Меню Закрыть

Из чего состоит двс: Принцип работы и устройство двигателя

Содержание

Из чего состоит поршневой двигатель внутреннего сгорания

Большинство автомобилей заставляет перемещаться поршневой двигатель внутреннего сгорания (сокращённо ДВС) с кривошипно-шатунным механизмом. Такая конструкция получила массовое распространение в силу малой стоимости и технологичности производства, сравнительно небольших габаритов и веса.

По виду применяемого топлива ДВС можно разделить на бензиновые и дизельные. Надо сказать, что бензиновые двигатели великолепно работают на газе. Такое деление непосредственно сказывается на конструкции двигателя.

Как устроен поршневой двигатель внутреннего сгорания

Основа его конструкции — блок цилиндров. Это корпус, отлитый из чугуна, алюминиевого или иногда магниевого сплава. Большинство механизмов и деталей других систем двигателя крепятся именно к блоку цилиндров, или располагаются внутри его.

Другая крупная деталь двигателя, это его головка. Она находится в верхней части блока цилиндров. В головке также располагаются детали систем двигателя.

Снизу к блоку цилиндра крепится поддон. Если эта деталь воспринимает нагрузки при работе двигателя, её часто называют поддоном картера, или картером.

Все системы двигателя

  1. кривошипно-шатунный механизм;
  2. механизм газораспределения;
  3. система питания;
  4. система охлаждения;
  5. система смазки;
  6. система зажигания;
  7. система управления двигателем.

Кривошипно-шатунный механизм состоит из поршня, гильзы цилиндра, шатуна и коленчатого вала.

Кривошипно-шатунный механизм:
1. Расширитель маслосъёмного кольца. 2. Кольцо поршневое маслосъёмное. 3. Кольцо компрессионное, третье. 4. Кольцо компрессионное, второе. 5. Кольцо компрессионное, верхнее. 6. Поршень. 7. Кольцо стопорное. 8. Палец поршневой. 9. Втулка шатуна. 10. Шатун. 11. Крышка шатуна. 12. Вкладыш нижней головки шатуна. 13. Болт крышки шатуна, короткий. 14. Болт крышки шатуна, длинный. 15. Шестерня ведущая. 16. Заглушка масляного канала шатунной шейки. 17. Вкладыш подшипника коленчатого вала, верхний. 18. Венец зубчатый. 19. Болты. 20. Маховик. 21. Штифты. 22. Болты. 23. Маслоотражатель, задний. 24. Крышка заднего подшипника коленчатого вала. 25. Штифты. 26. Полукольцо упорного подшипника. 27. Вкладыш подшипника коленчатого вала, нижний. 28. Противовес коленчатого вала. 29. Винт. 30. Крышка подшипника коленчатого вала. 31. Болт стяжной. 32. Болт крепления крышки подшипника. 33. Вал коленчатый. 34. Противовес, передний. 35. Маслоотрожатель, передний. 36. Гайка замковая. 37. Шкив. 38. Болты.

Поршень расположен внутри гильзы цилиндра. При помощи поршневого пальца он соединен с шатуном, нижняя головка которого крепится к шатунной шейке коленчатого вала. Гильза цилиндра представляет собой отверстие в блоке, или чугунную втулку, вставляемую в блок.

Гильза цилиндров с блоком

Гильза цилиндра сверху закрыта головкой. Коленчатый вал также крепится к блоку в нижней его части. Механизм преобразует прямолинейное движение поршня во вращательное движение коленчатого вала. То самое вращение, которое, в конечном счете, заставляет крутиться колеса автомобиля.

Газораспределительный механизм отвечает за подачу смеси паров топлива и воздуха в пространство над поршнем и удаление продуктов горения через клапаны, открываемые строго в определенный момент времени.

Система питания отвечает в первую очередь за приготовление горючей смеси нужного состава. Устройства системы хранят топливо, очищают его, смешивают с воздухом так, чтобы обеспечить приготовление смеси нужного состава и количества. Также система отвечает за удаление из двигателя продуктов горения топлива.

При работе двигателя образуется тепловая энергия в количестве большем, чем двигатель способен преобразовать в механическую энергию. К сожалению, так называемый термический коэффициент полезного действия, даже лучших образцов современных двигателей не превышает 40%. Поэтому приходится большое количество «лишней» теплоты рассеивать в окружающем пространстве. Именно этим и занимается система охлаждения, отводит тепло и поддерживает стабильную рабочую температуру двигателя.

Система смазки. Это как раз тот случай: «Не подмажешь, не поедешь». В двигателях внутреннего сгорания большое количество узлов трения и так называемых подшипников скольжения: есть отверстие, в нем вращается вал. Не будет смазки, от трения и перегрева узел выйдет из строя.

Система зажигания призвана поджечь, строго в определенный момент времени, смесь топлива и воздуха в пространстве над поршнем. У дизелей такой системы нет. Там топливо самовоспламеняется при определенных условиях.

Видео:

Система управления двигателем при помощи электронного блока управлении (ЭБУ) управляет системами двигателя и координирует их работу. В первую очередь это приготовление смеси нужного состава и своевременное поджигание её в цилиндрах двигателя.

Загрузка…

Принцип действия двигателей: судовой двигатель

Двигателем внутреннего сгорания (ДВС) называется тепловая машина, в цилиндре которой химическая энергия топлива превращается в тепловую энергию газов, которая, в свою очередь, преобразуется в механическую работу.

Принципиальное устройство двигателя показано на рисунке. На фундаментной раме 1 установлена станина 2, на которой расположен цилиндр 3, закрытый цилиндровой крышкой 4. Объем цилиндра представляет пространство, ограниченное цилиндровой крышкой, стенками цилиндра и поршнем 8. На крышке цилиндра располагаются впускной клапан 7, форсунка 6 и выпускной клапан 5.

При сгорании топлива в цилиндре выделяются газы, обладающие высоким давлением и температурой, т.е. значительной тепловой энергией. За счет этого поршень перемещается вниз. При перемещении поршня давление и температура, как и тепловая энергия газов, уменьшаются (газы расширяются), в результате чего совершается механическая работа. Поступательное движение поршня через шатун 9 передается на кривошип 10 коленчатого вала, который начинает вращаться.

Судовой двигатель внутреннего сгорания состоит из узлов, систем и устройств, основными из которых являются: остов двигателя, кривошипно-шатунный механизм (КШМ), механизм газораспределения, топливная и масляная системы, системы охлаждения, впуска и выпуска, пост управления, пусковое и реверсивное устройства, средства контроля и защиты.

Похожие статьи

Метки: Принцип действия двигателей, ДВС, Станина, Фундаментная рама, Цилиндр, Цилиндровая крышка, Поршень, Впускной клапан, Форсунка, Выпускной клапан, Шатун, Кривошипно-шатунный механизм, Топливная система, Масляная система, Судовой двигатель

Для того, чтобы оставить комментарий, войдите или зарегистрируйтесь.

Из чего состоит двигатель внутреннего сгорания. Комбинированные типы двигателей внутреннего сгорания. Основные виды и типы ДВС

Современный двигатель внутреннего сгорания далеко ушел от своих прародителей. Он стал крупнее, мощнее, экологичнее, но при этом принцип работы, устройство двигателя автомобиля, а также основные его элементы остались неизменными.

Двигатели внутреннего сгорания, массово применяемые на автомобилях, относятся к типу поршневых. Название свое этот тип ДВС получил благодаря принципу работы. Внутри двигателя находится рабочая камера, называемая цилиндром. В ней сгорает рабочая смесь. При сгорании смеси топлива и воздуха в камере увеличивается давление, которое воспринимает поршень. Перемещаясь, поршень преобразует полученную энергию в механическую работу.

Флюктуации давления газа особенно проблематичны для дымовых газов. Если относительная влажность газа достигает более 80%, возникает подъем воды. Это связано с трубопроводом, который должен быть выбран как можно меньше в отношении газовой конденсации, чтобы избежать толчков воды, образовавшихся в углублениях.

Выработка тепла и электроэнергии

Для содействия обмену используется тепловая энергия, которая может использоваться для извлечения зданий или технологического оборудования. Базовой установкой когенерационных установок для двигателей внутреннего сгорания является, прежде всего, обмен цепями двигателей и обмен дымовых газов. Например, автоматический выключатель может использоваться в качестве автоматического выключателя. В случае обмена дымовых газов мы можем использовать обмен насосно-компрессорных труб, где дымоход течет внутри труб, чтобы дать их тепловую энергию горячей воде.

Как устроен ДВС

Первые поршневые моторы имели лишь один цилиндр небольшого диаметра. В процессе развития для увеличения мощности сначала увеличивали диаметр цилиндра, а потом и их количество. Постепенно двигатели внутреннего сгорания приняли привычный нам вид. Мотор современного автомобиля может иметь до 12 цилиндров.

Современный ДВС состоит из нескольких механизмов и вспомогательных систем, которые для удобства восприятия группируют следующим образом:

Поэтому, используя эту технологию, содержание диоксида углерода в соседнем стекле в два раза выше, чем окружающее. Вспоминая разницу между дизельным дизелем и двигателем с искровым зажиганием, это может быть обычный смертный, который вместо того, чтобы открывать капот автомобиля и обычный пополнение жидкости на шайбе, а не посещать мастерскую по ремонту автомобилей, довольно трудно запомнить. Эта страница будет пытаться выделить различия и показать анимации, которые сделают разницу между ядром.

Дизельный дизельный двигатель — Видео, принцип, схема, демонстрация деятельности

Бензиновый двигатель — видео, принцип, схема, демонстрация деятельности
Состав двигателя, соединение ремня — Видео. Разница между искровым зажиганием и дизельными двигателями. Двигатель зажигания — двигатель внутреннего сгорания, в котором топливно-воздушная смесь в цилиндре зажигается электрической искрой, которая обычно создает свечу зажигания. Это отличается от дизельного двигателя, когда впрыскиваемое топливо самовоспламеняется из-за температуры сжатого воздуха.
  1. КШМ — кривошипно-шатунный механизм.
  2. ГРМ — механизм регулировки фаз газораспределения.
  3. Система смазки.
  4. Система охлаждения.
  5. Система подачи топлива.
  6. Выхлопная система.

Также к системам ДВС относятся электрические системы пуска и управления двигателем.

КШМ — кривошипно-шатунный механизм

КШМ — основной механизм поршневого мотора. Он выполняет главную работу — преобразует тепловую энергию в механическую. Состоит механизм из следующих частей:

Рабочая фаза бензинового двигателя

Очень важно, чтобы мы использовали бензин в бензиновом двигателе, а дизельное топливо! В рабочем пространстве цилиндра температура и давление получающихся газов резко возрастают. Они расширяются и работают, перемещая поршень вниз. Дымовые газы из рабочей зоны цилиндра выдавливаются в выхлопную трубу.

Рабочие фазы дизельного двигателя
Всасывание — поршень перемещается к нижней мертвой точке, воздух всасывается через всасывающий клапан. Сжигается смесь топлива и воздуха, воспламеняющихся самовоспламенением. Выхлоп — поршень перемещается к верхней мертвой точке. Выхлопная система разделена на две части.
  • Сжатие — поршень перемещается к верхней мертвой точке.
  • Впускная смесь уменьшает ее объем, увеличивает давление и температуру.
  • Незадолго до верхнего тупика смесь зажигается электрической искрой расширения.
  • Оба клапана закрыты.
  • Будет гореть смесь топлива и воздуха, воспламеняемых электрической искрой.
  • Всасываемый воздух уменьшает его объем, увеличивает давление и температуру.
  • Перед самым верхним тупиком топливо впрыскивается в цилиндр.
  • Расширение — оба клапана закрыты.
Ссылка для будущих хороших драйверов.
  • Блок цилиндров.
  • Головка блока цилиндров.
  • Поршни с пальцами, кольцами и шатунами.
  • Коленчатый вал с маховиком.


ГРМ — газораспределительный механизм

Чтобы в цилиндр поступало нужное количество топлива и воздуха, а продукты сгорания вовремя удалялись из рабочей камеры, в ДВС предусмотрен механизм, называемый газораспределительным. Он отвечает за открытие и закрытие впускных и выпускных клапанов, через которые в цилиндры поступает топливо-воздушная горючая смесь и удаляются выхлопные газы. К деталям ГРМ относятся:

Это означает, что они обеспечивают очень хорошую производительность при сниженном расходе топлива по сравнению с более старыми аспирационными двигателями. Прямой впрыск топлива и турбонагнетатель являются двумя основными компонентами для повышения эффективности двигателя.

Турбокомпрессор сжимает воздух в двигателе. Бензин вводится непосредственно в цилиндры. Дымовой газ приводит в действие турбину, подключенную к компрессору, которая подает воздух в цилиндры. Вот почему мы говорим о двигателе с наддувом, а не с наддувом.

Турбокомпрессор отвечает за подачу воздуха в двигатель. Воздух не только всасывается, но и зажимается в цилиндры с помощью выхлопных газов. Увеличение количества воздуха позволяет дать больше топлива, а двигатель имеет лучшую производительность. Это двигатель внутреннего сгорания, в котором движение поршня вызвано давлением выхлопных газов, образующимся при сгорании горючей смеси внутри цилиндра двигателя; Обычно используемые поршневые возвратно-поступательные поршневые поршневые возвратно-поступательные двигатели, называемые более короткими двигателями внутреннего сгорания поршневого типа, намного реже, чем роторно-поршневые двигатели.

  • Распределительный вал.
  • Впускные и выпускные клапаны с пружинами и направляющими втулками.
  • Детали привода клапанов.
  • Элементы привода ГРМ.

ГРМ приводится от коленчатого вала двигателя автомобиля. С помощью цепи или ремня вращение передается на распределительный вал, который посредством кулачков или коромысел через толкатели нажимает на впускной или выпускной клапан и по очереди открывает и закрывает их

В двигателях хода поршень с поршневыми кольцами закрывает цилиндр двигателя; Расстояние между крайним поршневым положением поршня называется ходом поршня, а поршень перемещается от одного конца к другому концу — ход поршня; Поршневое движение поршня изменяется кривошипным механизмом на вращение коленчатого вала; Смешайте смесь с цилиндрами двигателя и отрегулируйте дымовой газ. В четырехтактных двигателях с возвратно-поступательным движением рабочий цикл выполняется в 4 ходах поршня, что соответствует 2 оборотам коленчатого вала; В двухтактных двигателях рабочий цикл выполняется двумя последовательными ходами, соответствующими одному вращению коленчатого вала.

В зависимости от конструкции и количества клапанов на двигатель может быть установлен один или два распределительных вала на каждый ряд цилиндров. При двухвальной системе каждый вал отвечает за работу своего ряда клапанов — впускных или выпускных. Одновальная конструкция имеет английское название SOHC (Single OverHead Camshaft). Систему с двумя валами называют DOHC (Double Overhead Camshaft).

Двухтактные двигатели имеют менее сложную конструкцию, легче обрабатываются и ремонтируются, дешевле, но их недостатками, как правило, являются более высокий расход топлива и загрязнение воздуха; В современных двухтактных поршневых двигателях, Щелевые однонаправленные клапаны во впускных каналах и поворотных клапанах — в розетке, автоматическом смазывании и управлении мощностью и каталитическом форсаже, а также более общие механизмы синхронизации клапанов используются для управления изменением нагрузки от движения поршня.

Также предварительная загрузка картерного груза часто заменяется загрузкой под давлением груза через специальный зарядный насос. Практическое мастерство прямого впрыска бензина привело к созданию нового поколения двухтактных двигателей, лишенных фундаментальных дефектов традиционной схемы, но используя свои потенциальные преимущества.

Во время работы мотора его детали соприкасаются с раскаленными газами, которые образуются при сгорании топливо-воздушной смеси. Чтобы детали двигателя внутреннего сгорания не разрушались из-за чрезмерного расширения при нагреве, их необходимо охлаждать. Охладить мотор автомобиля можно с помощью воздуха или жидкости. Современные моторы имеют, как правило, жидкостную схему охлаждения, которую образуют следующие части:

В зависимости от метода зажигания смесь дифференцируется и в которой зажигание топлива впрыскивается из-за высокой температуры воздуха, содержащегося в цилиндре, в результате его сжатия. Среди поршневых двигателей внутреннего сгорания с воспламенением от сжатия выделяются двигатели с прямым впрыском, предкамерная, вихревая камера и воздушные резервуары. Двигатели с самовозгоранием характеризуются высокой эффективностью, низким расходом топлива и отсутствием электрической системы зажигания, но они имеют более сложную конструкцию, чем двигатели с искровым зажиганием.

Рубашку охлаждения двигателей внутреннего сгорания образуют полости внутри БЦ и ГБЦ, по которым циркулирует охлаждающая жидкость. Она отбирает избыточное тепло у деталей двигателя и относит его к радиатору. Циркуляцию обеспечивает насос, привод которого осуществляется с помощью ремня от коленчатого вала.

Двигатели с самовозгоранием используются в качестве двигателей для железнодорожного, судового и промышленного, а также в автомобилях и тракторах, а двигатели с искровым зажиганием — в основном на мотоциклах и большинстве автомобилей, а также на небольших самолетах. Для двигателей с искровым зажиганием бензин обычно используется в качестве топлива, а его октановое число выше для бензина: более качественный бензин имеет более высокий октановый показатель. Дизельные двигатели с высокой склонностью к самовозгоранию используются в качестве дизельного топлива.

Термостат обеспечивает необходимый температурный режим двигателя автомобиля, перенаправляя поток жидкости в радиатор либо в обход него. Радиатор, в свою очередь, призван охлаждать нагретую жидкость. Вентилятор усиливает набегающий поток воздуха, тем самым увеличивая эффективность охлаждения. Расширительный бачок необходим современным моторам, так как применяемые охлаждающие жидкости сильно расширяются при нагреве и требуют дополнительного объема.

В обоих типах двигателей жидкое топливо может быть заменено газом, смешанным с воздухом перед вводом в цилиндры, но в дизельных двигателях несколько процентов топлива по-прежнему поставляются в виде жидкого дизельного топлива, впрыскиваемого в цилиндры, для производства двигателя с самовозгоранием в условиях «двигателя», нет газового топлива. Двигатели внутреннего сгорания с поршневым двигателем могут также поставляться с другими видами топлива, такими как бензино-спиртовые или растительные масла, но для этой цели должны быть адаптированы системы сжигания для таких двигателей.

Система смазки ДВС

В любом моторе есть множество трущихся деталей, которые необходимо постоянно смазывать, чтобы уменьшить потери мощности на трение и избежать повышенного износа и заклинивания. Для этого существует система смазки. Попутно с ее помощью решается еще несколько задач: защита деталей двигателя внутреннего сгорания от коррозии, дополнительное охлаждение деталей мотора, а также удаление продуктов износа из мест соприкосновения трущихся частей. Систему смазки двигателя автомобиля образуют:

До сих пор распространение таких альтернативных видов топлива в мире было незначительным. Особым портом поршневых двигателей с поршневым двигателем являются роторные двигатели; В этих двигателях поршень выполняет вращательное движение, движущееся под переменным давлением рабочего тела. Для большинства производителей двигатели Ванкеля все еще являются экспериментальными двигателями, но они конкурируют с обычными двигателями для небольших спортивных автомобилей, мотоциклов, моторных пил, небольших лодок и небольших самолетов.

В настоящее время компьютер используется для управления работой двигателей внутреннего сгорания. оптимальное время зажигания и впрыск топлива. В двигателях с возвратно-поступательным движением он иногда используется. Значения эффективности современных поршневых двигателей внутреннего сгорания достигают 35% и до 45%.

  • Масляный картер (поддон).
  • Насос подачи масла.
  • Масляный фильтр с .
  • Маслопроводы.
  • Масляный щуп (индикатор уровня масла).
  • Указатель давления в системе.
  • Маслоналивная горловина.

