Меню Закрыть

Строение двигателя внутреннего сгорания: Устройство современного двигателя внутреннего сгорания

Содержание

Двигатель внутреннего сгорания: виды, устройство, принцип работы

Автомобильные двигатели чрезвычайно разнообразны. Технология, которая применяется при разработке и запуске в производство силовых агрегатов, имеет богатую историю. Требования современности вынуждают производителей ежегодно внедрять в свои проекты доработки и модернизировать имеющиеся технологии.

Двигатель внутреннего сгорания имеет устройство и принцип работы, способный обеспечивать высокую мощность и длительный период эксплуатации — от пользователя требуется только минимально необходимое обслуживание и своевременный мелкий ремонт.

При первом взгляде сложно представить, как работает двигатель: слишком много взаимосвязанных механизмов собранно в одном небольшом пространстве. Но при детальном изучении и анализе связей в этой системе работа двигателя автомобиля оказывается предельно простой и понятной.

В состав двигателя автомобиля входит ряд узлов, имеющих важное значение и обеспечивающих выполнение рабочих функций всей системы.

Блок цилиндров иногда называют корпусом или рамой всей системы. Описание двигателя не обходится без изучения данного элемента конструкции. Именно в этой части мотора обустроена система связанных каналов, предназначеных для смазки и создания необходимой температуры двигателя внутреннего сгорания.

Верхняя часть корпуса поршня имеет каналы для колец. Сами поршневые кольца подразделяются на верхние и нижние. Исходя из выполняемых функций, данные кольца называют компрессионными. Крутящий момент двигателя определяется прочностью и работой рассмотренных элементов.

Нижние кольца поршня играют важную роль для обеспечения ресурса двигателя. Нижние кольца выполняют 2 роли: сохраняют герметичность камеры сгорания и являются уплотнителями, которые предотвращают проникновение масла внутрь камеры сгорания.

Двигатель автомобиля представляет собой систему, в которой осуществляется передача энергии между механизмами с минимальными потерями ее величины на различных этапах. Поэтому кривошипно-шатунный механизм становится одним из важнейших элементов системы. Он обеспечивает передачу возвратно-поступательной энергии от поршня на коленвал.

В целом, принцип работы двигателя достаточно прост и претерпел мало фундаментальных изменений за период существования. В этом просто нет необходимости — некоторые усовершенствования и оптимизации позволяют достигать лучших результатов в работе. Концепция же всей системы неизменна.

Крутящий момент двигателя создается за счет выделяемой при сгорании топлива энергии, которая передается от камеры сгорания к колесам по соединительным элементам. В форсунках топливо передается в камеру сгорания, где происходит его обогащение воздухом. Свеча зажигания создает искру, которая мгновенно воспламеняет образовавшуюся смесь. Так происходит небольшой взрыв, который обеспечивает работы двигателя.

В результате такого действия происходит образования большого объема газов, стимулируя к совершению поступательных движений. Так формируется крутящий момент двигателя. Энергия от поршня передается на коленвал, который передает движение на трансмиссию, а после этого, специальная система шестеренок переносит движение на колеса.

Порядок работы работающего двигателя незатейлив и при исправных связующих элементах гарантирует минимальные потери энергии. Схема работы и строение каждого механизма основаны на преобразовании созданного импульса в практически используемый объем энергии. Ресурс двигателя определяется износостойкостью каждого звена.

Принцип работы двигателя внутреннего сгорания

Двигатель легкового автомобиля выполняется в виде одного из типов систем внутреннего сгорания. Принцип действия двигателя может отличаться по некоторым показателям, что служит основой для разделения моторов на различные типы и модификации.

В качестве определяющих параметров, служащих для разделения силовых агрегатов на категории, служат:

  • рабочий объем,
  • количество цилиндров,
  • мощность системы,
  • скорость вращения узлов,
  • применяемое для работы топливо и др.

Разобраться в том, как работает двигатель, просто. Но по мере изучения всплывают новые показатели, которые вызывают вопросы. Так, часто можно встретить разделение двигателей по числу тактов. Что это такое и как влияет на работу машины?

Устройство двигателя автомобиля основано на четырехтактовой системе. Эти 4 такта равны по времени — за весь цикл поршень дважды поднимается вверх в цилиндре и дважды опускается вниз. Такт берет начало в тот момент, когда поршень находится в верхней или нижней части. Механики называют эти точки ВМТ и НМТ — верхняя и нижняя мертвые точки соответственно.

Такт № 1 — впуск. По мере движения вниз, поршень втягивает в цилиндр наполненную топливом смесь. Работа системы происходит при открытом клапане впуска. Мощность двигателя автомобиля определяется количеством, размерами и временем, которое клапан открыт.

В отдельных моделях работа педали газа увеличивает период нахождения клапана в открытом состоянии, что позволяет увеличить объем топлива, попадающего в систему. Такое устройство двигателей внутреннего сгорания обеспечивает сильное ускорение работы системы.

Такт № 2 — сжатие. На этом этапе поршень начинает свое движение вверх, что приводит к сжатию полученной в цилиндр смеси. Она сживается ровно до объемов камеры сгорания топлива. Эта камера представляет собой пространство между верхней частью поршня и верхом цилиндра в момент нахождения поршня в ВМТ. Клапаны впуска в этот момент работы прочно закрыты.

От плотности закрытия зависит качество сжатия смеси. Если сам поршень, или цилиндр, или кольца поршней потерты и не в надлежащем состоянии, то качество работы и ресурс двигателя значительно снизятся.

Такт № 3 — рабочий ход. Этот этап начинается с ВМТ. Система зажигания гарантирует воспламенение топливной смеси и обеспечивает выделение энергии. Происходит взрыв смеси, при котором высвобождается энергия. И за счет увеличения объема происходит выталкивание поршня вниз. Клапаны при этом закрыты. Технические характеристики двигателя во многом зависят от протекания третьего такта работы мотора.

Такт № 4 — выпуск. Окончание цикла работы. Движение поршня вверх обеспечивает выталкивание газов. Таким образом, осуществляется вентиляция цилиндра. Этот такт важен для обеспечения ресурса двигателя.

Двигатель имеет принцип работы, основанный на распределении энергии от взрывов газов, требует внимания к созданию всех узлов.

Работа двигателя внутреннего сгорания циклична. Вся энергия, которая создается в процессе выполнения работы на всех 4 тактах работы поршней, направляется на организацию работы автомобиля.

Варианты конструкций внутреннего двигателя

Характеристика двигателя зависит от особенностей его конструкции. Внутреннее сгорание — основной тип физического процесса, протекающего в системе мотора на современных автомобилях. За период развития машиностроения успешно реализовано несколько типов ДВС.

Устройство бензинового двигателя разделяет систему на 2 типа — инжекторные двигатели и карбюраторные модели. Также в производстве есть несколько типов карбюраторов и систем впрыска. Основа работы — сжигание бензина.

Характеристика бензинового двигателя выглядит предпочтительнее. Хотя для каждого пользователя есть свои личные приоритеты и преимущества от работы каждого двигателя. Бензиновый двигатель внутреннего сгорания является одним из самых распространенных в современном автомобилестроении. Порядок работы мотора прост и не отличается от классической интерпретации.

Дизельные двигатели основаны на применении подготовленного дизельного топлива. Оно попадает в цилиндры через форсунки. Главное преимущество дизельного двигателя заключается в отсутствии необходимости электричества для сжигания топлива. Оно требуется только для запуска двигателя.

Газовый двигатель применяет для работы сжиженные и сжатые газы, а также некоторые другие типы газов.

Узнать какой ресурс у двигателя на вашем авто лучше всего у производителя. Примерную цифру разработчики озвучивают в сопроводительных документах на транспортное средство. Здесь содержится вся актуальная и точная информация о моторе. В паспорте вы узнаете технические параметры мотора, сколько весит двигатель и всю информацию о движущем агрегате.

Срок службы двигателя зависит от качества обслуживания, интенсивности использования. Заложенный разработчиком срок эксплуатации подразумевает внимательное и бережное отношение с машиной.

Что значит двигатель? Это ключевой элемент в автомобиле, который призван обеспечить его движение. Надежность и точность работы всех узлов системы гарантирует качество движения и безопасность эксплуатации машины.

Характеристики двигателей различаются в широких пределах, несмотря на то. Что принцип внутреннего сгорания топлива остается неизменным. Так разработчикам удается удовлетворять потребности покупателей и реализовывать проекты по улучшению работы автомобилей в целом.

Средний ресурс двигателя внутреннего сгорания составляет несколько сотен тысяч километров. При таких нагрузках от всех составных частей системы требуется прочность и точная совместная работа. Поэтому известная и детально изученная концепция внутреннего сгорания постоянно подвергается доработкам и внедрениям новых подходов.

Ресурс двигателей различается в широком диапазоне. Порядок работы, при этом, общий (с небольшими отклонениями от стандарта). Несколько может различаться вес двигателя и отдельные характеристики.

Современный двигатель внутреннего сгорания имеет классическое устройство и досконально изученный принцип работы. Поэтому механикам не составляет труда решить любую проблему в кратчайшие сроки.

Ремонтные работы усложняются в том случае, если поломка не была устранена сразу. В таких ситуациях порядок работы механизмов может, нарушен окончательно и потребуется серьезная работа по восстановлению. Ресурс двигателя после грамотного ремонта не пострадает.

Обшее устройство двигателя внутреннего сгорания трактора

Категория:

   Тракторы-2

Публикация:

   Обшее устройство двигателя внутреннего сгорания трактора

Читать далее:



Обшее устройство двигателя внутреннего сгорания трактора

В двигателях внутреннего сгорания химическая энергия сгорающего топлива превращается в тепловую, которая переходит в механическую работу вращающегося вала.

Двигатели подразделяют: по способу образования и воспламенения рабочей смеси (дизели и карбюраторные), по числу тактов рабочего цикла (четырех- и двухтактные), по числу цилиндров (одно-, двух- и многоцилиндровые). по расположению цилиндров (рядные и V-образные), по способу охлаждения (с жидкостным и воздушным охлаждением).

Чтобы понять принцип работы двигателя, рассмотрим его упрощенную схему. В цилиндр, закрытый головкой, плотно вставлен поршень. С помощью пальца и шатуна поршень соединен с коленчатым валом, на одном конце которого насажено тяжелое колесо — маховик. Детали составляют криво-шипно-шатунный механизм.

Рекламные предложения на основе ваших интересов:

Во время работы двигателя поршень перемещается в цилиндре, приближаясь к оси коленчатого вала или удаляясь от нее. При наибольшем удалении от этой оси поршень занимает положение, называемое верхней мертвой точкой (в.м. т.), а при наименьшем — нижней мертвой точкой (н. м. т). В этих точках поршень, останавливаясь на мгновение, изменяет направление своего движения на обратное.

Расстояние S между мертвыми точками называется ходом поршня. За один ход поршня (например, от в. м. т. к н. м.т.) коленчатый вал поворачивается на пол-оборота.

Полость над поршнем, находящимся в в. м.т., называется объемом камеры сгорания (камеры сжатия), а полость, расположенная над поршнем, когда он находится в н. м.т. — полным объемом цилиндра. Объем цилиндра, освобождаемый поршнем при перемещении от в. м. т. до н. м. т., называется рабочим объемом цилиндра. Рабочий объем всех цилиндров, выраженный в литрах, называется литражом двигателя.

В головке цилиндра имеются впускные и выпускные отверстия с клапанами. В точно определенные моменты они открываются и закрываются с помощью распределительного механизма, в который входят клапаны, передаточные детали, кулачковый вал и распределительные шестерни.

При вращении коленчатого вала, когда соединенный с шатуном поршень отходит от в. м.т., над ним в цилиндре создается разрежение. В это время впускной клапан откроется и цилиндр начнет заполняться атмосферным воздухом. После прохода поршнем н.м.т. впускное отверстие закроется. При дальнейшем повороте вала поршень, перемещаемый шатуном, идет вверх и сжимает воздух, заполнивший цилиндр. Когда поршень придет в в. м.т., весь воздух, занимавший полный объем цилиндра, будет сжат в камере сгорания. Число, показывающее, во сколько раз уменьшается объем воздуха (или смеси воздуха с топливом) в цилиндре двигателя, называется степенью сжатия и обозначается буквой е.

При сжатии воздух в камере сгорания, нагреваясь, достигает высокой температуры. В эту камеру впрыскивается мелкораспыленное топливо. Соприкасаясь с горячим воздухом и нагретым поршнем, частицы топлива испаряются, воспламеняются и сгорают, выделяя теплоту. В результате температура и давление газов над поршнем резко возрастают, и под действием давления поршень перемещается вниз — происходит расширение газов. При этом давление и температура их уменьшаются. Так, тепловая энергия преобразуется в механическую. Сила давления газов от поршня через шатун передается коленчатому валу и вращает его. В конце хода поршня вниз открывается выпускной клапан. Маховик, получив разгон, выводит механизм из н.м.т. Поршень выталкивает из цилиндра отработавшие газы, освобождая его для следующей порции (дозы) свежего воздуха. При вращении коленчатого вала все процессы в цилиндре повторяются.

Рис. 1. Схема двигателя (а) и положение поршня в верхней (б) и нижней (в) мертвых точках: 1 — коленчатый вал; 2 — маховик; 3 — корпус двигателя; 4 — цилиндр; 5 —шатун; 6 — поршень; 7 — поршневой палец; 8 — головка цилиндра; 9—клапаны; 10 — передаточные детали; 11 — кулачковый вал; 12 — распределительные шестерни.

Следовательно, работа двигателя основана на свойстве нагретых газов расширяться. Она слагается из четырех ходов поршня, при которых в цилиндре протекают процессы впуска свежего воздуха, сжатия его, подачи и сгорания топлива и расширения горячих газов, выпуска отработавших газов. Эти процессы, чередуясь в указанном порядке, составляют рабочий цикл двигателя. Часть рабочего цикла, протекающая во время движения поршня от одной мертвой точки до другой, называется тактом.

Из четырех тактов только при одном — расширении газов — совершается полезная работа. Этот такт называется рабочим ходом. Остальные такты вспомогательные. Они совершаются за счет части энергии, накопленной маховиком.

Двигатель, рабочий цикл которого совершается за четыре хода (такта) поршня (за два оборота коленчатого вала), называется четырехтактным. Двигатель, рабочий цикл которого совершается за два хода поршня (один оборот коленчатого вала), называется двухтактным.

У двигателя, схему которого мы рассмотрели, топливо впрыскивается в цилиндр и воспламеняется от высокой температуры сильно сжатого воздуха. Такой двигатель называется дизелем (по имени его создателя Р. Дизеля). Двигатель, у которого смесь топлива с воздухом образуется не в цилиндре, а в особом приборе — карбюраторе, затем поступает в цилиндр и здесь воспламеняется электрической искрой, называется карбюраторным.

Рекламные предложения:


Читать далее: Особенности рабочего цикла двухтактного карбюраторного двигателя

Категория: — Тракторы-2

Главная → Справочник → Статьи → Форум


Строение двигателя внутреннего сгорания


ДВИ́ГАТЕЛЬ ВНУ́ТРЕННЕГО СГОРА́НИЯ

Первый такт – впуск, при котором впускная и топливная системы обеспечивают образование топливно-воздушной смеси. В зависимости от конструкции смесь образуется во впускном коллекторе (центральный и распределённый впрыск бензиновых двигателей) или непосредственно в камере сгорания (непосредственный впрыск бензиновых двигателей, впрыск дизельных двигателей). При движении поршня от ВМТ к НМТ в цилиндре (вследствие увеличения объёма) создаётся разрежение, под действием которого через открывающийся впускной клапан поступает горючая смесь (паров бензина с воздухом). Давление во впускном клапане в двигателях без наддува может быть близким к атмосферному, а в двигателях с наддувом – выше его (0,13– 0,45 МПа). В цилиндре горючая смесь смешивается с оставшимися в нём от предыдущего рабочего цикла отработавшими газами и образует рабочую смесь. Второй такт – сжатие, при котором впускной и выпускной клапаны закрываются газораспределительным валом, и топливно-воздушная смесь сжимается в цилиндрах двигателя. Поршень движется вверх (от НМТ к ВМТ). Т.к. объём в цилиндре уменьшается, то происходит сжатие рабочей смеси до давления 0,8–2 МПа, температура смеси составляет 500–700 К. В конце такта сжатия, рабочая смесь воспламеняется электрической  искрой и быстро сгорает (за 0,001– 0,002 с). При этом происходит выделение большого количества теплоты, температура достигает 2000–2600 К, и газы, расширяясь, создают сильное давление (3,5– 6,5 МПа) на поршень, перемещая его вниз. Третий такт – рабочий ход, который сопровождается воспламенением топливно-воздушной смеси. Сила давления газов перемещает поршень вниз. Движение поршня через кривошипно-шатунный механизм преобразуется во вращательное движение коленчатого вала, которое затем используется для движения автомобиля. Т.о., во время рабочего хода происходит преобразование тепловой энергии в механическую работу. Четвёртый такт – выпуск, при котором поршень после совершения полезной работы движется вверх, и выталкивает наружу, через открывающийся выпускной клапан газораспределительного механизма, отработавшие газы из цилиндров в выпускную систему, где производится их очистка, охлаждение и снижение шума. Далее газы поступают в атмосферу. Процесс выпуска можно разделить на предварение (давление в цилиндре значительно выше, чем в выпускном клапане, скорость истечения отработавших газов при температурах 800–1200 К составляет 500– 600 м/сек) и основной  выпуск (скорость в конце выпуска 60–160 м/сек). Выпуск отработанных газов сопровождается звуковым эффектом, для поглощения которого устанавливают глушители. За рабочий цикл двигателя полезная работа совершается только в течение рабочего хода, а остальные три такта являются вспомогательными. Для равномерности вращения коленчатого вала на его конце устанавливают маховик, обладающий значительной массой. Маховик получает энергию при рабочем ходе и часть её отдаёт на совершение вспомогательных тактов.

Двигатель внутреннего сгорания: устройство, принцип работы

Современный двигатель внутреннего сгорания далеко ушел от своих прародителей. Он стал крупнее, мощнее, экологичнее, но при этом принцип работы, устройство двигателя автомобиля, а также основные его элементы остались неизменными.

Двигатели внутреннего сгорания, массово применяемые на автомобилях, относятся к типу поршневых. Название свое этот тип ДВС получил благодаря принципу работы. Внутри двигателя находится рабочая камера, называемая цилиндром. В ней сгорает рабочая смесь. При сгорании смеси топлива и воздуха в камере увеличивается давление, которое воспринимает поршень. Перемещаясь, поршень преобразует полученную энергию в механическую работу.

Как устроен ДВС

Первые поршневые моторы имели лишь один цилиндр небольшого диаметра. В процессе развития для увеличения мощности сначала увеличивали диаметр цилиндра, а потом и их количество. Постепенно двигатели внутреннего сгорания приняли привычный нам вид. Мотор современного автомобиля может иметь до 12 цилиндров.

Современный ДВС состоит из нескольких механизмов и вспомогательных систем, которые для удобства восприятия группируют следующим образом:

  1. КШМ — кривошипно-шатунный механизм.
  2. ГРМ   — механизм регулировки фаз газораспределения.
  3. Система смазки.
  4. Система охлаждения.
  5. Система подачи топлива.
  6. Выхлопная система.

Также к системам ДВС относятся электрические системы пуска и управления двигателем.

