Когда ход сгорания достигает нижней мертвой точки, выпускные клапаны открываются, позволяя газам сгорания откачиваться из двигателя (как шприц, выталкивающий воздух), когда поршень снова поднимается.Когда выхлоп выходит — он проходит через выхлопную систему автомобиля перед выходом из задней части автомобиля — выхлопные клапаны закрываются в верхней мертвой точке, и весь процесс начинается снова.

Этот контент импортирован из {embed-name}. Вы можете найти тот же контент в другом формате или найти дополнительную информацию на их веб-сайте.

В многоцилиндровом автомобильном двигателе циклы отдельных цилиндров смещены друг относительно друга и равномерно распределены, так что такты сгорания не происходят одновременно, а двигатель является максимально сбалансированным и плавным.

Getty Images

Но не все двигатели одинаковы. Они бывают разных форм и размеров. В большинстве автомобильных двигателей цилиндры расположены по прямой линии, например, в рядном четырехцилиндровом двигателе, или объединены два ряда рядных цилиндров в виде V-образной формы, как в V-6 или V-8. Двигатели также классифицируются по размеру или рабочему объему, который представляет собой совокупный объем цилиндров двигателя.

Различные типы двигателей

Конечно, существуют исключения и незначительные различия среди двигателей внутреннего сгорания, представленных на рынке.Например, двигатели с циклом Аткинсона изменяют фазы газораспределения, чтобы сделать двигатель более эффективным, но менее мощным. Турбонаддув и наддув, сгруппированные вместе с опциями принудительной индукции, нагнетают дополнительный воздух в двигатель, что увеличивает доступный кислород и, следовательно, количество топлива, которое может быть сожжено, что приводит к увеличению мощности, когда вы этого хотите, и большей эффективности, когда вы надеваете не нужна сила. Все это дизельные двигатели обходятся без свечей зажигания. Но независимо от двигателя, если он относится к типу двигателей внутреннего сгорания, основы его работы остаются неизменными.И теперь вы их знаете.

Пора провести весеннюю уборку? Попробуйте продукты Meguiar, которые мы используем в нашем автопарке

Средство для мытья и воска Meguiar’s Ultimate

Ultimate Quik Detailer от Meguiar

Полотенце из микрофибры Meguiar’s Water Magnet

Детальщик интерьера Meguiar’s Ultimate

Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты.Вы можете найти больше информации об этом и подобном контенте на сайте piano.io.

Изучите автомобильную инженерию у инженеров-автомобилестроителей

Привод транспортного средства обычно достигается с помощью двигателей, также известных как первичные двигатели, то есть механических устройств, способных преобразовывать химическую энергию топлива в механическую. Кстати, английский термин «двигатель», вероятно, имеет французское происхождение от старофранцузского слова «engin», которое, в свою очередь, как полагают, происходит от латинского «ingenium» (имеющего тот же корень от «ingénieur» или « инженер»).

Химическая энергия топлива сначала преобразуется в тепло посредством сгорания, а затем тепло преобразуется в механическую работу посредством рабочего тела. Эта рабочая среда может быть жидкостью или газом. Действительно, тепло, выделяемое при сгорании, увеличивает его давление или его удельный объем, и благодаря его расширению достигается механическая работа.

В двигателях внутреннего сгорания (ДВС) в качестве рабочего тела используются сами продукты сгорания (например, воздух и топливо), тогда как в двигателях внешнего сгорания продукты сгорания передают тепло другому рабочему телу посредством теплообменника.Более того, в то время как в ДВС сгорание происходит внутри цилиндра, в двигателях внешнего сгорания сгорание происходит в отдельной камере, обычно называемой горелкой.

Поскольку процесс сгорания ДВС изменяет характеристики рабочего тела, циклический режим может быть получен только за счет периодической замены самого рабочего тела, т.е. через разомкнутый цикл. Таким образом, термин «цикл» для ДВС относится к рабочему циклу двигателя, который необходимо периодически заменять, а не к термодинамическому циклу рабочей жидкости.Топливо должно иметь характеристики, совместимые с работой ДВС, а это означает, что его продукты сгорания должны позволять использовать их в качестве рабочего тела (например, при сгорании не должна образовываться зола, как в дымоходе, что может привести к заеданию механизма двигателя).