Насос забирает масло из масляного картера и подает его в маслопроводы и каналы, расположенные в БЦ и ГБЦ. По ним масло поступает в места соприкосновения трущихся поверхностей.

Для наших средневековых предков вождение автомобиля может показаться волшебным. Принцип работы двигателя внутреннего сгорания не имеет ничего общего с магией.

  • Каковы наиболее распространенные компоненты двигателя в автомобиле?
  • В чем разница между дизельным двигателем и лучшим?
Цилиндры, коленчатые валы, распределительные валы — все в чугуне. Также стоит упомянуть маховик. Хотя коленчатый вал перемещает только одно движение поршня, но сам плунжер выполняет четыре из них. Особенно проблематичным является сжатие, которое требует высокой энергии, что приводит к уменьшению скорости вращения вала.

Система питания

Система подачи для двигателей внутреннего сгорания с воспламенением от искры и от сжатия отличаются друг от друга, хотя и имеют ряд общих элементов. Общими являются:

  • Топливный бак.
  • Датчик уровня топлива.
  • Фильтры очистки топлива — грубой и тонкой.
  • Топливные трубопроводы.
  • Впускной коллектор.
  • Воздушные патрубки.
  • Воздушный фильтр.

В обеих системах имеются топливные насосы, топливные рампы, форсунки подачи топлива, но в силу различных физических свойств бензина и дизельного топлива конструкция их имеет существенные различия. Сам принцип подачи одинаков: топливо из бака с помощью насоса через фильтры подается в топливную рампу, из которой попадает в форсунки. Но если в большинстве бензиновых двигателей внутреннего сгорания форсунки подают его во впускной коллектор мотора автомобиля, то в дизельных оно подается непосредственно в цилиндр, и уже там смешивается с воздухом. Детали, обеспечивающие очистку воздуха и поступление его цилиндры — воздушный фильтр и патрубки — тоже относятся к топливной системе.

Чтобы работать равномерно, используйте весовое приблизительно 10 кг маховое колесо, которое благодаря импульсу поддерживает скорость двигателя. Во время работы двигатель прогревается, поэтому используется хладагент. Охлаждающая жидкость проходит через разные каналы. Термостат — это термостат, устройство, которое открывает или закрывает путь при достижении температуры. Моторное масло, в свою очередь, необходимо для снижения трения, вызванного движением многочисленных компонентов. Кстати, он поглощает часть тепла, выделяемого двигателем, как и хладагент.

Система выпуска

Система выпуска предназначена для отвода отработанных газов из цилиндров двигателя автомобиля. Основные детали, ее составляющие:

  • Выпускной коллектор.
  • Приемная труба глушителя.
  • Резонатор.
  • Глушитель.
  • Выхлопная труба.

В современных двигателях внутреннего сгорания выхлопная конструкция дополнена устройствами нейтрализации вредных выбросов. Она состоит из каталитического нейтрализатора и датчиков, сообщающихся с блоком управления двигателем. Выхлопные газы из выпускного коллектора через приемную трубу попадают в каталитический нейтрализатор, затем через резонатор в глушитель. Далее через выхлопную трубу они выбрасываются в атмосферу.

Что такое бензиновый дизельный двигатель, который отличается от дизельного?

Изобретение Рудольфа Дизеля — это дизельный двигатель, который не использует свечу зажигания для зажигания зажигания впрыска топлива. Подробнее: он вообще не использует искры. Зажигание происходит автоматически. Топливо воспламеняется главным образом из-за высокого сжатия смеси — намного выше, чем у бензинового двигателя, а частично благодаря свече накаливания, который действует как нагреватель.

Какой двигатель лучше? У каждого есть свои преимущества и недостатки. Дизель потребляет меньше топлива и более устойчив к влаге, но конструкция тяжелее, громче и дороже в производстве. Более того, несмотря на то, что дизельный двигатель сжигает меньше топлива, его выбросы примерно в двадцать раз более токсичны.

В заключение необходимо упомянуть системы пуска и управления двигателем автомобиля. Они являются важной частью двигателя, но их необходимо рассматривать вместе с электрической системой автомобиля, что выходит за рамки этой статьи, рассматривающей внутреннее устройство двигателя.

Не будет преувеличением сказать, что большинство самодвижущихся устройств сегодня оснащены двигателями внутреннего сгорания разнообразных конструкций, использующими различные принципиальные схемы работы. Во всяком случае, если говорить об автомобильном транспорте. В данной статье мы рассмотрим более подробно ДВС. Что это такое, как работает данный агрегат, в чем его плюсы и минусы, вы узнаете, прочитав ее.

Принцип работы двигателей внутреннего сгорания

Главный принцип работы ДВС основан на том, что топливо (твердое, жидкое или газообразное) сгорает в специально выделенном рабочем объеме внутри самого агрегата, преобразуя тепловую энергию в механическую. Рабочая смесь, поступающая в цилиндры такого двигателя, подвергается сжатию. После ее воспламенения при помощи специальных устройств возникает избыточное давление газов, заставляющих поршни цилиндров возвращаться в исходное положение. Так создается постоянный рабочий цикл, преобразующий при помощи специальных механизмов кинетическую энергию в крутящий момент.

На сегодняшний день устройство ДВС может иметь три основных вида:

  • часто называемый легким;
  • четырехтактный силовой агрегат, позволяющий добиться более высоких показателей мощности и значений КПД;
  • обладающие повышенными мощностными характеристиками.

Помимо этого существуют и другие модификации основных схем, позволяющие улучшить те или иные свойства силовых установок данного вида.

Преимущества двигателей внутреннего сгорания

В отличие от силовых агрегатов, предусматривающих наличие внешних камер, ДВС обладает значительными преимуществами. Главными из них являются:

  • гораздо более компактные размеры;
  • более высокие показатели мощности;
  • оптимальные значения КПД.

Необходимо заметить, говоря о ДВС, что это такое устройство, которое в подавляющем большинстве случаев позволяет использовать различные виды топлива. Это может быть бензин, дизельное топливо, природный или керосин и даже обычная древесина. Такой универсализм принес данной принципиальной схеме двигателя заслуженную популярность, повсеместное распространение и поистине мировое лидерство.

Краткий исторический экскурс

Принято считать, что двигатель внутреннего сгорания ведет отсчет своей истории с момента создания французом де Ривасом в 1807 году поршневого агрегата, использовавшего в качестве топлива водород в газообразном агрегатном состоянии. И хотя с тех пор устройство ДВС подверглось значительным изменениям и модификациям, основные идеи этого изобретения продолжают использоваться и в наши дни.

Первый внутреннего сгорания увидел свет в 1876 году в Германии. В середине 80-х годов XIX столетия в России был разработан карбюратор, позволявший дозировать подачу бензина в цилиндры мотора.

А в самом конце позапрошлого века знаменитый немецкий инженер предложил идею воспламенения горючей смеси под давлением, что существенно повышало мощностные характеристики ДВС и показатели КПД агрегатов подобного вида, которые до этого оставляли желать много лучшего. С тех пор развитие двигателей внутреннего сгорания шло в основном по пути улучшения, модернизации и внедрения разнообразных улучшений.

Основные виды и типы ДВС

Тем не менее более чем 100-летняя история агрегатов данного вида позволила разработать несколько основных видов силовых установок с внутренним сгоранием топлива. Они отличаются между собой не только составом используемой рабочей смеси, но и конструктивными особенностями.

Бензиновые двигатели

Как явствует из названия, агрегаты данной группы используют в качестве топлива различные виды бензина.

В свою очередь, такие силовые установки принято подразделять на две большие группы:

  • Карбюраторные. В таких устройствах топливная смесь перед поступлением в цилиндры обогащается воздушными массами в специальном устройстве (карбюраторе). После чего происходит ее воспламенение при помощи электрической искры. Среди наиболее ярких представителей данного типа можно назвать модели ВАЗ, ДВС которых очень долгое время был исключительно карбюраторного типа.
  • Инжекторные. Это более сложная система, в которой впрыск топлива в цилиндры осуществляется посредством специального коллектора и форсунок. Он может происходить как механическим способом, так и посредством специального электронного устройства. Наиболее продуктивными считаются системы прямого непосредственного впрыска «Коммон Рейл». Устанавливаются почти на все современные автомобили.

Инжекторные бензиновые двигатели принято считать более экономичными и обеспечивающими более высокий КПД. Однако стоимость таких агрегатов намного выше, а обслуживание и эксплуатация — заметно сложнее.

Дизельные двигатели

На заре существования агрегатов подобного вида очень часто можно было слышать шутку о ДВС, что это такое устройство, которое ест бензин, как лошадь, а движется намного медленнее. С изобретением дизельного двигателя эта шутка частично потеряла свою актуальность. Главным образом потому, что дизель способен работать на топливе гораздо более низкого качества. А значит, и на гораздо более дешевом, нежели бензин.

Главным принципиальным отличием дизельного двигателя внутреннего сгорания является отсутствие принудительного воспламенения топливной смеси. Солярка впрыскивается в цилиндры специальными форсунками, а отдельные капли топлива воспламеняются из-за силы давления поршня. Наряду с преимуществами дизельный двигатель обладает и целым рядом недостатков. Среди них можно выделить следующие:

  • гораздо меньшая мощность по сравнению с бензиновыми силовыми установками;
  • большими габаритами и весовыми характеристиками;
  • сложностями с запуском при экстремальных погодных и климатических условиях;
  • недостаточной тяговитостью и склонностью к неоправданным потерям мощности, особенно на сравнительно высоких оборотах.

Кроме того, ремонт ДВС дизельного типа, как правило, гораздо более сложен и затратен, нежели регулировка или восстановление работоспособности бензинового агрегата.

Газовые двигатели

Несмотря на дешевизну природного газа, используемого в качестве топлива, устройство ДВС, работающих на газе, несоизмеримо сложнее, что ведет к существенному удорожанию агрегата в целом, его монтажа и эксплуатации в частности.

На силовых установках подобного типа сжиженный или природный газ поступает в цилиндры через систему специальных редукторов, коллекторов и форсунок. Воспламенение топливной смеси происходит так же, как и в карбюраторных бензиновых установках, — при помощи электрической искры, исходящей от свечи зажигания.

Комбинированные типы двигателей внутреннего сгорания

Мало кто знает о комбинированных системах ДВС. Что это такое и где применяется?

Речь идет, конечно же, не о современных гибридных автомобилях, способных работать как на горючем, так и от электрического мотора. Комбинированными двигателями внутреннего сгорания принято называть такие агрегаты, которые объединяют в себе элементы различных принципов топливных систем. Наиболее ярким представителем семейства таких двигателей являются газодизельные установки. В них топливная смесь поступает в блок ДВС практически так же, как и в газовых агрегатах. Но поджиг горючего производится не при помощи электроразряда от свечи, а запальной порцией солярки, как это происходит в обычном дизельном моторе.

Обслуживание и ремонт двигателей внутреннего сгорания

Несмотря на достаточно широкое разнообразие модификаций, все двигатели внутреннего сгорания имеют аналогичные принципиальные конструкции и схемы. Тем не менее, для того чтобы качественно осуществлять обслуживание и ремонт ДВС, необходимо досконально знать его устройство, понимать принципы работы и уметь определять неполадки. Для этого, безусловно, необходимо тщательно изучить конструкцию двигателей внутреннего сгорания различных типов, уяснить для себя назначение тех или иных деталей, узлов, механизмов и систем. Дело это непростое, но очень увлекательное! А главное, нужное.


Специально для пытливых умов, которые желают самостоятельно постичь все таинства и секреты практически любого транспортного средства, примерная принципиальная схема ДВС представлена на фото выше.

Итак, мы выяснили, что собой представляет данный силовой агрегат.

Двигатель внутреннего сгорания: устройство, принцип работы, виды

Люди постоянно пытаются построить экономичный и надёжный мотор. До сих пор идея об изобретении вечного двигателя не даёт покоя многим изобретателям. Неудачные разработки исчезли в веках. Но в результате проб и ошибок появилось несколько типов двигательных установок. Эти механизмы успешно нами эксплуатируются.

Все известные двигатели используют разные виды энергии, которую затем преобразуют в движение. В качестве приводной тяги может служить электроэнергия, вода и тепло. Поэтому они разделяются на следующие типы:

  • электродвигатели;
  • гидравлические машины;
  • тепловые агрегаты.

Тепловые моторы основаны на преобразовании тепловой энергии в работу. В таких машинах применён один из двух способов сгорания топлива: внешний и внутренний.

В школе наверняка всем рассказывали о машинах, работающих на пару. Они как раз и представляют вид тепловых двигателей с внешней камерой сгорания. Первые паровые механизмы были построены ещё в середине XIX века. Сейчас паровые машины практически исчезли из нашей жизни. Они уступили место двигателям внутреннего сгорания (ДВС).

Принципиально ДВС отличаются от паровых машин местом размещения камеры сгорания. В механизмах с внутренним сгоранием эти камеры расположены в самих агрегатах. Такие моторы работают практически во всех транспортных средствах.

В этой статье приведена основная информация о принципе работы различных видов ДВС: газотурбинного, роторного, поршневого. Рассказано, как работает двигательный агрегат с внешней камерой сгорания — двигатель Стирлинга. Описана классификация и устройство двигателей внутреннего сгорания поршневого типа. Объяснено отличие двухтактного двигателя от четырёхтактного.

Принцип работы ДВС

Самым главным механизмом, установленным в каждом автомобиле, является двигатель внутреннего сгорания. Механики любят называть его сердцем автомобиля. Именно он отвечает за преобразование энергии сгорания углеводородного топлива в механическое движение. Работают ДВС на жидком или газообразном топливе.

Принцип работы ДВС прост. Небольшие порции топлива, смешанного с воздухом в нужной пропорции, поступают в камеру сгорания. В ней топливная смесь воспламеняется. Выделяемая при этом энергия приводит в движение поршни, которые вращают вал.

Все остальные узлы автомобиля предназначены либо для повышения производительности силового агрегата, либо для контроля и управления. Вспомогательные системы создают также комфорт пассажирам и водителям, при этом обеспечивая им безопасную езду.

Более чем за полуторавековую историю своего развития появились ДВС, различающиеся конструкцией, мощностью и используемым топливом.

Видео: Принцип работы двигателя внутреннего сгорания

Главная классификация ДВС

Все существующие ДВС разделены на 3 вида:

  • поршневые;
  • роторные;
  • газотурбинные.

В поршневых агрегатах рабочим органом является поршень. В роторных моторах используется движение ротора. В газотурбинных двигателях движение осуществляется турбиной.

В каждом из видов этих силовых установок конструктивно реализованы разные схемы преобразования тепловой энергии в полезную работу. Это принципиально отличает их друг от друга. Максимальная производительность силовых агрегатов зависит от того, каким образом преобразуется тепловая энергия. Каждый вид силовых агрегатов создан для эффективной работы в своей области применения.

Ниже подробно описаны конструкции этих агрегатов и физические процессы, происходящие в них. Отдельный раздел статьи посвящён двигателю Стирлинга. Он относится к механизмам с внешней камерой сгорания. Но принцип работы этого мотора по нескольким признакам похож на ДВС. Это часто вызывает путаницу.

Газотурбинный двигатель

При воспламенении топлива образуются газы, которые при нагреве расширяются. Этот факт всем известен из школьного курса физики. Указанный принцип положен в основу газотурбинной установки. Топливная смесь сгорает, и нагретый газ моментально расширяется, заставляя лопасти турбины вращаться. Чем больше температура газа, тем быстрее он увеличивается в объёмах. Эта зависимость определяет коэффициент полезного действия этого вида ДВС: чем выше температура газов, тем больше КПД.

Разработано два типа газотурбинных установок, отличающихся количеством рабочих валов. Агрегаты с двумя валами мощнее по сравнению с одновальными механизмами.

Газотурбинные двигатели устанавливают на машины, где необходима большая мощность силовой установки. Например, грузовые автомобили, корабли, самолёты и железнодорожные локомотивы.

Видео: Принцип работы газотурбинного двигателя

Роторный ДВС

В моторах этого вида реализован принцип вращения вала от кругового движения ротора. Ротором является треугольный поршень, который вращается в овальной камере – статоре. Ротор закреплён на валу с эксцентриситетом. При таком расположении во время вращения ротора в цилиндре создаются полости для тактов зажигания, сгорания и выпуска. За один оборот ротора происходит 3 такта работы.

Достоинством роторного ДВС является отсутствие шатунов, коленчатого вала и многих сопутствующих узлов. Инженеры подсчитали, что деталей в агрегате роторного типа намного меньше, чем в моторах других типов. Поэтому роторные моторы гораздо меньше других. Это является ещё одним их преимуществом.

В Японии, известной своими передовыми разработками в автомобилестроении, были сконструированы двигатели, имеющие несколько роторов. Например, японцы сконструировали агрегат, имеющий такую же мощность, что и шестипоршневой двигатель гоночного автомобиля. Но размеры многороторного движка при этом гораздо меньше.

На ранних моделях вазовских автомобилей в своё время устанавливались роторные моторы.

Роторные двигатели гораздо проще и эффективнее поршневых.  Но по непонятной причине роторные агрегаты используются очень редко.

Видео: Принцип работы роторного двигателя

Поршневой двигатель

Это – самый распространённый тип двигателя. Рассмотрим его принципиальную схему работы.

В конструкции мотора этого вида имеется несколько цилиндров, внутри каждого из них поршни совершают возвратно-поступательные движения. В обоих концах цилиндров расположены клапаны. Открываясь, клапан пропускает порцию топливной смеси в камеру сгорания, образующуюся в цилиндре перед поршнем. В это время поршень, двигаясь вверх, сжимает смесь. В расчётный момент происходит её воспламенение.  Образующиеся газы расширяются и толкают поршень в другую сторону. Несколько таких поршней закреплены на валу П-образной конструкции. Обычно такой вал называют коленчатым. За каждое движение поршня вал проворачивается на определённую величину. Цикл движения поршня от одной стороны цилиндра до другой называется тактом. Скоординированная работа поршней заставляет коленчатый вал проворачиваться на полный оборот. Такие циклы постоянно повторяются, заставляя вращаться вал с большой скоростью.

Автомобилестроители постоянно совершенствуют поршневые двигатели. Каждое усовершенствование приводит к повышению мощности двигателя. Поршневые агрегаты являются самыми надёжными из всех видов силовых установок.

Видео: Принцип работы дизельного двигателя

Двигатель Стирлинга

В качестве примера разновидности двигательного агрегата с внешней камерой сгорания можно привести так называемый двигатель Стирлинга. Своё название он получил по фамилии изобретателя – шотландского священника Роберта Стирлинга. Этот оригинальный мотор работает на основе неоднократного нагрева рабочего тела – порции воздуха.

Принцип работы внешне похож на схему ДВС. В моторе Стирлинга тоже имеется цилиндр с поршнем, который двигается по возвратно-поступательной траектории и приводит в движение кривошипно-шатунный механизм. Мало того, цилиндр имеет радиатор охлаждения как в двигателе внутреннего сгорания.

Но главным отличием двигателя Стирлинга от ДВС является отсутствие топливной смеси. Её роль в данном случае выполняет воздух, который нагревается внешним источником тепла.

Дело в том, что уже находящийся в цилиндре воздух, нагреваясь, расширяется и толкает вытеснитель, который в свою очередь двигает рабочий поршень вверх. Поршень проворачивает кривошип. Проходя через зону охлаждения, воздух сжимается, давление в цилиндре уменьшается, образуя разрежение. В это время кривошип, двигаясь дальше, возвращает поршень в нижнее положение. Так периодически чередуя циклы нагрева и остывания рабочего тела (воздуха), извлекают энергию из процесса изменения давления.