КШМ — основной механизм поршневого мотора. Он выполняет главную работу — преобразует тепловую энергию в механическую. Состоит механизм из следующих частей:

  • Блок цилиндров.
  • Головка блока цилиндров.
  • Поршни с пальцами, кольцами и шатунами.
  • Коленчатый вал с маховиком.
ГРМ — газораспределительный механизм

Чтобы в цилиндр поступало нужное количество топлива и воздуха, а продукты сгорания вовремя удалялись из рабочей камеры, в ДВС предусмотрен механизм, называемый газораспределительным. Он отвечает за открытие и закрытие впускных и выпускных клапанов, через которые в цилиндры поступает топливо-воздушная горючая смесь и удаляются выхлопные газы. К деталям ГРМ относятся:

  • Распределительный вал.
  • Впускные и выпускные клапаны с пружинами и направляющими втулками.
  • Детали привода клапанов.
  • Элементы привода ГРМ.

ГРМ приводится от коленчатого вала двигателя автомобиля. С помощью цепи или ремня вращение передается на распределительный вал, который посредством кулачков или коромысел через толкатели нажимает на впускной или выпускной клапан и по очереди открывает и закрывает их

В зависимости от конструкции и количества клапанов на двигатель может быть установлен один или два распределительных вала на каждый ряд цилиндров. При двухвальной системе каждый вал отвечает за работу своего ряда клапанов — впускных или выпускных. Одновальная конструкция имеет английское название SOHC (Single OverHead Camshaft). Систему с двумя валами называют DOHC (Double Overhead Camshaft).

Система охлаждения двигателя

Во время работы мотора его детали соприкасаются с раскаленными газами, которые образуются при сгорании топливо-воздушной смеси. Чтобы детали двигателя внутреннего сгорания не разрушались из-за чрезмерного расширения при нагреве, их необходимо охлаждать. Охладить мотор автомобиля можно с помощью воздуха или жидкости. Современные моторы имеют, как правило, жидкостную схему охлаждения, которую образуют следующие части:

  • Рубашка охлаждения двигателя
  • Насос (помпа)
  • Термостат
  • Радиатор
  • Вентилятор
  • Расширительный бачок

Рубашку охлаждения двигателей внутреннего сгорания образуют полости внутри БЦ и ГБЦ, по которым циркулирует охлаждающая жидкость. Она отбирает избыточное тепло у деталей двигателя и относит его к радиатору. Циркуляцию обеспечивает насос, привод которого осуществляется с помощью ремня от коленчатого вала.

Термостат обеспечивает необходимый температурный режим двигателя автомобиля, перенаправляя поток жидкости в радиатор либо в обход него. Радиатор, в свою очередь, призван охлаждать нагретую жидкость. Вентилятор усиливает набегающий поток воздуха, тем самым увеличивая эффективность охлаждения. Расширительный бачок необходим современным моторам, так как применяемые охлаждающие жидкости сильно расширяются при нагреве и требуют дополнительного объема.

Система смазки ДВС

В любом моторе есть множество трущихся деталей, которые необходимо постоянно смазывать, чтобы уменьшить потери мощности на трение и избежать повышенного износа и заклинивания. Для этого существует система смазки. Попутно с ее помощью решается еще несколько задач: защита деталей двигателя внутреннего сгорания от коррозии, дополнительное охлаждение деталей мотора, а также удаление продуктов износа из мест соприкосновения трущихся частей. Систему смазки двигателя автомобиля образуют:

  • Масляный картер (поддон).
  • Насос подачи масла.
  • Масляный фильтр с редукционным клапаном.
  • Маслопроводы.
  • Масляный щуп (индикатор уровня масла).
  • Указатель давления в системе.
  • Маслоналивная горловина.

Насос забирает масло из масляного картера и подает его в маслопроводы и каналы, расположенные в БЦ и ГБЦ. По ним масло поступает в места соприкосновения трущихся поверхностей.

Система подачи для двигателей внутреннего сгорания с воспламенением от искры и от сжатия отличаются друг от друга, хотя и имеют ряд общих элементов. Общими являются:

  • Топливный бак.
  • Датчик уровня топлива.
  • Фильтры очистки топлива — грубой и тонкой.
  • Топливные трубопроводы.
  • Впускной коллектор.
  • Воздушные патрубки.
  • Воздушный фильтр.

В обеих системах имеются топливные насосы, топливные рампы, форсунки подачи топлива, но в силу различных физических свойств бензина и дизельного топлива конструкция их имеет существенные различия. Сам принцип подачи одинаков: топливо из бака с помощью насоса через фильтры подается в топливную рампу, из которой попадает в форсунки. Но если в большинстве бензиновых двигателей внутреннего сгорания форсунки подают его во впускной коллектор мотора автомобиля, то в дизельных оно подается непосредственно в цилиндр, и уже там смешивается с воздухом. Детали, обеспечивающие очистку воздуха и поступление его цилиндры — воздушный фильтр и патрубки — тоже относятся к топливной системе.

Система выпуска

Система выпуска предназначена для отвода отработанных газов из цилиндров двигателя автомобиля. Основные детали, ее составляющие:

  • Выпускной коллектор.
  • Приемная труба глушителя.
  • Резонатор.
  • Глушитель.
  • Выхлопная труба.

В современных двигателях внутреннего сгорания выхлопная конструкция дополнена устройствами нейтрализации вредных выбросов. Она состоит из каталитического нейтрализатора и датчиков, сообщающихся с блоком управления двигателем. Выхлопные газы из выпускного коллектора через приемную трубу попадают в каталитический нейтрализатор, затем через резонатор в глушитель. Далее через выхлопную трубу они выбрасываются в атмосферу.

В заключение необходимо упомянуть системы пуска и управления двигателем автомобиля. Они являются важной частью двигателя, но их необходимо рассматривать вместе с электрической системой автомобиля, что выходит за рамки этой статьи, рассматривающей внутреннее устройство двигателя.

Как работают дизельный, бензиновый и инжекторный двигатели

Двигатель внутреннего сгорания – универсальный силовой агрегат, используемый практически во всех видах современного транспорта. Три луча заключенные в окружность, слова «На земле, на воде и в небе» — товарный знак и девиз компании Мерседес Бенц, одного из ведущих производителей дизельных и бензиновых двигателей. Устройство двигателя, история его создания, основные виды и перспективы развития – вот краткое содержание данного материала.

Немного истории

Принцип превращения возвратно-поступательного движения во вращательное, посредством использования кривошипно-шатунного механизма известен с 1769 года, когда француз Николя Жозеф Кюньо показал миру первый паровой автомобиль. В качестве рабочего тела двигатель использовал водяной пар, был маломощным и извергал клубы черного, дурнопахнущего дыма. Подобные агрегаты использовались в качестве силовых установок на заводах, фабриках, пароходах и поездах, компактные же модели существовали в виде технического курьеза.

Все изменилось в тот момент, когда в поисках новых источников энергии человечество обратило свой взор на органическую жидкость — нефть. В стhемлении повысить энергетические характеристики данного продукта, ученные и исследователи, проводили опыты по перегонке и дистилляции, и, наконец, получили неизвестное доселе вещество – бензин. Эта прозрачная жидкость с желтоватым оттенком сгорала без образования копоти и сажи, выделяя намного большее, чем сырая нефть, количество тепловой энергии.

Примерно в то же время Этьен Ленуар сконструировал первый газовый двигатель внутреннего сгорания, работавший по двухтактной схеме, и запатентовал его в 1880 году.

В 1885 году немецкий инженер Готтлиб Даймлер, в сотрудничестве с предпринимателем Вильгельмом Майбахом, разработал компактный бензиновый двигатель, уже через год нашедший свое применение в первых моделях автомобилей. Рудольф Дизель, работая в направлении повышения эффективности ДВС (двигателя внутреннего сгорания), в 1897 году предложил принципиально новую схему воспламенения топлива. Воспламенение в двигателе, названном в честь великого конструктора и изобретателя, происходит за счет нагревания рабочего тела при сжатии.

А в 1903 году братья Райт подняли в воздух свой первый самолет, оснащенный бензиновым двигателем Райт-Тейлор, с примитивной инжекторной схемой подачи топлива.

Как это работает

Общее устройство двигателя и основные принципы его работы станут понятны при изучении одноцилиндровой двухтактной модели.

Такой ДВС состоит из:

  • камеры сгорания;
  • поршня, соединенного с коленвалом посредством кривошипно-шатунного механизма;
  • системы подачи и воспламенения топливно-воздушной смеси;
  • клапана для удаления продуктов горения (выхлопных газов).

При пуске двигателя поршень начинает путь от верхней мертвой точки (ВМТ) к нижней (НМТ), за счет поворота коленвала. Достигнув нижней точки, он меняет направление движения к ВМТ, одновременно с чем проводится подача топливно-воздушной смеси в камеру сгорания. Движущийся поршень сжимает ТВС, при достижении верхней мертвой точки система электронного зажигания воспламеняет смесь. Стремительно расширяясь, горящие пары бензина отбрасывают поршень в нижнюю мертвую точку. Пройдя определенную часть пути, он открывает выхлопной клапан, через который раскаленные газы покидают камеру сгорания. Пройдя нижнюю точку, поршень меняет направление движения к ВМТ. За это время коленвал совершил один оборот.

Данные пояснения станут более понятными при просмотре видео о работе двигателя внутреннего сгорания.

Данный видеоролик наглядно показывает устройство и работу двигателя автомобиля.

Два такта

Основным недостатком двухтактной схемы, в которой роль газораспределительного элемента играет поршень, является потеря рабочего вещества в момент удаления выхлопных газов. А система принудительной продувки и повышенные требования к термостойкости выхлопного клапана приводят к увеличению цены двигателя. В противном случае добиться высокой мощности и долговечности силового агрегата не представляется возможным. Основная сфера применения подобных двигателей – мопеды и недорогие мотоциклы, лодочные моторы и бензокосилки.

Четыре такта

Описанных недостатков лишены четырехтактные ДВС, используемые в более «серьезной» технике. Каждая фаза работы такого двигателя (впуск смеси, ее сжатие, рабочий ход и выпуск отработанных газов), осуществляется при помощи газораспределительного механизма.

Разделение фаз работы ДВС очень условно. Инерционность отработавших газов, возникновение локальных вихрей и обратных потоков в зоне выхлопного клапана приводит к взаимному перекрыванию во времени процессов впрыска топливной смеси и удаления продуктов горения. Как результат, рабочее тело в камере сгорания загрязняется отработанными газами, вследствие чего меняются параметры горения ТВС, уменьшается теплоотдача, падает мощность.

Проблема была успешно решена путем механической синхронизации работы впускных и выпускных клапанов с оборотами коленвала. Проще говоря, впрыск топливно-воздушной смеси в камеру сгорания произойдет только после полного удаления отработанных газов и закрытия выхлопного клапана.

Но данная система управления газораспределением так же имеет свои недостатки. Оптимальный режим работы двигателя (минимальный расход топлива и максимальная мощность), может быть достигнут в достаточно узком диапазоне оборотов коленвала.

Развитие вычислительной техники и внедрение электронных блоков управления дало возможность успешно разрешить и эту задачу. Система электромагнитного управления работой клапанов ДВС позволяет на лету, в зависимости от режима работы, выбирать оптимальный режим газораспределения. Анимированные схемы и специализированные видео облегчат понимание этого процесса.

На основании видео не сложно сделать вывод, что современный автомобиль это огромное количество всевозможных датчиков.

Виды ДВС

Общее устройство двигателя остается неизменным достаточно долгое время. Основные различия касаются видов используемого топлива, систем приготовления топливно-воздушной смеси и схем ее воспламенения. Рассмотрим три основных типа:

  1. бензиновые карбюраторные;
  2. бензиновые инжекторные;
  3. дизельные.
Бензиновые карбюраторные ДВС

Приготовление гомогенной (однородной по своему составу), топливно-воздушной смеси происходит путем распыления жидкого топлива в воздушном потоке, интенсивность которого регулируется степенью поворота дроссельной заслонки. Все операции по приготовлению смеси проводятся за пределами камеры сгорания двигателя. Преимуществами карбюраторного двигателя является возможность регулировки состава топливной смеси «на коленке», простота обслуживания и ремонта, относительная дешевизна конструкции. Основной недостаток – повышенный расход топлива.

Историческая справка. Первый двигатель данного типа сконструировал и запатентовал в 1888 году российский изобретатель Огнеслав Костович. Оппозитная система горизонтально расположенных и двигающихся навстречу друг другу поршней, до сих пор успешно используется при создании двигателей внутреннего сгорания. Самым известным автомобилем, в котором использовался ДВС данной конструкции, является Фольксваген Жук.

Бензиновые инжекторные ДВС

Приготовление ТВС осуществляется в камере сгорания двигателя, путем распыления топлива инжекторными форсунками. Управление впрыском осуществляется электронным блоком или бортовым компьютером автомобиля. Мгновенная реакция управляющей системы на изменение режима работы двигателя обеспечивает стабильность работы и оптимальный расход топлива. Недостатком считается сложность конструкции, профилактика и наладка возможны только на специализированных станциях технического обслуживания.

Дизельные ДВС

Приготовление топливно-воздушной смеси происходит непосредственно в камере сгорания двигателя. По окончании цикла сжатия воздуха, находящегося в цилиндре, форсунка проводит впрыск топлива. Воспламенение происходит за счет контакта с перегретым в процессе сжатия атмосферным воздухом. Всего лишь 20 лет назад низкооборотистые дизеля использовались в качестве силовых агрегатов специальной техники. Появление технологии турбонагнетания открыло им дорогу в мир легковых автомобилей.

Пути дальнейшего развития ДВС

Конструкторская мысль никогда не стоит на месте. Основные направления дальнейшего развития и усовершенствования двигателей внутреннего сгорания – повышение экономичности и минимизация вредных для экологии веществ в составе выхлопных газов. Применение слоистых топливных смесей, конструирование комбинированных и гибридных ДВС – лишь первые этапы долгого пути.

Устройство двигателя внутреннего сгорания автомобиля

Каждому, водителю интересно и необходимо знать, как устроен автомобиль, что такое ДВС в машине, из чего состоит двигатель автомобиля и каков у ДВС ресурс.

Отличие двигателей внутреннего сгорания от двигателей внешнего сгорания

ДВС называется так именно потому, что топливо сжигается внутри рабочего органа (цилиндра), промежуточный теплоноситель, например пар, здесь не нужен, как это организовано в паровозах. Если рассматривать паровой двигатель и двигатель, но уже внутреннего сгорания автомобиля, устройство их сходно, это очевидно (на рисунке справа паровой двигатель, слева – ДВС). Принцип работы одинаков: на поршень, действует какая-то сила. От этого поршень вынужден двигаться вперед или назад (возвратно-поступательно). Эти движения при помощи специального механизма (кривошипного) преобразуются во вращение (колеса у паровоза и коленчатого вала «коленвала» у автомобиля). В двигателях внешнего сгорания нагревается вода, превращаясь в пар, и уже этот пар совершает полезную работу толкая поршень, а в ДВС мы нагреваем воздух внутри (непосредственно в цилиндре)и он (воздух) двигает поршень. От этого коэффициент полезного действия, у ДВС, конечно, выше.

История создания ДВС

История гласит, что первый работающий двигатель внутреннего сгорания коммерческого использования, то есть выпускаемый для продажи, был разработан французским изобретателем Ленуаром. Его двигатель работал на светильном газе в смеси с воздухом. Причем именно он догадался поджигать эту смесь путем электрической искры. Только в 1864 году документально зафиксирована продажа более 310 таких двигателей. На этом он разбогател. Жан Этьен Ленуар потерял интерес к изобретательству и вскоре(в 1877 году) его моторы были вытеснены более совершенными, на тот момент, двигателями Отто, изобретателя из Германии. Донат Банки (венгерский инженер) в 1893 году произвел настоящую революцию в двигателестроении. Он изобрел карбюратор. С этого момента история не знает бензиновых двигателей без этого устройства. И так продолжалось около 100 лет. На смену ему пришла система непосредственного впрыска, но это уже новейшая история. Все первые двигатели внутреннего сгорания были только одноцилиндровыми. Увеличение мощности велось путем увеличения диаметра рабочего цилиндра. Только к концу 19-го века появились ДВС с двумя цилиндрами, а в начале 20-го века – четырехцилиндровые. Теперь, повышение мощности производилось уже путем увеличения числа цилиндров. На сегодняшний день можно встретить автомобильный двигатель в 2-мя, 4-мя, 6-ю цилиндрами. Реже 8 и 12. Некоторые спортивные автомобили имеют 24 цилиндра. Расположение цилиндров может быть как рядным, так и V-образным.

Вопреки расхожему мнению ни Готлиб Даймлер, ни Карл Бенц, ни Генри Форд устройство двигателя автомобиля не изменяли кардинально (разве что мелкие доработки), но оказали огромное влияние в автомобилестроение как таковое. Что такое ДВС в авто мы сейчас и рассмотрим.

Общее устройство двигателя внутреннего сгорания

Итак, ДВС состоит из корпуса, в котором все остальные детали монтируются. Чаще всего это блок цилиндров. На данном рисунке показан один цилиндр без блока. Устройство ДВС направлено на максимально комфортные условия для цилиндров, ведь именно в них производится работа. Цилиндр, это металлическая (чаще всего стальная) труба, в которой двигается поршень. Он обозначен на рисунке цифрой 7. Над цилиндром устанавливается головка цилиндра 1, в которую вмонтированы клапана (5 – впускной и 4 — выпускной), а также свеча зажигания 3 и коромысла 2. Над клапанами 4 и 5 есть пружины, которые удерживают их в закрытом состоянии. Коромысла при помощи толкателей 14 и распределительного вала 13 открывают клапана в определенный момент (тогда, когда это необходимо). Распределительный вал с кулачками вращается от коленвала 11 через приводные шестерни 12. Движения поршня 7 преобразуются во вращение коленвала 11 при помощи шатуна 8 и кривошипа. Этим кривошипом служит «колено» на валу (смотри рисунок), именно поэтому вал и называется коленчатым. В связи с тем, что воздействие на поршень происходит не постоянно, а только когда в цилиндре горит топливо. У ДВС есть маховик 9, довольно массивный. Маховик как бы запасает энергию вращения и отдает ее при необходимости. В любом двигателе много трущихся деталей, для их смазывания используют автомобильное масло. Масло это хранится в картере 10 и специальным насосом подается к трущимся деталям.

Синим цветом, показаны детали кривошипно-шатунного механизма (КШМ). Голубым – смесь топлива и воздуха. Серым – свеча зажигания. Красным – выхлопные газы.

Принцип работы ДВС

Разобрав двигатель внутреннего сгорания, его устройство, необходимо уяснить, как взаимодействуют его детали, как он работает. Знать строение еще не все, а вот как взаимодействуют механизмы, в чем преимущество дизельных автомобилей и в чем их недостатки для начинающих (для чайников) очень важно. Ничего сложного в этом нет. Пошаговым рассмотрением процессов мы постараемся рассказать, как взаимодействуют между собой основные части двигателя при работе. Из какого материала выполнены механические составляющие ДВС. Все автомобильные двигатели работают на одном принципе: сжигание бензина или дизельного топлива. Для чего? Для получения необходимой нам энергии, конечно. Двигатели автомобилей, иногда говорят – моторы, могут быть двухтактными и четырехтактными. Тактом считается движение поршня либо вверх, либо вниз. Говорят еще от верхней мертвой точки (ВМТ), до нижней (НМТ). Мертвой эта точка называется потому, что поршень как бы замирает на мгновение и начинает движение в обратную сторону. Итак, в двухтактном двигателе весь процесс (или цикл) происходит за 2 хода поршня, в четырехтактном – за 4. И совершенно не важно, бензиновый это двигатель, дизельный или работающий на газу. Как ни странно, рассказывать принцип работы лучше на 4-х тактном бензиновом карбюраторном двигателе.