Двигатель внутреннего сгорания

Поршневые двигатели внутреннего сгорания обычно выбираются для приведения в движение наземных транспортных средств, за некоторыми исключениями (электродвигатели для трамваев, троллейбусов или электромобилей) из-за их благоприятной удельной мощности и относительно низких затрат на производство и обслуживание (по сравнению, например, с газовыми турбинами). ).

В поршневом ДВС движение поршня в цилиндр, закрытый на противоположном конце головкой цилиндра, вызывает циклическое изменение объема цилиндра. Поршень соединен со штоком, а кривошип — с валом, устойчивое вращение которого вызывает циклическое движение поршня между двумя крайними положениями: верхней мертвой точкой (ВМТ, ближайшая к головке блока цилиндров) и нижней мертвой точкой (НМТ, нижняя мертвая точка). наибольшее расстояние от ГБЦ). Эти два положения соответствуют минимальному объему цилиндра (зазор, Vc) и максимальному объему цилиндра (общий объем, Vt).Разница между максимальным и минимальным объемом называется рабочим объемом или рабочим объемом цилиндра и называется Vd. И, наконец, соотношение между максимальным и минимальным объемом называется степенью сжатия (rc).

Классификация ДВС

Двигатели внутреннего сгорания можно разделить на разные категории. Два наиболее важных из них основаны на процессе сгорания (искровое зажигание против воспламенения от сжатия) и на рабочем цикле (2 хода против 4 такта). Дополнительная классификация может быть основана на впуске воздуха (без наддува или с турбонаддувом), заправке топливом (непрямой или прямой впрыск) и системе охлаждения (с воздушным или водяным охлаждением).В этой статье будут представлены только различия между процессами горения.

Искровое зажигание и воспламенение от сжатия

Искровое зажигание

В двигателях с искровым зажиганием используется топливо с относительно низкой реактивностью, такое как бензин, сжатый природный газ (CNG) или сжиженный нефтяной газ (GPL). Такое топливо смешивается с воздухом для образования горючей гомогенной топливно-воздушной смеси, а затем сжимается в двигателе до температуры около 700 К (400 ° C) и давления около 20 бар без какого-либо самовоспламенения.

Такое поведение можно объяснить на основе характеристик молекулы топлива: углеводородное топливо, используемое в двигателях с искровым зажиганием (SI), состоит из короткоцепных молекул с жесткой и компактной структурой (таких как Ch5 для КПГ или изооктан C8h28 для бензина) для которых даже при высоких температурах и давлениях время, необходимое для начала процесса сгорания, довольно велико. Однако это понятие не следует путать со способностью жидкого топлива испаряться при комнатной температуре и образовывать горючую смесь в окружающем воздухе.Эта способность высока для бензина и определяет опасность взрыва при наличии источника воспламенения.

Таким образом, в двигателях SI процесс сгорания может быть запущен только (по крайней мере, для классического сгорания) с помощью внешнего источника энергии, такого как электрическая искра. Энергия, добавляемая к смеси электрическим разрядом, мала (величина около 10 мДж), но в любом случае необходима для начала процесса горения.

От первого ядра, воспламененного искрой, горение затем распространяется по смеси: слой за слоем фронт пламени проходит через камеру, в основном благодаря конвективному теплообмену между дымовыми газами и свежей смесью, до последних зон (называемых «Конечный газ») вдали от искры.

Скорость фронта пламени составляет около 20-40 м / с и значительно увеличивается с турбулентностью внутри смеси (турбулентность увеличивает площадь поверхности между свежим и сгоревшим газом, таким образом, увеличивается теплообмен и, следовательно, скорость распространения пламени). Поскольку интенсивность турбулентности увеличивается с частотой вращения двигателя, а скорость фронта пламени пропорциональна интенсивности турбулентности, скорость фронта пламени увеличивается с частотой вращения двигателя, тем самым компенсируя сокращение времени, доступного для сгорания. Благодаря этому практически нет ограничений по частоте вращения для двигателей SI с точки зрения сгорания (двигатель Формулы 1 может работать до 20 000 оборотов в минуту).