Примечательно, что такой агрегат легко превратить в тепловой насос, изменив координацию работы рабочего поршня и вытеснителя.

Двигатель Стирлинга может работать практически на любом топливе, от дров до ядерной энергии. При этом конструкция этого агрегата очень проста и надёжна. Инженеры разработали 3 типа моторов подобного рода и назвали их буквами греческого алфавита. Выше описан принцип самого простого из них: бета-типа.

Двигатель конструкции Стирлинга незаменим в тех случаях, когда появляется необходимость преобразования очень маленького перепада температур. В таких условиях ни одна газовая турбина функционировать не может. Проще говоря, установки Стирлинга могут эффективно работать от обычной переносной газовой горелки или даже спиртовки. Туристы уже оценили такие устройства. Учёные предсказывают, что двигатели Стирлинга сделают революцию в солнечной энергетике.

Видео: Принцип работы двигателя Стирлинга

Виды поршневых ДВС

Поршневые моторы классифицируются по типу используемого топлива:

  • бензиновые;
  • газовые;
  • дизельные.

Кроме того, двигатели отличаются системой зажигания. В установках, использующих принудительное зажигание, воспламенение топливной смеси производится устройствами, генерирующими искру. Их ещё называют свечами зажигания. В них периодически образуется электрическая дуга, которая и поджигает топливо в камере сгорания цилиндра. Работают свечи от электрического аккумулятора. Сложность представляет регулировка свечей. Необходимо отрегулировать свечи так, чтобы искра образовывалась точно в тот момент, когда смесь достигнет расчётного уровня сжатия.

Принудительное зажигание характерно только для бензиновых двигателей. Реже такая система применяется в двигателях, работающих на газе.

Топливная смесь может подаваться в цилиндры двумя способами: с помощью карбюратора или инжектора.

Поршневые агрегаты, использующие в качестве топлива солярку, называются дизельными и имеют другую систему воспламенения топлива в цилиндре. В дизельных установках смесь самопроизвольно воспламеняется в результате её сжатия поршнем. Отличительной особенностью дизельных двигателей является их «всеядность». Они способны работать на нескольких видах топлива. Дизели прекрасно функционируют, будучи заправлены другими горючими веществами. Например, керосином, мазутом или даже растительным маслом.

В зависимости от количества тактов рабочего цикла, различают двухтактные и четырёхтактные ДВС. Двухтактные двигатели обычно ставят на мотоциклы, мопеды или газонокосилки. Четырёхтактные моторы устанавливаются в современных автомобилях.

По пространственному расположению цилиндров ДВС тоже имеют свою классификацию.

Если цилиндры расположены на одной оси, то такие двигатели называются рядными. Обозначаются рядные моторы английским символом «R» с цифрой, указывающей на количество цилиндров.

Если цилиндры размещены под углом друг к другу, то такие агрегаты называют V-образными. Они гораздо компактнее других типов двигателей. Обычно угол между осями цилиндров составляет 120 градусов. Имеются модели V-образных моторов с другим углом между осями цилиндров.

Агрегаты, обозначаемые символом «Vr», имеют переходную конструкцию. Они обладают признаками и рядных, и V-образных двигателей.

При расположении цилиндров напротив друг друга, то есть под углом 180 градусов, двигатели называются оппозитными.

Устройство двигателя внутреннего сгорания: описание основных узлов ДВС

В этом разделе рассмотрено назначение и конструктивное исполнение отдельных узлов поршневых двигателей.

Кривошипно-шатунный механизм

Поршни в цилиндрах движутся возвратно-поступательно. Кривошип вместе с шатунами преобразуют это движение во вращение вала. Механизм называется кривошипно-шатунным (КШМ). Состоит из П-образного вала, называемого коленчатым, узла цилиндров, головки блока цилиндров (ГБЦ) и креплений.

Газораспределительная система

ГБЦ регулирует подачу обогащённой смеси в цилиндры. Процесс происходит за счёт скоординированных во времени циклов открытия и закрытия группы клапанов, осуществляющих подачу смеси и выпуск отработанных газов. Кроме этого, газораспределительная система отводит наружу выхлопные газы. Управляет клапанами распределительный вал, который связан с коленвалом зубчатой или ремённой передачей. Вращаясь, распределительный вал заставляет открываться и закрываться нужные клапана в строго определённое время.

Вся система состоит из распредвала и клапанных групп. Ремонт головки часто вызывает затруднения, так как требует тщательной установки уплотнений. При неправильно установленных прокладках произойдёт подсос воздуха, возможна также утечка топлива. Это нарушает баланс топливной смеси.

Система питания

Внутрь цилиндров подаётся не чистое горючее, а порция смеси, состоящей из обогащённого воздухом топлива. Карбюратор смешивает бензин с воздухом, то есть обогащает топливо. Затем приготовленная смесь через коллектор, называющийся впускным, попадает в камеру.

Если ДВС оборудован инжектором, то бензин под высоким давлением подается сразу во впускной коллектор. Впрыск происходит через форсунки. Бензин и воздух смешиваются не в карбюраторе, а непосредственно во впускном коллекторе.

Топливо циркулирует в системе питания за счёт работы насоса. В карбюраторных двигателях установлены механические насосы. В инжекторных — электрические.

Инжекторные двигатели обычно оснащаются электронным зажиганием. Такое зажигание эффективнее свечного, так как воспламенением топливно-воздушной смеси управляет бортовой компьютер. Для его эффективной работы в автомобиле установлены специальные датчики, собирающие все необходимые данные для компьютера.

Зажигание

В двигателях с карбюратором всегда имеются так называемые свечи зажигания. Они генерируют вольтову дугу, поджигающую топливную смесь. В народе такую дугу обычно называют искрой. В таких автомобилях система зажигания состоит из свечей и аккумулятора.

В двигателях на дизельном топливе процесс возгорания смеси принципиально отличается. Она самовоспламеняется. Это стало возможным благодаря уникальным свойствам дизельного топлива. Дизтопливо через форсунки под высоким давлением подаётся в цилиндр. Предварительно воздух в камере цилиндра тоже сжимается и нагревается до 700 градусов. В таких условиях солярка мгновенно самовоспламеняется.

Выхлопная система

Вывод газов наружу осуществляется системой выпуска продуктов сгорания — выхлопной системой. Токсичные газы направляются сначала в выпускной коллектор, в котором осуществляется сбор выхлопных газов от всех цилиндров. Из коллектора газ, содержащий большое количество вредных веществ, выбрасывается наружу через глушитель.

Последние модели всех автомобилей теперь выпускаются только с каталитическими нейтрализаторами. Они сильно снижают токсичность выхлопных газов, приводя их в соответствие с экологическими нормами.

Система смазки

В автомобиле есть много деталей вращения. Во время работы двигателя трущиеся между собой детали активно изнашиваются. Чтобы уменьшить износ и увеличить КПД двигателя, в каждом автомобиле предусмотрена замкнутая система, созданная для циркуляции смазки. Подача масла в систему осуществляет масляный насос. Перед тем, как попасть в двигатель, масло проходит через фильтр, где очищается от накопившихся загрязнений. Через систему распределения масло подаётся в подшипники коленчатого вала и в газораспределительный механизм для смазки деталей распределительного вала. Затем отработанное масло поступает в картер — специально сконструированную ёмкость в виде поддона. Из картера масло опять забирается насосом и направляется на следующий цикл смазки.

В результате работы системы смазки фильтры засоряются, что снижает степень очистки. Недостаточный уровень очистки ухудшает характеристики масла. По мере засорения фильтров давление масла начинает повышаться. Для сброса давления и безопасной работы узлов автомобиля устанавливают предохранительные, или так называемые редукционные клапаны, срабатывающие при превышении давления масла. Эти клапаны срабатывают вследствие засорения фильтров. Своевременная замена масла и фильтров является непременным условием эффективной работы ДВС.

Во время работы мотора масло нагревается, что тоже плохо отражается на работе мотора. Все мощные двигатели работают со своей системой охлаждения масла. Обычно их называют масляными радиаторами.

Системы охлаждения

Во время продолжительной работы двигатели могут нагреться до достаточно высоких температур. Температура внешней поверхности цилиндров достигает нескольких сотен градусов. Никакие механизмы не могут эффективно работать при таких высоких температурах. Поэтому конструкторы разработали системы для охлаждения узлов автомобиля. Принцип работы таких систем заключается в передаче тепла от нагретых частей к охлаждающей жидкости. Заметим, что состав таких жидкостей и их свойства постоянно улучшаются производителями.

Самым узнаваемым элементом системы охлаждения стал радиатор, который обычно находится в начале моторного отсека, непосредственно перед двигателем. Такое расположение позволяет радиатору дополнительно охлаждаться встречным потоком воздуха. Для повышения эффективности работы радиатора впереди него установлен мощный вентилятор.

Радиатор понижает температуру самого охлаждающего агента после того, как тот отберёт тепло от цилиндров. Вся система охлаждения состоит из термостата, помпы, небольшой расширительной ёмкости и устройства обогрева салона.

Работа системы охлаждения регулируется термостатом. Если двигатель ещё не нагрелся до критических величин, то помпа прогоняет охлаждающую жидкость по так называемому «малому» кругу, то есть только в пределах самого двигателя. Когда термостат включается, то жидкость пропускается через радиатор, охлаждаясь при этом гораздо эффективнее.

Порог срабатывания термостата обычно составляет 90 градусов. В некоторых моделях автомобилей температура срабатывания термостата может быть установлена больше или меньше этой величины.

Долговременная работа любого автомобиля невозможна без эффективной системы охлаждения.

Четырехтактный ДВС

Число тактов работы — одна из важнейших характеристик любого ДВС. Далее приведено описание взаимодействия поршня с клапанами поочерёдно в каждом такте. Напомним, 1 цикл — это 4 такта.

В первом такте выполняется впуск смеси. Топливо смешивается с воздухом. Поршень двигается к наивысшей точке. В камере сгорания создаётся область низкого давления — разрежение. Впускной клапан открывает отверстие в камере для подачи смеси. Коленвал начинает первый оборот.

Во втором такте смесь сжимается. Впускной клапан закрывается. Поршень, достигнув наивысшей точки, сжимает обогащённую топливную смесь. Коленвал завершает первый оборот.

Рабочий ход выполняется в третьем такте. Обогащённая смесь поджигается. В бензиновых двигателях поджигание производится электрической дугой от свечи. В дизельных — топливо воспламеняется самостоятельно в процессе сжатия. Облако расширяющихся газов заставляет поршень двигаться вниз. Начало второго оборота коленвала.

В четвёртом такте происходит выпуск. Открывается выпускной клапан. Газы выводятся в коллектор, а затем выбрасываются наружу. Поршень начинает двигаться вверх. Вал завершает второй оборот.

Таким образом, за 1 рабочий цикл этот двигатель совершает 4 такта, во время которых вал проворачивается дважды.

Видео: Принцип работы четырёхтактного двигателя

Двухтактный мотор

В этих двигателях сжатие и рабочий ход совершаются также как в четырёхтактных. Но очистка и заполнение цилиндров топливной смесью происходит за очень короткое время в момент нахождения поршня в самом нижнем положении. Если в четырёхтактном двигателе смесь попадает в камеру сгорания через открытые отверстия клапанов, то в этом моторе очередная порция смеси поступает в цилиндр через специальные отверстия, называемыми окнами. Они открываются и закрываются телом поршня. Процессы наполнения полостей цилиндра новой смесью и удаления продуктов сгорания называются продувкой.

Для осуществления продувки внутренняя полость цилиндра напрямую связана с КШМ. По сути, поршень двигается в одном пространстве с кривошипом. Под ним образуется полость, которую называют кривошипной камерой или картером. Эта камера тоже участвует в процессах газообмена. В ней периодически создаётся разрежение. Это позволяет поступать новой порции смеси через впускное отверстие.

Такая конструкция позволяет двигателю развивать в 1,5 раза большую мощность по сравнению с другими моторами аналогичного объёма при тех же оборотах двигателя. Но есть и ряд недостатков.

  • Детали в таком двигателе работают с большей интенсивностью, то есть быстрее изнашиваются.
  • Особое значение придаётся герметизации всех механизмов, работающих практически в одном пространстве: поршня, цилиндра и кривошипа.
  • Так как в картере нельзя устроить масляную ванну, то смазку поршня и других деталей осуществляют добавлением масла в топливо.
  • Перепады давления смеси в цилиндре не так велики, поэтому для повышения производительности двигателя часто используют принудительную продувку.

Рабочий цикл осуществляется в течение одного оборота коленвала.

Видео: Принцип работы двухтактного двигателя

Двигатель внутреннего сгорания в разрезе

Как работает двигатель – этим вопросом озадачивается каждый второй автолюбитель. Покажем на примере видео как работает двигатель внутреннего сгорания.

7 альбомов

17 видео

Добавить в альбом

Россия. Операция в Сирии

обновлён пять лет назад

7 видео

Добавить в альбом

Россия и Политика

обновлён три года назад

14 видео

Добавить в альбом

Крутое и Забавное

обновлён пять лет назад

Показать все 7 альбомов

КАК РАБОТАЕТ ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ

В данном разделе рассматривается принцип работы двигателя внутреннего сгорания на примере одноцилиндрового бензинового мотора.

Главная часть двигателя внутреннего сгорания — это цилиндр с внутренней зеркальной поверхностью. Сверху на цилиндре установлена головка, которая является отдельной деталью и при необходимости снимается, например чтобы получить доступ к двигателю для проведения ремонтных работ (рис. 1.2).

Рис. 1.2. Двигатель со снятой головкой блока цилиндров.

Внутри цилиндра находится поршень. Внешне он напоминает обычный стакан, который перевернут вверх дном (именно дно поршня является его рабочей поверхностью). В процессе работы двигателя поршень внутри цилиндра перемещается вертикально вверх- вниз с высокой интенсивностью.

Снаружи по окружности поршня в отдельных канавках расположены поршневые кольца. Поршень прилегает к внутренней поверхности цилиндра неплотно. Поршневые кольца, во-первых, препятствуют попаданию вниз газа, образующегося при работе двигателя, во- вторых, не пропускают моторное масло в камеру сгорания, которая находится над поршнем и расположена над верхней мертвой точкой (о том, что это такое, рассказывается далее).

Поршень закреплен на шатуне с помощью специальной детали, которая называется поршневым пальцем. В свою очередь, шатун закреплен на коленчатом валу двигателя, а точнее — на кривошипе коленчатого вала (рис. 1.3). При сгорании рабочей смеси образующиеся газы оказывают сильное давление на поршень, который начинает двигаться вниз и через шатун передает свою энергию на коленчатый вал, что в результате вынуждает его вращаться.

Рис. 1.3. Поршень с шатуном.

На конце коленчатого вала имеется тяжелый металлический диск с зубьями, который называется маховиком. Основная его задача — обеспечить вращение коленчатого вала по инерции, что необходимо для подготовительных тактов рабочего цикла (о том, что такое «такты» и «рабочий цикл», будет рассказано далее).

Горючая смесь поступает в камеру сгорания через впускной клапан, а после сгорания продукты горения, которые представляют собой выхлопные газы, выходят из камеры сгорания через выпускной клапан. Оба клапана открываются в тот момент, когда их толкает соответствующий кулачок распределительного вала. Как только кулачок отходит назад (это происходит очень быстро, так как распределительный вал вращается с высокой скоростью), клапаны вновь плотно закрываются: их возвращают в исходное положение мощные пружины.

Примечание.

Распределительный вал двигателя приводится в действие коленчатым валом.

Свеча вкручивается непосредственно в головку блока цилиндров: для этого специально предназначено отверстие с резьбой. Свеча является источником искры, которая проскакивает между ее электродами, от нее в камере сгорания воспламеняется рабочая смесь. На каждый цилиндр двигателя приходится одна свеча (следовательно, у четырехцилиндрового двигателя имеется четыре свечи, у восьми-цилиндрового — восемь и т. д.).

При движении вверх-вниз поршень поочередно достигает двух крайних положений — верхнего и нижнего: в них он максимально удален от центральной оси коленчатого вала. Верхнее крайнее положение поршня называется верхней мертвой точкой, а нижнее — нижней мертвой точкой (соответственно ВМТ и НМТ). Расстояние между ВМТ и НМТ называется ходом поршня.

Пространство, которое остается над поршнем при его нахождении в ВМТ, называется камерой сгорания. Именно здесь воспламеняется и сгорает рабочая смесь. При этом возникает своеобразный «мини-взрыв», который сопровождается резким и сильным повышением давления, под воздействием которого поршень начинает двигаться вниз. Как раз в этот момент тепловая энергия превращается в механическую. При вертикальном движении вниз поршень через шатун толкает коленчатый вал, заставляя его вращаться. Образовавшийся крутящий момент передается на ведущие колеса автомобиля, которые и приводят машину в движение.

Объем в промежутке между ВМТ и НМТ называется рабочим объемом цилиндра. Если суммировать объем камеры сгорания (как указывалось, так называется пространство над ВМТ) и рабочий объем цилиндра, получится полный объем цилиндра. Сумма полных объемов всех цилиндров называется рабочим объемом двигателя.

По такому принципу работает двигатель внутреннего сгорания современного автомобиля. Далее рассмотрено, что представляет собой рабочий цикл двигателя внутреннего сгорания.

Как устроен двигатель внутреннего сгорания

  • Корпусная конструкция;
  • Механизмы газораспределения; кривошипно-шатунный;
  • Впускная и топливная системы;
  • Зажигание;
  • Охлаждение и смазка;
  • Системы управления и выпуска.

Конструкцией мотора объединены в единый узел блок цилиндров и его головка. Под воздействием кривошипа происходит преобразование поршневого движения во вращение коленвала. Газораспределительным механизмом осуществляется своевременная подача к цилиндрам воздуха, также подается топливная смесь, и выполняется отвод отработанных газов.

Впускная система подает в мотор воздух. При помощи топливной системы обеспечивается доставка горючего. Благодаря их совместной работе образуется смесь топлива с воздухом. Главным элементом в топливной системе считается механизм впрыска.

Задача зажигания в моторе, работающем на бензине – воспламенение выше рассмотренной смеси. В дизелях же она воспламеняется самопроизвольно.

Смазочная система отвечает за уменьшение трения поверхностей рядом расположенных деталей. Охлаждение при этом возлагается на соответствующую систему. Задача по удалению отработанных газов, уменьшению шумообразования цилиндров и показателей токсичных выделений возложена на выпускную систему.

Электроника ДВС отвечает за исправное функционирование подконтрольных ей узлов.

Принцип работы ДВС

Самым главным механизмом, установленным в каждом автомобиле, является двигатель внутреннего сгорания. Механики любят называть его сердцем автомобиля. Именно он отвечает за преобразование энергии сгорания углеводородного топлива в механическое движение. Работают ДВС на жидком или газообразном топливе.

Принцип работы ДВС прост. Небольшие порции топлива, смешанного с воздухом в нужной пропорции, поступают в камеру сгорания. В ней топливная смесь воспламеняется. Выделяемая при этом энергия приводит в движение поршни, которые вращают вал.

Все остальные узлы автомобиля предназначены либо для повышения производительности силового агрегата, либо для контроля и управления. Вспомогательные системы создают также комфорт пассажирам и водителям, при этом обеспечивая им безопасную езду.

Более чем за полуторавековую историю своего развития появились ДВС, различающиеся конструкцией, мощностью и используемым топливом.