Первый такт — всасывание.

Поршень идет вниз и затягивает за собой смесь из воздуха и топлива. Эта смесь готовится в отдельном устройстве – в карбюраторе. При этом впускной, его еще называют «всасывающий» клапан, конечно, открыт. На рисунке он показан синим.

Следующий, второй такт – сжатие смеси.

Поршень поднимается вверх от НМТ до ВМТ. При этом растет давление и, естественно, температура над поршнем. Но этой температуры недостаточно, для того, чтобы смесь самовоспламенилась. Для этого служит свеча. Она выдает искру в нужный момент. Обычно это 6…8 угловых градусов не доходя до ВМТ. Для начала понимания процесса можно предположить, что искра зажигает смесь точно в верхней точке.

Третий такт – расширение продуктов сгорания.

При сгорании столь энергоемкого топлива, продуктов сгорания в цилиндре очень мало, а вот усилие появляется только потому, что воздух нагрелся при повышении температуры, а значит, расширился, в нашем случае увеличил давление. Именно это давление и совершает нужную работу. Нужно знать, что нагревая воздух на 273 0С, получаем увеличение давления практически в 2 раза. Температура зависит от того сколько топлива сжечь. Максимальная температура внутри рабочего цилиндра может достигать 2500 0С при работе ДВС на полной мощности.

Четвертый такт последний.

После него опять будет первый. Поршень направляется от НМТ к ВМТ. При этом выпускной клапан открыт. Цилиндр очищается, выбрасывая все что сгорело, и что не сгорело, в атмосферу. Что касается дизельного двигателя, то все основные детали с карбюраторным практически одинаковы. Ведь и тот и другой, это двигатель внутреннего сгорания. Исключение составляет смесеобразование. В карбюраторном смесь готовится отдельно, в том самом карбюраторе. А вот в дизельном – смесь готовиться непосредственно в цилиндре, перед сжиганием. Топливо (солярка) подается специальным насосом в определенный момент времени. Зажигание смеси происходит от самовоспламенения. Температура внутри цилиндра в дизеле гораздо выше, чем в карбюраторном ДВС. По этой причине детали там детали мощнее и система охлаждения лучше. Необходимо отметить, что, несмотря на высокую температуру внутри цилиндра, рабочая температура двигателя никогда не повышается выше 90…95 0С. Иногда, детали дизельных двигателей делают из более твердого металла, что позволяет снизить массу, но увеличивает цену ДВС. Однако, коэффициент полезного действия (КПД) в дизельном двигателе выше. То есть он более экономичен и дороговизна деталей себя окупает. У дизельного ДВС ресурс выше, если соблюдать правила эксплуатации. Особенно часто механизмы дизелей выходят из строя из-за плохого топлива.

Схема работы дизельного двигателя представлена на рисунке слева. В третьем такте подача топлива показана в момент ВМТ, хотя это и не совсем так.

Системы ДВС обеспечивающие их работоспособность практически одинаковы: система смазки, топливная система, система охлаждения и система газообмена. Есть еще несколько, но они не относятся к главным. Глядя на устройство любого двигателя внутреннего сгорания можно подумать, что все детали выполнены из стали. Это далеко не так. Корпуса бывают и чугунные и выполненные из алюминиевого сплава, а вот поршни из чугуна не делают, они либо стальные, либо из высокопрочного алюминиевого сплава. Зная общее устройство данного двигателя внутреннего сгорания и условия работы его деталей, очевидно, что и клапана и головку цилиндра нужно делать прочными, поскольку они должны выдерживать давление внутри цилиндра более 100 атмосфер. А вот поддон, где собирается масло не несет на себе особой механической нагрузки и выполняется из тонкой листовой стали или алюминия. Характеристики ДВС Когда говорят об автомобиле, то обычно, в первую очередь отмечают двигатель внутреннего сгорания, не его устройство, а его мощность. Она (мощность) измеряется как обычно (по-старинке) в лошадиных силах или (по-современному) киловаттах. Безусловно, чем больше мощность, тем быстрее автомобиль набирает скорость. И в принципе экономичность тем выше, тем двигатель машины более мощный. Однако, это только тогда, когда двигатель постоянно работает на номинальных (экономически оправданных) оборотах. Но на малых скоростях (при неиспользовании полной мощности) КПД сильно падает и если на номинальных режимах дизельный двигатель имеет 40…42% КПД, то на малых только 7%. Бензиновый двигатель не может похвастаться даже этим. Использование полной мощности позволяет экономить топливо. По этой причине расход топлива на 100 километров в малолитражных автомобилях ниже. Этот показатель может составлять и 5 и даже 4 л/100 км. Расход у мощных внедорожников может составлять и 10 и даже 15 л/100 км. Еще одним показателем для автомобилей является разгон от 0 км/час до 100 км/час. Конечно, чем мощнее двигатель, тем быстрее разгон автомобиля, но про экономичность при этом говорить вообще не приходится.

Итак, двигатель внутреннего сгорания устройство которого Вы теперь знаете, совсем не кажется сложным. И на вопрос «ДВС – что это такое?» Вы можете ответить «Это то, что я знаю».

Устройство двигателя внутреннего сгорания — видео, схемы, картинки

Двигатель внутреннего сгорания — это одно из тех изобретений, которые в корне перевернули нашу жизнь — с лошадиных повозок люди смогли пересесть на быстрые и мощные автомобили.

Первые ДВС обладали малой мощностью, а коэффициент полезного действия не доходил даже до десяти процентов, но неутомимые изобретатели — Ленуар, Отто, Даймлер, Майбах, Дизель, Бенц и множество других — привносили что-то новое, благодаря чему имена многих увековечены в названиях известных автомобильных компаний.

ДВС прошли длительный путь развития от коптящих и часто ломающихся примитивных моторов, до сверхсовременных битурбированных двигателей, но принцип их работы остался все тот же — теплота сгорания топлива преобразуется в механическую энергию.

Название «двигатель внутреннего сгорания» используется потому, что топливо сгорает в середине двигателя, а не снаружи, как в двигателях внешнего сгорания — паровых турбинах и паровых машинах.

Благодаря этому ДВС получили множество положительных характеристик:

  • они стали намного легче и экономичнее;
  • стало возможным избавиться от дополнительных агрегатов для передачи энергии сгорания топлива или пара к рабочим частям двигателя;
  • топливо для ДВС обладает заданными параметрами и позволяет получать значительно больше энергии, которую можно преобразовать в полезную работу.

Устройство ДВС

Вне зависимости от того, на каком топливе работает двигатель — бензин, дизель, пропан-бутан или экотопливо на основе растительных масел — главным действующим элементом является поршень, который находится внутри цилиндра. Поршень похож на металлический перевернутый стакан (скорее подойдет сравнение с бокалом для виски — с плоским толстым дном и прямыми стенками), а цилиндр — на небольшой кусок трубы, внутри которой и ходит поршень.

В верхней плоской части поршня имеется камера сгорания — углубление круглой формы, именно в нее попадает топливно воздушная смесь и здесь же детонирует, приводя поршень в движение. Это движение передается на коленчатый вал с помощью шатунов. Шатуны верхней своей частью прикреплены к поршню с помощью поршневого пальца, который просовывается в два отверстия по бокам поршня, а нижней — к шатунной шейке коленчатого вала.

Первые ДВС имели всего один поршень, но и этого было достаточно, чтобы развить мощность в несколько десятков лошадиных сил.

В наше время тоже применяются двигатели с одним поршнем, например пусковые двигатели для тракторов, которые выполняют роль стартера. Однако больше всего распространены 2-х, 3-х, 4-х, 6-и и 8-цилиндровые двигатели, хотя выпускаются двигатели на 16 цилиндров и более.

Поршни и цилиндры находятся в блоке цилиндров. От того, как расположены цилиндры по отношению к друг другу и к другим элементам двигателя, выделяют несколько видов ДВС:

  • рядные — цилиндры расположены в один ряд;
  • V-образные — цилиндры расположены друг против друга под углом, в разрезе напоминают букву «V»;
  • U-образные — два объединенных между собой рядных двигателя;
  • X-образные — ДВС со сдвоенными V-образными блоками;
  • оппозитные — угол между блоками цилиндров составляет 180 градусов;
  • W-образные 12-цилиндровые — три или четыре ряда цилиндров установленные в форме буквы «W»;
  • звездообразные двигатели — применяются в авиации, поршни расположены радиальными лучами вокруг коленчатого вала.

Важным элементом двигателя является коленчатый вал, на который передается возвратно-поступательное движение поршня, коленвал преобразует его во вращение.

Когда на тахометре отображаются обороты двигателя, то это как раз и есть количество вращений коленвала в минуту, то есть он даже на самых низких оборотах вращается со скоростью 2000 оборотов в минуту. С одной стороны коленвал соединен с маховиком, от которого вращение через сцепление подается на коробку передач, с другой стороны — шкив коленвала, связанный с генератором и газораспределительным механизмом через ременную передачу. В более современных авто шкив коленвала связан также со шкивами кондиционера и гидроусилителя руля.

Топливо подается в двигатель через карбюратор или инжектор. Карбюраторные ДВС уже отживают свое из-за несовершенства конструкции. В таких ДВС идет сплошной поток бензина через карбюратор, затем топливо смешивается во впускном коллекторе и подается в камеры сгорания поршней, где детонирует под действием искры зажигания.

В инжекторных двигателях непосредственного впрыска топливо смешивается с воздухом в блоке цилиндров, куда подается искра от свечи зажигания.

Газораспределительный механизм отвечает за согласованную работу системы клапанов. Впускные клапаны обеспечивают своевременное поступление топливновоздушной смеси, а выпускные отвечают за выведение продуктов сгорания. Как мы уже писали раньше, такая система используется в четырехтактных двигателях, тогда как в двухтактных необходимость в клапанах отпадает.

На данном видео показано как устроен двигатель внутреннего сгорания, какие функции выполняет и как он это делает.

Устройство четырехтактного ДВС

Двигатель внутреннего сгорания

Автомобильные двигатели чрезвычайно разнообразны. Технология, которая применяется при разработке и запуске в производство силовых агрегатов, имеет богатую историю. Требования современности вынуждают производителей ежегодно внедрять в свои проекты доработки и модернизировать имеющиеся технологии.

Двигатель внутреннего сгорания имеет устройство и принцип работы, способный обеспечивать высокую мощность и длительный период эксплуатации — от пользователя требуется только минимально необходимое обслуживание и своевременный мелкий ремонт.

При первом взгляде сложно представить, как работает двигатель: слишком много взаимосвязанных механизмов собранно в одном небольшом пространстве. Но при детальном изучении и анализе связей в этой системе работа двигателя автомобиля оказывается предельно простой и понятной.

В состав двигателя автомобиля входит ряд узлов, имеющих важное значение и обеспечивающих выполнение рабочих функций всей системы.

Блок цилиндров иногда называют корпусом или рамой всей системы. Описание двигателя не обходится без изучения данного элемента конструкции. Именно в этой части мотора обустроена система связанных каналов, предназначеных для смазки и создания необходимой температуры двигателя внутреннего сгорания.

Верхняя часть корпуса поршня имеет каналы для колец. Сами поршневые кольца подразделяются на верхние и нижние. Исходя из выполняемых функций, данные кольца называют компрессионными. Крутящий момент двигателя определяется прочностью и работой рассмотренных элементов.

Нижние кольца поршня играют важную роль для обеспечения ресурса двигателя. Нижние кольца выполняют 2 роли: сохраняют герметичность камеры сгорания и являются уплотнителями, которые предотвращают проникновение масла внутрь камеры сгорания.

Двигатель автомобиля представляет собой систему, в которой осуществляется передача энергии между механизмами с минимальными потерями ее величины на различных этапах. Поэтому кривошипно-шатунный механизм становится одним из важнейших элементов системы. Он обеспечивает передачу возвратно-поступательной энергии от поршня на коленвал.

В целом, принцип работы двигателя достаточно прост и претерпел мало фундаментальных изменений за период существования. В этом просто нет необходимости — некоторые усовершенствования и оптимизации позволяют достигать лучших результатов в работе. Концепция же всей системы неизменна.

Крутящий момент двигателя создается за счет выделяемой при сгорании топлива энергии, которая передается от камеры сгорания к колесам по соединительным элементам. В форсунках топливо передается в камеру сгорания, где происходит его обогащение воздухом. Свеча зажигания создает искру, которая мгновенно воспламеняет образовавшуюся смесь. Так происходит небольшой взрыв, который обеспечивает работы двигателя.

В результате такого действия происходит образования большого объема газов, стимулируя к совершению поступательных движений. Так формируется крутящий момент двигателя. Энергия от поршня передается на коленвал, который передает движение на трансмиссию, а после этого, специальная система шестеренок переносит движение на колеса.

Порядок работы работающего двигателя незатейлив и при исправных связующих элементах гарантирует минимальные потери энергии. Схема работы и строение каждого механизма основаны на преобразовании созданного импульса в практически используемый объем энергии. Ресурс двигателя определяется износостойкостью каждого звена.

Принцип работы двигателя внутреннего сгорания

Двигатель легкового автомобиля выполняется в виде одного из типов систем внутреннего сгорания. Принцип действия двигателя может отличаться по некоторым показателям, что служит основой для разделения моторов на различные типы и модификации.

В качестве определяющих параметров, служащих для разделения силовых агрегатов на категории, служат:

  • рабочий объем,
  • количество цилиндров,
  • мощность системы,
  • скорость вращения узлов,
  • применяемое для работы топливо и др.

Разобраться в том, как работает двигатель, просто. Но по мере изучения всплывают новые показатели, которые вызывают вопросы. Так, часто можно встретить разделение двигателей по числу тактов. Что это такое и как влияет на работу машины?

Устройство двигателя автомобиля основано на четырехтактовой системе. Эти 4 такта равны по времени — за весь цикл поршень дважды поднимается вверх в цилиндре и дважды опускается вниз. Такт берет начало в тот момент, когда поршень находится в верхней или нижней части. Механики называют эти точки ВМТ и НМТ — верхняя и нижняя мертвые точки соответственно.

Такт № 1 — впуск. По мере движения вниз, поршень втягивает в цилиндр наполненную топливом смесь. Работа системы происходит при открытом клапане впуска. Мощность двигателя автомобиля определяется количеством, размерами и временем, которое клапан открыт.

В отдельных моделях работа педали газа увеличивает период нахождения клапана в открытом состоянии, что позволяет увеличить объем топлива, попадающего в систему. Такое устройство двигателей внутреннего сгорания обеспечивает сильное ускорение работы системы.

Такт № 2 — сжатие. На этом этапе поршень начинает свое движение вверх, что приводит к сжатию полученной в цилиндр смеси. Она сживается ровно до объемов камеры сгорания топлива. Эта камера представляет собой пространство между верхней частью поршня и верхом цилиндра в момент нахождения поршня в ВМТ. Клапаны впуска в этот момент работы прочно закрыты.

От плотности закрытия зависит качество сжатия смеси. Если сам поршень, или цилиндр, или кольца поршней потерты и не в надлежащем состоянии, то качество работы и ресурс двигателя значительно снизятся.

Такт № 3 — рабочий ход. Этот этап начинается с ВМТ. Система зажигания гарантирует воспламенение топливной смеси и обеспечивает выделение энергии. Происходит взрыв смеси, при котором высвобождается энергия. И за счет увеличения объема происходит выталкивание поршня вниз. Клапаны при этом закрыты. Технические характеристики двигателя во многом зависят от протекания третьего такта работы мотора.

Такт № 4 — выпуск. Окончание цикла работы. Движение поршня вверх обеспечивает выталкивание газов. Таким образом, осуществляется вентиляция цилиндра. Этот такт важен для обеспечения ресурса двигателя.

Двигатель имеет принцип работы, основанный на распределении энергии от взрывов газов, требует внимания к созданию всех узлов.

Работа двигателя внутреннего сгорания циклична. Вся энергия, которая создается в процессе выполнения работы на всех 4 тактах работы поршней, направляется на организацию работы автомобиля.

Варианты конструкций внутреннего двигателя

Характеристика двигателя зависит от особенностей его конструкции. Внутреннее сгорание — основной тип физического процесса, протекающего в системе мотора на современных автомобилях. За период развития машиностроения успешно реализовано несколько типов ДВС.

Устройство бензинового двигателя разделяет систему на 2 типа — инжекторные двигатели и карбюраторные модели. Также в производстве есть несколько типов карбюраторов и систем впрыска. Основа работы — сжигание бензина.

Характеристика бензинового двигателя выглядит предпочтительнее. Хотя для каждого пользователя есть свои личные приоритеты и преимущества от работы каждого двигателя. Бензиновый двигатель внутреннего сгорания является одним из самых распространенных в современном автомобилестроении. Порядок работы мотора прост и не отличается от классической интерпретации.

Дизельные двигатели основаны на применении подготовленного дизельного топлива. Оно попадает в цилиндры через форсунки. Главное преимущество дизельного двигателя заключается в отсутствии необходимости электричества для сжигания топлива. Оно требуется только для запуска двигателя.

Газовый двигатель применяет для работы сжиженные и сжатые газы, а также некоторые другие типы газов.

Узнать какой ресурс у двигателя на вашем авто лучше всего у производителя. Примерную цифру разработчики озвучивают в сопроводительных документах на транспортное средство. Здесь содержится вся актуальная и точная информация о моторе. В паспорте вы узнаете технические параметры мотора, сколько весит двигатель и всю информацию о движущем агрегате.

Срок службы двигателя зависит от качества обслуживания, интенсивности использования. Заложенный разработчиком срок эксплуатации подразумевает внимательное и бережное отношение с машиной.

Что значит двигатель? Это ключевой элемент в автомобиле, который призван обеспечить его движение. Надежность и точность работы всех узлов системы гарантирует качество движения и безопасность эксплуатации машины.

Характеристики двигателей различаются в широких пределах, несмотря на то. Что принцип внутреннего сгорания топлива остается неизменным. Так разработчикам удается удовлетворять потребности покупателей и реализовывать проекты по улучшению работы автомобилей в целом.

Средний ресурс двигателя внутреннего сгорания составляет несколько сотен тысяч километров. При таких нагрузках от всех составных частей системы требуется прочность и точная совместная работа. Поэтому известная и детально изученная концепция внутреннего сгорания постоянно подвергается доработкам и внедрениям новых подходов.

Ресурс двигателей различается в широком диапазоне. Порядок работы, при этом, общий (с небольшими отклонениями от стандарта). Несколько может различаться вес двигателя и отдельные характеристики.

Современный двигатель внутреннего сгорания имеет классическое устройство и досконально изученный принцип работы. Поэтому механикам не составляет труда решить любую проблему в кратчайшие сроки.

Ремонтные работы усложняются в том случае, если поломка не была устранена сразу. В таких ситуациях порядок работы механизмов может, нарушен окончательно и потребуется серьезная работа по восстановлению. Ресурс двигателя после грамотного ремонта не пострадает.

Двигатель внутреннего сгорания — устройство и принцип работы

 

Двигатель внутреннего сгорания представляет собой силовой агрегат, который уже ни один десяток лет используется в разного рода транспортных средствах. В начале XX в. он заменил собой паровые двигатели. Но даже сегодня в XXI в. он остается очень актуальным. Рассмотрим, что такое устройство и принцип работы двигателя внутреннего сгорания.

Определение

Двигатель имеет приставку «внутреннего сгорания» по одной простой причине. Дело в том, что топливо воспламеняется внутри рабочей камеры, а не внешне. Сгорая, топливо выделяет энергию, которая преобразуется в механическую работу для ее передачи остальным «органам» автомобиля.