Однако топливно-воздушная смесь, если выдерживается при высоких температурах и давлении в течение длительного времени, может в конечном итоге подвергнуться самовоспламенению. По этой причине может возникнуть аномальное возгорание, когда конечный газ самовозгорается до появления фронта пламени. Это ненормальное сгорание вызывает внезапный рост давления в цилиндре, за которым следуют волны давления внутри камеры сгорания, которые передаются через конструкцию двигателя в окружающую среду. Это называется «детонацией» и может вызвать повреждение поршня и цилиндра из-за термических усталостных напряжений.Во избежание возникновения детонации двигатель SI должен соответствовать нескольким ограничениям, касающимся максимальной длины пути пламени (который ограничивает максимальный диаметр цилиндра, называемого внутренним диаметром, примерно 100 мм), и максимально допустимой температуры и давления конечного (свежего) газа (т.е. ограничивают степень сжатия и давление наддува).

Более того, высокие значения скорости пламени могут быть достигнуты только в том случае, если соотношение воздух / топливо довольно близко к стехиометрическому: поэтому, когда двигатель SI должен работать при частичной нагрузке, невозможно уменьшить только топливо, сохраняя неизменным воздушная масса в цилиндр.Затем для управления нагрузкой необходимо использовать устройство для уменьшения массового расхода воздуха (часто выбирается впускной дроссель), даже если это приводит к снижению эффективности при частичной нагрузке.

[color_box вариация = «зеленый мох» title = «Что такое стехиометрия?»] Стехиометрия определяется как точка, в которой в смеси расходуется весь кислород и сжигается все топливо. Для бензина соотношение по массе составляет 14,7: 1 (14,7 грамма воздуха на 1 грамм топлива). [/ color_box]

Компрессионное зажигание


При использовании топлива с более высокой реакционной способностью, такого как дизельное топливо, его нельзя смешивать с воздухом и затем сжимать в цилиндре, потому что в противном случае процесс сгорания начнется самопроизвольно во время такта сжатия.Действительно, дизельное топливо представляет собой смесь углеводородов, которая может быть представлена ​​цетаном C16h44 с длинной молекулой с прямой цепью, в которой предварительные реакции процесса окисления протекают довольно быстро при высоких температурах и давлениях.

Таким образом, дизельное топливо впрыскивается в виде струи жидкости под высоким давлением в уже сжатый воздух непосредственно перед желаемым началом сгорания (в случае классического сгорания дизельного топлива). Маленькие капли топлива (диаметром около 10 мкм), окруженные горячим сжатым воздухом (около 900 K), быстро испаряются, и процесс сгорания самопроизвольно начинается с чрезвычайно короткой задержкой воспламенения.

В отличие от двигателей SI, процесс сгорания в дизельном двигателе не может самостоятельно регулировать свои характеристики в соответствии с доступным временем для выполнения сгорания, связанного с увеличением скорости двигателя (т.е. время, требуемое для испарения топлива, смешивания и задержки зажигания, не уменьшается с увеличением скорости двигателя. ). Следовательно, эти двигатели не могут работать на скоростях выше 5000 об / мин.

Наконец, в отличие от двигателей SI, здесь нет строгих требований к соотношению воздух / топливо для этого вида сгорания.При частичной нагрузке количество впрыскиваемого топлива уменьшается при сохранении того же количества всасываемого воздуха без использования дроссельного устройства, а затем без каких-либо дополнительных потерь.

Источник: проф. Федерико Милло, Туринский политехнический университет

Romain Nicolas отзыв:

Два наиболее распространенных типа горения (искровое зажигание и воспламенение от сжатия) сегодня известны давно и хорошо освоены. Однако мы приближаемся к пределу этих процессов, поскольку установленные стандартами лимиты выбросов загрязняющих веществ и топлива становятся все ниже и ниже.Достижение этих стандартов становится все более дорогостоящим, и некоторые альтернативные процессы сгорания и архитектуры двигателей проходят испытания в лабораториях и исследовательских центрах. Считаете ли вы, что двигатели с искровым зажиганием и воспламенением от сжатия, какими мы их знаем сейчас, будут заменены некоторыми альтернативными решениями, такими как CAI, PCCI, двухтопливное сгорание или другие?

Что это такое и как они работают?

1) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.

2) Для получения информации о результатах программы и другой информации посетите сайт www.uti.edu/disclosures.

3) Приблизительно 8000 из 8400 выпускников UTI в 2019 году были готовы к трудоустройству. На момент составления отчета около 6700 человек были трудоустроены в течение одного года после даты выпуска, в общей сложности 84%. В эту ставку не включены выпускники, недоступные для работы по причине продолжения образования, военной службы, здоровья, заключения, смерти или статуса иностранного студента.В ставку включены выпускники, прошедшие специализированные программы повышения квалификации и занятые на должностях. которые были получены до или во время обучения по ИМП, где основные должностные обязанности после окончания учебы соответствуют образовательным и учебным целям программы. UTI является образовательным учреждением и не может гарантировать работу или заработную плату.