Видео: Принцип работы двигателя внутреннего сгорания

Преимущества и недостатки

Преимущества двигателей внутреннего сгорания в таких качествах:

  • удобстве использования – излишняя конструктивная сложность не препятствует работе в пределах нормативного срока; сеть заправочных станций обеспечивает повсеместную эксплуатацию машин с такими силовыми установками; при выходе из строя возможна замена отдельных элементов, с продлением ресурса силовой установки;
  • простоте обслуживания – достаточно залить бак горючим, и мотор готов к работе; это намного проще, чем заряжать электродвигатель;
  • длительном сроке службы – если владелец выполняет технические условия изготовителя, двигатель проработает не один десяток лет, при проведении периодического обслуживания и должного ухода;
  • эстетических соображениях – звук работающего мотора вдохновляет и вызывает позитивное настроение.

Но не следует забывать о недостатках:

  • загрязнении окружающей среды – выхлопы представляют серьезную опасность для экологии, а повсеместное использование ДВС усложняет ситуацию;
  • низкой эффективности – КПД большинства моторов не превышает 30 процентов, что намного уступает электродвигателям; наибольший КПД, достигнутый разработчиками Toyota, достигает 38 процентов, что также не впечатляет;
  • излишней сложности конструктивного устройства – с повышением требований к моторам, конструкция все более усложняется, что не идет на пользу долговечности и техническому обслуживанию, с необходимостью привлечения специализированного сервиса, использования смазочных материалов по высокой цене и пр.

Несмотря на перечисленные недостатки, достойной альтернативы двигателям внутреннего сгорания нет. Эти моторы остаются самыми распространенными, и будущее современной техники пока непредставимо без применения этих силовых установок.

Роторно-лопастной двигатель

Идея такой тепловой машины была предложена еще в 1910 году в Германии. Но только на бумаге. Дальше идеи, чертежей и схем дело не пошло. Слишком спорной и фантастической казалась тогда конструкция двигателя, хотя теоретически, ничего сложного в ней не было. Двигатель представлял собой цилиндр, в котором соосно размещались два независимых вала. На каждом из них был жестко зафиксирован блок из двух лопастей. Лопасти делят цилиндр на четыре независимых камеры, а каждая камера за один оборот выполняет четыре рабочих такта. Именно это привлекло конструкторов — по идее, такой мотор мог заменить поршневой двигатель с 8 цилиндрами. Преимущества налицо:

  • компактные размеры;
  • высокий КПД;
  • не нужен сложный механизм газораспределения.

Эта конструкция не смогла быть воплощена в начале века, поэтому за нее взялись в 90-е. Технологии продвинулись, появились новые материалы, но… Ни одного рабочего экземпляра роторно-лопастного двигателя изготовлено не было, и существует он только, как утопический проект. Несмотря на то что в 2002 году появилась информация о возможных решениях технических проблем с реализацией этого проекта, до сих пор работы не проводятся и конструкция считается бесперспективной.

Принцип работы ДВС: основные моменты

Даже понимая, что же такое ДВС и какую роль он выполняет в автомобиле, не обойтись без чисто технических знаний. Если объяснять простыми словами, то принцип работы ДВС основан на эффекте расширения газов и образования в результате этого процесса мощного выброса тепловой энергии:

  • смесь топлива и воздуха в нужных пропорциях поступает в камеру;
  • сжимается;
  • воспламеняется;
  • энергия преобразовывается в движущую силу.

Если говорить еще проще о том, как работает двигатель внутреннего сгорания, то стоит отметить следующее:

  • при воспламенении любая смесь увеличивается в объемах;
  • в ограниченном пространстве она активно давит на стены камеры;
  • при наличии одной подвижной стенки большая часть давления уходит на нее;
  • любая присоединенная к этому элементу деталь приводится в движение.

В общих чертах принцип работы ДВС таков. В реальности все выглядит немного сложнее. Но общая последовательность операций сохраняется.

Главная классификация ДВС

Все существующие ДВС разделены на 3 вида:

  • поршневые;
  • роторные;
  • газотурбинные.

В поршневых агрегатах рабочим органом является поршень. В роторных моторах используется движение ротора. В газотурбинных двигателях движение осуществляется турбиной.

В каждом из видов этих силовых установок конструктивно реализованы разные схемы преобразования тепловой энергии в полезную работу. Это принципиально отличает их друг от друга. Максимальная производительность силовых агрегатов зависит от того, каким образом преобразуется тепловая энергия. Каждый вид силовых агрегатов создан для эффективной работы в своей области применения.

Ниже подробно описаны конструкции этих агрегатов и физические процессы, происходящие в них. Отдельный раздел статьи посвящён двигателю Стирлинга. Он относится к механизмам с внешней камерой сгорания. Но принцип работы этого мотора по нескольким признакам похож на ДВС. Это часто вызывает путаницу.

Газотурбинный двигатель

При воспламенении топлива образуются газы, которые при нагреве расширяются. Этот факт всем известен из школьного курса физики. Указанный принцип положен в основу газотурбинной установки. Топливная смесь сгорает, и нагретый газ моментально расширяется, заставляя лопасти турбины вращаться. Чем больше температура газа, тем быстрее он увеличивается в объёмах. Эта зависимость определяет коэффициент полезного действия этого вида ДВС: чем выше температура газов, тем больше КПД.

Разработано два типа газотурбинных установок, отличающихся количеством рабочих валов. Агрегаты с двумя валами мощнее по сравнению с одновальными механизмами.

Газотурбинные двигатели устанавливают на машины, где необходима большая мощность силовой установки. Например, грузовые автомобили, корабли, самолёты и железнодорожные локомотивы.

Видео: Принцип работы газотурбинного двигателя

Роторный ДВС

В моторах этого вида реализован принцип вращения вала от кругового движения ротора. Ротором является треугольный поршень, который вращается в овальной камере – статоре. Ротор закреплён на валу с эксцентриситетом. При таком расположении во время вращения ротора в цилиндре создаются полости для тактов зажигания, сгорания и выпуска. За один оборот ротора происходит 3 такта работы.

Достоинством роторного ДВС является отсутствие шатунов, коленчатого вала и многих сопутствующих узлов. Инженеры подсчитали, что деталей в агрегате роторного типа намного меньше, чем в моторах других типов. Поэтому роторные моторы гораздо меньше других. Это является ещё одним их преимуществом.

В Японии, известной своими передовыми разработками в автомобилестроении, были сконструированы двигатели, имеющие несколько роторов. Например, японцы сконструировали агрегат, имеющий такую же мощность, что и шестипоршневой двигатель гоночного автомобиля. Но размеры многороторного движка при этом гораздо меньше.

На ранних моделях вазовских автомобилей в своё время устанавливались роторные моторы.

Роторные двигатели гораздо проще и эффективнее поршневых. Но по непонятной причине роторные агрегаты используются очень редко.

Видео: Принцип работы роторного двигателя

Поршневой двигатель

Это – самый распространённый тип двигателя. Рассмотрим его принципиальную схему работы.

В конструкции мотора этого вида имеется несколько цилиндров, внутри каждого из них поршни совершают возвратно-поступательные движения. В обоих концах цилиндров расположены клапаны. Открываясь, клапан пропускает порцию топливной смеси в камеру сгорания, образующуюся в цилиндре перед поршнем. В это время поршень, двигаясь вверх, сжимает смесь. В расчётный момент происходит её воспламенение. Образующиеся газы расширяются и толкают поршень в другую сторону. Несколько таких поршней закреплены на валу П-образной конструкции. Обычно такой вал называют коленчатым. За каждое движение поршня вал проворачивается на определённую величину. Цикл движения поршня от одной стороны цилиндра до другой называется тактом. Скоординированная работа поршней заставляет коленчатый вал проворачиваться на полный оборот. Такие циклы постоянно повторяются, заставляя вращаться вал с большой скоростью.

Автомобилестроители постоянно совершенствуют поршневые двигатели. Каждое усовершенствование приводит к повышению мощности двигателя. Поршневые агрегаты являются самыми надёжными из всех видов силовых установок.

Видео: Принцип работы дизельного двигателя

На автомобилях устанавливают поршневые двигатели внутреннего сгорания (ДВС), у которых топливо сгорает внутри цилиндра. В основу их действия положено свойство газов расширяться при нагревании. Рассмотрим принцип устройства и работы двигателя внутреннего сгорания (ДВС), а также его рабочие циклы.

Роторно-поршневой двигатель Ванкеля

История этого роторного двигателя более жизнеутверждающая. Роторно-поршневой двигатель впервые начертил в 1924 году немецкий изобретатель Феликс Ванкель. Конструкция настолько поразила молодого изобретателя, что он решает во что бы то ни стало воплотить ее в жизнь. Сам он любил рассказывать, что необычный двигатель с ротором вместо поршней ему приснился еще в 1910 году и с тех пор он занимался разработкой чертежей. Патент на изобретение был получен только в 1936, но реализовать в мечту в металле конструктору не дала Вторая мировая война.

Только после того, как Ванкель возобновил работу над проектом в 50-е годы, будучи уже сотрудником известной мотоциклетной фирмы NSU, удалось построить первый работоспособный образец. Первоначально он работал на метаноле, но пройдя 100-часовые испытания беспрерывной работой на стенде, мотор был успешно переведен на бензин. К началу 60-х годов 11 компаний купили лицензию у Феликса Ванкеля на использование конструкции двигателя и, казалось, новую революционную идею ждет великое будущее. Это уже не был чисто теоретический проект или отдельно взятая действующая модель. Это был работоспособный агрегат, полностью готовый к серийному выпуску.

Как увеличить тягу

Тяга двухтактных моторов зависит от открытия дроссельной заслонки. С резким возрастание оборотов двигателя, возрастает тяга. Отсюда следует, что, для того, чтобы уменьшить время разгона ДВС, надо увеличить рабочий объем цилиндра.

Когда двигатель работает на низких оборотах, качественная тяга повышает приемистость, увеличивает скорость разгона — ускорение.

Тягу также можно увеличить путем замены клапанов на специальные и настроить их так, чтобы они держались в открытом положении дольше, чем обычные.

СИСТЕМА ПИТАНИЯ

Система питания является одной из ключевых систем двигателя внутреннего сгорания, поэтому от ее исправности и технического состояния, а также от качества используемого топлива напрямую зависит мощность и надежность двигателя, а также возможность его быстрого запуска.

Внимание!

Практически любая неисправность системы питания влечет за собой повышение расхода топлива и, как следствие, снижение экономичности автомобиля.

Среди наиболее характерных признаков, свидетельствующих о наличии неполадок в системе питания, можно отметить резкий запах топлива, а также наличие подтеканий из топливной системы. О неисправностях в топливной системе также может говорить трудный запуск двигателя, его нестабильная работа в разных режимах, а также слишком высокий расход топлива.

Состав выхлопных газов может рассказать о состоянии системы питания. Например, неполадки часто приводят к образованию слишком богатой либо наоборот — слишком бедной рабочей смеси, что в конечном счете отражается на содержимом выхлопных газов.

При диагностике системы питания следует учесть, что отклонения в показателях какого- либо параметра могут быть обусловлены сразу несколькими неполадками. В частности, повышенное потребление топлива случается из-за неисправностей в кривошипно¬шатунном либо газораспределительном механизме, из-за неполадок в системе зажигания, а также при наличии некоторых неисправностей подвески. Результаты диагностики в такой ситуации будут достоверными только тогда, когда точно известно техническое состояние каждого из названных узлов и агрегатов.

При диагностике системы питания работники автосервисов и СТО нередко «разводят на деньги» своих клиентов. Подобное мошенничество базируется на том, что кислородный датчик может оказывать существенное влияние на экономичность потребления топлива автомобилем. Исправность этого прибора водитель самостоятельно проверить не может, если только не является большим докой в устройстве современного автомобиля.

Когда клиент на СТО жалуется, что его автомобиль стал в последнее время слишком «прожорлив», ему сразу же предлагают пройти диагностику. Стоимость такой процедуры зависит от конкретной СТО, но в среднем она составляет порядка $15–20. Результат проверки почти всегда один и тот же: строгим тоном, не терпящим возражений, клиенту заявляют, что в его машине неисправен датчик кислорода. В наличии таких датчиков, само собой, сейчас нет, поэтому придется заказывать новый из-за границы. На робкий вопрос клиента относительно цены нового кислородного датчика механик авторитетно заявляет: «Вообще-то это дорого, но для вас сделаем всего за $350».

Расчет в данном случае простой: подавляющее большинство клиентов не пожелают выкладывать такую сумму за датчик кислорода и просто смирятся с возросшей «прожорливостью» своего автомобиля. Деньги, уплаченные за диагностику, разумеется, вам никто не вернет. На такой псевдо-диагностике в настоящее время делается очень неплохой «навар». Стоит ли говорить о том, что на самом деле неисправность, ставшая причиной высокого потребления топлива, может заключаться совершенно в другом, и устранить ее можно быстро и недорого. Вот только заниматься этим работники российских автосервисов не хотят: куда проще «содрать» с клиента $350, чем чинить его машину за меньшие деньги.

На вопрос клиента, что именно стало причиной выхода из строя кислородного датчика, может последовать много ответов: здесь и плохое качество российского топлива (об этом наши соотечественники знают чуть ли не с детского сада), и этилированный бензин, из-за которого датчик приходит в негодность практически сразу же, и морозные российские зимы и т. п. Практически все эти утверждения в большинстве случаев не имеют ничего общего с реальностью, иначе все автомобилисты в России ездили бы с неисправными датчиками либо меняли эти датчики едва ли не каждую неделю.

Конечно, никто не берется утверждать, что датчик кислорода не влияет на потребление топлива. Иногда он действительно является виновником его повышенного расхода, причем в исправном состоянии. Вот наиболее простой пример: в автомобиле поврежден воздухопровод и имеет место нештатный подсос воздуха. В таком случае кислородный датчик распознает лишний воздух как слишком бедную рабочую смесь и добавляет в нее топливо, чтобы довести до кондиции.

Как же определить, имеется ли в машине нештатный подсос воздуха?

Это несложно. Возьмите обыкновенный аэрозоль, содержащий горючую смесь (они обычно используются для промывки карбюратора), заведите мотор и направьте из баллончика струю в то место, в котором, как вы подозреваете, имеется нештатное проникновение воздуха. Если ваши подозрения подтвердятся, то у двигателя самопроизвольно повысятся обороты (поскольку через место, куда обычно попадает лишний воздух, сейчас проникает струя горючей смеси из аэрозоля).

Повышенный расход топлива на современных автомобилях, оборудованных электронной системой зажигания, может быть обусловлен неправильным выставлением датчика положения дроссельной заслонки. В таком случае компьютер будет воспринимать ошибочную информацию как верную, что может повлечь за собой неправильное приготовление рабочей смеси, а также смещение угла опережения зажигания. В конечном счете это приведет к нарушению работы двигателя на холостом ходу (мотор может работать нестабильно, либо холостые обороты могут быть повышенными и др.).

КПД двигателя внутреннего сгорания

Во время рассмотрения принципа функционирования вышеуказанных двигателей вполне отчетливо видна причина относительно скромного КПД – ориентировочно 40%. Объясняется это участием в полезной работе на каком-то промежутке времени только одного цилиндра, когда другие заняты обеспечением трех остальных тактов: впуском, сжатием и выпуском.

В моторах разных мощностей КПД отличается своими особенностями. То, насколько эффективным будет КПД, зависит от потерь механического характера на разной рабочей стадии. Потери возникают во время трения отдельных движущихся частей мотора: поршней, поршневых колец и подшипников.

Ниже вы можете просмотреть видео о том, как работает двигатель внутреннего сгорания.

Тип топлива

Следует помнить и об октановом числе топлива, которое используют двигатели внутреннего сгорания разных типов.

Чем выше октановое число топлива – тем больше степень сжатия, что приводит к увеличению коэффициента полезного действия двигателя внутреннего сгорания.

Но существуют и такие двигатели, для которых увеличение октанового числа выше положенного заводом изготовителем, приведет к преждевременной поломке. Это может произойти путем прогорания поршней, разрушения колец, закопченности камер сгорания.

Заводом предусмотрено свое минимальное и максимальное октановое число, которое требует двигатель внутреннего сгорания.

Назначение и устройство двигателя внутреннего сгорания

Более сотни лет в качестве силовых установок большинства машин и механизмов используются двигатели внутреннего сгорания. В начале 20-го века они заменили собой паровой мотор внешнего сгорания. ДВС сейчас является самым экономичным и эффективным среди прочих моторов. Давайте рассмотрим устройство двигателя внутреннего сгорания.

История создания

История этих агрегатов началась примерно 300 лет назад. Именно тогда Леонардо Да Винчи разработал первый чертеж примитивного двигателя. Разработка этого агрегата дала толчок к сборке, испытаниям и постоянному совершенствованию ДВС.

В 1861 году по чертежам, которые оставил миру Да Винчи, создали первый двухтактный мотор. Тогда еще никто и не думал, что подобными установками будут комплектоваться все автомобили и другая техника, хотя тогда использовались паровые агрегаты на железнодорожной технике.

Первым, кто стал использовать ДВС на автомобилях, стал Генри Форд. Он первым написал книгу об устройстве и работе ДВС. Форд стал первым, кто вычислял КПД этих двигателей.

Классификация ДВС

В процессе развития усложнялось и устройство двигателя внутреннего сгорания. Назначение его при этом оставалось прежним. Можно выделить несколько основных видов ДВС, которые являются наиболее эффективными сегодня.

Первые по эффективности и экономичности – поршневые установки. В этих агрегатах энергия, образовавшаяся от сгорания топливной смеси, превращается в движение через систему из шатунов и коленчатого вала.

Общее устройство двигателя внутреннего сгорания карбюраторного ничем не отличается от других моторов. Но горючая смесь приготавливается непосредственно в карбюраторе. Впрыск осуществляется в общий коллектор, откуда под воздействием разряжения смесь попадает в цилиндры, где затем загорается от электрического разряда на свече.

Инжекторный двигатель отличается от карбюраторного тем, что топливо подается в каждый цилиндр непосредственно через отдельные форсунки. Затем после того, как бензин смешается с воздухом, топливо поджигается от искры свечи.

Дизельный мотор отличается от бензиновых. Рассмотрим кратко устройство дизельного двигателя внутреннего сгорания. Здесь для воспламенения не используются свечи. Данное топливо загорается под воздействием высокого давления. В результате дизель нагревается. Температура превышает температуру горения. Впрыск осуществляется посредством форсунок.

К ДВС относят и роторно-поршневые двигатели. В этих агрегатах тепловая энергия от сгорания топлива воздействует на ротор. Он имеет особенную форму и специальный профиль. Траектория движения ротора – планетарная (элемент находится внутри специальной камеры). Ротор одновременно выполняет огромное количество функций – это газораспределение, функция коленчатого вала и поршня.

Существуют и газотурбинные ДВС. В этих агрегатах тепловая энергия преобразуется через ротор с клиновидными лопатками. Затем эти механизмы заставляют турбину вращаться.

Самыми надежными, не требующими частого обслуживания и экономичными считаются поршневые моторы. Роторные практически не используют в массовой автомобильной технике. Сейчас модели автомобилей, оснащенных роторно-поршневыми двигателями, выпускает только японская “Мазда”. Опытные авто с газотурбинными моторами в 60-х годах выпускал “Крайслер”, и после этого больше к этим установкам не возвращался ни один автопроизводитель. В Советском Союзе газотурбированными моторами недолго оснащали некоторые модели танков и десантных кораблей. Но затем было решено отказаться от таких силовых агрегатов. Именно поэтому мы рассматриваем устройство двигателя внутреннего сгорания – они наиболее популярны и эффективны.

Устройство ДВС

В корпусе мотора объединено несколько систем. Это блок цилиндров, в котором и находятся те самые камеры сгорания. В последних сгорает топливная смесь. Также двигатель состоит из кривошипно-шатунного механизма, призванного превращать энергию движения поршней во вращение коленчатого вала. В корпусе силового агрегата имеется и газораспределительный механизм. Его задача — обеспечивать своевременное открытие и закрытие впускных и выпускных клапанов. Двигатель не сможет работать без системы впрыска, зажигания, а также без выхлопной системы.