Существуют разные виды двигателей, но большей популярностью пользуется поршневой. Данная разновидность мотора позволяет хранить топливо компактно, при этом много не затрачивать его при больших пробегах.

Устройство

Устройство ДВС включает в себя разнообразные системы с механизмами. Главными элементами мотора являются кривошипно-шатунный механизм (КШМ), который также состоит из нескольких элементов, блок цилиндров и его головка с ГРМ.

В процессе вращения коленвала КШМ помогает преобразовывать работу поршней. Энергия, сгорающая в цилиндрах, «запускает» поршни. Без функционирования механизма газораспределения невозможна работа этой системы. ГРМ помогает впускным и выпускным клапанам вовремя открываться. Они запускают рабочую смесь и выпускают отработанный газ.

Распределительные валы, из которых в разных количествах состоит ГРМ, обладают кулачками. Они, в свою очередь, толкают клапаны с возвратными пружинами. Если вспомогательная система функционирует правильно, то и все устройство двигателя внутреннего сгорания будет работать также.

Вспомогательная система состоит из других систем, каждая из которых имеет свое назначение. Подробнее о них будет информация дальше.

Внутренние системы

Охлаждение, питание и смазка — этими словами можно объяснять принцип работы двигателя внутреннего сгорания. Без данных составляющих невозможно правильно функционировать мотору.

Первое время внутренние системы являлись механическими. Сегодня каждая из них содержит в себе долю «электроники». Двигатель работает более эффективно, если над ним ведется электронное управление. Системы же становятся «гибкими», за ними не нужен пристальный уход и бесконечное обслуживание.

Охлаждение

Когда в двигателе возникает процесс воспламенения, температура повышается до +2500 градусов (в камере). Соответственно, из-за высокой температуры есть риск перегрева поршней, цилиндров и остальных важных элементов. Это приводит, в конечном счете, к утере мощности, выгоранию масла и неполадкам в «движке». Чтобы ликвидировать излишнее тепло, была создана система охлаждения. Ее принцип работы заключается в том, что она с помощью жидкости (воздуха) отводит тепло принудительно.

Воздушная система в автомобилях не применяется. Ее используют в газонокосилках, либо мопедах. Что касается жидкостной системы, то она построена сложным образом, но при этом максимально эффективно отводит излишки тепла. Теплоносителем выступает «незамерзайка», т.е. антифризная жидкость, имеющая низкую температуру замерзания.

Канал для прохождения «незамерзайки» называется рубашкой охлаждения. Она соединена с радиатором с помощью патрубков. Радиатор принимает на себя тепловую массу и перенаправляет ее. В системе за ним находится вентилятор, помогающий быстрее пройти воздушным массам.

В процессе работы «движка» хладагент перемещается от насоса. Он же приходит в действие от коленчатого вала, либо электродвигателя. Для того, чтобы охлаждающая система могла создавать нужный режим температуры, контур охлаждения оснащают термостатом, соединенным с блоком управления.

Подача топлива

Система подачи топлива также подразделяется на виды: инжекторный и карбюраторный. Первый тип является самым востребованным. Инжекторная система подразделяется еще на несколько систем: подача (очистка) топлива, воздуха, дожигание и выпуск отработанного газа. Также подсистемы функционируют на сжигание и улавливание бензиновых паров.

Топливо из бака помогает «влить» электробензонасос, который включается при запуске ДВС. Горючее поступает к рампе с форсунками, проходя через топливный фильтр. Воздух, который наполняет цилиндры, и его количество регулируется дроссельной заслонкой. Она, в свою очередь, функционирует от электропривода, либо троса.

Шаговый электродвигатель осуществляет регулировку оборотов. Чтобы система работала слаженно, в электронный блок поступает информация с датчиков расхода воздуха, частоты и положения коленчатого вала и др.

Кроме распределенного впрыска есть система впрыска непосредственного. Это дорогостоящие агрегаты со сложным устройством. Сотрудниками фирмы «Митцубиси» удалось создать систему, которая получилась более сбалансированной. С ее помощью повысилась мощность «движка», а также улучшилась топливная экономичность.

Смазка

Смазочная система автомобиля защищает элементы от трения, а также не дает образоваться на деталях коррозии, смывает грязь и охлаждает полностью конструкцию. ДВС обычно оснащены комбинированным типом системы, где масло поставляется под давлением и разбрызгиванием.

Через горловину в поддон картера заливается масло в систему. В процессе функционирования «движка» насос с помощью маслозаборника всасывает смазку, после чего оно перенаправляется в основную магистраль.

Магистраль — это ответвленные каналы. Масло по ним переходит к подшипникам коленчатого вала, поршневой группе и т.д. Смазка льется из зазоров у подшипников, а потом начинается разбрызгивание (каплевидное и туманное). Затем масло поступает в поддон, смазывая привод ГРМ.

Смазочная система с сухим картером применима в отношении спортивных машин или тракторов. Масляная жидкость перекачивается в бак, оттуда подается в систему смазки. Подобная конструкция предотвращает перемещение жидкости во время резких движений.

Помимо всего перечисленного, смазочная система играет роль вентилирования от газов картера. Газы поступают через поршневые кольца, а затем комбинируются с парами воды и тем самым преобразуются в токсичные кислоты. Они провоцируют развитие коррозии. Именно поэтому их легче всего вывести в атмосферу.

ГРМ

ГРМ представляет собой газораспределительный механизм, главной функцией которого является своевременная подача смеси в цилиндры и выпуск из них продуктов горения. Чтобы ГРМ могла слаженно работать, для этого нужно на каждый цилиндр по одному впускному и выпускному клапану. У впускного клапана больше диаметр тарелки. Именно эта особенность улучшает наполняемость цилиндра.

В системе также есть распределительный вал, который запускается цепью или ремнем от коленчатого вала. Также он работает на закрытие и открытие клапанов.

Привод клапанов подразделяется на следующие разновидности:

 1. ОНV — распределительный вал находится в блоке цилиндров, но клапаны управляются с помощью штанги и доп.толкателей.

 2. ОНС — распределительный вал находится в головке, клапаны приводятся в действие рычажными толкателями.

 3. DОНС — два распределительных вала находятся в головке. Первый применяется для впускных, а второй, соответственно, для выпускных клапанов.

Открытие и закрытие клапанов происходит в определенные моменты, которые называются фазами. Отличное наполнение и очистка цилиндров обеспечиваются за счет грамотно подобранных цилиндров.

Выхлопная система

На мощность двигателя внутреннего сгорания сильно влияет выхлопная система. Помимо этого, она оказывает небольшое влияние на расход горючего и объема вредных выбросов. Каталитический нейтрализатор — это то, что помогает снизить содержание токсических веществ в газах. Нейтрализатор имеет окислительный и восстановительный катализаторы, способные углеводороды преобразовывать в водяной пар. Прибор ставят рядом с выпускным коллектором.

Нейтрализатор будет функционировать лучше в случае, когда ДВС начнет работу на воздушно-топливной смеси, соединенной в пропорции 14,7 к 1. Специальный датчик будет следить за уровнем воздуха в газах.

Классификация

Выяснив принцип работы двс, водитель может приступать к изучению классификации устройства. Каждый производитель старается его по-своему усовершенствовать. Кто-то пытается увеличить мощность, другие — уменьшить выход токсичных веществ в атмосферу, третьи — оптимизировать стоимость. Рассмотрим, какие на сегодняшний день существуют ДВС и по каким критериям их подразделяют.

Тип конструкции

Двигатели внутреннего сгорания подразделяются на виды по типу конструкции: роторные, поршневые и газовые турбины.

Как работает двигатель внутреннего сгорания роторного типа? На ротор действует давление газов, при этом мотор не имеет ГРМ. Его роль выполняют выпускные (впускные) окна в стенках корпуса по бокам.

Поршневой тип функционирует от поршня, который приводится в действие от сгорающих газов. Поршень толкает коленчатый вал. Что касается газовых турбин, то в ДВС газы на большой скорости влетают на лопатки турбины. Компрессор, установленный в моторе, в свою очередь, предназначается для нагнетания воздуха.

Тип топлива

ДВС функционирует за счет сжигания смеси воздуха с дизелем, газом либо бензином. Если водитель предпочитает газовое топливо, то в его качестве используется сочетание пропана и бутана, сжиженного газа, метана или водорода.

Рабочий цикл

Двигатель внутреннего сгорания имеет рабочий цикл. Он представляет собой последовательность процессов в цилиндрах, которые превращают топливную энергию в механическую.

Существует 2-х тактный и 4-х тактный цикл, каждый из которых работает по своему принципу. В первом случае впуск и сжатие происходят одновременно, а во втором — по четырем тактам (сжатие, впуск, выпуск, рабочий ход).

Нельзя выделить из этих двух ДВС лучший, поскольку 2-х тактный по рабочему циклу является более компактным, а 4-х тактный считается лучше по экономичности.

Работа ГРМ

ГРМ устанавливается по одной из четырех схем, описанных выше по тексту. Каждая компоновка влияет на работу «движка». Помимо этого, приводы клапанов подразделяются по способу регулировки зазоров. Их настройка проводится ручным методом. Для этого меняют в коромыслах винты, либо устанавливают гидрокомпенсаторы для авторегулировки.

Количество цилиндров

Существует одноцилиндровые моторы, которые функционируют не столь равномерно, но это не сильно сказывается на их работе в мопедах и мотоциклах. «Движок» для авто устроен по-другому, здесь требуется более высокая мощность и большой объем цилиндров. В легковые машины по большей части ставят моторы с 4-мя цилиндрами, а в грузовики: 6-ти или 8-ми цилиндровые двигатели. В элитные автомобили марки Ауди могут быть установлены 12-ти цилиндровые «движки».

Расположение цилиндров

Поршневые двигатели подразделяются по схемам блока цилиндров. Они могут быть представлены в виде разного рода конструкций. Их около 5 разновидностей. В зависимости от компоновки под капот мотор ставят под разными углами.

Создание рабочей смеси

Способ смесеобразования — еще один критерий, по которому классифицируются ДВС. Существует внешнее и внутреннее смесеобразование. Первый тип присутствует в карбюраторных моторах, а также в агрегатах с впрыском во впускной коллектор. Второй тип находится в дизельных «движках», а также в бензиновых, имеющих впрыск в камеру сгорания.

Принцип работы ДВС

Поняв, как работает двс, водителям стоит рассмотреть подробнее его принцип работы. Разберем работу двухтактного и четырехтактного двигателя.

Двигатель 2-х тактный

Газораспределительный механизм вместе с КШМ для двухтактного двигателя довольно сильно отличается от четырехтактного. В некоторых участках на цилиндрах вместо клапанов находятся небольшие отверстия, которые именуются как продувочные окна. В цилиндровой головке присутствуют свечи зажигания.

При наступлении первого такта поршень направляется от НМТ в ВМТ. Заполняя собой цилиндр, смесь поступает через впускное окошко. Выпускное окно, в свою очередь, остается открытым для выпуска остатков газов. Двигаясь, поршень создает окнам перекрытие, при этом смесь в этот момент сжимается. Около ВМТ возникает искра зажигания, запуская собой второй такт.

Под влиянием газового давления поршень смещается вниз. Начинается открытие впускного и выпускного окна. Через выпускное уходят отработанные газы, а через впускное поступает смесь.

Таким образом становится ясно, что 2-х тактный «движок» обладает высоким КПД. Рабочий цикл поршня совершает всего 2 хода, при этом коленвал делает единственный полный оборот. К недостаткам системы можно причислить тот момент, что часть ТПС растворяется с газами, что создает низкую топливную экономичность. При этом поршневые кольца довольно быстро подвергаются износу.

Двигатель 4-х тактный

Что касается четырехтактного устройства двс, то здесь работа строится немного по другому принципу. Поршень перемещается внутри цилиндра. Через шатун он соединен в коленвалом. Поднимаясь вверх, поршень остается в таком положении, которое называется верхней «мертвой точкой». Соответственно, после перемещения вниз он становится в положение нижней «мертвой точки» НМТ. Данный ход зовется «тактом». Таким образом, весь рабочий цикл состоит из 4-х тактов, последовательных друг за другом. Изучим каждый такт по отдельности.

 1. Впуск. При включении первого такта открывается впускной клапан. После этого поршень переход от ВМТ, а в цилиндр поступает смесь.

 2. Пройдя НМТ, поршень идет вверх, параллельно сжимая остаточные газы со смесью. Клапаны остаются закрытыми, при этом давление и температура газов возрастает. Свеча зажигания создает искру, помогающую воспламенить смесь.

 3. Смесь возгорается и в процессе горения толкает поршень вниз прямо от ВМТ, при этом клапаны по-прежнему остаются закрытыми.

 4. Выпускной клапан открывается только на выпуске, поршень движется наверх, одновременно толкая газы из цилиндра.

Что касается многоцилиндровых блоков, то в них одинаковые такты осуществляются в разном порядке. Если двигатель имеет 4-цилиндровый блок, то очередность его функционирования бывает в порядке 1-3-2-4. Иными словами, это означает, что впуск произойдет в первую очередь в 1, затем в 3, а потом 2 и 4 цилиндрах.

Плюсы и минусы

ДВС, как и любой тип двигателя, имеет свои преимущества и недостатки.

К плюсам относятся следующие особенности:

 1. Небольшой вес. Обычно такие устройства занимают мало места и имеют низкий вес.

 2. Высокая мощность. На сегодняшний день почти все ДВС обладают высоким значением лошадиных сил. Чем «сильнее» «движок», тем дороже он стоит и больше потребляет топлива.

 3. Есть возможность преодолеть большие расстояния. Эта проблема особо актуальна для тех, кто ездит в другие города ежедневно.

 4. Быстрая заправка. Сегодня заправки расположены повсеместно, поэтому автолюбителям не придется бояться за пустой бак. Заправка длится не более 10 минут.

 5. Простота эксплуатации. Большинство моторов, независимо от их типа, имеют схожую систему. Поэтому разобраться в работе двигателя сможет каждый водитель.

 6. Доступность. Сегодня автомобилем с ДВС никого не удивишь, они эксплуатируются повсеместно. На вторичном рынке их стоимость еще дешевле, так что каждый человек может позволить себе купить такое авто.

 7. Большой ресурс работы. Моторы, выпускаемые сегодня, способны функционировать ни один год подряд, а десятки лет. Возможно, кто-то скажет, что их надежность все же снижается, но это не исключает тот факт, что качество по-прежнему остается «на уровне».

Перечислив все преимущества ДВС, перейдем к недостаткам, которые, к сожалению, также встречаются у данного типа двигателя.

Минусы у ДВС следующие:

 1. Высокая степень выбросов в атмосферу во время езды автомобиля. Дело в том, что топливо не до конца сгорает, и в этом заключается главная проблема. Чтобы авто двигалось, требуется всего лишь 15% горючего, а все остальное уходит в воздух. Отработанный газ содержит множество вредных и токсичных веществ, а также тяжелых металлов.

 2. Требуется коробка переключения передач. Устройство обязательно, так как нужно, чтобы менялось передаточное число. Оно регулирует обороты двигателя, который перенаправляет энергию на колеса, а они вращаются либо быстро, либо медленно.

 3. Регулярная замена масла. Менять масло нужно каждые 10 000 км. Это нужно обязательно делать, так как жидкость загрязняется, а мелкие частицы грязи попадают в «движок».

 4. Высокая цена на топливо. Бензин и солярка с каждым годом возрастают в цене, соответственно, совсем скоро передвижение на авто с ДВС станет роскошью. Чтобы сэкономить на топливе, можно установить газовое оборудование, так как цена газа вдвое ниже остального горючего.

 5. Низкий КПД. Этот параметр наглядно показывает эффективность работы двигателя относительно вырабатываемой энергии. Показатель выражается в процентах. К примеру, электродвигатели имеют КПД около 95%, но в ДВС такие значения невозможны.

 6. Ограниченный ресурс дешевых моторов. Изготовители, выпускающие двигатели по низкой стоимости, используют некачественные детали. Они быстро изнашиваются и «выходят из строя». Но если водитель будет использовать смазку, а также вовремя менять расходные материалы, то «движок» прослужит дольше.

Таким образом, мы выяснили, что ДВС имеет как много преимуществ, так и много недостатков. Несмотря на это, он является одним из самых эффективных устройств на сегодняшний день.

Заключение

Двигатели, производимые сегодня, являются самыми лучшими, поскольку выгодно отличаются от своих предшественников. Сейчас у них нет конкурентов, и в ближайшее время не намечается. Возможно, в течение будущих 10 лет, будет придумано что-то более новое. Многим хотелось бы, чтобы ДВС эксплуатировались вечно, но их существование завершиться, как только в мире закончится нефть и придет эпоха электрических двигателей. Сейчас тенденция к этому уже давно идет вперед.

Устройство и принцип работы двигателя внутреннего сгорания

Устройство и принцип работы
двигателя внутреннего сгорания
УСТРОЙСТВО ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ
Двигатель состоит из цилиндра, в
котором перемещается поршень 3,
соединенный при помощи шатуна 4 с
коленчатым валом 5. В верхней части
цилиндра имеется два клапана 1 и 2,
которые при работе двигателя
автоматически открываются и
закрываются в нужные моменты.
Через клапан 1 в цилиндр поступает
горючая смесь, которая
воспламеняется с помощью свечи 6, а
через клапан 2 выпускаются
отработавшие газы. В цилиндре такого
двигателя периодически происходит
сгорание горючей смеси, состоящей из
паров бензина и воздуха. Температура
газообразных продуктов сгорания
достигает 1600—1800 градусов
Цельсия.
РАБОТА ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ
I ТАКТ
Один ход поршня, или один такт
двигателя, совершается за пол-оборота
коленчатого вала. При повороте вала
двигателя в начале первого такта поршень
движется вниз . Объем над поршнем
увеличивается. Вследствие этого в
цилиндре создается разрежение.
В это время открывается клапан 1 и в
цилиндр входит горючая смесь.
К концу первого такта цилиндр
заполняется горючей смесью, а клапан 1
закрывается.
РАБОТА ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ
II ТАКТ
При дальнейшем повороте вала
поршень движется вверх (второй такт) и
сжимает горючую смесь. В конце второго такта,
когда поршень дойдет до крайнего
верхнего положения, сжатая горючая смесь
воспламеняется (от электрической искры)
и быстро сгорает.
РАБОТА ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ
III ТАКТ
Под действием расширяющихся
нагретых газов (третий такт) двигатель
совершает работу, поэтому этот такт
называют рабочим ходом. Движение поршня
передается шатуну, а через него коленчатому
валу с маховиком. Получив сильный толчок,
маховик затем продолжает вращаться
по инерции и перемещает скрепленный
с ним поршень при последующих тактах.
Второй и третий такты происходят при
закрытых клапанах.
РАБОТА ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ
IV ТАКТ
В конце третьего такта открывается
клапан 2, и через него продукты
сгорания выходят из цилиндра в атмосферу.
Выпуск продуктов сгорания продолжается
и в течение четвертого такта, когда поршень
движется вверх. В конце четвертого
такта клапан 2 закрывается.
Итак, цикл работы двигателя состоит
из следующих четырех процессов
(тактов):
•впуска,
•сжатия,
•рабочего хода,
•выпуска.
Щелкните на картинке

9. Карбюраторные двигатели

900igr.net

10. История создания карбюраторного двигателя


В 1885 году немецкие инженеры Готлиб Даймлер (1834-1900)
и Вильгельм Майбах (1846-1929) изобрели легкий,
быстроходный двигатель внутреннего сгорания (ДВС),
использовавший качестве топлива бензин. Они установили
его на деревянный велосипед и создали первый в мире
мотоцикл.
В 1889 году Даймлер и Майбах построили первый
четырехколесный автомобиль. На этом автомобиле впервые
был установлен двигатель, оснащенный четырехступенчатой
коробкой передач и карбюратором. Карбюратор был
разработан Даймлером, в нем топливо распыляется,
смешивается с воздухом и подается в цилиндр.
Это обстоятельство значительно повышало эффективность
работы данного двигателя, впоследствии названного
карбюраторным.