5) Программы UTI готовят выпускников к карьере в различных отраслях промышленности с использованием предоставленного обучения, в первую очередь, для специалистов по автомобилям, дизельным двигателям, ремонту после столкновений, мотоциклетным и морским техникам.Некоторые выпускники UTI устраиваются на работу в рамках своей области обучения на должности, отличные от в качестве технического специалиста, например: специалист по запчастям, специалист по обслуживанию, изготовитель, лакокрасочный отдел и владелец / оператор магазина. UTI является образовательным учреждением и не может гарантировать работу или заработную плату.

6) Достижения выпускников ИТИ могут различаться. Индивидуальные обстоятельства и заработная плата зависят от личных качеств и экономических факторов. Опыт работы, отраслевые сертификаты, местонахождение работодателя и его программы компенсации влияют на заработную плату.ИМП образовательное учреждение и не может гарантировать работу или заработную плату.

7) Для завершения некоторых программ может потребоваться более одного года.

10) Финансовая помощь и стипендии доступны тем, кто соответствует требованиям. Награды различаются в зависимости от конкретных условий, критериев и состояния.

11) См. Подробную информацию о программе для получения информации о требованиях и условиях, которые могут применяться.

12) На основе данных, собранных из Бюро статистики труда США, прогнозы занятости (2016-2026), www.bls.gov, просмотрено 24 октября 2017 г. Прогнозируемое количество годовых Вакансии по классификации должностей: Автомеханики и механики — 75 900; Специалисты по механике автобусов и грузовиков и по дизельным двигателям — 28 300 человек; Ремонтники кузовов и связанных с ними автомобилей, 17 200. Вакансии включают вакансии в связи с ростом и чистые замены.

14) Программы поощрения и соответствие критериям для сотрудников остаются на усмотрение работодателя и доступны в определенных местах. Могут применяться особые условия.Поговорите с потенциальными работодателями, чтобы узнать больше о программах, доступных в вашем районе.

15) Оплачиваемые производителем программы повышения квалификации проводятся UTI от имени производителей, которые определяют критерии и условия приемки. Эти программы не являются частью аккредитации UTI.

16) Не все программы аккредитованы ASE Education Foundation.

20) Льготы VA могут быть доступны не на всех территориях кампуса.

21) GI Bill® является зарегистрированным товарным знаком U.S. Департамент по делам ветеранов (VA). Более подробная информация о льготах на образование, предлагаемых VA, доступна на официальном веб-сайте правительства США.

22) Грант «Приветствие за службу» доступен всем ветеранам, имеющим право на участие, на всех кампусах. Программа «Желтая лента» одобрена в наших кампусах в Эйвондейле, Далласе / Форт-Уэрте, Лонг-Бич, Орландо, Ранчо Кукамонга и Сакраменто.

24) Технический институт NASCAR готовит выпускников к работе в качестве технических специалистов по обслуживанию автомобилей начального уровня.Выпускники, которые выбирают специальные дисциплины NASCAR, также могут иметь возможности трудоустройства в отраслях, связанных с гонками. Из тех выпускников 2019 года, которые взяли факультативы, примерно 20% нашли возможности, связанные с гонками. Общий уровень занятости в NASCAR Tech в 2019 году составил 84%.

25) Расчетная годовая средняя заработная плата техников и механиков в области автомобильного сервиса в Службе занятости и заработной платы Бюро статистики труда США, май 2019 г. Программы UTI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве автомобильных техников.Некоторые выпускники UTI получают работу в рамках своей области обучения на должностях, отличных от технических, например, сервисный писатель, смог. инспектор и менеджер по запасным частям. Информация о заработной плате для штата Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих в качестве техников автомобильного сервиса и механиков в штате Массачусетс (49-3023) составляет от 29 050 до 45 980 долларов (данные по Массачусетсу, данные за май 2018 г., просмотр за 10 сентября 2020 г.). Информация о зарплате в Северной Каролине: The U.S. Согласно оценке Министерства труда США, средняя почасовая оплата в размере 50% квалифицированных автомобильных техников в Северной Каролине, опубликованная в мае 2019 года, составляет 19,52 доллара США. Бюро статистики труда не публикует данные начального уровня. данные о зарплате. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 13,84 и 10,60 долларов соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2019 г. и Механика, просмотр 14 сентября 2020 года.) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.