При запуске силового агрегата в цилиндры через открытые впускные клапаны подается смесь топлива и воздуха. Затем она воспламеняется от электрического разряда на свече зажигания. Когда смесь воспламенится и газы начнут расширятся, увеличится давление на поршень. Последний приведется в движение и заставит вращаться коленчатый вал.

Устройство и работа двигателя внутреннего сгорания таковы, что мотор работает определенными циклами. Эти циклы постоянно повторяются с высокой частотой. За счет этого обеспечивается непрерывное вращение коленчатого вала.

Принцип действия двухтактных ДВС

Когда мотор запускается, поршень, который приводится в движение посредством вращения коленвала, начинает двигаться. Когда он достигнет самой нижней своей точки и начнет двигаться вверх, в цилиндр подается топливо.

При движении вверх поршень сжимает смесь. Когда он достигнет верхней мертвой точки, то свеча за счет электрического разряда воспламеняет смесь. Газы моментально расширяются и толкают поршень вниз.

Затем открывается выпускной клапан цилиндра, и продукты сгорания выходят из цилиндров в выхлопную систему. Затем, снова дойдя до нижней точки, поршень начнет двигаться вверх. Коленчатый вал сделает один оборот.

Когда начнется новое движение поршня, впускные клапаны снова откроются, и будет подана топливная смесь. Она займет весь объем, который занимали продукты сгорания, и цикл повторится снова. За счет того, что поршни в таких двигателях работают только в двух тактах, совершается меньше движений, в отличие от четырехтактного ДВС. Снижаются потери на трение деталей. Но эти моторы сильнее нагреваются.

В двухтактных силовых агрегатах поршень также играет роль газораспределительного механизма. В процессе движения открываются и закрываются отверстия для впуска топливной смеси и выпуска отработанных газов. Худший газообмен в сравнении с четырехтактными моторами – это основной недостаток таких двигателей. В момент выпуска отработанных газов значительно теряется мощность.

На данный момент двухтактные двигатели применяются в мопедах, скутерах, лодках, бензиновых пилах и на другой маломощной технике.

Четырехтактный

Устройство двигателя внутреннего сгорания такого типа немного отличается от двухтактного. Принцип работы тоже немного другой. На одно вращение коленчатого вала приходится четыре такта.

Первым тактом является подача горючей смеси в цилиндр двигателя. Мотор под воздействием разряжения всасывает смесь в цилиндр. Поршень в цилиндре в этот момент направляется вниз. Впускной клапан открыт, и распыленный бензин вместе с воздухом попадет в камеру сгорания.

Далее идет такт сжатия. Впускной клапан закрывается, а поршень двигается по направлению вверх. При этом смесь, находящаяся в цилиндре, значительно сжимается. По причине давления смесь нагревается. Давлением повышается концентрация.

Далее следует третий рабочий такт. Когда поршень почти доходит до своего верхнего положения, срабатывает система зажигания. На свече проскакивает искра, и смесь воспламеняется. Из-за мгновенного расширения газов и распространения энергии взрыва, поршень под давлением движется вниз. Данный такт в работе четырехтактного мотора основной. Прочие три такта не влияют на создание работы и являются вспомогательными.

На четвертом такте начинается фаза выпуска. Когда поршень достигает низа камеры сгорания, открывается выпускной клапан и отработанные газы выходят сначала в выхлопную систему, а затем в атмосферу.

Вот такое устройство и принцип работы двигателя внутреннего сгорания четырехтактного, который установлен под капотами большинства автомобилей.

Вспомогательные системы

Мы рассмотрели устройство двигателя внутреннего сгорания. Но любой мотор не смог бы работать, если бы не был оснащен дополнительными системами. О них мы расскажем ниже.

Зажигание

Эта система – часть электрического оборудования. Она предназначена для формирования искр, которые поджигают топливную смесь.

Система включает в себя АКБ и генератор, замок зажигания, катушку, а также специальное устройство – распределитель зажигания.

Впускная система

Она необходима для того, чтобы в мотор без каких-либо перебоев поступал воздух. Кислород необходим для образования смеси. Сам по себе бензин гореть не будет. Нужно отметить, что в карбюраторах впуск представляет собой только фильтр и воздуховоды. Впускная система современных авто более сложная. Она включает в себя воздухозаборник в виде патрубков, фильтр, дроссельную заслонку, а также впускной коллектор.

Система питания

Из принципа устройства двигателя внутреннего сгорания мы знаем, что мотору нужно что-то сжигать. Это бензин или дизельное топливо. Система питания обеспечивает подачу горючего в процессе работы мотора.

В самом примитивном случае данная система состоит из бака, а также топливной магистрали, фильтра и насоса, которые обеспечивает подачу горючего в карбюратор. В инжекторных автомобилях система питания контролируется ЭБУ.

Смазочная система

В смазочную систему входит масляный насос, поддон, фильтр для очистки масла. В дизельных и мощных бензиновых силовых агрегатах также имеется радиатор для очистки смазки. Насос приводится в действие от коленчатого вала.

Заключение

Вот что представляет собой двигатель внутреннего сгорания. Устройство и принцип действия его мы рассмотрели, и теперь понятно, как работает автомобиль, бензопила или дизельный генератор.

Двигатель внутреннего сгорания (ДВС)

В современных автомобилях чаще всего используется двигатель внутреннего сгорания. Сокращено его обозначают ДВС. С научной точки зрения, ДВС представляет собой тепловую машину, которая в процессе своей работы преобразует химическую энергию при сгорании топлива, в механическую работу.

Существует несколько основных типов ДВС: газотурбинный, поршневой, роторно-поршневой. Самое большое распространение нашел двигатель поршневой. Мы подробно расскажем Вам о принципе работы этого устройства, рассмотрев устройство и принцип работы поршневого двигателя.

Основными достоинствами поршневого ДВС является его универсальность, автономность, достаточно низкая цена, компактность и небольшой вес, потребление различных видов горючего.

У данного типа есть и ряд недостатков, к коим относится, большая частота вращения коленвала, вред для окружающей среды, малый ресурс, низкий уровень КПД и высокий уровень шума во время работы.

Существуют бензиновые и дизельные двигатели внутреннего сгорания. В качестве альтернативных вариантов топлива, ими может выступать метанол, водород, этанол и природный газ.

Из всех вышеописанных вариантов, наиболее экологичным является двигатель, работающий на водороде. Он не образует вредных соединений и абсолютно безопасен для окружающей среды.

Принцип работы двигателя внутреннего сгорания

Двигатель внутреннего сгорания поршневого типа состоит из собственно корпус, газораспределительного и кривошипно-шатунного механизмов, а также нескольких систем: системы управления, выпускная и впускная, зажигания и смазки.


Корпус ДВС включает в себя блок цилиндров и головку блока. Функция кривошипно-шатунного механизма, заключается в преобразовании обратно-поступательных движений поршня во вращение коленвала. Механизм газораспределение при этом обеспечивает поступление в цилиндры воздуха и горючей смеси, а также отвечает за своевременное выведение из них выхлопных газов.

В задачу системы зажигания входит принудительное воспламенение смеси горючего и кислорода. Такой принцип реализован только в бензиновых моторах. В двигателях, работающих на солярке, происходит самовоспламенение горючей смеси.

Система смазки предназначена для понижения трения, между элементами двигателя. Поддержание оптимальной температуры работы двигателя производится системой охлаждение. За правильное отведение отработавших газов и понижение их вредоносного воздействия на окружающую среду, отвечает выпускная система.

Все управление работой двигателя осуществляется системой электронного управления двигателя.

Принцип работы ДВС

Работа двигателя внутреннего сгорания заключается в превращении тепловой энергии расширения газов в крутящий момент. Это возможно благодаря тому, что в камерах цилиндров горючая смесь воспламеняется, заставляя поршни перемещаться.

ДВС работает циклически. Рабочий цикл включает в себя два оборота коленвала, т.е. двигатель четырехтактный. Первый — впуск, второй — сжатие, третий — рабочий ход и заключительный четвертый — выпуск.

Впуск и рабочий ход происходит во время движения поршня вниз, а во время сжатия и выпуска — вверх. Равномерность работы ДВС обеспечивается тем, что фазы каждого из цилиндров не совпадают.

На такте впуска, топливная система образует горючую смесь. Она создается во впускном коллекторе, или непосредственно в цилиндре. С началом фазы сжатия, впускные клапаны закрываются, топливная смесь увеличивает свое давление за счет сжатия.

После этого происходит воспламенение топливной смеси. Оно может быть принудительным или же с самовоспламенением (дизельные двигатели). Далее, образующиеся газы с силой выталкивают поршень, вращая кривошипно-шатунный механизм. Он в свою очередь обеспечивает движение колес автомобиля.


Такты выпуска открывает выпускные клапана, после чего отработанные газы покидают камеру сгорания и устремляются в выхлопную систему, а затем в окружающую среду.

Вышеописанный порядок работы ДВС дает ответ на то, почему КПД двигателя данного типа не превышает 40%. Все дело в том, что в каждый момент времени, реальную работу выполняет только один цилиндр, в то время как в остальных происходит впуск, сжатие и выпуск. 

Как на самом деле работает двигатель внутреннего сгорания?

Ежегодно около 222 миллионов человек в Соединенных Штатах водят самые разные автомобили. Почти все эти автомобили оснащены двигателем внутреннего сгорания. Однако недавний опрос AA показал, что только 10% водителей могут в общих чертах описать, как работает двигатель внутреннего сгорания.

Если вы только что осознали, что не входите в число этих 10%, не волнуйтесь, мы составили краткое описание удивительного процесса, с помощью которого ваша машина действительно движется.

Основы

Горение, также известное как горение, является основным химическим процессом высвобождения энергии из топливно-воздушной смеси. В двигателе внутреннего сгорания воспламенение и сгорание топлива происходит внутри самого двигателя.

Затем двигатель частично преобразует энергию сгорания в работу. Двигатель состоит из неподвижного цилиндра и подвижного поршня. Расширяющиеся газы сгорания толкают поршень, который, в свою очередь, вращает коленчатый вал. В конечном счете, это движение приводит в движение колеса автомобиля через систему шестерен трансмиссии.

Различные типы двигателей внутреннего сгорания

Двумя наиболее распространенными типами двигателей внутреннего сгорания являются бензиновый двигатель с искровым зажиганием и дизельный двигатель с воспламенением от сжатия. Эти двигатели специально разработаны для работы как с бензином, так и с дизельным двигателем, поэтому использование неправильного топлива в вашем автомобиле может привести к значительному повреждению двигателя.

В двигателе с искровым зажиганием топливо смешивается с воздухом, а затем вводится в цилиндр во время процесса впуска.После того, как поршень сжимает топливно-воздушную смесь, искра воспламеняет ее, вызывая возгорание. Расширение дымовых газов толкает поршень во время рабочего хода.

В дизельном двигателе только воздух всасывается в двигатель, а затем сжимается. Затем дизельные двигатели распыляют топливо в горячий сжатый воздух с подходящей дозированной скоростью, вызывая его возгорание.

Большинство двигателей внутреннего сгорания представляют собой четырехтактные двигатели, что означает, что для завершения цикла требуется четыре хода поршня.Цикл двигателя состоит из четырех различных процессов. Это впуск, сжатие, сгорание, рабочий такт и выпуск.

Разработка двигателя внутреннего сгорания

Двигатель внутреннего сгорания стал результатом ряда постепенных изменений в установленных патентах, а не одним значительным усовершенствованием. Первый коммерчески успешный двигатель внутреннего сгорания был создан Этьеном Ленуаром около 1860 года.

Эксперименты Ленуара с электричеством привели его к разработке первого двигателя внутреннего сгорания, который сжигал смесь угольного газа и воздуха, воспламеняемую системой зажигания «прыгающей искрой» катушки Румкорфа.

То, что мы можем считать первым современным двигателем внутреннего сгорания, было создано в 1876 году Николаусом Отто. Двигатель Отто — это большой стационарный одноцилиндровый четырехтактный двигатель внутреннего сгорания. Двигатели изначально использовались для стационарных установок, поскольку Отто не интересовался транспортом, и в конечном итоге были разработаны для транспортных средств Готлибом Даймлером.

Отто фактически основал свой двигатель на коммерческом двигателе внутреннего сгорания на жидком топливе 1872 года, изобретенном американцем Джорджем Брайтоном.

В то время как двигатели внутреннего сгорания чаще всего ассоциируются с транспортными средствами, термин двигатель внутреннего сгорания также может применяться к пушкам, ракетам или вообще ко всему, что использует мощность взрыва для генерирования энергии или импульса.

В последние годы преобладанию бензина и дизельного топлива в качестве основного топлива для двигателей транспортных средств бросили вызов более экологичные виды топлива, такие как биодизель, биоэтанол, водород и этил-трет-бутиловый эфир (ЭТБЭ). Многие производители автомобилей также производят гибридные автомобили, которые работают на смеси традиционных видов топлива и электроэнергии, или, в случае таких компаний, как Tesla, полностью электрические автомобили

.

Научитесь водить машину в Неваде сегодня!

Северо-западная автошкола и школа дорожного движения предоставляют жителям Лас-Вегаса уроки вождения и дорожного движения под руководством опытных инструкторов.Все наши инструкторы по вождению прошли проверку биографических данных. Каждый автомобиль одобрен DMV по безопасности, и каждый член семьи Northwest стремится предоставить отличные инструкции для водителей и за рулем.

На Северо-Западе вы можете рассчитывать найти выдающиеся классы, как в кампусе, так и за рулем, которые увлекательны, наполнены фактами, занимательны и нацелены на успех.

Мы не скрываем этого, мы уверены, что Northwest предлагает лучшие уроки вождения в Лас-Вегасе, независимо от вашего возраста и происхождения.Мы гордимся тем, что 98% наших студентов сдают экзамен с первого раза. Позвоните нам по телефону (702) 403-1592 , чтобы начать свое приключение с одним из наших опытных инструкторов.

Автор:

Рич Генрих

Мастер-инструктор, Почетный

Двигатель внутреннего сгорания возвращается к чертежной доске

Поднимите свой современный седан рядом с Ford Model T, и они вряд ли будут похожи друг на друга.Да, есть еще четыре колеса и руль, но на этом сходство, похоже, заканчивается.

Современные автомобили, большие, гладкие и аэродинамичные; изготовлены из современных легких материалов и оснащены множеством функций безопасности. Модель T для сравнения не имела ремней безопасности, подушек безопасности или антиблокировочной системы тормозов, сидела высоко над землей и была сделана из стали, дерева и даже из конского волоса.

Но откройте капот — или капот, если хотите — и это странный анахронизм. Двигатели обоих автомобилей, вероятно, по-прежнему будут состоять из очень схожей технологии с четырьмя поршнями, перемещающимися вверх и вниз в четырех цилиндрах.

Более того, топливная экономичность этих двигателей практически не изменилась. Этот первый серийный автомобиль имел рядный четырехцилиндровый двигатель мощностью 20 л.с. (15 кВт) с заявленной экономией топлива 13-21 миль на галлон (миль на галлон). Ваш седан, скорее всего, будет иметь современный четырехцилиндровый двигатель, который, вероятно, выдает больше примерно 200 л.с., но только с немного улучшенной экономией топлива где-то в диапазоне 20-30 миль на галлон.

Но вскоре все это может измениться. Соединенные Штаты только что объявили о новых правилах, которые потребуют от автопроизводителей производить более продвинутые автомобили с меньшим расходом топлива.«Мы поставили агрессивную цель, и компании делают шаг вперед», — сказал президент Обама в заявлении. «К 2025 году средняя экономия топлива их автомобилей почти удвоится и составит почти 55 миль на галлон».

Конечно, в европейских странах, где небольшие автомобили и дизельные двигатели являются обычным явлением, такие цели не кажутся такими агрессивными. Но для США, где законы о выбросах запрещают использование некоторых технологий, уже используемых в других местах, они амбициозны. Более того, они, вероятно, будут стимулировать новую эру конструкции двигателей, которая не только заменит устаревшие четырехтактные двигатели, но также может изменить принцип работы двигателей в США и других странах.

Бесполезная работа

Практически все современные двигатели работают по принципу: если вы поместите небольшое количество топлива, например бензин, в небольшое замкнутое пространство и воспламените его, он взорвется с огромным количеством энергии. Затем через шатун и коленчатый вал он может приводить в движение колеса.

Большинство двигателей делают это несколько раз в секунду, используя так называемый четырехтактный цикл. При этом поршни двигателя поднимаются и опускаются в цилиндре четыре раза — так называемые такты впуска, сжатия, мощности и выпуска.В современном двигателе с прямым впрыском топлива воздух всасывается, когда поршень падает в цилиндр, а затем сжимается, когда поршень толкает его обратно вверх. Почти сразу же впрыскивается и воспламеняется топливо, заставляя поршень снова опускаться вниз в так называемом рабочем такте. Последний ход поршня выбрасывает продукты сгорания.

Чтобы обеспечить постоянную мощность, большинство автомобилей имеют ряд цилиндров, обычно четыре, что позволяет поршням находиться в разных точках цикла. По такому же принципу работают шестицилиндровые или восьмицилиндровые двигатели.Эти двигатели используются практически во всех автомобилях, лодках, грузовиках, винтовых самолетах, генераторах и т. Д.

Существуют варианты этих конструкций, которые могут помочь США достичь поставленных целей. Например, гибридные автомобили, в которых используется комбинация электродвигателей и бензиновых двигателей, уже достигают топливной эффективности около 50 миль на галлон. Кроме того, такие производители, как Ford и Fiat, представили двигатели с меньшим количеством цилиндров по сравнению с обычным минимумом из четырех; три в случае Ford и два для Fiat.Оба используют турбокомпрессоры и интеллектуальную систему управления синхронизацией, чтобы сжигать меньше топлива, сохраняя при этом ту же мощность, что и другие двигатели. Двигатели Ford будут представлены на автомобилях США в следующем году.

Но для того, чтобы повысить показатели топливной экономичности, некоторые конструкторы задаются вопросом, нужно ли нам вообще радикально переконструировать двигатели.

«Более 100 лет обычный двигатель внутреннего сгорания был эффективен только на 33%», — говорит Билл Ринн из инженерной фирмы Scuderi, которая разработала двигатель нового типа.«Оно должно быть выше — если вы залите галлон бензина в свой бак, две трети его будут потрачены впустую».

Scuderi разрабатывает двигатель, в котором поршни в цилиндрах по-прежнему поднимаются и опускаются, но с одним существенным отличием. «Что мы делаем, так это разделяем четыре штриха», — говорит Ринн. В одном цилиндре у нас есть 2 такта, которые связаны со сжатием, а в другом цилиндре у нас есть 2 такта, которые связаны с выхлопом ».

На практике это означает, что воздух втягивается в цилиндр сжатия, когда поршень движется вниз , , а затем сжимается, когда он движется обратно вверх . Вместо того, чтобы впрыскивать топливо в эту камеру, сжатый воздух проходит по трубке в отдельный цилиндр, где топливо впрыскивается и воспламеняется для обеспечения энергии. Четырехцилиндровый двигатель, работающий по этой конструкции, будет иметь два цилиндра сжатия и два цилиндра сгорания.

«Поскольку мы можем разделить эти две функции, мы можем максимизировать процесс сжатия, а также максимизировать процесс сгорания, чтобы сделать его более эффективным и более чистым процессом сгорания», — говорит Винн.В некоторых приложениях Скудери считает, что эта, казалось бы, простая настройка может улучшить топливную экономичность на 40% и более.