11. Применение карбюраторных двигателей

• Карбюраторные двигатели находят широкое применение в
современной жизни. Их используют в основном на
транспортных средствах (из-за высокой стоимости топлива
которые данные виды двигателей используют), к таким
транспортным средствам относятся:
• Мотоциклы, Автомобили, а также Катера; Моторные лодки и т.
п.
• Мне бы хотелось сосредоточить ваше внимание на
использование карбюраторных двигателей в современном
автомобильной промышленности.
• Автомобильный транспорт создан в результате развития
новой отрасли народного хозяйства — автомобильной
промышленности, которая на современном этапе является
одним из основных звеньев отечественного машиностроения.
• В конце XIX века в ряде стран возникла автомобильная
промышленность. В царской России неоднократно делались
попытки организовать собственное машиностроение. В 1908
г. производство автомобилей было организовано на РусскоБалтийском вагоностроительном заводе в Риге. В течение
шести лет здесь выпускались автомобили, собранные в
основном из импортных частей.

После Великой Октябрьской социалистической революции
практически заново пришлось создавать отечественную
автомобильную промышленность.
Начало развития российского автомобилестроения относится к 1924
году, когда в Москве на заводе АМО были построены первые грузовые
автомобили АМО-Ф-15.
В период 1931-1941 гг. создается крупносерийное и массовое
производство автомобилей. В 1931 г. на заводе АМО началось
массовое производство грузовых автомобилей. В 1932 г. вошел в
строй завод ГАЗ.
В 1940 г. начал производство малолитражных автомобилей
Московский завод малолитражных автомобилей. Несколько позже был
создан Уральский
автомобильный завод. За годы послевоенных пятилеток вступили в
строй:
Кутаисский, Кременчугский, Ульяновский, Минский автомобильные
заводы.
Начиная с конца 60-х гг., развитие автомобилестроения
характеризуется особо быстрыми темпами. В 1971 г. вступил в
строй Волжский автомобильный завод им. 50-летия СССР.
Спасибо за внимание!

Устройство двигателей внутреннего сгорания

Изучение устройства двигателей внутреннего сгорания.

Разновидности двигателей внутреннего сгорания в двигателях, применяемых для привода современных строительных машин, тепловая энергия сгоревшего топлива преобразуется в механическую работу. Так как топливо сгорает внутри цилиндров двигателей, то они называются двигателями внутреннего сгорания.

Современные двигатели внутреннего сгорания с возвратно-поступательно движущимися поршнями классифицируются по следующим признакам:

1. способу смесеобразования — на двигатели с внешним смесеобразованием /карбюраторные и газовые/ и внутренним /дизельные/;

2. способу воспламенения рабочей смеси на двигатели с принудительным воспламенением от электрической искры /карбюраторные и газовые/ и с воспламенением от сжатия /дизели/;

3. способу осуществления рабочего цикла — на четырех — и двухтактные;

4. числу цилиндров — на одно — и многоцилиндровые;

5. расположению цилиндров — на одноцилиндровые /линейные/ и двухрядные или V — образные, у которых угол между цилиндрами мень­ше 180°. Если угол равен 180°, двигатель называется оппозитным;

6. охлаждению — на двигатели с водяным и воздушным охлаждением.

На строительных машинах применяются четырехтактные многоцилиндровые карбюраторные и дизельные двигатели.

Во время работы четырехтактного двигателя внутреннего сгорания в его цилиндре протекают четыре процесса: 1/ впуск в цилиндр горючей смеси /в карбюраторный двигатель/ или воздуха /в дизельный двигатель/t 2/ сжатие рабочей смеси или воздуха; 3/ рабочий ход — воспламенение рабочей смеси и расширение продуктов сгорания; 4/ выпуск из цилиндра продуктов сгорания.

Совокупность этих последовательных, периодически повторяющихся процессов называется рабочим циклом двигателя.

Принципиальное отличие рабочего цикла дизеля от карбюраторного двигателя состоит в способе смесеобразования и воспламенения смеси. В цилиндр дизеля в такте впуска поступает воздух, который подвергается сжатию в такте сжатия до 3,5…4,5 МПа, что повышает температуру воздуха до 600.„.700 °С. В конце такта сжатия впрыскивается жидкое топливо, которое, перемешиваясь с нагретым воздухом, воспламеняется и сгорает.

В карбюраторном же двигателе рабочая смесь в конце такта сжатия сжимается до 0,7…1,2 МПа, а температура повышается до 300…400 °С, при этом между электродами свечи проскакивает электрическая искра и рабочая смесь воспламеняется.

Дизельный двигатель по сравнению с карбюраторным имеет следующие преимущества: более высокий КПД — 27-35% /для карбюраторных двигателей 20-24%/; высокую степень сжатия, обеспечивающую более экономичный расход топлива на единицу работы /на 20-25% меньше, чем у карбюраторного двигателя/; обладает лучшей приемистостью и развивает большой крутящий момент при малой частоте вращения; работает на тяжелых сортах топлива, которые менее опасны в пожарном отношении.

Основные недостатки дизельного двигателя по сравнению с карбюраторным: большая масса, приходящаяся на единицу мощности; тихоходность /максимальная частота вращения коленчатого вала не превышает 3000 об/мин, у карбюраторных — до 6000 об/мин/; более трудный пуск при низких температурах окружающей среда, что вызывает необходимость установки дополнительных систем подогрева и пуска двигателя.

Кривошипно-ползунный механизм

Кривошипно-ползунный механизм служит для восприятия силы давления газов, преобразования прямолинейного возвратно-поступательного движения поршней во вращательное движение коленчатого вала.

Рис. Схема кривошипно-ползунного и распределительного механизмов: 1 — коленчатый вал; 2 — шатун; 3 — поршень; 4 — поршневой палец; 5 — поршневые кольца; 6, 9 — клапаны /впускной и выпускной/; 7 — пружина; 8 — коромысло; 10 — гильза; 11 — водяная рубашка; 12 — штанга; 13 — распределительный вал; 14 — маховик; 15 — шестерни привода распределительного вала

Механизм газораспределения

Механизм газораспределения должен удовлетворять следующим ос­новным требованиям: своевременно открывать и закрывать впускные и выпускные клапаны; обеспечивать возможно лучшее наполнение цилиндров горючей смесью и очистку от отработавших газов; надежно изолировать внутреннее пространство цилиндров от окружающей среды во время тактов сжатия и рабочего хода.

Для лучшего наполнения цилиндров двигателя воздухом /для дизелей/ или горючей смесью /для карбюраторных двигателей/ и более полной очистки их от отработавших газов клапаны открываются и закрываются не в тот момент, когда поршень находится в мертвых точках, а с некоторым опережением при открытии и запаздыванием — при закрытии.

Периоды открытия и закрытия клапанов выраженные в углах пово­рота коленчатого вала, называются фазами газораспределения.

Их соблюдение обеспечивается формой и взаиморасположением кулачков на распределительном валу.

Система охлаждения.

При работе двигателя температура газов в камере сгорания достигает 2000…2400 °С, а средняя температура цикла 800…1000 С. Вследствие этого поршни, головки цилиндров, цилиндры и клапаны сильно нагреваются. Чрезмерный перегрев двигателя приводит к разжижению и сгоранию масла, нарушению нормальных зазоров между сопряженными деталями, уменьшению наполнения цилиндров горючей смесью, а следовательно, к снижению мощности двигателя, нарушению рабочего процесса и разрушению отдельных деталей.

Для нормальной работы двигателя необходимо непрерывно отводить излишнюю теплоту от перегреваемых деталей. Это осуществляется системой охлаждения. Излишнее охлаждение неблагоприятно отражается на работе двигателя. Испарение топлива ухудшается, поэтому оно горит медленнее, мощность двигателя падает, снижается экономичность, а износ цилиндров и поршневых колец увеличивается.

Для нормальной работы двигателя необходимо поддерживать его температуру при любых условиях и режимах работы в определенных пределах.

Чтобы обеспечить нормальный тепловой режим двигателя, применяют жидкостное или воздушное охлаждение. При воздушном охлаждении теплота отдается непосредственно воздуху через ребристые стенки блока цилиндров и головки блока. Жидкостная система охлаждения основана на интенсивной Циркуляции жидкости, которая обеспечивается центробежным насосом. Насос нагнетает жидкость /воду или антифриз-жидкость, замерзающую при низкой температуре/ в водяную рубашку двигателя, из которой нагретая жидкость вытесняется в радиатор. Охлажденная жидкость по патрубкам поступает в насос.

Рис. Схема системы охлаждения: 1 — радиатор; 2 — выпускной патрубок; 3 — термостат; 4 — гильза цилиндра; 5 — головка цилиндров; б — блок цилиндров; 7 — водяная рубашка; 8 — крыльчатка водяного насоса; 9 – вентилятор.

Система смазки

При работе двигателя в его сопряженных деталях возникает трение, вызывающее износ и нагрев деталей и требующее затрат некоторой части мощности двигателя. При введении между трущимися поверхностями слоя смазки характер трения и износа резко изменяется, так как молекулы масла под влиянием силы молекулярного притяжения распространяются по трущимся поверхностям и смазывают их.

Долговечность и безотказная работа двигателя зависят от качества и чистоты применяемого масла.

Система смазки двигателя — это совокупность механизмов и приборов, обеспечивающих очистку масла и его бесперебойную подачу в необходимом количестве при определенной температуре и давлении к трущимся поверхностям.

Рис. Схема системы смазки: 1 — масляный картер; 2 — маслоприемник; 3 — шестеренчатый насос; 4 — маслопровод; 5 — фильтр; 6 — главный масляный канал.

Примечание. Все остальные детали смазываются маслом, вытекающим из зазоров, или посредством разбрызгивания.

Масло, поступающее в зазоры между трущимися поверхностями, не только уменьшает потери на трение, но и охлаждает и удаляет продукты износа и мелкие частицы нагара и защищает трущиеся поверхности от коррозии.

В зависимости от способа подвода масла к трущимся поверхностям деталей применяются такие системы смазки: разбрызгиванием, под давлением и комбинированные, в которых часть деталей смазывается под давлением, а остальные — за счет разбрызгивания масла.

Система питания.

Источником энергии в двигателях внутреннего сгорания является горючая смесь, образуемая парами топлива, тщательно перемешанными с воздухом в определенных пропорциях. Смешиваясь с остаточными газами в цилиндре двигателя, горючая смесь образует рабочую.

Состав горючей смеси должен соответствовать определенному режиму работы двигателя и подразделяется на богатую, обогащенную, нормальную, обедненную и бедную.

В качестве топлива для карбюраторных двигателей применяют бензин, обладающий хорошей испаряемостью, а для дизельных двигателей с внутренним смесеобразованием — дизельное топливо, являющееся продуктом перегонки тяжелых фракций нефти с определенной вязкостью.

Система питания служит для хранения, подачи и очистки топлива, воздуха, приготовления горючей смеси нужного состава на разных режимах работы двигателя, отвода наружу продуктов сгорания .

Система пуска двигателей.

Одним из основных требований, предъявляемых к двигателям внутреннего сгорания, является быстрота и надежность пуска. Пуск осуществляется принудительным вращением коленчатого вала двигателя от постороннего источника энергии.

Система пуска должна развивать определенную частоту вращения коленчатого вала двигателя, обеспечивающую смесеобразование, наполнение цилиндров свежей смесью, сжатие и воспламенение смеси.

Пусковая частота вращения карбюраторных двигателей колеблется в пределах 30…60 об/мин.

Пуск дизельного двигателя по сравнению с карбюраторным более труден. Это связано с большой степенью сжатия и плохим смесеобразованием из-за малого давления впрыска топлива. Поэтому пусковая частота вращения коленчатого вала двигателя с воспламенением от сжатия должна быть в пределах 200…300 об/мин.

Рис. Схема системы питания; 1 — гильза цилиндра; 2 — поршень; 3 — топливный фильтр; 4 — топливопровод; Б — диафрагмовый насос; 6 — топливный бак; 7 — воздушный фильтр; 8 – карбюратор; 9, 10 — клапаны /впускной и выпускной/; 11 — патрубок /выхлопной/; 12 – глушитель.

При пуске холодного двигателя, особенно в зимнее время, прокручивание вала двигателя и его пуск резко затрудняются из-за низкой температуры воздуха в камере сгорания в конце сжатия и эагустевания смазки. Для обеспечения пуска дизелей необходимо подогреть воздух во впускном трубопроводе и в камере сгорания, охлаждающую жидкость в системе охлаждения; применить декомпрессионный механизм.

Существуют следующие основные способы пуска двигателей:

1. от руки /вручную/ — применяется чаще у карбюраторных пусковых двигателей;

2. электрическим стартером — используется в автомобильных и пуско­вых тракторных двигателях. Для пуска дизельного двигателя требуется стартер значительно большей мощности, чем для карбюраторного;

3. вспомогательным бензиновым двигателем /пусковым двигателем/ — распространен на дизелях тракторов;

4. силовым генератором электротрансмиссии. Силовой генератор, приводящий электрические ходовые двигатели трактора с электротрансмиссией, на время пуска двигателя работает в режиме стартера и питается током от аккумуляторных батарей;

5. сжатым воздухом от баллона с давлением 15,0 МПа. Наименьшее давление воздуха в баллоне, обеспечивающее запуск дизеля,- 4,0 МПа.

В аварийных случаях можно запустить двигатель буксировкой на включенной передаче трансмиссии. У машин с электротрансмиссией тяговый электродвигатель при этом работает в режиме генератора, а силовой генератор — в режиме электродвигателя, вращая коленчатый вал дизеля.

Список литературы

1. Брянский Ю. А. и др. Тягачи строительных и дорожных машин. — М.: Высш. шк., 1976. — 360 с.

2. Гуревич A. M., Сорокин E. М. Тракторы и автомобили. — П.: Колос, 1971.

3. Делиховский С. Ф. и др. Устройство и эксплуатация автомобилей.- М.: Изд-во ДОСААФ, 1965. — 214 с.

Устройство двигателя внутреннего сгорания, его виды и принцип работы

Самым экономичным видом мотора, который сумели придумать инженеры до сегодняшнего дня, является двигатель внутреннего сгорания.

Самым экономичным видом мотора, который сумели придумать инженеры до сегодняшнего дня, является двигатель внутреннего сгорания. Его используют для оснащения разных видов транспорта (грузового, легкового), а также мотоциклов. Принцип работы двигателя основан на возгорании горючей смеси не во внешних носителях, а в отсеке рабочей камеры. В результате горения происходит выделение тепловой энергии, стимулирующей работу комплектующих мотора.

Много интересной информации и исторических фактов о возникновении ДВС можно узнать на сайте AvtoTachki.

Какими бывают двигатели внутреннего сгорания

Классифицируют эти устройства с учетом специфики работы и конструкционных особенностей. Они могут функционировать с использованием разного вида топлива: бензина, газа, дизеля. Принцип охлаждения бывает воздушным и жидкостным. Расположение цилиндров также имеет важное значение. Согласно этому параметру, ДВС может быть рядным или V-образным.

Если рассматривать варианты приготовления топлива, то различают двигатели газового, карбюраторного, дизельного или инжекторного типа. Процесс зажигания топливной смеси может быть принудительным или происходить самостоятельно (обычно так работают дизельные агрегаты).

Для различия ДВС учитывается и специфика их конструкции, согласно которой они бывают: поршневыми, карбюраторными, инжекторными, дизельными, роторно-поршневыми, газотурбинными. На странице avtotachki.com/ustrojstvo-dvigatelya-vnutrennego-sgoraniya/ устройство двигателя внутреннего сгорания каждого типа описано подробно.

Из чего состоит агрегат: элементы конструкции

ДВС оснащен:

  • блоком цилиндров;
  • газораспределяющим механизмом;
  • кривошипно-шатунным механизмом;
  • системой, подающей и воспламеняющей горючую смесь (а также удаляющей выхлопные газы).

Важным условием корректной работы мотора является подача топливной смеси равномерными порциями в определенные моменты. Чтобы агрегат расходовал меньше энергии на отвод тепла, а его движущиеся компоненты меньше изнашивались, их смазывают маслом.

Принцип работы

Работу двигателя обеспечивает воспламенившееся топливо (этот процесс происходит в цилиндрах). В результате появляется энергия. Бензиново-воздушная смесь поступает по бензиновому клапану. Ее воспламеняет искра, образуемая свечей зажигания. Когда происходит мини-взрыв, в рабочей камере наблюдается расширение газов. В результате нагнетания давления происходит движение поршня, зафиксированного на КШМ. Его перемещения вверх и вниз называют тактами, которые происходят циклично. Подробнее о работе ДВС читайте на сайте «АвтоТачки».

Поршневой двигатель внутреннего сгорания — обзор

9.3.2 Компоненты двигателя

Поршневой двигатель внутреннего сгорания, используемый в подавляющем большинстве легковых автомобилей, значительно изменился за последнее столетие. Он содержит множество скользящих и роликовых контактов, все из которых рассеивают энергию и вызывают износ. Конструктору двигателя необходимо понимание трибологии, чтобы снизить эти эффекты до приемлемого уровня.

На рис. 9.16 показана конструкция типичного четырехцилиндрового бензинового (бензинового) двигателя с непосредственным впрыском; базовая конструкция дизельного двигателя очень похожа.В стандартном четырехтактном цикле движение поршня вниз при такте всасывания втягивает воздух в цилиндр; в такте сжатия вверх воздух сжимается и смешивается с топливом, впрыскиваемым под высоким давлением; химическая реакция этой топливно-воздушной смеси, инициированная искрой в бензиновом двигателе или нагревом, вызванным сжатием в дизельном (воспламенение от сжатия), сопровождается расширением образующихся горячих продуктов сгорания, которое толкает поршень вниз в рабочий ход ; и в последующем вверх такте выпуска продукты сгорания выбрасываются из цилиндра.Шатун связывает поршень с коленчатым валом, так что, когда поршень совершает возвратно-поступательное движение в цилиндре, он заставляет коленчатый вал вращаться. Клапаны, скользящие по направляющим в головке блока цилиндров, контролируют впуск воздуха и выпуск выхлопных газов в нужных точках цикла; в этом примере есть два впускных клапана и два выпускных клапана на цилиндр. Клапаны открываются и закрываются за счет действия кулачков на одном или нескольких непрерывно вращающихся распределительных валах , которые воздействуют либо непосредственно на клапаны, либо опосредованно через кулачковые толкатели и коромысла, известные под общим названием распределительный вал .Другие (но далеко не все) компоненты двигателя и его вспомогательного оборудования, через которые рассеивается энергия трения, включают роликовую цепь или зубчатый ремень, который приводит в действие распределительные валы, масляные, охлаждающие и топливные насосы, уплотнения, электрический генератор, насос гидроусилителя рулевого управления, компрессор кондиционера и соответствующие приводные ремни. Внутренние компоненты двигателя смазываются маслом, которое хранится в поддоне в нижней части двигателя и циркулирует в различных областях с помощью насоса. Как обсуждалось в разделе 4.3, автомобильная смазка с полным составом, используемая в двигателе, состоит из базового масла и нескольких присадок с различными функциями, обеспечивающих эффективное смазывание во всех трибологических контактах.