26) Расчетная годовая средняя заработная плата сварщиков, резчиков, паяльщиков и паяльщиков в Бюро трудовой статистики США по занятости и заработной плате, май 2019. Программы UTI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве техников-сварщиков. Некоторые выпускники UTI устраиваются на работу в рамках своей области обучения на должности, отличные от технических специалистов, например, сертифицированный инспектор и контроль качества.Информация о заработной плате в штате Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих сварщиками, резчиками, паяльщиками и брейзерами в штате Массачусетс (51-4121) составляет от 33 490 до 48 630 долларов (Массачусетс: трудовые ресурсы и развитие рабочей силы, данные за май 2018 г., просмотр за 10 сентября 2020 г.). Зарплата в Северной Каролине информация: Министерство труда США оценивает почасовую заработную плату в среднем 50% для квалифицированных сварщиков в Северной Каролине, опубликованную в мае 2019 года, и составляет 19 долларов.77. Бюро статистики труда не публикует данные о заработной плате начального уровня. Однако 25-е и 10-й процентиль почасовой оплаты труда в Северной Каролине составляют 16,59 и 14,03 доллара соответственно. (Бюро статистики труда, Министерство труда, занятости и заработной платы США, май 2019 г. Сварщики, резаки, паяльщики и брейзеры, просмотрено в сентябре 14, 2020.) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.

27) Не включает время, необходимое для прохождения 18-недельной квалификационной программы предварительных требований плюс дополнительные 12 или 24 недели обучения, зависящего от производителя, в зависимости от производителя.

28) Расчетная годовая средняя заработная плата специалистов по ремонту кузовов и связанных с ними автомобилей в Бюро трудовой статистики США по вопросам занятости и заработной платы, май 2019 г. Программы UTI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве техников по ремонту после столкновений. Некоторые выпускники UTI устраиваются на работу в рамках своей области обучения на должности, отличные от технических, например оценщик, оценщик. и инспектор. Информация о заработной плате для Содружества Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих в качестве ремонтников автомобилей и связанных с ними (49-3021), в Содружестве Массачусетс составляет от 31 360 до 34 590 долларов. (Массачусетс: трудовые ресурсы и развитие рабочей силы, данные за май 2018 г., просмотр за 10 сентября 2020 г.).Зарплата в Северной Каролине информация: Министерство труда США оценивает почасовую заработную плату в размере 50% для квалифицированных специалистов по борьбе с авариями в Северной Каролине, опубликованную в мае 2019 года, и составляет 21,76 доллара США. Бюро статистики труда не публикует данные о заработной плате начального уровня. Тем не мение, 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 16,31 и 12,63 доллара соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2018 г. 14 сентября 2020.) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.

29) Расчетная годовая средняя заработная плата механиков автобусов и грузовиков и специалистов по дизельным двигателям в разделе «Занятость и заработная плата» Бюро статистики труда США, май 2019 г. Программы UTI готовят выпускников к карьере в отраслях с использованием предоставленного обучения, в первую очередь в качестве техников по дизельным двигателям . Некоторые выпускники UTI устраиваются на работу в рамках своей области обучения на должности, отличные от дизельных. техник по грузовикам, например техник по обслуживанию, техник по локомотиву и техник по морскому дизелю.Информация о заработной плате для штата Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих в качестве механиков автобусов и грузовиков. и специалистов по дизельным двигателям (49-3031) в штате Массачусетс составляет от 29 730 до 47 690 долларов США (Массачусетс, штат Массачусетс, данные за май 2018 г., просмотрено 10 сентября 2020 г.). Информация о зарплате в Северной Каролине: согласно оценке Министерства труда США, средняя почасовая оплата квалифицированных дизельных техников в Северной Каролине составляет около 50%, опубликованная в мае 2019 года, и составляет 22 доллара.04. Бюро статистики труда. не публикует данные о заработной плате начального уровня. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 18,05 и 15,42 доллара соответственно. (Бюро статистики труда, Министерство труда, занятости и заработной платы США, май 2018. Механики автобусов и грузовиков и специалисты по дизельным двигателям, просмотр 14 сентября 2020 г.) UTI является образовательным учреждением и не может гарантировать трудоустройство или заработную плату.

30) Расчетная средняя годовая зарплата механиков мотоциклистов в США.С. Занятость и заработная плата Бюро статистики труда, май 2019 г. Программы MMI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве техников мотоциклов. Некоторые выпускники MMI получают работу в рамках своей области обучения на должностях, отличных от технических, например, сервисный писатель, оборудование. обслуживание и запчасти. Информация о заработной плате для Содружества Массачусетса: Средняя годовая заработная плата начального уровня для лиц, работающих в качестве механиков мотоциклов (49-3052) в Содружестве Массачусетса, составляет 28700 долларов США (данные по Массачусетскому труду и развитию рабочей силы, данные за май 2018 г., просмотренные 10 сентября 2020 г.) .Информация о зарплате в Северной Каролине: по оценке Министерства труда США почасовая оплата составляет 50% в среднем для Стоимость квалифицированных специалистов по мотоциклам в Северной Каролине, опубликованная в мае 2019 года, составляет 16,92 доллара. Бюро статистики труда не публикует данные о заработной плате начального уровня. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 13,18 и 10,69 долларов. соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2019 г., Motorcycle Mechanics, просмотр 14 сентября 2020 г.)) MMI является образовательным учреждением и не может гарантировать работу или заработную плату.

31) Расчетная годовая средняя заработная плата механиков моторных лодок и техников по обслуживанию в Службе занятости и заработной платы Бюро статистики труда США, май 2019 г. Программы MMI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве морских техников. Некоторые выпускники MMI получают работу в рамках своей области обучения на должностях, отличных от технических специалистов, например, в сфере обслуживания оборудования, инспектор и помощник по запчастям.Информация о заработной плате для Содружества Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих в качестве механиков моторных лодок и техников по обслуживанию (49-3051) в Содружестве Массачусетса. составляет от 31280 до 43390 долларов (данные по Массачусетсу, данные за май 2018 г., просмотр за 10 сентября 2020 г.). Информация о зарплате в Северной Каролине: по оценке Министерства труда США почасовая оплата в среднем 50% для квалифицированного морского техника в Северной Каролине, опубликованная в мае 2019 года, составляет 18 долларов.56. Бюро статистики труда не публикует данные начального уровня. данные о зарплате. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 14,92 доллара и 10,82 доллара соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2019 г. Специалисты по обслуживанию, просмотр 2 сентября 2020 г.) MMI является образовательным учреждением и не может гарантировать работу или заработную плату.

34) Расчетная годовая средняя заработная плата операторов компьютерных инструментов с числовым программным управлением в США.С. Занятость и заработная плата Бюро статистики труда, май 2019 г. Программы UTI готовят выпускников к карьере в различных отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве технических специалистов по ЧПУ. Некоторые выпускники UTI получают работу в рамках своей области обучения на должностях, отличных от технических, например, оператор ЧПУ, подмастерье. слесарь-механик и инспектор обработанных деталей. Информация о заработной плате для штата Массачусетс: средняя годовая заработная плата начального уровня для лиц, работающих в качестве операторов станков с компьютерным управлением, металла и пластика (51-4011) в Содружестве штата Массачусетс составляет 36 740 долларов (данные за май 2018 г., данные за май 2018 г., данные за 10 сентября, штат Массачусетс, США). 2020).Информация о зарплате в Северной Каролине: по оценке Министерства труда США почасовая оплата в среднем 50% для квалифицированных станков с ЧПУ в Северной Каролине, опубликованная в мае 2019 года, составляет 18,52 доллара. Бюро статистики труда не публикует данные начального уровня. данные о зарплате. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 15,39 и 13,30 долларов соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2019 г. Операторы инструмента, просмотр 14 сентября 2020 г.) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.

37) Курсы Power & Performance не предлагаются в Техническом институте NASCAR. UTI является образовательным учреждением и не может гарантировать работу или заработную плату. Информацию о результатах программы и другую информацию можно найти на сайте www.uti.edu/disclosures.

38) Бюро статистики труда США прогнозирует, что к 2029 году общая занятость в каждой из следующих профессий составит: Техники и механики автомобильного сервиса — 728 800; Сварщики, резаки, паяльщики и паяльщики — 452 500 человек; Автобусы и грузовики и специалисты по дизельным двигателям — 290 800 человек; Ремонтники кузовов автомобилей и сопутствующие товары — 159 900; и операторы инструментов с ЧПУ, 141 700.См. Таблицу 1.2 Занятость в разбивке по профессиям, 2019 г. и прогноз на 2029 г. Бюро статистики труда США, www.bls.gov, дата просмотра — 3 июня 2021 г.

41) Для специалистов по обслуживанию автомобилей и механиков Бюро статистики труда США прогнозирует в среднем 61 700 вакансий в год в период с 2019 по 2029 год. включают вакансии, связанные с ростом и чистым замещением. См. Таблицу 1.10 Профильные увольнения и вакансии, прогнозируемые на 2019-29 годы, Бюро статистики труда США, www.bls.gov, просмотрено 3 июня 2021 года.

42) Для сварщиков, резчиков, паяльщиков и брейзеров Бюро статистики труда США прогнозирует в среднем 43 400 вакансий в год в период с 2019 по 2029 год. Вакансии включают вакансии в связи с ростом и чистым замещением. См. Таблицу 1.10 Профессиональные увольнения и вакансии, прогнозируемые на 2019-29 годы, Бюро статистики труда США, www.bls.gov, просмотрено 3 июня 2021 года.

43) Для механиков автобусов и грузовиков и специалистов по дизельным двигателям, Бюро труда США Статистика прогнозирует, что в период с 2019 по 2029 год в среднем будет открываться 24 500 вакансий в год.Вакансии включают вакансии, связанные с ростом и чистым замещением. См. Таблицу 1.10 Разделение и вакансии по профессиям, прогноз на 2019-29 годы, Бюро статистики труда США, www.bls.gov, дата просмотра — 3 июня 2021 года.

44) Для кузовных и связанных с ними ремонтников Бюро статистики труда США прогнозирует: в среднем 13 600 вакансий в период с 2019 по 2029 год. В число вакансий входят вакансии, связанные с ростом и чистым замещением. См. Таблицу 1.10 Разделение профессий и вакансии, прогнозируемые на 2019-29 гг., U.S. Bureau of Labor Statistics, www.bls.gov, дата просмотра — 3 июня 2021 г.

45) Для операторов компьютерных инструментов с числовым программным управлением Бюро статистики труда США прогнозирует в среднем 11 800 вакансий в год в период с 2019 по 2029 год. Работа вакансии включают вакансии, связанные с ростом и чистым замещением. См. Таблицу 1.10 Профильные увольнения и вакансии, прогнозируемые на 2019-29 годы, Бюро статистики труда США, www.bls.gov, просмотрено 3 июня 2021 года.

46) Студенты должны поддерживать минимум 3.5 GPA и 95% посещаемости.

47) Бюро статистики труда США прогнозирует, что к 2029 году общая численность специалистов по обслуживанию автомобилей и механиков составит 728 800 человек. См. Таблицу 1.2 Занятость в разбивке по профессиям, 2019 г. и прогноз на 2029 г. Бюро статистики труда США, www.bls.gov, дата просмотра — 3 июня 2021 г.

48) По прогнозам Бюро статистики труда США, к 2029 г. общая численность рабочих-механиков автобусов и грузовиков и специалистов по дизельным двигателям составит 290 800 человек. См. Таблицу 1.2 Занятость с разбивкой по роду занятий, 2019 г. и прогноз на 2029 г., Бюро статистики труда США, www.bls.gov, просмотрено 3 июня 2021 г.

49) На основе данных, собранных из Бюро статистики труда США, прогнозы занятости (2019-2029), www.bls.gov, просмотрено в сентябре 8, 2020. Планируемое общее количество ремонтов кузовов и связанных с ними автомобилей к 2029 году составит 159 900 человек.

50) Бюро статистики труда США прогнозирует, что общая занятость сварщиков, резчиков, паяльщиков и паяльщиков к 2029 году составит 452 500 человек.См. Таблицу 1.2 Занятость в разбивке по профессиям, 2019 г. и прогноз на 2029 г. Бюро статистики труда США, www.bls.gov, просмотрено 3 июня 2021 г.

51) На основе данных, собранных из Бюро статистики труда США, прогнозы занятости (2019-2029), www.bls.gov, просмотрено в сентябре 8, 2020. Планируемое общее количество операторов инструмента с ЧПУ к 2029 году составит 141 700 человек.

Универсальный технический институт штата Иллинойс, Inc. одобрен Отделом частного бизнеса и профессиональных школ Совета по высшему образованию штата Иллинойс.

.

Добавить комментарий

Ваш адрес email не будет опубликован.