На первый взгляд кажется, что у двигателя Scuderi должно быть вдвое больше цилиндров, чтобы обеспечить такую ​​же мощность, но это не так. У него есть «силовой» ход на каждый оборот двигателя, а не на каждые два.

«Unexotic»

Инновационный дизайн позволяет реализовать некоторые другие умные идеи. Сжатие и сгорание не обязательно должны происходить последовательно, и Scuderi работает над тем, что он называет «воздушно-гибридной» системой.Вместо электрических генераторов, накапливающих энергию в батареях, как это происходит в современных гибридах, двигатель может отключать цилиндр сгорания, когда транспортное средство движется по инерции, и перенаправлять воздух из цилиндра сжатия в резервуар для хранения. Сильно сжатый воздух может быть выпущен позже для работы двигателя без топлива.

В течение последнего столетия предлагались и другие радикальные модификации двигателей, но автомобильная промышленность двигалась медленно, отчасти потому, что этого никогда не было. Двигатель внутреннего сгорания, каким мы его знаем, был доработан и улучшен, и он оказался очень надежным, очень безопасным и, в конечном итоге, дешевым в изготовлении.

«Существует множество отличных идей и концепций двигателей, но реальность такова, что с такой отраслью, как она есть, и с имеющейся у нас экономикой намного легче двигаться небольшими пошаговыми шагами. Это больше подходит для нынешних сборочных и производственных линий », — говорит Ринн.

Но Скудери считает, что именно его двигатель может наконец сбить обычный четырехтактный двигатель с пьедестала. Помимо повышения эффективности, его базовая конструкция цилиндров и поршней также очень похожа на традиционный двигатель.

«Мы рассматриваем примерно 95% или 96% одинаковых деталей. У нас не так много экзотических материалов, — говорит Ринн.

В настоящее время фирма ведет переговоры с производителями по всему миру, но, скорее всего, двигатель впервые появится в Азии. Компания считает, что автопроизводители в таких странах, как Китай, более склонны к экспериментам. После получения лицензии пройдет около трех-пяти лет, прежде чем мы увидим на дорогах автомобиль с двигателем Scuderi, и это будет как раз вовремя, чтобы соответствовать новым американским стандартам эффективности.

Если вы хотите прокомментировать эту статью или что-нибудь еще, что вы видели в Future, перейдите на нашу страницу в Facebook или напишите нам в Twitter.

Семь причин, почему двигатель внутреннего сгорания идет мертвецом [обновлено]

Зарядка Tesla

Фотография предоставлена ​​Tesla

Эра двигателей внутреннего сгорания (ДВС) закончилась. Будущее за электромобилями. Переход только начался, но переход от автомобилей с ДВС к электромобилям произойдет раньше и быстрее, чем думает большинство людей.

Какие факторы заставили меня сказать это с такой уверенностью?

1 Китай так говорит!

Китай в настоящее время является крупнейшим автомобильным рынком в мире (из 86 млн автомобилей, проданных в 2017 г., 30% (25,8 млн) были проданы в Китае, по сравнению с 20% (17,2 млн) в США и 18% (15,6 млн) в США). ЕС).

Мировые продажи автомобилей, 2017 г.

Фотография предоставлена ​​Jato.com

Неудивительно, что производители автомобилей хотят иметь доступ к этому рынку. Тем не менее, Китай принял закон, который требует от любого производителя транспортных средств получить к 2019 году балл для новых энергетических транспортных средств не менее 10%, который вырастет до 12% к 2020 году и до 20% продаж к 2025 году.

В результате этого объявления все основные OEM-производители внезапно обрели религию для электромобилей. За этим последовало множество объявлений о десятках миллиардов долларов или евро, которые они вкладывают в свои программы разработки электромобилей, а также о партнерствах или огромных инвестициях, которые они создают для обеспечения безопасности своей цепочки поставок аккумуляторов. Генеральный директор Porsche даже официально заявил, что после 2030 года все автомобили Porsche будут на 100% электрическими.

Итак, Китай сказал, и производители автомобилей прислушались.Ожидается, что в следующие 18 месяцев количество моделей электромобилей, доступных для покупки, значительно увеличится.

2 Стоимость батареи снижается

Основная стоимость электромобиля — это стоимость аккумулятора. При этом цена этих аккумуляторов значительно падает.

Тенденции развития литий-ионных батарей, 2010-2017 гг.

Bloomberg Литий-ионные батареи

стоили 1000 долларов за киловатт-час в 2010 году. К 2017 году эта стоимость упала до 200 долларов за киловатт-час, и на этом она не остановится.На собрании акционеров Tesla 5 июня этого года Илон Маск заявил, что Tesla будет стоить 100 долларов за киловатт-час в течение 2 лет. По общему мнению, 100 долларов за кВт · ч — это цифра, при которой электромобили и автомобили с ДВС будут иметь сопоставимую предварительную закупочную цену.

Итак, к 2020 году стоимость аккумуляторов упадет на 90% за 10 лет, и цена будет продолжать падать.

3 Емкость аккумулятора увеличивается

Литий-ионные батареи увеличивают удельную энергию на 5-8% в год.Mercedes заявил, что их полностью электрический Mercedes EQC, который выйдет на рынок в 2019 году, будет иметь ожидаемую дальность действия 500 км. В то время как Tesla Roadster, который запускается в 2020 году, имеет заявленный запас хода в 1000 км. Когда у электромобилей есть запас хода в 1000 км, проблемы с дальностью действия возникают именно у автомобилей с ДВС.

Более того, появятся и другие аккумуляторные технологии, такие как твердотельные батареи, которые дадут нам более дешевые батареи, более быструю зарядку и еще больший запас хода.

4 Аккумуляторы для электромобилей имеют очень долгий срок службы

Вопреки тому, что многие считают, батареи в электромобилях не разряжаются со временем (или даже при пробеге в милях / километрах).

Разрушение батареи Tesla

Фотография предоставлена ​​Matteo

Это график емкости аккумуляторных батарей автомобилей Tesla Model S / X, который показывает, что после пробега 270 000 км (примерно 168 000 миль) батареи все еще имели 91% своей первоначальной емкости.В этой статье есть более подробная информация, но суть в том, что батареи теряют около 1% емкости каждые 30 000 км (18 750 миль). Это означает, что первоначальная стоимость электромобиля может быть снижена в течение более длительного времени, что значительно снижает общую стоимость владения — электромобили будут продолжать работать. Сказав это, эти данные относятся к батареям Tesla — нам придется подождать, чтобы увидеть, как обстоят дела у других производителей.

5 Электромобили надежнее

Еще один фактор в пользу электромобилей — их надежность.Трансмиссия в автомобиле с ДВС обычно содержит 2000+ движущихся частей, тогда как трансмиссия в электромобиле содержит около 20. Об этом говорит быстрое сканирование 10 лучших автомобилей 2015 года, проведенных с ремонтом. Только одна из этих неисправностей может произойти с электромобилем (номер 4, и это, безусловно, самое дешевое решение).

ТОП-10 ремонтов автомобилей 2015

Фото Credit.com

6 Дешевле на топливо

Электромобили, как правило, также значительно дешевле в топливе (если только вы не живете где-нибудь, где особенно дешевый бензин и чрезвычайно дорогое электричество).А поскольку за последние 12 месяцев цена на нефть выросла на 50%, найти где-нибудь с дешевым бензином будет все труднее.

Цена на сырую нефть за 1 год

Фото предоставлено InfoMine.com

7 Стоимость автомобилей с ДВС при перепродаже —

Наконец, как указано выше:

  • количество моделей электромобилей, доступных для продажи, значительно возрастет
  • закупочная цена электромобилей значительно падает
  • линейка электромобилей, приближающихся к автомобилям с ДВС или даже превосходящих их
  • У электромобилей
  • практически нет проблем с обслуживанием, за исключением необходимости замены тормозов и шин (а при рекуперативном торможении износ тормозных колодок минимален)
  • батареи в электромобилях служат сотни тысяч миль / километров с минимальным износом;
  • и электромобили дешевле

Так зачем кому-то подумать о покупке автомобиля с двигателем внутреннего сгорания? Большинство людей этого не сделает.И, как следствие, стоимость автомобилей с ДВС при перепродаже резко упадет.

И если стоимость автомобилей с ДВС при перепродаже упадет через 3-4 года, зачем вам покупать их сегодня? Подумайте об этом на секунду. Зачем покупать автомобиль с двигателем внутреннего сгорания сегодня, если его стоимость при перепродаже через 3-4 года значительно упадет? Ты бы не стал. И когда люди начнут это понимать, рынок перевернется. И произойдет это быстро. Раньше, чем думает большинство людей. Будет ли ваша следующая машина электромобилем?

Наконец —

И если вас это не убедит, возможно, посмотрите остальные характеристики Tesla Roadster — 0-100 км / ч (0-60 миль / ч) за 1.9 секунд, максимальная скорость 400 км / ч (250 миль / ч) и дальность полета 1000 км (620 миль).

Или, может быть, посмотрите, как Tesla Model S мчится с Boeing 737, или, что еще более невероятно, посмотрите, как Tesla Model X установила мировой рекорд Гиннеса, буксируя Boeing 787 Dreamliner.

И я даже не упомянул о растущем списке городов, которые принимают законы, запрещающие ездить по улицам дизельным транспортным средствам!

Последняя мысль: когда электромобили станут более распространенными, водители автомобилей с двигателями внутреннего сгорания будут думать так же, как сегодня курящие.И, поскольку потребуется меньше заправочных станций, их придется либо закрыть, либо преобразовать в электрические заправочные станции. Поскольку они закрываются ставнями, людям с двигателями внутреннего сгорания придется путешествовать все дальше и дальше, чтобы найти место для заправки. Этот неизбежный порочный круг означает, что игра для двигателя внутреннего сгорания действительно окончена.

Более ранняя версия этой истории была опубликована на Medium

.

Обзор двигателей внутреннего сгорания | Солт-Лейк-Центр города

Специалисты по ремонту автомобилей в компании Master Muffler в Солт-Лейк-Сити помогут изучить ваш автомобиль сверху донизу, изнутри и снаружи.

Знаете ли вы, что даже в некоторых электромобилях используются двигатели внутреннего сгорания? Это не только процесс, применяемый в бензиновых и дизельных двигателях. Однако в этой статье мы сосредоточимся на двигателях внутреннего сгорания, работающих на топливе.

Горение означает горение. Это химический процесс смешивания топлива (бензина, дизельного топлива и т. Д.) С воздухом и использования тепловой энергии для приведения в движение других частей двигателя. Вот почему двигатели внутреннего сгорания (ДВС) иногда называют тепловыми двигателями.По сути, двигатель внутреннего сгорания преобразует тепловую энергию в механическую.

Компоненты двигателя внутреннего сгорания:

В вашем двигателе много неподвижных и подвижных частей. Вот краткое изложение того, что используется в двигателях внутреннего сгорания с четырехтактным циклом.

  • Распредвал выпускных клапанов
  • Ковш выпускного клапана
  • Свечи зажигания
  • Ковш впускного клапана
  • Распредвал впускных
  • Выпускной клапан
  • Клапан впускной
  • Фиксированные цилиндры
    • Каждый цилиндр содержит распределительный вал, клапаны, клапанные лопатки, свечи зажигания и форсунки.
  • Поршни
    • По мере расширения бензина поршень перемещается в цилиндре вверх и вниз.
  • Блок двигателя
    • В нем находятся поршень, шатун и коленчатый вал. Охлаждающая жидкость протекает через блок цилиндров для регулирования температуры.
  • Коленчатый вал
    • Он вращается во время рабочего хода поршня, заставляя колеса автомобиля двигаться.

Имея все эти компоненты двигателя, вы можете понять, почему так важно соблюдать регулярный график ремонта автомобиля; вы не хотите, чтобы в конечном итоге возникла более серьезная проблема, пренебрегая мелкой на раннем этапе.

Четырехтактные двигатели

Мы упоминали, что все это происходит в четырехтактном двигателе внутреннего сгорания. Но что это значит?

«Четырехтактный» означает, сколько раз поршень перемещается, чтобы повернуть коленчатый вал на два полных оборота, или на 720 градусов. Поршень будет «качать» четыре раза, чтобы завершить процесс преобразования тепловой энергии в механическую. Три из четырех тактов потребляют энергию, в то время как только рабочий ход производит крутящий момент / движение.

Шагов, совершенных за один ход поршня:

  • Всасывание
  • Сжатие
  • Горение и рабочий ход
  • Выхлоп

Типы двигателей внутреннего сгорания

В настоящее время в транспортных средствах в основном используются два типа двигателей внутреннего сгорания.

  1. Искровое зажигание (для автомобилей с бензиновым двигателем)
  2. Компрессионное зажигание (для автомобилей с дизельным двигателем)

Специалисты по ремонту автомобилей Master Muffler’s Salt Lake City предлагают услуги для любого типа двигателей внутреннего сгорания.

Процесс искрового зажигания

Если вы ведете автомобиль, работающий на бензине, вот как работает процесс искрового зажигания.

  • Во время процесса впуска клапан в верхней части цилиндра открывается для всасывания топливно-воздушной смеси.
  • Затем поршень сжимает эту смесь топлива и воздуха в цилиндре, и в это время ее зажигает искра. Впускной и выпускной клапаны в это время закрыты, что усиливает сжатие.
  • Как только искра инициирует горение, газы толкают поршень в рабочем такте.
  • Рабочий ход происходит при закрытых впускных и выпускных клапанах; давление в цилиндре увеличивается, продолжая толкать поршень вниз. Именно во время этого хода двигатель вырабатывает энергию.
  • Во время такта выпуска выпускной клапан открывается. Выхлопные газы выводятся из цилиндра в трубы выхлопной системы. Во время этой части процесса двигатель использует произведенную энергию (т. Е. Коленчатый вал вращается за счет энергии, создаваемой во время рабочего хода).

Процесс воспламенения от сжатия

  • На впуске воздух без топлива попадает в цилиндры двигателя.
  • Воздух сжимается поршнем, а затем добавляется дизельное топливо.Это вызывает воспламенение и механическую энергию, необходимую для вращения коленчатого вала.
  • Как и в случае с газовым двигателем, в дизельном двигателе происходит отвод выхлопных газов.

Дизельный двигатель выполняет этот процесс немного эффективнее, чем газовый двигатель; он может проделать всю эту работу и получить на 20% больше при том же количестве топлива.

Обслуживание двигателя внутреннего сгорания

Знаете ли вы, что когда двигатель проезжает 100 000 миль, он совершает более 300 миллионов оборотов? Это требует больших усилий от ваших поршней, и при регулярном техническом обслуживании вы можете продолжать путь на многие мили вперед.Наша команда по ремонту автомобилей в Солт-Лейк-Сити рекомендует следующее плановое обслуживание для оптимальной работы двигателя.

  • Соблюдайте свой регулярный график замены масла, чтобы цилиндры работали бесперебойно. Слишком долгий перерыв между изменениями создает скопление, из-за чего все движущиеся части затрудняются делать именно это — движение!
  • Регулярно меняйте топливный фильтр. Для работы двигателя необходим воздух, поэтому убедитесь, что всасываемый воздух чистый.
  • Используйте для своего автомобиля топливо с правильным октановым числом.В руководстве пользователя указано, какое октановое число использовать, и вы должны его придерживаться. Ваш двигатель прошел испытания, чтобы показать, какое октановое число работает наиболее эффективно, то есть какой тип топлива сгорает именно в тот момент, для которого оно предназначено. Если у вашего двигателя высокая степень сжатия, вам понадобится топливо с более высоким октановым числом.
    • Октановое число бензина
      • 85: разработан для использования в высокогорных районах США и транспортных средств с карбюраторными двигателями
      • 87: обычный
      • 88-90: средний
      • 91-94: премиум

Не ждите, пока загорится индикатор проверки двигателя, чтобы запланировать плановое техническое обслуживание.Устранение неполадок, связанных с ремонтом автомобилей, намного проще, прежде чем проблема станет слишком большой. Если вы подозреваете, что у вас возникла проблема, позвоните нам или посетите нас. Мы всегда рады помочь.

Двигатель внутреннего сгорания | Autopedia

Четырехтактный цикл (или цикл Отто)
1. Впуск
2. Сжатие
3. Мощность
4. Выпуск

Двигатель внутреннего сгорания — это тепловой двигатель, в котором сгорание топлива происходит в замкнутое пространство называется камерой сгорания.Эта экзотермическая реакция топлива с окислителем создает газы с высокой температурой и давлением, которые могут расширяться. Отличительной особенностью двигателя внутреннего сгорания является то, что полезная работа выполняется расширяющимися горячими газами, действующими непосредственно, вызывая движение, например, воздействуя на поршни, роторы или даже путем нажатия и перемещения самого двигателя.

Это контрастирует с двигателями внешнего сгорания, такими как паровые двигатели, в которых процесс сгорания используется для нагрева отдельной рабочей жидкости, обычно воды или пара, которые затем, в свою очередь, работают, например, при нажатии на поршень, приводимый в действие паром.

Термин Двигатель внутреннего сгорания (ДВС) почти всегда используется для обозначения поршневых двигателей, двигателей Ванкеля и аналогичных конструкций, в которых сгорание является прерывистым. Однако двигатели непрерывного сгорания, такие как реактивные двигатели, большинство ракет и многие газовые турбины, также определенно являются двигателями внутреннего сгорания.

Цветной автомобильный двигатель

История

Первые двигатели внутреннего сгорания не имели компрессии, но работали на той топливно-воздушной смеси, которая могла всасываться или вдуваться во время первой части такта впуска.Наиболее существенное различие между современными двигателями внутреннего сгорания и ранними конструкциями заключается в использовании сжатия, в частности сжатия в цилиндре.

  • 1509: Леонардо да Винчи описал двигатель без сжатия. (Его описание не может подразумевать, что эта идея была оригинальной или что она действительно была построена.)
  • 1673: Христиан Гюйгенс описал двигатель без сжатия.
  • 1780-е годы: Алессандро Вольта построил игрушечный электрический пистолет ([1]), в котором электрическая искра взорвала смесь воздуха и водорода, выстрелив пробкой из конца пистолета.

Первые двигатели внутреннего сгорания использовались для питания сельскохозяйственного оборудования, аналогичного этим моделям.

  • 17 век: английский изобретатель сэр Сэмюэл Морланд использовал порох для привода водяных насосов.
  • 1794: Роберт Стрит построил двигатель без сжатия, принцип работы которого будет доминировать почти столетие.
  • 1823: Сэмюэл Браун запатентовал первый двигатель внутреннего сгорания для промышленного применения. Он был без сжатия и основан на том, что Харденберг называет «циклом Леонардо», который, как следует из этого названия, к тому времени уже устарел.Как и сегодня, раннее крупное финансирование в области, где стандарты еще не были установлены, досталось лучшим шоуменам раньше, чем лучшим работникам.
  • 1824: Сади Карно основал термодинамическую теорию идеализированных тепловых двигателей во Франции в 1824 году. Это научно установило необходимость сжатия для увеличения разницы между верхней и нижней рабочими температурами, но неясно, знали ли об этом конструкторы двигателей раньше. сжатие уже широко использовалось.Это могло ввести в заблуждение дизайнеров, пытавшихся подражать циклу Карно бесполезными способами.
  • 1826 г., 1 апреля: американец Сэмюэл Мори получил патент на «газовый или паровой двигатель» без сжатия.
  • 1838: патент был выдан Уильяму Барнету (англ.). Это было первое зарегистрированное предположение о сжатии в цилиндре. Он, по-видимому, не осознавал его преимуществ, но его цикл стал бы большим достижением, если бы был достаточно развит.
  • 1854: итальянцы Эухенио Барсанти и Феличе Маттеуччи запатентовали первый работающий эффективный двигатель внутреннего сгорания в Лондоне (pt.Num. 1072), но в производство не попал. Он был похож по концепции на успешный двигатель непрямого действия Отто Лангена, но не так хорошо проработан в деталях.
  • 1860: Жан Жозеф Этьен Ленуар (1822-1900) создал газовый двигатель внутреннего сгорания, внешне очень похожий на горизонтальный паровой двигатель двойного действия, с цилиндрами, поршнями, шатунами и маховиком, в которых газ, по существу, поглощал место пара. Это был первый серийный двигатель внутреннего сгорания.Его первый двигатель с компрессией шокировал сам себя.
  • 1862: Николаус Отто разработал двигатель непрямого действия со свободным поршнем без сжатия, более высокая эффективность которого получила поддержку Лангена, а затем и большей части рынка, который в то время в основном предназначался для небольших стационарных двигателей, работающих на горючем газе.
  • 1870: В Вене Зигфрид Маркус установил первый мобильный бензиновый двигатель на ручной тележке.
  • 1876: Николаус Отто в сотрудничестве с Готлибом Даймлером и Вильгельмом Майбахом разработал практичный четырехтактный двигатель (цикл Отто).Немецкие суды, однако, не удержали его патент на все двигатели с цилиндрическим компрессором или даже на четырехтактный цикл, и после этого решения внутрицилиндровое сжатие стало универсальным.