Рис. 9.16. Изображение в разрезе современного 4-цилиндрового бензинового (бензинового) двигателя с непосредственным впрыском топлива

(любезно предоставлено Daimler-Benz AG)

Преобладающий источник рассеяния энергии трения в двигателе (примерно половина всей энергии) связан с поршневым цилиндром контакт. Из оставшейся мощности, рассеиваемой за счет трения, примерно одна треть может быть отнесена на клапанный механизм, а две трети — на подшипники коленчатого вала.Как показано на рис. 9.17, зазор между поршнем и цилиндром уплотняется набором из (обычно) трех колец, установленных в канавках поршня, которые прижимаются к отверстию цилиндра. Чтобы снизить расход смазки, вызванный прохождением масла из картера двигателя (под поршнем) вверх мимо поршня в камеру сгорания, необходимо хорошее уплотнение, но тесный контакт имеет нежелательный эффект увеличения потерь на трение. Кольцо и геометрия канавки спроектированы таким образом, что высокое давление в камере сгорания создает дополнительную радиальную силу на два верхних кольца (известных как компрессионные кольца), увеличивая их контактное давление.Осевая нагрузка на шатун приводит к боковой нагрузке поршень-цилиндр, поскольку (почти для всего цикла) ось шатуна не параллельна оси цилиндра. Осевые нагрузки меняются в зависимости от развиваемой мощности и частоты вращения двигателя, а также от положения в такте, при этом наибольшие силы возникают в ходе такта сгорания. Угол между осями шатуна и цилиндра также изменяется в зависимости от положения в ходе хода, причем наибольший угол приходится на середину хода; однако в середине хода поршня поршень также движется быстро, и смазка контакта кольца с цилиндром может быть гидродинамической.В крайних точках хода, когда движение меняется на противоположное (так называемая верхняя мертвая точка и нижняя мертвая точка), скорость скольжения падает до нуля, и контакт подвергается смешанной смазке. Тогда толщина пленки может быть <0,2 мкм, что дает соотношение толщины пленки λ (см. Раздел 4.5) <1. Дополнительный скользящий контакт при гораздо более низком контактном давлении возникает между юбкой поршня и стенкой цилиндра, и здесь смазка гидродинамическая; есть также некоторый эффект сжатия пленки.

Рис. 9.17. Поршень в сборе и поршневое кольцо — контакты цилиндра

по Tung, S.C., McMillan, M.L., 2004. Обзор автомобильной трибологии текущих достижений и задач на будущее. Трибол. Int. 37, 517–536

Эффективная смазка, хорошее уплотнение и низкие потери на трение — все это желательно в контакте поршневое кольцо-цилиндр; Тщательное внимание к геометрии колец и канавок, материалам всех компонентов и топографии поверхности отверстия (которая часто имеет диагональный рисунок канавок, образованный процессом хонингования на плато ) — все это может сыграть роль в повышении эффективности двигателя. и уменьшение износа.Типичные материалы для поршневых колец — серый чугун или чугун с шаровидным графитом для твердых колец, а также сталь для верхних компрессионных колец и маслосъемных колец. В некоторых случаях на них наносят покрытие, например гальваническое покрытие хромом или молибден, нанесенный пламенным напылением, для уменьшения износа. Гильзы цилиндров обычно изготавливаются из серого чугуна или алюминиевого сплава, в то время как сплав алюминия и кремния является наиболее распространенным материалом поршней.

В таблице 9.1 перечислены типичные трибологические параметры для бензинового двигателя, а на рис. 9.18 показана модифицированная кривая Стрибека, построенная в терминах отношения толщины пленки λ , которая указывает диапазон рабочих условий для различных компонентов двигателя.

Таблица 9.1. Типичные трибологические параметры для бензинового двигателя

Подшипник коленчатого вала Поршневое кольцо / гильза (верхнее компрессионное кольцо) Кулачок / толкатель
Минимальная толщина масляной пленки & lt; 1 мкм & lt; 0,2 мкм 0,1 мкм
Максимальная температура 180 ° C Канавка 200 ° C, гильза 120 ° C 150 ° C
Минимальная вязкость масла 2.5 мПа с 6,5 мПа с EHL
Максимальная скорость сдвига 10 8 с — 1 10 7 с — 1 10 7 с — 1
Шероховатость поверхности композита ( Ra ) 0,35 мкм 0,2 мкм 0,3 мкм
Максимальное давление 60 МПа 70 МПа 600 МПа
Потери мощности ( типовая) 0.08 кВт на подшипник 0,15 кВт на кольцо 0,04 кВт на кулачок

данные из Priest, M., Taylor, C.M., 2000. Трибология автомобильного двигателя — приближение к поверхности. Износ 241, 193–203

Рис. 9.18. Модифицированная диаграмма Стрибека, построенная в терминах отношения толщины пленки λ , показывающая типичные диапазоны режима смазки для различных компонентов двигателя

по Присту М., Тейлору К.М., 2000. Трибология автомобильного двигателя — приближение к поверхности.Износ 241, 193–203

Коленчатый вал поддерживается несколькими коренными подшипниками , а шатуны вращаются вокруг смещенных шатунов на подшипниках шатуна . Коленчатый вал обычно изготавливается из кованой стали или, для менее нагруженных двигателей, из чугуна с шаровидным графитом; Опорные поверхности стальных коленчатых валов обычно закалены или азотированы индукционным способом (см. раздел 7.3.2). Подшипники коленчатого вала являются примерами подшипников скольжения и представляют собой наиболее важный пример приложения с высокими напряжениями, обсуждаемого в разделе 9.2.2 выше. Хотя подшипники коленчатого вала подвергаются непрерывному вращательному движению, нагрузки на них не являются постоянными, а меняются в зависимости от положения кривошипа во время цикла двигателя и различных сил на шатунах, которые зависят от мощности, вырабатываемой двигателем, и его скорости. Поэтому анализ толщины смазочной пленки и местного давления внутри подшипников является сложным. Как показано на рис. 9.18, режим смазки является преимущественно гидродинамическим, хотя может быть достигнута толщина пленки всего 1 мкм или даже меньше, что переводит контакт в смешанный режим, по крайней мере, на часть цикла.

Малый конец шатуна гибко соединен с поршнем через полый цилиндрический поршневой палец (поршневой палец US , поршневой палец ), изготовленный из закаленной стали. Штифт может быть закреплен на шатуне и вращаться в колебательном движении в двух подшипниковых втулках внутри поршня, или, альтернативно, может быть закреплен в поршне и вращаться во втулке в шатуне, или в некоторых конструкциях может вращаться в обоих компонентах. Эти опорные подшипники с относительно низкими скоростями скольжения, высокими нагрузками и колебательным, а не постоянным вращением работают в условиях граничной или смешанной смазки.

Распределительный вал вращается в подшипниках скольжения с гидродинамической смазкой. Наиболее жесткие условия в клапанной системе возникают в областях контакта между кулачками и их толкателями, где высокая нагрузка и сосредоточенная геометрия контакта приводят к очень высоким контактным давлениям и к эластогидродинамической смазке (EHL), как обсуждалось в разделе 4.5. Как отмечалось для контактов поршень-цилиндр, трибологические условия наиболее жесткие при изменении точки контакта между кулачком и толкателем, когда скорость увлечения смазки падает до нуля.Для кулачков и сопряженных с ними компонентов требуются материалы с высоким пределом текучести, и обычно используются закаленные стали. Низкое трение и износ в контакте кулачок-толкатель зависят от присутствия в смазке модификаторов трения и противоизносных присадок (см. Раздел 4.6) и поверхностных покрытий, таких как алмазоподобный углерод (DLC — см. Раздел 7.4.3). также иногда используется для уменьшения трения в условиях плохой смазки.

Детали двигателя внутреннего сгорания

Читать и знать, как работает двигатель внутреннего сгорания — это нормально, но незнание его компонентов делает его бесполезным.Связанный компонент двигателя транспортного средства заставляет магию работать под капотом, что ж, некоторым людям это кажется волшебством.

Автомобильный двигатель состоит из различных компонентов разного размера, выполняющих различные функции. Данная статья ориентирована на распространенный тип автомобильного двигателя « двигатель внутреннего сгорания ».

Современная версия двигателя сочетает в себе как механические, так и электрические компоненты. Прочтите важные статьи о двигателях внутреннего сгорания…

Подробнее: Типы автомобильных двигателей

Автомобильные двигатели заключены в герметичный упругий металлический цилиндр.Он содержит до шестнадцати цилиндров, но большинство современных автомобилей имеют от четырех до восьми цилиндров. Читая мои предыдущие статьи, вы поймете, что функция цилиндра — открываться и закрываться в определенное время, позволяя топливу и воздуху попадать в камеру сгорания и выпускать выхлопные газы. ну, это уже объясненное содержание. Проверьте это по ссылке выше!

В этой статье я распространил список основных частей двигателя внутреннего сгорания, их схемы и их функции.

Подробнее: Понимание работы автомобильного мозга

Компоненты двигателя внутреннего сгорания:

Ниже приведены общие детали двигателя внутреннего сгорания:

1. Цилиндр :

Эти детали автомобильного двигателя расположены в блоке двигателя, также известном как блок цилиндров. Он содержит подкладку или рукава вокруг него. Этот лайнер изнашивается во время работы и может быть легко заменен. В цилиндрах есть часть или пространство для поршня, чтобы двигаться вверх и вниз, заставляя происходить сгорание.

Цилиндры

отличаются диаметром и ходом. Отверстие — это внутренний диаметр, а ход — это эффективная длина поршня, совершающего возвратно-поступательное движение, то есть движение поршня от ВМТ к НМТ, они являются самой верхней и самой нижней точками хода.

В блоке цилиндров также есть пустоты вокруг и между отдельными цилиндрами, эти полые части известны как рубашки. Он позволяет охлаждающей жидкости поступать и циркулировать, обеспечивая эффективное рассеивание тепла в двигателях с жидкостным охлаждением.

2. Поршень :

Поршень представляет собой цилиндрическую часть, которая движется вверх и вниз в цилиндре, обеспечивая полный цикл сгорания (впуск, сжатие, сгорание, выпуск). Посмотрите, как этот процесс работает, ниже.

Диаметр поршня немного меньше внутреннего диаметра цилиндра, чтобы избежать быстрого износа поверхности поршня. В круглые выемки на поверхностях поршня вставлены три кольца, известные как поршневые кольца. Эти кольца изготовлены из алюминия и имеют прямой контакт с гильзой цилиндра, что предотвращает износ поршня.

Два первых кольца представляют собой компрессионные кольца, они имеют фаску на внешней части, что способствует возникновению эффекта продувки (предотвращение попадания отработанных газов внутри камеры сгорания в картер). Третье кольцо известно как масляное кольцо, оно предотвращает попадание масла в камеру сгорания и обеспечивает правильное распределение масла по стенкам цилиндров.

3. Коленчатый вал :

Эти детали двигателя помогают преобразовывать скользящее движение поршня во вращательное движение через шатун.Он расположен под блоком цилиндров внутри кожуха, называемого картером. Коленчатый вал имеет выступы, загнутые и смещенные относительно оси вала. В многоцилиндровом двигателе каждый цилиндр снабжен собственной шатунной шейкой, предназначенной для крепления поршня с помощью шатуна.

Часть коленчатого вала, называемая опорным подшипником кривошипа, известна как шатун, имеющий подшипник скольжения. Другая его часть называлась противовесами. Он предназначен для противодействия колебаниям растяжения, испытываемым коленчатым валом из-за возвратно-поступательного дисбаланса движущегося поршня во время процесса сгорания.Баланс кривошипа либо прикреплен болтами к корпусу кривошипа, либо является неотъемлемой частью.

Коленчатые валы производятся как по частям, так и в сборе. Цельная конструкция более предпочтительна, поскольку она не оставляет места для вибрации и обеспечивает лучший поток волокна и хорошую способность выдерживать нагрузки.

Наконец, коленчатые валы обычно производятся из стали путем ковки вальцом или из пластичной стали путем литья. цельные коленчатые валы изготавливаются из жаропрочных углеродистых сталей.Некоторые другие стали, такие как микролегированные стали с ванадием, также используются из-за более высокой прочности, которую они могут обеспечить без термической обработки.

4. Шатун :

Эти детали двигателя предназначены для соединения поршня с коленчатым валом. Как упоминалось ранее, он преобразует поступательное движение поршня во вращательное движение кривошипа. Одна из его концевых частей прикреплена к поршню через поршневой палец, также известный как поршневой палец и палец для запястья. Другой конец прикреплен к шейке шатунной шейки с помощью болтов для удержания верхней и нижней крышек подшипников, называемых шатуном.

Подшипник выполнен в виде двух полукорпусов, помещенных в шейку кривошипа шатуном шатуна. Оба конца не закреплены жестко, чтобы поворачиваться на угол. Следовательно, оба конца находятся в непрерывном движении и испытывают огромную нагрузку от давления поршня.

Шатун обычно изготавливается из кованой стали, а иногда и из алюминиевого сплава, когда приоритетом является легкий вес и способность поглощать сильные удары. Шатун изготовлен с высокой точностью, так как это чувствительная деталь, склонная к выходу из строя.

5. Головка блока цилиндров :

Эти детали двигателя служат крышкой для блока цилиндров, клапана, коромысел и элемента зажигания. Он прикручен к блоку цилиндров с прокладкой головки блока цилиндров между ними.

Головка блока цилиндров изготовлена ​​из чугуна, а иногда и из алюминиевого сплава, когда требуется легкая деталь и поскольку она проводит тепло быстрее, чем чугун.

В двигателе с верхним распределительным валом распределительный вал размещен в головке при отсутствии толкателя для клапанного механизма.Некоторые другие части, такие как впускные, выпускные отверстия и камера сгорания, также имеют пространство под цилиндром, что делает их одним целым компонентом двигателя.

6. ​​Распределительный вал :

Этот компонент двигателя внутреннего сгорания представляет собой вал с установленным на нем кулачком. его функции — управлять клапанами непосредственно, сидя над ними или через коромысло и толкатель. Время газораспределения определяется размером распредвала. То есть открытие и закрытие клапанов регулируется распределительным валом, который установлен на коленчатом валу либо непосредственно через редуктор, либо косвенно через шкив и ремень привода ГРМ.

Распределительный вал, соединенный с кривошипом шестерней, требовал толкателя и толкателя вместе с коромыслами. Распределительный вал обычно изготавливается из отливок из закаленного чугуна и заготовок из стали, используемой для изготовления высококачественных. Охлажденный чугун обеспечивает большую износостойкость и твердость поверхности.

7. Клапаны :

Клапаны, известные как тарельчатые клапаны в двигателях внутреннего сгорания. Он состоит из длинного тонкого круглого стержня, называемого штоком клапана, и плоского круглого диска, называемого головкой клапана, который сужается вдоль тонкого стержня.Функция клапана состоит в том, чтобы включить клапан для свежего всасывания топлива и воздуха и выпуска отработанных газов (выхлопа). Открытие и закрытие клапана вызывается скользящим движением распределительного вала и связанных с ним рычагов.

Клапаны двигателя изготовлены из стальных сплавов, наполненных натрием для увеличения теплоотдачи. Наконец, клапаны двухсекционные; впускной / впускной клапан, который позволяет свежему заряду поступать в камеру при открытии, а выпускной / выпускной клапан позволяет выходить выхлопным газам.

8. Коромысло :

Эта деталь двигателя внутреннего сгорания играет важную роль, поскольку она передает вращательное движение кулачка или коленчатого вала через толкатель / фиксатор и преобразует его в линейное движение штока клапана, помогая прижать головку клапана

Головка коромысла изготовлена ​​из стальных штамповок для двигателей легкой и средней мощности, тогда как головка коромысла тяжелого дизельного двигателя изготовлена ​​из чугуна и кованой углеродистой стали, поскольку она обеспечивает большую прочность и жесткость.Коромысла колеблются вокруг неподвижного стержня шарнира в головке блока цилиндров.

9. Картер двигателя :

Эти компоненты двигателя внутреннего сгорания расположены под блоком цилиндров, содержащим подшипники, вращающие кривошип. Этот основной подшипник представляет собой подшипник скольжения с достаточной подачей масла. Четырехцилиндровые рядные бензиновые двигатели содержат три подшипника в картере, по одному на каждом конце и один посередине, в то время как дизельные двигатели имеют пять основных подшипников, по одному на каждом конце и по одному между каждым цилиндром.

Картер сделан из чугуна и алюминия, из того же материала, что и блок цилиндров. Картер двигателя служит многим целям двигателя, поскольку помогает защитить его внутренний механизм от пыли, грязи и некоторых других материалов. Он также служит корпусом, в котором заключены коленчатый вал и шатун, удерживая масло и воздух.

10. Масляный насос и поддон :

Масляный насос перекачивает масло в различные части двигателя для надлежащей смазки, очистки и охлаждения.Масляный насос в двигателе приводится в действие шестерней коленчатого вала. Масло находится под давлением к различным частям компонентов двигателя, что помогает смазывать и охлаждать систему.

Масляный поддон служит резервуаром, в котором находится камера, в которой хранится масло. Масло поднимается масляным насосом из поддона через сетку из проволочной сетки, которая предотвращает попадание мусора и грязи в двигатель. Масляный фильтр и масляный радиатор пропускают масло перед его распределением по деталям двигателя. После выполнения своей работы масло возвращается в масляный поддон.

Прочие компоненты автомобильного двигателя — электрические, о которых пойдет речь в другой статье. В электрическую часть двигателя входят:

Мы надеемся, что вам понравился этот пост «Компоненты двигателя внутреннего сгорания», и вы получили удовольствие от чтения. Если да, то поделитесь этим постом со своими друзьями и учениками в социальных сетях. Спасибо!