Карл Бенц

  • 1879: Карл Бенц, работавший независимо, получил патент на свой двигатель внутреннего сгорания, надежный двухтактный газовый двигатель, основанный на конструкции четырехтактного двигателя Николауса Отто. Позже Бенц спроектировал и построил свой собственный четырехтактный двигатель, который использовался в его автомобилях, которые стали первыми автомобилями в производстве.
  • 1892: Рудольф Дизель изобрел дизельный двигатель.
  • 1893 23 февраля: Рудольф Дизель получил патент на дизельный двигатель.
  • 1896: Карл Бенц изобрел оппозитный двигатель, также известный как горизонтально расположенный двигатель, в котором соответствующие поршни одновременно достигают верхней мертвой точки, таким образом уравновешивая друг друга по импульсу.
  • 1900: Рудольф Дизель продемонстрировал дизельный двигатель в 1900 году на выставке Exposition Universelle (Всемирная выставка) с использованием арахисового масла (см. Биодизель).

Приложения

Двигатели внутреннего сгорания чаще всего используются в мобильных силовых установках. В мобильных сценариях внутреннее сгорание является преимуществом, поскольку оно может обеспечить высокое соотношение мощности к весу вместе с превосходной удельной топливной энергией. Эти двигатели используются почти во всех автомобилях, мотоциклах, многих лодках, а также в самых разных самолетах и ​​локомотивах. Там, где требуется очень большая мощность, например, реактивные самолеты, вертолеты и большие корабли, они появляются в основном в виде газовых турбин.Они также используются в электрических генераторах и в промышленности.

Механика внутреннего сгорания

Картофельная пушка использует основные принципы, лежащие в основе любого поршневого двигателя внутреннего сгорания: если вы поместите небольшое количество высокоэнергетического топлива (например, бензина) в небольшое замкнутое пространство и воспламените его, высвободится невероятное количество энергии в виде расширяющийся газ. Вы можете использовать эту энергию, чтобы переместить картофель на 500 футов. В этом случае энергия переводится в движение картофеля. Вы также можете использовать его в более интересных целях.Например, если вы можете создать цикл, который позволяет запускать подобные взрывы сотни раз в минуту, и если вы можете использовать эту энергию полезным способом, то у вас есть ядро ​​автомобильного двигателя!

Почти все автомобили в настоящее время используют так называемый четырехтактный цикл сгорания для преобразования бензина в движение. Четырехтактный подход также известен как цикл Отто в честь Николауса Отто, который изобрел его в 1867 году. Четыре такта показаны на рисунке 1. Это:

  1. Ход всасывания
  2. Ход сжатия
  3. Ход горения
  4. Ход выпуска

Работа

Все двигатели внутреннего сгорания зависят от экзотермического химического процесса сгорания: реакции топлива, обычно с воздухом, хотя могут использоваться другие окислители, такие как закись азота.Также см. Стехиометрию.

Наиболее распространенные виды топлива, используемые сегодня, состоят из углеводородов и получают из нефти. К ним относятся топливо, известное как дизельное топливо, бензин и сжиженный нефтяной газ. Большинство двигателей внутреннего сгорания, разработанных для бензина, могут работать на природном газе или сжиженном нефтяном газе без каких-либо модификаций, за исключением компонентов подачи топлива. Также можно использовать жидкое и газообразное биотопливо, такое как этанол. Некоторые могут работать на водороде, однако это может быть опасно.Водород горит бесцветным пламенем, и требуется модификация блока цилиндров, головки цилиндров и прокладки головки для герметизации фронта пламени.

Все двигатели внутреннего сгорания должны иметь средства зажигания, способствующие сгоранию. В большинстве двигателей используется электрическая система зажигания или система зажигания с подогревом от сжатия. В системах электрического зажигания обычно используются свинцово-кислотная батарея и индукционная катушка, которые создают электрическую искру высокого напряжения для воспламенения топливовоздушной смеси в цилиндрах двигателя.Эту батарею можно заряжать во время работы с помощью генератора переменного тока, приводимого в действие двигателем. Системы зажигания с компрессионным нагревом, такие как дизельные двигатели и двигатели HCCI, используют тепло, создаваемое в воздухе за счет сжатия в цилиндрах двигателя, для воспламенения топлива.

После успешного воспламенения и сгорания продукты сгорания, горячие газы, имеют больше доступной энергии, чем исходная сжатая топливно-воздушная смесь (которая имела более высокую химическую энергию). Доступная энергия проявляется в виде высокой температуры и давления, которые могут быть переведены в работу двигателем.В поршневом двигателе газы продукта высокого давления внутри цилиндров приводят в движение поршни двигателя.

После того, как доступная энергия удалена, оставшиеся горячие газы удаляются (часто путем открытия клапана или выхода выхлопных газов), что позволяет поршню вернуться в свое предыдущее положение (верхняя мертвая точка — ВМТ). Затем поршень может перейти к следующей фазе своего цикла, который варьируется в зависимости от двигателя. Любое тепло, не переведенное в работу, является отходом и удаляется из двигателя с помощью системы воздушного или жидкостного охлаждения.

Детали

Иллюстрация нескольких ключевых компонентов типичного четырехтактного двигателя

Составные части двигателя различаются в зависимости от типа двигателя. Для четырехтактного двигателя ключевыми частями двигателя являются коленчатый вал (фиолетовый), один или несколько распределительных валов (красный и синий) и клапаны. Для двухтактного двигателя вместо клапанной системы могут быть просто выпускной патрубок и впускное отверстие для топлива. В обоих типах двигателей имеется один или несколько цилиндров (серый и зеленый), и для каждого цилиндра есть свеча зажигания (темно-серый), поршень (желтый) и кривошип (фиолетовый).Одиночный ход поршня вверх или вниз известен как ход, а ход вниз, который происходит непосредственно после воспламенения топливовоздушной смеси в цилиндре, известен как рабочий ход.

Двигатель Ванкеля имеет треугольный ротор, который вращается в эпитроихоидной камере (в форме фигуры 8) вокруг эксцентрикового вала. Четыре фазы работы (впуск, сжатие, мощность, выпуск) происходят в разных местах, а не в одном месте, как в поршневом двигателе.

В двигателе Бурка используется пара поршней, встроенная в кулисный механизм, который передает возвратно-поступательное усилие через специально разработанный подшипниковый узел для поворота кривошипно-шатунного механизма. Впуск, сжатие, мощность и выпуск — все это происходит при каждом такте вилки. По правде говоря, я понятия не имею, что я делаю или говорю.

Классификация

Существует широкий спектр двигателей внутреннего сгорания, соответствующих их многочисленным применениям. Аналогичным образом существует множество способов классификации двигателей внутреннего сгорания, некоторые из которых перечислены ниже.

Хотя термины иногда вызывают путаницу, реальной разницы между «двигателем» и «мотором» нет. Когда-то слово «двигатель» (от латинского через старофранцузское, ingenium , «способность») означало любую часть механизма. «Мотор» (от латинского мотор , «движитель») — это любая машина, производящая механическую энергию. Традиционно электродвигатели не называют двигателями, но двигатели внутреннего сгорания часто называют двигателями. (Электродвигатель относится к локомотивам, работающим от электричества).

Принципы работы

Бензиновый двигатель 1906 года

Поршневой:

Поворотный:

Непрерывное горение:

  • Газовая турбина
  • Реактивный двигатель
  • Ракетный двигатель

Цикл двигателя

Двухтактный

Двигатели, основанные на двухтактном цикле, используют два хода (один вверх, один вниз) для каждого рабочего хода. Поскольку нет специальных тактов впуска или выпуска, необходимо использовать альтернативные методы очистки цилиндров.Наиболее распространенный метод двухтактных двигателей с искровым зажиганием заключается в использовании движения поршня вниз для создания давления свежего заряда в картере, который затем продувается через цилиндр через отверстия в стенках цилиндра. Двухтактные двигатели с искровым зажиганием маленькие и легкие (для их выходной мощности) и очень просты в механическом отношении. Общие области применения включают снегоходы, газонокосилки, цепные пилы, водные мотоциклы, мопеды, подвесные моторы и некоторые мотоциклы. К сожалению, они также, как правило, громче, менее эффективны и гораздо более загрязняют окружающую среду, чем их четырехтактные аналоги, и они плохо масштабируются до больших размеров.Интересно, что самые большие двигатели с воспламенением от сжатия являются двухтактными и используются в некоторых локомотивах и больших кораблях. Эти двигатели используют принудительную индукцию для продувки цилиндров.

Четырехтактный

Двигатели, основанные на четырехтактном цикле или цикле Отто, имеют один рабочий ход на каждые четыре хода (вверх-вниз-вверх-вниз) и используются в автомобилях, больших лодках и многих легких самолетах. Как правило, они тише, эффективнее и крупнее своих двухтактных собратьев. Есть несколько разновидностей этих циклов, в первую очередь циклы Аткинсона и Миллера.В большинстве дизельных двигателей грузовиков и автомобилей используется четырехтактный цикл, но с системой зажигания с подогревом от сжатия можно отдельно говорить о дизельном цикле.

Двигатель Бурка

В этом двигателе два диаметрально противоположных цилиндра соединены с кривошипом шатунным штифтом, проходящим через общую вилку. Цилиндры и поршни сконструированы таким образом, что, как и в обычном двухтактном цикле, происходит два рабочих хода на оборот. Однако, в отличие от обычного двухтактного двигателя, отработанные газы и поступающий свежий воздух не смешиваются в цилиндрах, что способствует более чистой и эффективной работе.Механизм с кулисой также устраняет боковую тягу и, таким образом, значительно снижает трение между поршнями и стенками цилиндров.

Двигатель внутреннего сгорания

Это также цилиндрические двигатели, которые могут быть одно- или двухтактными, но в них вместо коленчатого вала и поршневых штоков используются два соединенных зубчатых колеса концентрических кулачка, вращающихся в противоположных направлениях, для преобразования возвратно-поступательного движения во вращательное движение. Эти кулачки практически нейтрализуют боковые силы, которые в противном случае оказывались бы на цилиндры поршнями, значительно повышая механический КПД.Профили кулачков (которые всегда нечетные и по крайней мере три) определяют ход поршня в зависимости от передаваемого крутящего момента. В этом двигателе есть два цилиндра, которые разнесены на 180 градусов для каждой пары кулачков встречного вращения. Для одноходовых версий существует такое же количество циклов на пару цилиндров, как и кулачков на каждом кулачке, в два раза больше для двухтактных агрегатов.

Ванкель

Двигатель Ванкеля работает с тем же разделением фаз, что и четырехтактный двигатель (но без ходов поршня, правильнее было бы назвать четырехфазным двигателем), поскольку фазы находятся в разных местах двигателя; однако, как и двухтактный поршневой двигатель, он обеспечивает один «ход» мощности на оборот на ротор, что дает ему такую ​​же пространственную и весовую эффективность.Фаза сгорания в цикле Бурка более точно соответствует сгоранию с постоянным объемом, чем четырехтактный или двухтактный цикл. В нем также используется меньше движущихся частей, поэтому необходимо преодолевать меньшее трение, чем в двух других типах возвратно-поступательного движения. Кроме того, его более высокий коэффициент расширения также означает, что используется больше тепла от его фазы сгорания, чем используется в четырехтактных или двухтактных циклах.

Скудери

Новое изобретение Кармело Скудери, двигатель с раздельным циклом Scuderi, призвано повысить эффективность двигателя по сравнению с 33.От 2% до 42,6%. Кроме того, токсичные выбросы сокращаются на 80%.

Вышедшие из употребления методы

В некоторых старых двигателях внутреннего сгорания без сжатия: в первой части хода поршня вниз была засасана или вдувалась топливно-воздушная смесь. В остальной части хода поршня вниз впускной клапан закрылся, и топливно-воздушная смесь сгорела. При ходе поршня вверх выпускной клапан был открыт. Это была попытка имитации работы поршневого парового двигателя.

Виды топлива и окислителя

Используемые виды топлива включают бензин (британский термин: бензин), сжиженный нефтяной газ, испаренный нефтяной газ, сжатый природный газ, водород, дизельное топливо, JP18 (реактивное топливо), свалочный газ, биодизель, биобутанол, арахисовое масло и другие растительные масла, биоэтанол, биометанол (метиловый или древесный спирт) и другие виды биотоплива.Даже псевдоожиженные металлические порошки и взрывчатые вещества нашли применение. Двигатели, в которых в качестве топлива используются газы, называются газовыми двигателями, а двигатели, в которых используются жидкие углеводороды, называются масляными двигателями. Однако, к сожалению, бензиновые двигатели также часто в просторечии называют «газовыми двигателями».

Основные ограничения для топлива заключаются в том, что топливо должно легко транспортироваться через топливную систему в камеру сгорания, и что топливо выделяет достаточно энергии в виде тепла при сгорании, чтобы можно было использовать двигатель на практике.

Окислителем обычно является воздух, и его преимущество заключается в том, что он не хранится в транспортном средстве, что увеличивает удельную мощность. Однако воздух можно сжимать и переносить на борту транспортного средства. Некоторые подводные лодки предназначены для перевозки чистого кислорода или перекиси водорода, что делает их независимыми от воздуха. Некоторые гоночные автомобили содержат закись азота в качестве окислителя. Другие химические вещества, такие как хлор или фтор, нашли экспериментальное применение; но в основном непрактичны.

Дизельные двигатели обычно тяжелее, шумнее и мощнее на более низких оборотах, чем бензиновые двигатели.Они также более экономичны в большинстве случаев и используются в тяжелых дорожных транспортных средствах, некоторых автомобилях (в большей степени из-за их более высокой топливной эффективности по сравнению с бензиновыми двигателями), кораблях, железнодорожных локомотивах и легких самолетах. Бензиновые двигатели используются в большинстве других дорожных транспортных средств, включая большинство автомобилей, мотоциклов и мопедов. Обратите внимание, что в Европе сложные автомобили с дизельным двигателем стали довольно распространенными с 1990-х годов, составляя около 40% рынка. И бензиновые, и дизельные двигатели производят значительные выбросы.Есть также двигатели, работающие на водороде, метаноле, этаноле, сжиженном нефтяном газе (СНГ) и биодизеле. Парафиновые и тракторные двигатели с испарительным маслом (TVO) больше не встречаются.

Некоторые предполагают, что в будущем водород может заменить такое топливо. Кроме того, с внедрением технологии водородных топливных элементов использование двигателей внутреннего сгорания может быть прекращено. Преимущество водорода в том, что при его сгорании образуется только вода. Это не похоже на сжигание углеводородов, при котором также образуется двуокись углерода, основная причина глобального потепления, а также окись углерода в результате неполного сгорания.Большим недостатком водорода во многих ситуациях является его хранение. Жидкий водород имеет чрезвычайно низкую плотность — в 14 раз меньше, чем вода, и требует обширной изоляции, в то время как газообразный водород требует очень тяжелых резервуаров. Хотя водород имеет более высокую удельную энергию, объемный запас энергии все еще примерно в пять раз ниже, чем у бензина, даже в сжиженном состоянии. (Процесс «Водород по запросу», разработанный Стивеном Амендола, создает водород по мере необходимости, но здесь есть другие проблемы, такие как относительно дорогое сырье.)

Одноцилиндровый бензиновый двигатель (ок. 1910 г.).

Цилиндры

Двигатели внутреннего сгорания могут содержать любое количество цилиндров с обычными номерами от одного до двенадцати, хотя использовалось до 36 (Lycoming R-7755). Наличие большего количества цилиндров в двигателе дает два потенциальных преимущества: Первое. двигатель может иметь больший рабочий объем с меньшими индивидуальными возвратно-поступательными массами (то есть масса каждого поршня может быть меньше), что обеспечивает более плавную работу двигателя (поскольку двигатель имеет тенденцию вибрировать в результате движения поршней вверх и вниз).Во-вторых, с большим рабочим объемом и большим количеством поршней может быть сожжено больше топлива, и может быть больше событий сгорания (то есть больше рабочих ходов) в заданный период времени, что означает, что такой двигатель может генерировать больший крутящий момент, чем аналогичный двигатель. с меньшим количеством цилиндров. Недостатком большего количества поршней является то, что в целом двигатель будет иметь больший вес и иметь тенденцию создавать большее внутреннее трение, поскольку большее количество поршней трутся о внутреннюю часть их цилиндров. Это имеет тенденцию к снижению топливной экономичности и лишению двигателя части его мощности.Для высокопроизводительных бензиновых двигателей, использующих современные материалы и технологии (например, двигатели, используемые в современных автомобилях), кажется, есть точка разрыва около 10 или 12 цилиндров, после чего добавление цилиндров становится общим ущербом для производительности и эффективности, хотя есть исключения. например двигатель W16 от Volkswagen существуют.

  • Большинство автомобильных двигателей имеют от четырех до восьми цилиндров, некоторые высокопроизводительные автомобили имеют десять, двенадцать или даже шестнадцать, а некоторые очень маленькие легковые и грузовые автомобили имеют два или три цилиндра.В предыдущие годы некоторые довольно большие автомобили, такие как DKW и Saab 92, имели двухцилиндровые двухтактные двигатели.
  • Радиальные авиационные двигатели, ныне устаревшие, имели от трех до 28 цилиндров, такие как Pratt & Whitney R-4360. Строка содержит нечетное количество цилиндров, поэтому четное число указывает на двух- или четырехрядный двигатель. Самым большим из них был Lycoming R-7755 с 36 цилиндрами (четыре ряда по девять цилиндров), но он так и не был запущен в производство.
  • Мотоциклы обычно имеют от одного до четырех цилиндров, у некоторых высокопроизводительных моделей их шесть (хотя существуют «новинки» с 8, 10 и 12).
  • Снегоходы обычно имеют два цилиндра. У некоторых более крупных (не обязательно высокопроизводительных, но тоже туристических машин) их четыре.
  • Мелкие портативные приборы, такие как бензопилы, генераторы и бытовые газонокосилки, чаще всего имеют один цилиндр, хотя существуют и двухцилиндровые бензопилы.

Система зажигания

Двигатели внутреннего сгорания можно классифицировать по системе зажигания. Точка цикла, в которой воспламеняется смесь топлива и окислителя, напрямую влияет на КПД и мощность ДВС.Для типичного 4-тактного автомобильного двигателя горящая смесь должна достичь максимального давления, когда коленчатый вал находится под углом 90 градусов после ВМТ. Скорость фронта пламени напрямую зависит от степени сжатия, температуры топливной смеси и октанового или цетанового числа топлива. Современные системы зажигания предназначены для зажигания смеси в нужное время, чтобы фронт пламени не касался опускающейся головки поршня. Если фронт пламени соприкасается с поршнем, это может привести к появлению детонации или детонации. Более бедные смеси и смеси с более низким давлением горят медленнее, что требует более точного момента зажигания.Сегодня в большинстве двигателей для зажигания используется электрическая или компрессионная система нагрева. Однако исторически использовались системы с внешним пламенем и горячими трубками. Никола Тесла получил один из первых патентов на механическую систему зажигания с патентом США « Электрический воспламенитель для газовых двигателей » 16 августа 1898 года.

Топливные системы

Основная статья: Впрыск топлива

Часто для более простых поршневых двигателей карбюратор используется для подачи топлива в цилиндр.Однако точный контроль количества топлива, подаваемого в двигатель, невозможно.

Более крупные бензиновые двигатели, такие как используемые в автомобилях, в основном перешли на системы впрыска топлива (см. Прямой впрыск бензина). В дизельных двигателях всегда используется впрыск топлива.

В двигателях, работающих на сжиженном нефтяном газе, используются системы впрыска топлива и карбюраторы с обратной связью.

В других двигателях внутреннего сгорания, таких как реактивные двигатели, используются горелки, а в ракетных двигателях используются различные идеи, включая ударные струи, сдвиг газа / жидкости, форсажные камеры и многие другие идеи.

Конфигурация двигателя

Двигатели внутреннего сгорания можно классифицировать по их конфигурации, которая влияет на их физические размеры и плавность хода (более плавные двигатели производят меньшую вибрацию). Общие конфигурации включают прямую или линейную конфигурацию, более компактную V-образную конфигурацию и более широкую, но более гладкую плоскую или боксерскую конфигурацию. Авиационные двигатели также могут иметь радиальную конфигурацию, которая обеспечивает более эффективное охлаждение. Также использовались более необычные конфигурации, такие как «H», «U», «X» или «W».

Конфигурации с несколькими коленчатыми валами вовсе не обязательно нуждаются в головке блока цилиндров, но вместо этого могут иметь поршень на каждом конце цилиндра, что называется конструкцией с оппозитным поршнем. Эта конструкция использовалась в дизельном авиационном двигателе Junkers Jumo 205 с двумя коленчатыми валами, по одному на обоих концах одного ряда цилиндров, и, что наиболее заметно, в дизельных двигателях Napier Deltic, в которых использовались три коленчатых вала для обслуживания трех групп двусторонних цилиндров. цилиндры расположены в равностороннем треугольнике с коленчатыми валами по углам.Он также использовался в одноблочных локомотивных двигателях и продолжает использоваться для судовых двигателей, как для тяги, так и для вспомогательных генераторов. Двигатель Gnome Rotary, использовавшийся в нескольких ранних самолетах, имел неподвижный коленчатый вал и ряд радиально расположенных цилиндров, вращающихся вокруг него.

Объем двигателя

Рабочий объем двигателя — это рабочий объем поршня двигателя. Обычно он измеряется в литрах или кубических дюймах для двигателей большего размера и в кубических сантиметрах (сокращенно кубических сантиметрах) для двигателей меньшего размера.Двигатели большей мощности обычно более мощные и обеспечивают больший крутящий момент на более низких оборотах, но при этом потребляют больше топлива.

Помимо разработки двигателя с большим количеством цилиндров, есть два способа увеличения мощности двигателя. Первый — удлинить ход, а второй — увеличить диаметр поршня (см. Также: Коэффициент хода) . В любом случае может потребоваться дополнительная регулировка подачи топлива в двигатель, чтобы обеспечить оптимальную производительность.

Заявленная мощность двигателя может быть больше вопросом маркетинга, чем инженерии. Morris Minor 1000, Morris 1100 и Austin-Healey Sprite Mark II имели двигатели с одинаковым ходом и диаметром цилиндра в соответствии с их спецификациями и были от одного производителя. Однако объем двигателя был указан как 1000 куб. См, 1100 куб. См и 1098 куб. См соответственно в торговой литературе и на значках автомобиля.

Загрязнение двигателя

Обычно двигатели внутреннего сгорания, особенно поршневые двигатели внутреннего сгорания, производят умеренно высокие уровни загрязнения из-за неполного сгорания углеродсодержащего топлива, что приводит к образованию оксида углерода и некоторого количества сажи, а также оксидов азота и серы и некоторых несгоревших углеводородов в зависимости от условий эксплуатации и соотношение топливо / воздух.Основными причинами этого являются необходимость работы бензиновых двигателей со стехиометрическим соотношением для достижения сгорания (топливо сгорает более полно в избытке воздуха) и «гашение» пламени относительно холодными стенками цилиндра.

Дизельные двигатели выделяют широкий спектр загрязняющих веществ, включая аэрозоли многих мелких частиц (PM10), которые, как считается, глубоко проникают в легкие человека. Двигатели, работающие на сжиженном нефтяном газе (LPG), имеют очень низкий уровень выбросов, поскольку LPG горит очень чисто и полностью и не содержит серы или свинца.

  • Многие виды топлива содержат серу, что приводит к образованию оксидов серы (SOx) в выхлопных газах, что способствует кислотным дождям.
  • Высокая температура горения создает большую долю оксидов азота (NOx), которые, как доказано, опасны как для здоровья растений, так и для здоровья животных.
  • Чистое производство диоксида углерода не является обязательной характеристикой двигателей, но, поскольку большинство двигателей работают на ископаемом топливе, это обычно происходит. Если двигатели работают на биомассе, то чистый углекислый газ не образуется, поскольку растущие растения поглощают столько же или больше углекислого газа во время роста.
  • Водородные двигатели должны производить только воду, но при использовании воздуха в качестве окислителя также образуются оксиды азота.

См. Также

  • Уильям Барнетт — ранний патентообладатель (1838)

Библиография

  • Singer, Charles Joseph; Рэпер, Ричард, История технологии: Двигатель внутреннего сгорания , отредактированный Чарльзом Сингером … [и др.], Clarendon Press, 1954-1978. стр.157-176 [2]
  • Харденберг, Хорст О., Средние века двигателя внутреннего сгорания , Общество автомобильных инженеров (SAE), 1999

Внешние ссылки

Турбокомпрессор двигателя внутреннего сгорания состоит из турбины и компрессора. Поток горячих выхлопных газов через турбину для создания работы, и выходной сигнал турбины используется как w

Вопрос:

Турбокомпрессор двигателя внутреннего сгорания состоит из турбины и компрессора. Горячий выхлопной газ проходит через турбину для создания работы, а выходной сигнал турбины используется как входной сигнал для компрессора.Давление окружающего воздуха увеличивается по мере его поступления в компрессор до того, как он попадает в цилиндры двигателя. Следовательно, может быть сожжено больше топлива, больше мощности может быть произведено двигателем.

В турбокомпрессоре выхлопные газы входят в турбину при 470 ° C и 120 кПа со скоростью 0,027 кг / с и выходят при 130 кПа со скоростью 0,018 кг / с. Компрессор увеличивает давление воздуха с побочным эффектом: он также увеличивает температуру воздуха, что увеличивает вероятность детонации в бензиновом двигателе.Во избежание этого после компрессора устанавливается дополнительный охладитель для охлаждения теплого воздуха холодным окружающим воздухом перед его поступлением в цилиндры двигателя. Подсчитано, что дополнительный охладитель должен снизить температуру воздуха ниже 80 ° C, чтобы избежать детонации. Холодный окружающий воздух поступает в дополнительный охладитель при температуре 30 ° C и выходит при температуре 40 ° C. Теплота выхлопных газов, теплого и холодного окружающего воздуха при постоянном давлении принимается равной {eq} C_ {p} {/ eq} = 1,063, 1,008 и 1,005 кДж / кг.К соответственно.

Без учета потерь на трение в турбине и компрессоре и обработки выхлопных газов как воздуха, определить часть 1 из части 2

(а) температура воздуха на выходе из компрессора

{eq} T_ {a, 2} {/ eq} = C

Турбокомпрессор:

Турбокомпрессор в двигателе внутреннего сгорания используется для повышения эффективности двигателя за счет использования отработанного выхлопного газа для запуска турбины, которая, в свою очередь, используется для запуска компрессора, который дополнительно сжимает входящий воздух.{\ circ} C {/ eq}

Температура выхлопных газов на входе в турбину, …

См. Полный ответ ниже.

Двигатель внутреннего сгорания: определение и работа

Что такое двигатель внутреннего сгорания?

Двигатель внутреннего сгорания (ДВС) — это тепловой двигатель, в котором сгорание топлива с окислителем (обычно воздухом) происходит в камере сгорания, которая является неотъемлемой частью контура потока рабочего тела.

В двигателе внутреннего сгорания расширение газов с высокой температурой и высоким давлением, образующихся при сгорании, оказывает прямое воздействие на некоторые компоненты двигателя. Сила обычно применяется к поршням, лопаткам турбины, ротору или соплу.

Эта сила перемещает компонент на расстояние и преобразует химическую энергию в полезную работу. Он заменяет двигатель внутреннего сгорания там, где важен вес или размер двигателя.

Термин «двигатель внутреннего сгорания» обычно относится к двигателю, в котором сгорание является прерывистым, например, к более популярным четырехтактным и двухтактным поршневым двигателям, а также к их вариантам, таким как шеститактный поршневой двигатель и роторный двигатель Ванкеля.

Второй класс двигателей внутреннего сгорания использует непрерывное сгорание: газовые турбины, реактивные двигатели и большинство ракетных двигателей, каждый из которых является двигателем внутреннего сгорания по тому же принципу, что описан ранее.

Огнестрельное оружие также является разновидностью двигателя внутреннего сгорания, хотя оно настолько специализировано, что обычно рассматривается как отдельная категория.

Кто изобрел двигатель внутреннего сгорания?

В 1872 году американец Джордж Брайтон изобрел первый коммерческий двигатель внутреннего сгорания, работающий на жидком топливе.В 1876 году Николаус Отто, работая с Готлибом Даймлером и Вильгельмом Майбахом, запатентовал четырехтактный двигатель со сжатым зарядом. В 1879 году Карл Бенц запатентовал надежный двухтактный газовый двигатель.

Как работает двигатель внутреннего сгорания?

Горение, также известное как горение, — это основной химический процесс, используемый для высвобождения энергии из топливно-воздушной смеси. В двигателе внутреннего сгорания (ДВС) топливо воспламеняется и сжигается внутри самого двигателя.

Затем двигатель преобразует часть энергии сгорания в работу.Двигатель состоит из неподвижного цилиндра и подвижного поршня.

Расширяющиеся газы сгорания толкают поршень, который, в свою очередь, вращает коленчатый вал. В конечном итоге это движение приводит в движение колеса автомобиля через систему трансмиссии в трансмиссии.

В настоящее время производится два типа двигателей внутреннего сгорания: бензиновый двигатель с искровым зажиганием и дизельный двигатель с воспламенением от сжатия.

Большинство из них четырехтактные, что означает, что для завершения цикла требуется четыре хода поршня.Цикл включает четыре различных процесса: впуск, сжатие, сгорание и рабочий ход, а также выпуск.

Бензиновые двигатели с искровым зажиганием и дизельные двигатели с воспламенением от сжатия различаются по способу подачи и воспламенения топлива. В двигателе с искровым зажиганием топливо смешивается с воздухом, а затем вводится в цилиндр во время процесса впуска.

После того, как поршень сжимает топливно-воздушную смесь, искра воспламеняет ее и вызывает возгорание. Расширение дымовых газов толкает поршень во время рабочего хода.В дизельном двигателе воздух вводится в двигатель, а затем сжимается.

Дизельные двигатели затем распыляют топливо в горячий сжатый воздух с подходящей дозированной скоростью, вызывая его возгорание.

Применение двигателя внутреннего сгорания

Двигатели внутреннего сгорания являются наиболее широко применяемыми и широко используемыми энергогенерирующими устройствами из существующих в настоящее время. Примеры включают бензиновые двигатели, дизельные двигатели, газотурбинные двигатели и ракетные двигательные установки.Двигатель

IC имеет множество применений, например,

  • Они также используются в автомобилях, мотоциклах, лодках и в большом количестве самолетов и локомотивов, требующих очень большой мощности, таких как реактивные самолеты, вертолеты и большие корабли.
  • Двигатели внутреннего сгорания используются в качестве передвижных двигателей в автомобилях, оборудовании и другом переносном оборудовании.
  • Они также используются в генераторах.
  • Поршневой двигатель авто.

Классификация двигателей внутреннего сгорания

В настоящее время производятся два типа двигателей внутреннего сгорания: бензиновый двигатель с искровым зажиганием и дизельный двигатель с воспламенением от сжатия.Большинство из них представляют собой четырехтактные двигатели, а это означает, что для завершения цикла требуется четыре хода поршня.

Двигатели внутреннего сгорания можно классифицировать по используемому топливу, термодинамическому циклу, типу зажигания, типу системы охлаждения, расположению цилиндров, способу наддува и т. Д. Теперь мы подробно рассмотрим это.

1) В соответствии с циклом работы:

Мы знаем, что двигатели внутреннего сгорания преобразуют химическую энергию в механическую при циклической работе. Существует множество термодинамических циклов, напримерЦикл Карно, цикл Отто, дизельный цикл, цикл Ренкина и т.д. Двигатели внутреннего сгорания работают по трем циклам Отто, дизельному циклу и двойному циклу. Таким образом, двигатели IC можно разделить на следующие типы.

1. Двигатель цикла Отто:

Он также известен как двигатель с искровым зажиганием или двигатель постоянного объема с добавлением тепла, бензиновый двигатель и т. Д. В этом цикле происходит добавление тепла (сжигание топлива) и отвод (выхлоп) при постоянном объеме и расширении и сжатии происходят при изоэнтропии.Эти двигатели выдают низкую мощность на высоких оборотах.

2. Двигатель с дизельным циклом

Он известен как двигатель с воспламенением от сжатия, дизельный двигатель, двигатель постоянного давления и т. Д. В этом цикле добавление тепла (сжигание топлива) происходит при постоянном давлении, а отвод тепла происходит при постоянный объем. Этот двигатель выдает большую мощность на малых оборотах.

3. Двигатель двойного цикла:

Двойной цикл представляет собой комбинацию цикла Отто и дизельного цикла.В этом двигателе добавление тепла происходит как при постоянном объеме, так и при постоянном давлении в некотором соотношении.

Некоторые двигатели работают по циклам Стирлинга и Эрикссона, но они не используются в коммерческих целях.

2) В зависимости от типа используемого топлива:

Большинство из нас знает об этих двигателях. Это бензиновые двигатели и дизельные двигатели. В настоящее время в двигателях внутреннего сгорания также используется газообразное топливо, такое как СНГ, КПГ, водород и т. Д. Эти двигатели называются нетрадиционными двигателями.

3) По способу заправки:

Зарядка означает, как происходит впуск топливно-воздушной смеси.Это можно классифицировать следующим образом.

  1. Двигатель без наддува:

В этом двигателе впуск топливовоздушной смеси (двигатель SI) или только воздуха (двигатель CI) происходит из-за разницы давления внутри цилиндра и атмосферного давления.

2. Двигатели с наддувом:

В этом двигателе для подачи заряда внутрь цилиндра используется отдельный компрессор. Этот компрессор работает от двигателя (связан с коленчатым валом с ременной передачей).

3. Двигатель с турбонаддувом:

В этом двигателе используется турбина, втягивающая воздух в цилиндр и работающая на выхлопных газах. Это тоже похоже на наддув, но компрессор приводится в действие турбиной, которая вращается за счет выхлопных газов.

4) По зажиганию:

В двигателе внутреннего сгорания зажигание заряда может происходить двумя способами. В первом случае для воспламенения топлива используется отдельная свеча зажигания или любое другое устройство (двигатель с искровым зажиганием), а во втором — воспламенение топлива из-за тепла, выделяемого во время сжатия или топлива (двигатель с воспламенением от сжатия).

Таким образом, согласно этим методам, доступны два двигателя с искровым зажиганием или двигатель SI (бензиновый двигатель) и двигатель с воспламенением от сжатия или двигатель CI (дизельный двигатель).

5) В зависимости от типа системы зажигания:

В бензиновых двигателях мы использовали свечу зажигания для воспламенения топлива. Эта искра на свече зажигания производится системой зажигания. По системе зажигания различают два типа двигателей. Первый — это двигатель с аккумуляторным зажиганием (используйте аккумулятор для генерации искры), а другой — двигатель с зажиганием от магнето (используйте небольшой генератор для генерации искры).

6) Согласно конструкции двигателя:
  1. Поршневой двигатель:

В этом типе двигателя используется поршень, который совершает возвратно-поступательное движение за счет силы давления, создаваемой сгоранием топлива. Коленчатый вал преобразует это возвратно-поступательное движение во вращательное движение. Большинство автомобильных двигателей — поршневого типа.

2. Роторный двигатель :

В роторном двигателе используется ротор. Сила давления, создаваемая сгоранием топлива, действует на этот ротор, который дополнительно вращает колесо.Двигатель Ванкеля — это один из типов роторных двигателей. Эти двигатели в настоящее время не используются в автомобильных двигателях.

7) По охлаждению:

В двигателях внутреннего сгорания используются два типа охлаждения: воздушное охлаждение и водяное охлаждение. Таким образом, это двигатели с воздушным охлаждением или двигатели с водяным охлаждением. Обе эти системы охлаждения имеют свои преимущества, о которых мы поговорим позже. Моторное масло также служит охлаждающей средой.

8) В зависимости от хода двигателя:

Мы знаем, что ход — это максимальное расстояние, которое поршень может пройти внутри цилиндра или между ВМТ и НМТ.Если двигатель переходит из ВМТ в НМТ, это называется одноходовым. Если он возвращается в BDC, это называется двумя тактами. Коленчатый вал совершает одно вращение за два хода. В соответствии с ним было изобретено три типа двигателей.

1. Двухтактный двигатель:

В этом двигателе коленчатый вал совершает один оборот за один рабочий ход. Этот двигатель дает большую мощность по сравнению с другими. Он используется в стрелках, кораблях, генераторах и т. Д.

2. Четырехтактные двигатели:

Этот двигатель обеспечивает два оборота коленчатого вала за один рабочий такт.Они дают низкую мощность, но высокий КПД. Он используется в легковых и грузовых автомобилях, мотоциклах и т. Д.

3. Шеститактные двигатели:

Эти двигатели находятся в процессе разработки. Как следует из названия, он обеспечивает вращение трех коленчатых валов за один рабочий ход.

9) По расположению двигателя:

Эти двигатели можно лучше понять по диаграмме по сравнению со словами.

Часто задаваемые вопросы.

Что такое двигатель внутреннего сгорания?

Двигатель внутреннего сгорания (ДВС) — это тепловой двигатель, который использует окислитель (обычно воздух) для сжигания топлива в камере сгорания, которая является неотъемлемой частью контура потока рабочего тела.В двигателе внутреннего сгорания расширение газов с высокой температурой и высоким давлением, образующихся при сгорании, оказывает прямое воздействие на компонент двигателя.

Как работает двигатель внутреннего сгорания?

Двигатель состоит из неподвижного цилиндра и подвижного поршня. Расширяющиеся газы сгорания толкают поршень, который, в свою очередь, вращает коленчатый вал. После того, как поршень сжимает топливно-воздушную смесь, искра воспламеняет ее, вызывая возгорание. Расширение дымовых газов толкает поршень во время рабочего хода.

Кто изобрел двигатель внутреннего сгорания?

В 1872 году американец Джордж Брайтон изобрел первый коммерческий двигатель внутреннего сгорания, работающий на жидком топливе.

Добавить комментарий

Ваш адрес email не будет опубликован.