Основы двигателя внутреннего сгорания 2E

Часто используемые символы, индексы и сокращения
ГЛАВА 1 Типы двигателей и их работа
1.1 Введение и историческая перспектива
1.2 Классификация двигателей
1.3 Рабочие циклы двигателя
1.4 Компоненты двигателя
1.5 Многоцилиндровые двигатели
1.6 Работа двигателя с искровым зажиганием
1.7 Различные типы четырехтактных двигателей SI
1.7.1 Двигатели с искровым зажиганием на портовом топливе Впрыск
1.7.2 Двигатели SI для гибридных электромобилей
1.7.3 Двигатели SI с форсункой
1.7.4 Двигатели SI с прямым впрыском
1.7.5 Двигатели SI с форкамерой
1.7.6 Роторные двигатели
1.8 Работа двигателя с воспламенением от сжатия
1.9 Различные типы дизельных двигателей
1.10 Работа двухтактных двигателей
1.11 Топливо
1.11.1 Бензин и дизельное топливо
1.11.2 Альтернативные виды топлива Проблемы

Ссылки
ГЛАВА 2 Конструкция двигателя и рабочие параметры
2.1 Важные характеристики двигателя
2.2 Геометрические соотношения для поршневых двигателей
2.3 Силы в поршневом механизме
2.4 Тормозной момент и мощность
2.5 Расчетная работа за цикл
2,6 Механический КПД
2,7 Среднее эффективное давление
2,8 Удельный расход топлива и КПД
2,9 Соотношение воздух / топливо и топливо / воздух
2.10 Объемный КПД
2.11 Удельная мощность, удельный вес и удельный объем
2.12 Поправочные коэффициенты для мощности и объемного КПД
2.13 Удельные выбросы и индекс выбросов
2.14 Взаимосвязь между рабочими параметрами
2.15 Конструкция двигателя и данные о рабочих характеристиках
2.16 Требования к мощности автомобиля
Проблемы
Ссылки
ГЛАВА 3 Термохимия топливно-воздушных смесей
3.1 Характеристики пламени
3.2 Модель идеального газа
3.3 Состав воздуха и топлива
3.4 Стехиометрия горения
3.5 Первый закон термодинамики и горения
3.5. 1 Энергетический и энтальпийный балансы
3.5.2 Энтальпии образования
3.5.3 Значения нагрева
3.5.4 Процессы адиабатического сгорания
3.5.5 Эффективность сгорания двигателя внутреннего сгорания
3.6 Второй закон термодинамики применительно к горению
3.6.1 Энтропия
3.6.2 Максимальная работа двигателя внутреннего сгорания и КПД
3.7 Химически реагирующие газовые смеси
3.7.1 Химическое равновесие
3.7.2 Скорость химических реакций
Проблемы
Ссылки
ГЛАВА 4 Свойства рабочих жидкостей
4.1 Введение
4.2 Состав несгоревшей смеси
4.3 Взаимосвязь свойств газа
4.4 Простая аналитическая модель идеального газа
4.5 Таблицы термодинамических свойств
4.5.1 Таблицы несгоревших смесей
4.5.2 Таблицы сгоревших смесей
4.5.3 Связь между несгоревшими и сгоревшими таблицами смесей
4.6 Таблицы свойств и состава
4.7 Компьютерные программы для расчета свойств и состава
4.7.1 Несгоревшие Смеси
4.7.2 Сгоревшие смеси
4.8 Транспортные свойства
4.9 Состав выхлопных газов
4.9.1 Данные о концентрации видов
4.9.2 Определение коэффициента эквивалентности по компонентам выхлопных газов
4.9.3 Влияние неоднородности соотношения топливо / воздух
4.9.4 Неэффективность сгорания
Проблемы
Ссылки
ГЛАВА 5 Идеальные модели циклов двигателя
5.1 Введение
5.2 Идеальные модели процессов двигателя
5.3 Термодинамические соотношения для процессов двигателя
5.4 Анализ цикла с идеальным газом Рабочая жидкость с постоянными cv и cp
5.4.1 Цикл постоянного объема
5.4.2 Циклы ограниченного и постоянного давления
5.4.3 Сравнение циклов
5.5 Анализ цикла топливо-воздух
5.5.1 Моделирование цикла двигателя SI
5.5.2 Моделирование цикла двигателя CI
5.5.3 Результаты расчетов цикла
5.6 Перерасширенные циклы двигателя
5.7 Анализ доступности процессов двигателя
5.7.1 Взаимосвязи доступности
5.7.2 Изменения энтропии в идеальных циклах
5.7 .3 Анализ доступности идеальных циклов
5.7.4 Влияние коэффициента эквивалентности
5.8 Сравнение с реальными циклами двигателя
Проблемы
Ссылки
ГЛАВА 6 Процессы газообмена
6.1 Процессы впуска и выпуска в четырехтактном цикле
6.2 Объемный КПД
6.2.1 Квазистатические эффекты
6.2.2 Сопротивление потоку на впуске и выпуске
6.2.3 Теплопередача на впуске и в цилиндре
6.2.4 Время работы впускного клапана Эффекты
6.2.5 Дросселирование воздушного потока на впускном клапане
6.2.6 Регулировка впуска и выпуска
6.2.7 Комбинированные эффекты: двигатели без наддува
6.2.8 Воздействие турбонаддува
6.3 Поток через клапаны и порты
6.3.1 Клапан и порт Геометрия и работа
6.3.2 Расходы и коэффициенты нагнетания
6.3.3 Регулируемое время клапана
6.4 Доля остаточного газа
6.5 Изменение расхода выхлопного газа и температуры
6.6 Очистка в двухтактных двигателях
6.6.1 Конфигурации двухтактных двигателей
6.6. 2 Параметры и модели продувки
6.6.3 Фактические процессы продувки
6.7 Поток через порты двухтактного двигателя
6.8 Наддув и турбонаддув
6.8.1 Методы повышения мощности
6.8.2 Основные взаимосвязи
6.8.3 Компрессоры
6.8.4 Турбины
6.8.5 Компрессор, двигатель, согласование турбины
6.8.6 Устройства волнового сжатия
Проблемы
Ссылки
ГЛАВА 7 Приготовление смеси в двигателях SI
7.1 Смесь для двигателей с искровым зажиганием Требования
7.2 Обзор дозирования топлива
7.2.1 Подходы к образованию смеси
7.2.2 Соответствующие характеристики топлива
7.3 Центральный (дроссельный) впрыск топлива
7.4 Портовый (многоточечный) впрыск топлива
7.4.1 Компоновка, компоненты и функции системы
7.4.2 Распыление топлива
7.4.3 Воздействие обратного потока
7.5 Явления воздушного потока
7.5.1 Поток мимо дроссельной заслонки
7.5.2 Поток во впускных коллекторах
7.5.3 Воздушный поток Модели
7.6 Явления потока топлива: Портовый впрыск топлива
7.6.1 Поведение жидкого топлива
7.6.2 Переходные процессы: Топливно-пленочные модели
7.7 Прямой впрыск топлива
7.7.1 Обзор подходов прямого впрыска
7.7.2 Процессы приготовления смеси DI
7.7.3 Система и компоненты двигателя DI
7.8 Датчики кислорода в выхлопных газах
7.9 Системы подачи топлива
7.10 Сжиженный нефтяной газ и природный газ
Проблемы
Ссылки
ГЛАВА 8 Движение заряда в цилиндре
8.1 Потоки, создаваемые всасываемым газом
8.2 Характеристики средней скорости и турбулентности
8.2.1 Определения соответствующих параметров
8.2.2 Применение к данным о скорости двигателя
8.3 Завихрение
8.3.1 Измерение завихрения
8.3.2 Образование завихрения во время индукции
8.3.3 Модификация завихрения в цилиндре
8.4 Качание
8.5 Поршневые потоки: сжатие
8.6 Завихрение, кувырок, сжатие потоков
8.7 Потоки в форкамерном двигателе
8.8 Щелевые потоки и прорыв
8.9 Потоки, создаваемые взаимодействием поршневого цилиндра и стенки


Ссылки
ГЛАВА 9 Сгорание в двигателях с искровым зажиганием
9.1 Основные характеристики процесса
9.1.1 Основы сгорания
9.1.2 Процесс сгорания в двигателе SI
9.2 Термодинамика сгорания двигателя внутреннего сгорания
9.2.1 Состояния сгоревшей и несгоревшей смеси
9.2.2 Анализ данных о давлении в цилиндре
9.2.3 Характеристика процесса сгорания
9.3 Структура и скорость пламени
9.3.1 Общие наблюдения
9.3.2 Структура пламени
9.3.3 Скорость ламинарного горения
9.3.4 Зависимость распространения пламени
9.3.5 Горение с прямым впрыском топлива
9.4 Циклические изменения горения, частичного горения и пропусков зажигания
9.4.1 Наблюдения и определения
9.4.2 Причины колебаний от цикла к циклу и от цилиндра к цилиндру
9.4.3 Частичное горение, пропуски зажигания и стабильность двигателя
9.5 Искровое зажигание
9.5.1 Основы зажигания
9.5.2 Стандартные системы зажигания
9.5.3 Альтернативное зажигание Подходы
9.6 Ненормальное возгорание: самовозгорание и детонация
9.6.1 Описание явлений
9.6.2 Основы детонации
9.6.3 Топливные факторы
9.6.4 Спорадические преждевременные воспламенения и детонация
9.6.5 Подавление детонации
Проблемы
Ссылки
Горение в двигателях с воспламенением от сжатия
10.1 Основные характеристики процесса
10.2 Типы систем сгорания дизельного топлива
10.2.1 Системы прямого впрыска
10.2.2 Другие системы сгорания дизельного топлива
10.2.3 Сравнение различных систем сгорания
10.3 Сгорания дизельного двигателя
10.3.1 Оптические исследования дизеля Сжигание
10.3.2 Сгорание в многопрысковых системах с прямым впрыском
10.3.3 Анализ скорости тепловыделения
10.3.4 Концептуальная модель сгорания дизельного топлива с прямым впрыском
10.4 Поведение при распылении топлива
10.4.1 Впрыск топлива
10.4.2 Общая структура распылителя
10.4.3 Распыление и проявление распыления
10.4.4 Проникновение распыления
10.4.5 Распределение размеров капель
10.4.6 Испарение при распылении
10.5 Задержка воспламенения
10.5.1 Определение и обсуждение
10.5 .2 Качество воспламенения топлива
10.5.3 Самовоспламенение и предварительно приготовленное горение
10.5.4 Физические факторы, влияющие на задержку воспламенения
10.5.5 Влияние свойств топлива
10.5.6 Корреляции задержки зажигания в двигателях
10.6 Сжигание под контролем смешения
10.6.1 Предпосылки
10.6.2 Распыление и структура пламени
10.6.3 Смешивание топлива с воздухом и скорости горения
10.7 Альтернативные подходы к сжиганию от сжатия-воспламенения
10.7.1 Сжигание дизельного топлива с многократным впрыском
10.7.2 Передовые концепции сжигания с воспламенением от сжатия
Проблемы
Ссылки
ГЛАВА 11 Образование загрязняющих веществ и борьба с ними
11.1 Природа и масштабы проблемы
11.2 Оксиды азота
11.2.1 Кинетика образования NO
11.2.2 Образование NO2
11.2.3 Образование NO в двигателях с искровым зажиганием
11.2.4 Образование NOx в двигателях с воспламенением от сжатия
11.3 Окись углерода
11.4 Выбросы углеводородов
11.4.1 Общие сведения
11.4.2 Основы тушения пламени и окисления
11.4 .3 Выбросы углеводородов из двигателей с искровым зажиганием
11.4.4 Механизмы выброса углеводородов в дизельном двигателе
11.5 Выбросы твердых частиц
11.5.1 Твердые частицы двигателя с искровым зажиганием
11.5.2 Характеристики частиц дизельного топлива
11.5.3 Распределение твердых частиц в цилиндре
11.5.4 Основы образования сажи
11.5.5 Окисление сажи
11.5.6 Адсорбция и конденсация
11.6 Очистка выхлопных газов
11.6.1 Доступные опции
11.6.2 Основные принципы катализаторов
11.6.3 Каталитические преобразователи
11.6.4 Фильтры или ловушки твердых частиц
11.6.5 Системы обработки выхлопных газов
Проблемы
Ссылки
ГЛАВА 12 Теплопередача двигателя
12.1 Важность теплопередачи
12.2 режима теплопередачи
12.2.1 Проводимость
12.2.2 Конвекция
12.2.3 Излучение
12.2.4 Общий процесс теплопередачи
12.3 Теплопередача и энергетический баланс двигателя
12.4 Конвективная теплопередача
12.4.1 Анализ размеров
12.4 .2 Корреляции для усредненного по времени теплового потока
12.4.3 Корреляции для мгновенных пространственных средних коэффициентов
12.4.4 Корреляции для мгновенных местных коэффициентов
12.4.5 Теплопередача выхлопной и впускной систем
12.5 Радиационная теплопередача
12.5.1 Излучение газов
12.5.2 Излучение пламени
12.6 Измерение мгновенной скорости теплопередачи
12.6.1 Методы измерения
12.6.2 Измерения двигателя с искровым зажиганием
12.6.3 Измерения дизельного двигателя
12.6 .4 Оценка корреляции теплопередачи
12.6.5 Поведение пограничного слоя
12.7 Термическая нагрузка и температура компонентов
12.7.1 Влияние переменных двигателя
12.7.2 Распределение температуры компонентов
12.7.3 Прогрев двигателя
Проблемы
Ссылки
ГЛАВА 13 Трение и смазка двигателя
13.1 Общие сведения
13.2 Определения
13.3 Основы трения
13.3.1 Трение со смазкой
13.3.2 Турбулентное диссипация
13.3.3 Полное трение Данные о трении двигателя
13.5.1 Двигатели SI
13.5.2 Дизельные двигатели
13.6 Механические компоненты трения
13.6.1 Тесты на поломку моторизованного двигателя
13.6.2 Система смазки двигателя
13.6.3 Трение и смазка поршневого узла
13.6.4 Трение коленчатого вала
13.6.5 Трение клапанного механизма
13.7 Трение нагнетания
13.8 Требования к мощности вспомогательного оборудования
13.9 Моделирование трения двигателя
Контекст масла 13.10 Расход масла
13.10.1
13.10.2 Транспортировка масла в цилиндр
13.10.3 Испарение масла
13.10.4 Продувка и унос масла
13.11 Смазочные материалы
Проблемы
Ссылки
ГЛАВА 14 Моделирование реального потока в двигателе и процессов сгорания
14.1 Назначение и классификация моделей
14.2 Управляющие уравнения для открытой термодинамической системы
14.2.1 Сохранение массы
14.2.2 Сохранение энергии
14.3 Модели всасываемого и выхлопного потока
14.3.1 Предпосылки
14.3.2 Модели квазистационарного потока
14.3.3 Методы наполнения и опорожнения
14.3.4 Газодинамические модели
14.4 Термодинамические модели цилиндров
14.4.1 Предпосылки и общая структура модели
14.4.2 Модели двигателей с искровым зажиганием
14.4.3 Модели двигателя с прямым впрыском
14.4.4 Модели двигателя с форкамерой
14.4.5 Модели многоцилиндровых и сложных систем двигателя
14.4.6 Анализ процессов двигателя во втором законе
14.5 Многомерные модели на основе механических жидкостей
14.5. 1 Базовый подход и управляющие уравнения
14.5.2 Модели турбулентности
14.5.3 Численная методология
14.5.4 Прогнозы поля потока
14.5.5 Моделирование распыления топлива
14.5.6 Моделирование горения
Ссылки
ГЛАВА 15 Рабочие характеристики двигателя
15.1 Цели проектирования двигателя
15.2 Рабочие характеристики двигателя
15.2.1 Основные характеристики дизельных двигателей и двигателей
15.2.2 Характеристики двигателя
15.2.3 Крутящий момент, мощность и среднее эффективное давление
15.2.4 Карты характеристик двигателя
15.3 Рабочие переменные, которые Влияние на производительность, эффективность и выбросы двигателя SI
15.3.1 Время искры
15.3.2 Состав смеси
15.3.3 Нагрузка и скорость
15.3.4 Степень сжатия
15.4 Конструкция системы сгорания двигателя SI
15.4.1 Цели и варианты
15.4.2 Факторы, влияющие на горение
15.4.3 Факторы, контролирующие производительность
15.4.4 Требование октанового числа камеры
15.4.5 Выбросы двигателя SI
15.4.6 Оптимизация
15.5 Переменные, влияющие на производительность дизельного двигателя, эффективность, и выбросы
15.5.1 Нагрузка и скорость
15.5.2 Конструкция системы сгорания
15.5.3 Впрыск топлива и EGR
15.5.4 Общее поведение системы
15.6 Двухтактные двигатели
15.6.1 Рабочие параметры
15.6.2 Двухтактные бензиновые двигатели SI
15.6.3 Двухтактные двигатели CI
15.7 Шум, вибрация и жесткость
15.7.1 Шум двигателя
15.7.2 Динамика поршневого механизма
15.7.3 Балансировка двигателя
15.8 Мощность двигателя и сводка по топливу
Проблемы
Ссылки
ПРИЛОЖЕНИЕ A Коэффициенты пересчета единиц
ПРИЛОЖЕНИЕ B Соотношения идеальных газов
B.1 Закон идеального газа
B.2 Моль
B.3 Термодинамические свойства
B.4 Смеси идеальных газов
ПРИЛОЖЕНИЕ C Уравнения для потока жидкости через ограничение
C.1 Поток жидкости
C.2 Расход газа
Ссылки
ПРИЛОЖЕНИЕ D Данные о рабочих жидкостях
Указатель

Как работает двигатель внутреннего сгорания?

Двигатель, который использует жидкое топливо для выработки энергии, такой как двигатель внутреннего сгорания, по сути, представляет собой большой воздушный насос. Холодный воздух втягивается, смешивается с выбранным топливом для создания энергии, а затем удаляется в виде горячего выхлопного газа.Чем эффективнее дышит этот «воздушный насос» двигателя, тем эффективнее он вырабатывает мощность.

В этой статье мы сосредоточимся на том, как именно автомобильный двигатель внутреннего сгорания преобразует воздух и топливо в энергию, чтобы двигать ваш автомобиль по дороге. В этой статье мы определяем некоторую терминологию для различных частей, однако вы можете найти нашу статью по теме Глоссарий внутренних деталей двигателя полезен, если вы хотите узнать о других компонентах, не упомянутых здесь.

Имейте в виду, что это сложная тема; Хотя мы сделали все возможное, чтобы объяснить это простым языком, некоторые концепции может быть трудно продемонстрировать в двухмерном формате. Кроме того, некоторые описания функций двигателя были упрощены для ясности.

Каковы основные части двигателя?

Типичный блок двигателя V8.

Во-первых, давайте рассмотрим две основные части типичного двигателя внутреннего сгорания. Главный и самый большой кусок — это блок двигателя, составляющий нижнюю часть двигателя.Это дом для поршни, шатуны, коленчатый вал, масляный насос и распределительный вал, если двигатель имеет конструкцию с верхним расположением клапана. Поскольку эта секция содержит отверстия цилиндра, по которым перемещаются поршни, ее иногда называют блоком цилиндров.

Слева показана головка блока цилиндров, прикрепленная болтами к блоку двигателя. Справа и разнесенная схема ГБЦ.

К верхней части блока цилиндров привинчена головка (или головки) блока цилиндров. Они содержат выпускные и впускные клапаны, а также распределительные валы, если двигатель имеет конструкцию с верхним кулачком.Рядные двигатели (все цилиндры в один ряд) имеют только одну головку блока цилиндров. Двигатели V-образной или H-образной формы имеют две головки блока цилиндров, по одной на ряд цилиндров.

Типичная секция картера, которая крепится болтами, образуя нижнюю часть блока цилиндров.

Как воздух попадает в герметичный блок двигателя?

Прежде чем мы рассмотрим этапы процесса внутреннего сгорания в двигателе, важно понять, как воздух попадает в герметичный блок двигателя.

Это происходит благодаря так называемому впускному коллектору. An Впускной коллектор, сделанный из металла или пластика, представляет собой узел, который находится над двигателем и состоит из ряда труб, которые распределяют воздух и топливо в каждый цилиндр. (Подробнее о впускных коллекторах мы приглашаем вас прочитать наши статья по теме.)

Впускные коллекторы на V-образных двигателях обычно устанавливаются сверху между обоими рядами цилиндров.

После того, как воздух сначала проходит через впускную трубку и очищается воздушным фильтром, он попадает во впускной коллектор.Карбюратор, дроссельная заслонка или топливные форсунки впрыскивают соответствующее количество топлива, которое смешивается с этим всасываемым воздухом. Идеальное соотношение для воздушно-топливной смеси составляет 14,7: 1, что означает 14,7 частей воздуха на 1 часть топлива. Теперь нам нужно подать эту топливно-воздушную смесь в каждый цилиндр. Это начало «4-тактного цикла» двигателя нашего автомобиля.

Каковы 4 этапа 4-тактного цикла?

Автомобильные двигатели описываются как «4-тактные», потому что в процессе сгорания участвуют 4 основных этапа.(Существуют «двухтактные» двигатели, но они не использовались в дорожных автомобилях в течение многих десятилетий, и это обсуждение выходит за рамки данной статьи.)

Итак, нам ясно: шаги, описанные ниже, должны выполняться в КАЖДОМ цилиндре двигателя. Для ясности мы опишем четыре хода, как они происходят в ОДНОМ цилиндре.

Первый шаг: ход впуска

Двигателю требуется топливно-воздушная смесь, чтобы попасть в закрытую зону цилиндра.Для этого впускной клапан перемещается из закрытого положения в открытое. Смесь поступает в цилиндр. Поршень, который находится в верхней части цилиндра, начинает двигаться вниз, создавая частичный вакуум, который способствует всасыванию смеси. Выпускной клапан остается закрытым на этом этапе.

    ВПУСКНОЙ ХОД:
  • ДВИЖЕНИЕ ПОРШНЯ: ВНИЗ
  • ВПУСКНОЙ КЛАПАН: ОТКРЫТ
  • ВЫПУСКНОЙ КЛАПАН: ЗАКРЫТ
  • ДЕЙСТВИЕ: ВТЯНИЕ В СМЕСИ ВОЗДУХ / ТОПЛИВО

Второй этап: ход сжатия

После того, как поршень достигает нижней части цилиндра (известной как «нижняя мертвая точка»), впускной клапан закрывается, и поршень начинает двигаться вверх, что сжимает топливно-воздушную смесь.Под давлением смеси она воспламеняется с большей силой, чем если бы она не была сжата. Впускные и выпускные клапаны остаются закрытыми, чтобы смесь оставалась в стенках цилиндра. Полное сжатие достигается, когда поршень достигает максимальной точки своего хода (известной как «верхняя мертвая точка»).

    ХОД СЖАТИЯ:
  • ДВИЖЕНИЕ ПОРШНЯ: ВВЕРХ
  • ВПУСКНОЙ КЛАПАН: ЗАКРЫТ
  • ВЫПУСКНОЙ КЛАПАН: ЗАКРЫТ
  • ДЕЙСТВИЕ: СМЕСЬ СЖАТОГО ВОЗДУХА / ТОПЛИВА

Третий этап: рабочий ход

Этот ход начинается с поршня в верхней части цилиндра, при закрытых обоих клапанах и сжатой топливно-воздушной смеси.Это момент, когда загорается свеча зажигания, воспламеняя смесь и создавая давление (мощность), которое заставляет поршень опускаться. Оба клапана остаются закрытыми, чтобы сдерживать давление внутри стенок цилиндра.

    СИЛОВОЙ ХОД:
  • ДВИЖЕНИЕ ПОРШНЯ: ВНИЗ
  • ВПУСКНОЙ КЛАПАН: ЗАКРЫТ
  • ВЫПУСКНОЙ КЛАПАН: ЗАКРЫТ
  • ДЕЙСТВИЕ: ЗАЖИГАТЬ СМЕСЬ ВОЗДУХ / ТОПЛИВО

Четвертый этап: ход выхлопа

Поршень снова меняет направление и начинает двигаться вверх.Теперь двигатель должен удалить сгоревшие остатки топливно-воздушной смеси. Движение поршня вверх толкает этот выхлопной газ вверх, и выпускной клапан открывается, позволяя ему выйти из цилиндра в выпускной коллектор (и, в конечном итоге, в выхлопную трубу). Впускной клапан остается закрытым, так как двигатель хочет, чтобы все эти газы уходили через выхлопные трубы.

    ХОД ВЫПУСКА:
  • ДВИЖЕНИЕ ПОРШНЯ: ВВЕРХ
  • ВПУСКНОЙ КЛАПАН: ЗАКРЫТ
  • ВЫПУСКНОЙ КЛАПАН: ОТКРЫТЬ
  • ДЕЙСТВИЕ: EXPEL СМЕСЬ ВОЗДУХ / ТОПЛИВО

Мы можем суммировать действия четырех штрихов на этой диаграмме:

Как клапаны узнают, когда открываться и закрываться?

Здесь впускные и выпускные клапаны (показаны зеленым и красным) приводятся в действие отдельными распределительными валами.Эти клапаны выполняют важную функцию, и их движение точно рассчитано по времени.

Назначение клапанов

Двигатель должен иметь как минимум один впускной клапан и один выпускной клапан для каждого цилиндра. Чтобы 4-тактный цикл был успешным, открытие и закрытие этих клапанов точно контролируется — синхронизируется с движением поршней, чтобы каждый клапан выполнял свою работу именно тогда, когда это необходимо. Этот точный контроль известен как «время».

Правильная синхронизация позволяет впускному клапану открываться и впускать топливно-воздушную смесь в цилиндр, когда поршень движется вниз во время такта впуска.А после того, как происходит сгорание, выпускной клапан открывается, поэтому сгоревшие газы могут выталкиваться из цилиндра, когда поршень движется обратно вверх.

Открытие и закрытие всех клапанов двигателя осуществляется распределительным валом. Каждый распределительный вал содержит несколько «выступов», которые представляют собой детали неправильной формы, расположенные на центральном валу. По мере вращения распределительного вала вращаются и эти выступы, которые контактируют с другими компонентами для перемещения клапанов. Клапаны обычно закрыты и удерживаются закрытыми с помощью клапанных пружин.Лепестки должны преодолевать давление пружины, чтобы открыть клапаны. Поскольку лепесток продолжает вращаться, пружины снова закрывают клапаны. Эти лепестки имеют точную форму и механическую обработку, поэтому они вносят свой вклад в поддержание правильной синхронизации двигателя.

Распределительные валы видны в двигателе с верхним распределительным валом (слева) и в двигателе с верхним расположением клапанов (справа).

В двигателях с верхним расположением клапанов распределительные валы расположены в блоке цилиндров и соединены с клапанами с помощью толкателей, толкателей и коромысел (в зависимости от конструкции двигателя).В двигателях с верхним расположением распредвала распредвалы находятся в головке блока цилиндров. По-прежнему существует механическое соединение с клапанами, но поскольку кулачок расположен ближе к клапанам, это более короткое и прямое соединение.

Клапаны и синхронизация двигателя

Без правильного выбора времени клапаны не открывались и не закрывались, когда они должны были. 4-тактный цикл не будет работать должным образом. Хорошее сгорание было бы трудным, если не невозможным, и двигатель не работал бы, потому что это, по сути, гигантский воздушный насос.

Синхронизация движения поршня и клапана достигается за счет механического соединения коленчатого и распределительного валов. Поршни соединены с коленчатым валом (более подробно описано ниже). Коленчатый вал соединяется с распределительным валом одним из трех способов: шестернями ГРМ, цепью ГРМ или ремнем ГРМ (обратите внимание на использование слова «синхронизация»).

Эти иллюстрации демонстрируют, как цепи ГРМ или ремни ГРМ синхронизируют работу коленчатого и распределительного валов.

Для наших целей важно то, что малейшее вращательное движение коленчатого вала вызывает его вращение, в результате чего клапаны открываются или закрываются, в зависимости от положения лепестка. Пока синхронизация остается правильной, двигатель будет работать. Если, однако, ремень или цепь ГРМ выскакивает на шестерню или, что еще хуже, щелкает, механическое соединение не синхронизировано или полностью обрывается. Двигатель будет плохо работать или вообще не будет работать.

Количество клапанов зависит от двигателя

Общее количество клапанов в двигателе может быть разным.Старые двигатели имеют 1 впускной и 1 выпускной клапан на цилиндр. У 8-цилиндрового двигателя всего 16 клапанов (2 x 8). Некоторые двигатели имеют 2 впускных клапана и 1 выпускной клапан на цилиндр. 6-цилиндровый двигатель с такой установкой с 3 клапанами на цилиндр будет иметь 18 клапанов (3 x 6). Многие современные двигатели имеют 2 впускных и 2 выпускных клапана на каждый цилиндр. Четырехцилиндровый двигатель с 4 клапанами на цилиндр, конечно, будет иметь в общей сложности 16 клапанов (4 x 4).

Как вы можете видеть из этих примеров, общее количество клапанов НЕ говорит вам, сколько цилиндров в двигателе.

Конфигурации с одним и двумя распредвалами

Все двигатели с верхним расположением клапанов (кулачок в блоке) имеют один распределительный вал для двигателя. Двигатели с верхним расположением кулачков с распределительными валами в головках могут иметь один цилиндр на головку или два на головку. Если их два, каждый распределительный вал предназначен для работы впускных или выпускных клапанов.

Терминология двигателя говорит нам, что двигатель с одним распредвалом НА ГОЛОВКУ является двигателем «SOHC» (с одним верхним распредвалом).Точно так же двигатель с двумя кулачками НА ГОЛОВКУ называется двигателем «DOHC» (с двумя верхними кулачками). Будьте осторожны при подсчете распредвалов! V-образный двигатель DOHC с двумя головками цилиндров имеет в общей сложности ЧЕТЫРЕ распредвала (по два на головку).

Как сила от поршней перемещает автомобиль?

Мы узнали, что на этапе 3 4-тактного цикла воспламенение топливно-воздушной смеси внутри цилиндра обеспечивает силу, толкающую поршень вниз. Теперь давайте посмотрим, как двигатель преобразует это движение вверх-вниз во вращательное движение, которое нам нужно для вращения коленчатого вала.

Здесь показан шатун с прилегающими элементами (слева) и сам по себе (справа).

Поршень прикреплен к прочной металлической детали, известной как шатун. Шатуны могут поворачиваться в этой точке соединения на поршне.

Нижний конец шатуна крепится к коленчатому валу, который служит выходным валом для всего двигателя. Эта точка крепления на коленчатом валу смещена от средней линии коленчатого вала. Когда шатун перемещается вверх и вниз вместе с поршнем, он вращает коленчатый вал.

Чтобы лучше представить себе это, представьте себе движения ног велосипедиста. Движение вверх-вниз в шарнирном колене очень похоже на то, что происходит с поршнем и верхней частью шатуна. Но голень и ступня велосипедиста вращают педаль велосипеда по кругу. Движение ноги велосипедиста вверх и вниз преобразуется во вращательное движение стопы, которое раскручивает кривошип велосипеда.

На рисунке выше показаны коленчатый вал, шатуны и поршни 4-цилиндрового двигателя.Каждый поршень совершает рабочий ход 4-тактного цикла в разное время. Это позволяет добиться нескольких целей: во-первых, он выравнивает импульсы мощности, чтобы двигатель работал более плавно. Во-вторых, поскольку все поршни соединены друг с другом через кривошип, рабочий ход одного поршня также создает такты впуска, сжатия и выпуска других поршней.

Присмотритесь к типичному коленчатому валу. Обратите внимание на отверстия, через которые проходит смазочное масло. Цапфы коренных подшипников предназначены для прилегания к изогнутым подшипникам картера.Противовесы сглаживают вращательные колебания.

Регулярное срабатывание цилиндров создает мощность, необходимую для поддержания постоянного и равномерного вращения коленчатого вала с постоянным крутящим моментом.

Коленчатый вал, если смотреть снизу двигателя, со снятой секцией картера.

Сам коленчатый вал находится в нижней части блока цилиндров. Поскольку коленчатый вал вынужден вращаться от мощности, производимой во время 4-тактного цикла, он создает крутящее движение или крутящий момент.Хвостовой конец кривошипа выходит из блока цилиндров сзади, и оттуда он соединяется с маховиком, трансмиссией, ведущим и полуосевым валами, в конечном итоге достигая ведущих колес. Это сила, которая продвигает ваш автомобиль вперед.

В задней части двигателя, где коленчатый вал выходит из блока цилиндров, прикреплен маховик.

Теперь, когда у вас есть базовое представление о том, как работает двигатель внутреннего сгорания, вы будете знать, какие виды капитального ремонта включают в себя определенные типы.И вы оцените ценность регулярного обслуживания, особенно замены масла, при котором все движущиеся части остаются должным образом смазанными.

Если вы хотите перейти на новый уровень, выполнив перестройку движка (или наняв кого-то для этого), мы рекомендуем прочитать нашу статью по теме ЧТО ВАМ НУЖНО ПРИ ВОССТАНОВЛЕНИИ ИЛИ ЗАМЕНЕ ДВИГАТЕЛЯ, чтобы получить представление об оборудовании и части, которые понадобятся для работы. У нас также есть полностью восстановленные двигатели, готовые к установке.

Если у вас есть какие-либо вопросы о запчастях, которые вам необходимо заказать, мы будем рады вашим запросам — наши компетентные представители находятся здесь семь дней в неделю!

Основные компоненты двигателя внутреннего сгорания и их функции


Несмотря на то, что существуют разные типы двигателей внутреннего сгорания, и каждый двигатель состоит из сотен компонентов, есть некоторые основные компоненты, которые присутствуют почти во всех двигателях.Те, кто изучает двигатели IC, должны знать этот базовый компонент и часто используемую терминологию в двигателях IC.
На рисунке показан поперечный разрез двигателя SI, различные компоненты и его функции описаны ниже.

🔗Разница между SI Engine и CI Engine
🔗Сравнение двухтактных и четырехтактных двигателей

Блок цилиндров

6-цилиндровый блок BMW

Блок цилиндров — это основной корпус двигателя.Это основная несущая конструкция, которая удерживает вместе другие компоненты и обеспечивает точки крепления. Блок цилиндров изготавливается методом литья. Используемый материал может быть железом или алюминием. Для многоцилиндрового двигателя блок цилиндров выполнен как единое целое. Головка блока цилиндров плотно закреплена на верхней части блока цилиндров болтом и шпильками. Эти две части снабжены соответствующей системой охлаждения (водяная рубашка, охлаждающие ребра). Прокладка цилиндра используется для уплотнения всех сопрягаемых поверхностей, в том числе между головкой цилиндров и блоком цилиндров.Материал прокладки может быть резиной, бумагой, пробкой или металлом. Нижняя часть блока цилиндров называется картером.

Цилиндр
Цилиндр — это пространство или цилиндрический сосуд, поддерживаемый блоком цилиндров, в котором поршень совершает возвратно-поступательное движение. В процессе работы двигателя объем внутри цилиндра заполняется рабочей жидкостью и подвергается различным термодинамическим процессам.

Поршень


Поршень — это трубчатый элемент, который устанавливается в цилиндр двигателя.Его движение ограничено одним измерением, он совершает возвратно-поступательное движение внутри цилиндра. Поршневые кольца и смазочные материалы, обеспечивающие посадку, являются газонепроницаемыми. Он также действует как связующее звено в передаче сил газа во вращательное движение выходного вала.

Кольца поршневые


На поршне предусмотрены поршневые кольца, обеспечивающие газонепроницаемое уплотнение между поршнем и стенкой цилиндра. Он вставляется в прорези на внешнем диаметре поршня для предотвращения утечки продуктов сгорания во время работы двигателя.

Камера сгорания
Камера сгорания — это пространство, заключенное между цилиндром и верхней частью поршня во время процесса сгорания. В камере сгорания происходит сгорание топлива, выделение тепловой энергии и повышение давления.

Шатуны


Это металлический стержень, который соединяет поршень и коленчатый вал. Он передает усилие от поршня на коленчатый вал. Малый конец шатуна соединял поршень с поршневым пальцем, а большой конец — с коленчатым валом с помощью шатунной шейки.

Коленчатый вал


Коленчатый вал — это компонент, который заключен в картер и преобразует возвратно-поступательное движение поршня во вращательное движение выходного вала. Подшипники используются для поддержки вала трещины, уменьшения трения и позволяют ему свободно вращаться при различных условиях нагрузки. На них предусмотрена пара шатунов и балансировочные грузы для статической и динамической балансировки вращающейся системы.

Свеча зажигания


Это компонент двигателя с искровым зажиганием, инициирующий процесс сгорания.Обычно он находится на головке блока цилиндров.

Уплотнения
Уплотнения двигателя расположены на конце вала, который выходит за пределы блока цилиндров. Уплотнения защищают подшипник и предотвращают утечку газа и масла.

Кулачки и распредвал
Кулачки и распредвал — это части двигателя, которые контролируют открытие и закрытие впускных и выпускных клапанов. Кулачок и распределительный вал приводятся в движение коленчатым валом с помощью синхронизирующих шестерен, и они сконструированы таким образом, чтобы открывать клапаны в правильное время и держать их открытыми в течение необходимого времени.Распредвалы также используются для привода системы зажигания.

Впускной и выпускной клапаны
Это клапаны, предусмотренные в головке блока цилиндров для регулирования потока рабочей жидкости в цилиндр и удаления продуктов сгорания в атмосферу.

Впускной коллектор и выпускной коллектор
Трубы, которые соединяют впускную систему с впускным клапаном, известны как впускной коллектор. Воздух, топливовоздушная смесь втягивается в цилиндр через впускной коллектор.

Выпускной коллектор — это патрубок, соединяющий выхлопную систему с выпускными клапанами. Продукты сгорания, такие как CO, NOx и т. Д., Попадают в атмосферу через выпускной коллектор.

Маховик

Чтение: Что такое маховик? функция, приложения и уравнение для накопленной энергии

Крутящий момент на коленчатом валу колеблется в течение одного цикла сгорания и вызывает колебания угловой скорости вала. Маховик — это инерционная масса, прикрепленная к выходному валу, чтобы минимизировать эти колебания и добиться равномерного крутящего момента.

Двигатель внутреннего сгорания / интегрированный поршневой генератор реактивного сопротивления для автомобильных приложений с простым исследованием на основе Matlab – Simulink

Это исследование представляет собой концептуальное исследование и описывает механизм, в котором процесс выработки электроэнергии интегрирован в корпус конструкции двигателя внутреннего сгорания. Он включает сердечник из магнитного материала, который возбуждается катушкой. Этот магнитопровод является частью самой конструкции блока двигателя.Одновременно с этим поршень двигателя модифицируется за счет использования диска из магнитного материала, образующего часть самой поршневой конструкции. Электроэнергия вырабатывается возвратно-поступательным движением поршня с использованием принципа изменения индуктивности катушки с сопротивлением, вызванного возвратно-поступательным движением. Предлагаемая система полностью избавляет от необходимости иметь шкив и ременной механизм. Следовательно, в системе нет дополнительных движущихся частей, и в процессе используется уже существующее движение поршня.Кроме того, наличие нескольких цилиндров в транспортном средстве позволяет дублировать генераторный механизм в каждом из цилиндров, тем самым обеспечивая резервирование и повышенную общую надежность системы. Предлагаемая система может фактически использоваться как в генераторном, так и в двигательном режимах, а также позволяет при желании рекуперативное торможение и, следовательно, открывает возможности для эксплуатации транспортных средств мягкого гибридного типа.

  • URL записи:
  • Наличие:
  • Дополнительные примечания:
    • Реферат перепечатан с разрешения Института инженерии и технологий.
  • Авторов:
  • Дата публикации: 2018-6

Язык

Информация для СМИ

Предмет / указатель

Информация для подачи

  • Регистрационный номер: 01676610
  • Тип записи: Публикация
  • Файлы: TRIS
  • Дата создания: 31 мая 2018 10:29

% PDF-1.4 % 1 0 объект > эндобдж 2 0 obj > / Содержание [5 0 R] >> эндобдж 3 0 obj > эндобдж 4 0 obj > эндобдж 5 0 obj > транслировать конечный поток эндобдж 6 0 obj > транслировать application / pdf

  • 2020-04-30T22: 33: 41 + 05: 30PDF Разделение и слияние (http://www.pdfarea.com) 2020-04-30T22: 33: 41 + 05: 30PDF Разделение и слияние (http: // www. pdfarea.com) конечный поток эндобдж 7 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB / ImageC / ImageI] >> / Содержание [33 0 R 34 0 R] / Группа> / Вкладки / S / StructParents 0 >> эндобдж 8 0 объект > транслировать конечный поток эндобдж 9 0 объект > / ProcSet [/ PDF / Text / ImageB / ImageC / ImageI] >> / Содержание 38 0 руб.
  • Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *