Меню Закрыть

Роторно поршневой двигатель принцип работы: Двигатель Ванкеля — устройство и принцип работы РПД автомобиля

Содержание

Роторный двигатель — устройство, особенности и принцип работы

Когда автомобили с поршневыми двигателями внутреннего сгорания уже широко распространились по всему миру, некоторые инженеры попытались разработать роторные двигатели, такие же эффективные и мощные. Существенных успехов добились специалисты из Германии, что неудивительно, ведь именно в этой стране изобрели автомобиль.

Немного истории

В 1957 году свет увидел первый роторно-поршневой двигатель. Впоследствии он был назван именем одного из разработчиков — Феликса Ванкеля. Второй человек, Вальтер Фройде, участвующий в процессе изобретения, незаслуженно попал в тень соавтора. Оба инженера были представителями немецкой компании NSU, производившей авто и мототехнику.

Годом позднее выпустили первый автомобиль с РПД. К сожалению, даже главных конструкторов модель новой машины не удовлетворила. Дви́гатель доработали, и в конце 60-х годов на свет появился седан, получивший звание «Авто года». Это был Ro-80 той же компании NSU. До 100 км он разгонялся всего за 12,8 с, развивал скорость до 180 км/ч, а весил немногим больше тонны. По тем временам это были грандиозные показатели. Лицензию на производство роторных моторов стали сразу же приобретать одна автомобильная компания за другой.

Неизвестно, как сложилась бы судьба изобретения Ванкеля, если бы в 1973 году не начался энергетический кризис, и цены на нефть резко повысились. Роторный двигатель внутреннего сгорания съедал слишком много топлива, поэтому от его применения начали отказываться.

В конце 90-х авто с моторами Ванкеля выпускали только Россия и Япония. Российские автомобили ВАЗ, оснащенные РПД, малоизвестны, а вот японским моделям удалось добиться мировой популярности.

В настоящее время автомобили с роторными двигателями производит лишь компания Mazda. Японским специалистам удалось усовершенствовать автомобильный мотор до такой степени, что он стал потреблять в 2 раза меньше масла и на 40% меньше топлива. Токсичность выхлопов также сократилась, и двигатель теперь соответствует европейским экологическим стандартам. Новым витком в развитии РПД стало применение водорода в качестве топлива.

Основы устройства роторного двигателя

Чтобы понять, как работает роторный двигатель, надо разобраться с его устройством. Две важные детали РПД — ротор и статор. Ротор, установленный на валу, вращается вокруг неподвижной шестерни — статора. Соединение с шестерней происходит посредством зубчатого колеса. Делают ротор из легированной стали и помещают в цилиндрический корпус.

Ротор двигателя в поперечном срезе имеет треугольную форму, его грани выпуклые, а три вершины постоянно контактируют с внутренней поверхностью корпуса. Таким образом, пространство цилиндра разделяется на три камеры. В результате вращения объем камер меняется. В определенный момент, из-за особенностей формы профиля корпуса, камер становится четыре.

  • На первом этапе в одну из камер через отверстие (впускное окно) запускается топливо.
  • Далее объем камеры с топливом уменьшается, впускное окно полностью закрывается и начинается сжатие топлива.
  • На следующем этапе образуется четыре камеры, срабатывают свечи (их две), происходит возгорание топлива, и совершается полезная работа мотора.
  • При дальнейшем вращении ротора открывается выпускное окно, в которое выходят продукты горения (выхлопные газы).

Как только выпускное окно закрывается, открывается впускное отверстие и цикл повторяется.

Один рабочий цикл совершается за один полный оборот вала. Чтобы поршневой двигатель совершил такую же работу, он должен быть двухцилиндровым.

Для обеспечения герметичности на вершинах ротора устанавливают уплотнительные пластины. К цилиндру их придавливают пружины и центробежная сила, добавляется также давление газа.

Чтобы лучше понять, как устроен роторный двигатель, и что это такое вообще, необходимо изучить схему. На ней представлено поперечное сечение агрегата и процессы, происходящие при движении ротора. Схема роторного мотора показывает, какие этапы проходит ротор, играющий роль поршня.

Типы роторных двигателей

Древнейшие роторные двигатели — это водяные мельницы, в которых колесо вращается от действия воды и передает энергию валу. Устройство современно роторного двигателя, работающего на топливе, значительно сложнее. В нем камера может быть:

  • герметично закрыта;
  • постоянно контактировать с внешней средой.

Первый тип устройств применяют на средствах передвижения, а второй в газовых турбинах. Двигатели с закрытой камерой в свою очередь разделяются на несколько видов. Классификация роторных моторов следующая.

  1. Ротор вращается попеременно то в одну, то в другую сторону, его движение неравномерно.
  2. Вращение происходит в одну сторону, но скорость меняется, движение пульсирующее.
  3. Двигатели с уплотнительными заслонками, сделанными в виде лопастей.
  4. Равномерно вращающийся ротор с заслонками, которые движутся вместе с ротором и выполняют функцию уплотнителя.
  5. Двигатели с ротором, совершающим планетарное движение.

Существует также еще два вида типа роторных двигателей, в которых главный элемент равномерно вращается. Они отличаются организацией рабочей камеры и конструкцией уплотнителей. Двигатель Ванкеля относится к пятому пункту из представленного выше списка.

Преимущества РПД

Рассмотрев устройство роторного двигателя и принцип работы, можно понять, что он полностью отличается от поршневого. Роторный двигатель внутреннего сгорания более компактный, состоит из меньшего количества деталей, а его удельная мощность больше, чем у поршневого мотора.

РПД легче уравновесить, чтобы свести вибрации к минимуму. Это позволяет устанавливать его на легкий транспорт, например, микроавтомобили.

Количество деталей меньше, чем у поршневого двигателя почти в 2 раза. Размеры тоже значительно меньше, и такое преимущество упрощает развесовку по осям, позволяет добиться большей устойчивости на дороге.

Традиционный поршневой двигатель совершает полезную работу только за два оборота вала, а в роторном двигателе полезная работа совершается за один оборот ротора. Это является причиной быстрого разгона автомобилей с РПД.

Высокий расход топлива РПД

Устройство и принцип работы роторного двигателя на удивление просты, понятны и остроумны. Почему же он не получил распространения подобно поршневому ДВС? Не последнее место здесь занимает экономичность.

Роторный двигатель внутреннего сгорания потребляет слишком много топлива. При объеме всего 1,3 литра на каждые 100 км уходит почти 20 литров бензина. По этой причине запускать массовое производство автомобилей с РПД решились не многие компании.

В свете последних событий на Ближнем Востоке, когда за ресурсы ведется ожесточенная война, а цены на нефть и газ остаются по-прежнему довольно высокими, ограниченное применение РПД вполне понятно.

Другие важные недостатки

Следующим недостатком роторно-поршневого двигателя является быстрый износ уплотнителей, расположенных по ребрам ротора. Износ этот происходит по причине быстрого вращения, и как следствие, трения ребер о стенки камеры.

В дополнение к этому усложняется система смазки ребер. Компания Мазда сделала форсунки, которые впрыскивают масло в камеру сгорания. В связи с этим требования к качеству масла повысились. Постоянной обильной смазки также требует главный вал, вокруг которого происходит движение.

Техническое решение вопросов смазки требовало особого подхода, и справиться с задачей смогли только японские инженеры после долгих лет экспериментов.

Температура выхлопных газов у РПД выше, чем у поршневого двигателя. Это связано с относительно малой длиной рабочего хода грани ротора. Процесс горения едва успевает закончиться, как грань уже переместилась настолько, что открывается выпускное окно. В результате в выхлопную трубу выходят газы, которые полностью не передали давление ротору, и температура их высока. В атмосферу также попадает небольшая часть недогоревшей топливной смеси, что отрицательно сказывается на окружающей среде.

В роторном двигателе сложно обеспечить герметичность камеры сгорания. В процессе работы стенки статора неравномерно разогреваются и расширяются. В результате возможны утечки газа. Особенно нагревается та часть, в которой происходит сгорание. Чтобы справить с этой проблемой, различные части делают из разных сплавов. Это в свою очередь усложняет и удорожает процесс производства двигателей.

На стоимость производства роторно-поршневых двигателей Ванкеля не лучшим образом влияет сложная форма камеры. На самом деле у цилиндра не овальное сечение, как иногда говорят. Сечение имеет форму эпитрохоида и требует высокоточного исполнения.

Итак, становится понятно, что у роторного двигателя есть плюсы и минусы. Их можно свести в следующую таблицу.

Достоинства

Недостатки

Хорошая сбалансированность Высокий расход топлива, особенно на малых оборотах
Минимальные вибрации Нарушение герметичности из-за перегрева
Быстрый разгон Требует частой замены масла (каждые 5 тысяч км)
Компактные размеры Быстрый износ уплотнителей
Высокая мощность Дороговизна производства некоторых деталей
Небольшое количество основных деталей Повышенный уровень выброса CO2

Из-за быстрого износа деталей ресурс роторного двигателя составляет около 65 тыс. км. Для сравнения ресурс традиционного двигателя внутреннего сгорания в 2, а то и в 3 раза больше. Обслуживание роторно-поршневых двигателей требует большей ответственности, поэтому они привлекают внимание преимущественно профессионалов. Частично инженерам удалось устранить недостатки автомобилей с РПД, но некоторые из них все же остались.

Роторно-поршневые двигатели Мазды

В то время как другие мировые производители отказались от производства роторных двигателей, корпорация Mazda продолжила работу над ними. Ее специалисты усовершенствовали конструкцию и получили мощный мотор, способный конкурировать с лучшими европейскими агрегатами.

Работать с роторно-поршневым двигателем японцы начали еще в 1963 году. Они выпустили несколько моделей автобусов, грузовиков и легковых авто.

С 1978 по 2003 год компания производила знаменитый спорткар RX-7. Его приемником стала модель RX-8, получившая более 30 наград на международных моторных выставках.

На RX-8 был установлен двигатель Renesis (Rotary Engine Genesis). В разной комплектации автомобиль продавался по всему миру. Самые мощные модели (250 л. с., 8,5 тыс. оборотов в минуту) продавали в Северной Америке и Японии. В 2007 годы в Токио на автосалоне представили концепт кар с мотором Renesis II мощность 300 л. с.

В 2009 году автомобили Мазда с роторным мотором были запрещены в Европе, поскольку выброс углекислого газа превышал существующие на тот момент нормы. В 2102 году массовое производство японских автомобилей с роторными двигателями было прекращено. На данный момент РПД от компании Mazda устанавливают только на спортивные гоночные автомобили.

Роторный двигатель: принцип работы

Как работает роторный двигатель. Роторный двигатель изобретен и разработан доктором Феликсом Ванкелем и иногда называется двигатель Ванкеля или роторный двигатель Ванкеля.

Роторный двигатель, как и традиционный поршневой, является двигателем внутреннего сгорания, но работает он совершенно иначе. В поршневом двигателе, в одном и том же объеме пространства (в цилиндре) попеременно происходят четыре различные работы — впуск, сжатие, сгорание и выпуск (такты).

Роторный двигатель делает эти четыре такта в одном и том же объеме(камере), но каждый из этих тактов происходит в своей отдельной части этой камеры. Как будто для каждого цикла используется отдельный цилиндр, а поршень перемещается от одного цилиндра к другому.

В этой статье мы подробно расскажем, как работает роторный двигатель. Давайте начнем с основных принципов его работы.

Принцип работы роторного двигателя.

Как и поршневой, роторный двигатель использует давление которое создается при сжигании смеси воздуха и топлива. В поршневых двигателях, это давление создается в цилиндрах, и двигает поршни вперед и назад. Шатуны и коленчатый вал преобразуют возвратно-поступательные движения поршня во вращательное движение, которое может быть использовано для вращения колес автомобиля.

В роторном двигателе, давление сгорания содержится в камере, образованной частью объема камеры закрытой стороной треугольного ротора, который используется в данном случае вместо поршней.

Роторный двигатель

Ротор и корпус роторного двигателя от Mazda RX-7: Эти детали заменяют поршни, цилиндры, клапаны, шатуны и распредвалы в поршневых двигателях.

Ротор соединен со стенками камеры каждой из трех своих вершин, создавая три отдельных объема газа. Ротор вращается, и каждый из этих объемов попеременно расширяется и сжимается. Цепная реакция всасывает воздух и топливо в рабочую камеру, сжимает смесь, она расширяясь делает полезную работу, затем выхлопные газы выталкиваются, новая порция воздуха и топлива всасывается, и так далее.

Мы заглянем внутрь роторного двигателя, чтобы познакомится с его устройством, но сначала давайте взглянем на новые модели автомобилей с роторным двигателем.

Mazda RX-8

Mazda стала пионером в массовом производстве автомобилей, использующих роторные двигатели. Спорткар RX-7, который поступил в продажу в 1978 году, был, пожалуй, наиболее успешным автомобилем с роторным двигателем. Но ему предшествовал целый ряд автомобилей, грузовиков и даже автобусов с роторной силовой установкой, начиная с Cosmo Sport выпуска 1967 года.

Однако RX-7 не продается с 1995 года, но идея роторного двигателя не умерла. Mazda RX-8, последний спорткар от Mazda, имеет у себя под капотом новейший роторный двигатель под названием RENESIS. Названный лучшим двигателем 2003 года, этот атмосферный двух-роторный двигатель производит около 250 лошадиных сил.

Строение роторного двигателя.

Роторный двигатель имеет систему зажигания и систему впрыска топлива, весьма похожие на те, что установлены на поршневых двигателях. Однако, если вы никогда не видели внутренности роторного двигателя, то будьте готовы удивиться, потому что вы не увидите ничего знакомого.

Ротор

Ротор имеет три выпуклых стороны, каждая из которых действует как поршень.
Каждая сторона ротора имеет углубление в ней, что повышает скорость вращения ротора в целом, предоставляя больше пространства для топливо-воздушной смеси.

На вершине каждой грани находится по металлической пластине, которые и формируют камеры, в которых происходят такты двигателя. Два металлических кольца на каждой стороне ротора формируют стенки этих камер. В середине ротора находится круг, в котором имеется множество зубьев. Они соединены с приводом, который крепится к выходному валу. Это соединение определяет путь и направление, по которому ротор движется внутри камеры.

Камера

Камера двигателя приблизительно овальной формы (но если быть точным — это Эпитрохоида, которая в свою очередь представляет собой удлиненную или укороченную эпициклоиду, которая является плоской кривой, образуемой фиксированной точкой окружности, катящейся по другой окружности). Форма камеры разработана так, чтобы три вершины ротора всегда находились в контакте со стенкой камеры, образуя три закрытых объемах газа.

В каждой части камеры происходит один из четырех тактов:

  • Впуск
  • Сжатие
  • Сгорание
  • Выпуск

Отверстия для впуска и выпуска находятся в стенках камеры, и на них отсутствуют клапаны. Выхлопное отверстие соединено непосредственно с выхлопной трубой, а впускное напрямую подключено к газу.

Выходной вал

Выходной вал имеет полукруглые выступы-кулачки, размещенные несимметрично относительно центра, что означает, что они смещены от осевой линии вала. Каждый ротор надевается на один из этих выступов. Выходной вал является аналогом коленчатого вала в поршневых двигателях. Каждый ротор движется внутри камеры и толкает свой кулачок.

Так как кулачки установлены несимметрично, сила с которой ротор на него давит, создает крутящий момент на выходном валу, заставляя его вращаться.
Теперь давайте посмотрим, как эти части взаимодействуют.

Строение роторного двигателя

Роторный двигатель состоит из слоев. Двухроторный двигателя состоят из пяти основных слоев, которые удерживаются вместе благодаря длинным болтам, расположенным по кругу. Охлаждающая жидкость протекает через все части конструкции.

Два крайних слоя закрыты и содержат подшипники для выходного вала. Они также запечатаны в основных разделах камеры, где содержатся роторы. Внутренняя поверхность этих частей очень гладкая и помогает роторам в работе. Отдел подачи топлива расположен на конце каждой из этих частей.

Следующий слой содержит в себе непосредственно сам ротор и выхлопную часть.

Центр состоит из двух камер подачи топлива, по одной для каждого ротора. Он также разделяет эти два ротора, поэтому его внешняя поверхность очень гладкая.

В центре каждого ротора крепится две большие шестерни, которые вращаются вокруг более маленьких шестерней и крепятся к корпусу двигателя. Это и является орбитой для вращения ротора.

Мощность роторного двигателя

Роторные двигатели используют четырехтактный цикл сгорания, как и в обычном поршневом. Но в роторном это происходит совсем по-другому.

Сердце роторного двигателя — это ротор. Он чем-то эквивалентен поршню в поршневом двигателе. Ротор установлен на большой округлом лепестке на выходном вале. Этот лепесток смещается от осевой линии вала и действует как заводная ручка на лебедку, давая ротору пространство для поворота выходного вала. Пока ротор вращается внутри корпуса, он толкает лепесток внутри жестких кругов, вращаясь 3 раза за каждый оборот ротора.

В то время как ротор вращается в корпусе, три отсека внутри изменяют свой размер. Изменение размера этих камер создает давление. Давайте пройдем по всем 4 отсекам двигателя.

Подача

Первая фаза начинается тогда, когда вершина ротора находится на уровне отсека подачи. В момент когда камера подачи открыта для основного отсека, объем этой камеры близок к минимуму. Как только ротор проходит мимо камеры подачи, объем камеры расширяется и вливает воздух/топливо в основной отсек. Как только ротор проходит камеру подачи, отсек становится полностью изолированным и начинается компрессия.

Компрессия

В то время как ротор продолжает свое движение по основному отсеку, пространство в отсеке становится меньше, смесь из воздуха/топлива сжимается. Как только ротор проходит отсек со свечами зажигания, объем камеры снова сводится к минимуму. В это время происходит возгорание смеси.

Возгорание

Большинство роторных двигателей имеет две свечи зажигания. Камера возгорания достаточно длинная, поэтому одной свечи будет недостаточно. Как только свечи воспламеняет топливно-воздушную смесь, давление в отсеке сильно увеличится, приводя ротор в движение. Давление в камере возгорания продолжает расти, заставляя ротор двигаться, а отсек расти в объеме. Газы от возгорания продолжают расширяться, перемещая ротор и создавая мощность, до того момента, пока ротор не пройдет выхлопной отсек.

Выхлоп

После того, как ротор проходит выхлопной отсек, высокое давление газа сгорания свободно выходит в выхлопную трубу. Так как ротор продолжает движение, камера начинает сжиматься, выдавливая оставшиеся выхлопные газы в свободный отсек. К тому времени объем камеры опять падает к минимуму и цикл начинается сначала.

Разница и Проблемы

У роторного двигателя достаточно много различий с обычным поршневым двигателем.

Меньше движущихся частей

Роторный двигатель имеет намного меньше частей, чем скажем 4-ех цилиндровый поршневой движок. Двух роторный двигатель имеет три главные движущиеся части: два ротора и выходной вал. Даже самый простой 4-ех цилиндровый поршневой двигатель имеет как минимум 40 движущихся частей, включая поршни, шатуны, стержень, клапаны, рокеры, клапанные пружины, зубчатые ремни и коленчатый вал. Минимизация движущихся частей позволяет получить роторным двигателям более высокую надежность. Именно поэтому некоторые производители самолетов (к примеру Skycar) используют роторные двигатели вместо поршневых.

Мягкость

Все части в роторном двигателе непрерывно вращаются в одном направлении, в отличие от постоянно изменяющих направление поршней в обычном двигателе. Роторный движок использует сбалансированные крутящиеся противовесы, служащие для подавления любых вибраций. Подача мощности в роторном двигателе также более мягкая. Каждый цикл сгорания происходит за одни оборот ротора в 90 градусов, выходной вал прокручивается три раза на каждое прокручивание ротора, каждый цикл сгорания проходит за 270 градусов за которые проворачивается выходной вал. Это значит, что одно роторный двигатель вырабатывает мощность в три четверти . Если сравнивать с одно-цилиндровым поршневым двигателем, в котором сгорание происходит каждые 180 градусов каждого оборота, или только четверти оборота коленчатого вала.

Неспешность

В связи с тем, что роторы вращаются на одну треть вращения выходного вала, основные части двигателя вращаются медленней, чем части в обычном поршневом двигателе. Это также помогает и в надежности.

Проблемы

Самые главные проблемы при производстве роторных двигателей:

Достаточно сложно (но не невозможно) подстроиться под регламент выброса CO2 в окружающую среду, особенно в США.

Производство может стоить намного дороже, в большинстве случаев из-за небольшого серийного производства, по сравнению с поршневыми двигателями.

Они потребляют больше топлива, так как термодинамическое КПД поршневого двигателя снижается в длинной камере сгорания, а также благодаря низкой степени сжатия.

Источник: Авто Релиз.ру.

Не оправдавший надежды — журнал «АБС-авто»

Немецкая фирма NSU оставила заметный след в истории мирового автомобилестроения благодаря созданию роторно-поршневого двигателя. Это заслуга ее инженера Феликса Ванкеля, чье имя и получил данный очень интересный мотор (РПД Ванкеля).

Немецкий период

Необходимо сразу отметить, что роторно-поршневой двигатель – это целое направление в моторостроении. Придумано огромное количество их разнообразных конструкций. Однако единственным доведенным до серийного производства представителем племени, в котором функцию поршня выполняет вращающееся тело, является именно РПД Ванкеля. Феликс Ванкель получил патент на свое изобретение в 1957 году. Первый в мире серийный автомобиль с роторно-поршневым двигателем (заднемоторный NSU Spider) начали выпускать в 1964 году, в 1967-м запустили в производство переднеприводный NSU Ro 80, завоевавший титул «Автомобиль года». А затем. NSU сошла со сцены – ее «проглотил» Volkswagen. Однако на этом развитие РПД Ванкеля не прекратилось – дело продолжила японская Mazda, причем весьма успешно. О достижениях японской компании поговорим позднее, а пока рассмотрим устройство немецкой диковинки. Предложенный Ванкелем двигатель состоял из трех основных компонентов: корпуса (в литературе его также называли картером или статором), ротора и эксцентрикового вала. Отличительной особенностью данного РПД является выполненная по эпитрохоиде внутренняя поверхность корпуса и трехгранная форма ротора. К боковой крышке корпуса прикреплена шестерня, которая при работе двигателя остается неподвижной. Другая шестерня с внутренним зацеплением соединена с ротором. Отношение количества их зубьев равно 2 : 3. Ротор через подшипник надет на эксцентрик вала и при поворачивании вала совершает сложное движение – он вращается вокруг своей оси, а та, в свою очередь, описывает окружность вокруг оси вала. Такая конструкция двигателя обеспечивает постоянное прилегание граней ротора к внутренней поверхности корпуса. При этом образуются три полости, объем которых зависит от положения вала и при его вращении периодически меняется (то увеличивается, то уменьшается). Получается как у обычного поршневого мотора, что позволяет реализовать хорошо известный четырехтактный цикл, т.е. впуск, сжатие, сгорание-расширение и выпуск. Все четыре такта в одной полости (камере) осуществляются за один оборот ротора, а камер три. Но если учесть, что эксцентриковый вал вращается в 3 раза быстрее ротора, то на один оборот двигателя приходится один рабочий такт. Следовательно, однороторный РПД можно сопоставить с одноцилиндровым 2-такт-ным или 2-цилиндровым 4-тактным мотором. Нельзя не отметить и обстоятельство, связанное с определением литража двигателя. Рабочий объем одной полости равен разности между ее максимальным и минимальным объемами, и их отношение дает степень сжатия. В обычном четырехтактном одноцилиндровом моторе количество топливовоздушной смеси, равное рабочему объему цилиндра, сжигается за два оборота коленчатого вала, а РПД с одним ротором за те же два оборота «пропускает через себя» смеси в 2 раза больше. Отсюда при равном рабочем объеме мощность роторного двигателя получается в 2 раза больше. Чтобы уравнять моторы (для удобства сравнения их характеристик), придумали выражать рабочий объем РПД двойной величиной, что вроде бы разумно. Но тут возникла путаница, так как в обращении оказались обе эти величины. Поэтому надо понимать, о чем в каждом конкретном случае идет речь. В качестве примера рассмотрим «движок» NSU Spider. Рабочий объем его камеры равен 497,5 см3; степень сжатия 8,5; мощность 54 л.с. при 6000 об/мин. Такая мощность соответствует литровому бензиновому мотору тех лет, поэтому приведенный (эквивалентный) рабочий объем рассматриваемого РПД определяют в 995 см3. Кстати, а как собирать налоги в тех странах, где ориентируются на «кубатуру» двигателей? Может быть, начислять даже не в двойном, а в тройном размере по отношению к объему полости, так как их три? Но это так, курьез. Камера сгорания у двигателя Ванкеля имеет серпообразную форму, которая весьма далека от оптимальной с точки зрения тепловых потерь. А это предопределяет повышенное потребление топлива. Не все хорошо получается и с токсичностью отработавших газов. Много неприятностей разработчикам доставило уплотнение ротора – оно получалось сложным и не обеспечивало необходимой герметичности, а также быстро изнашивалось. Потребовала к себе повышенного внимания и свеча зажигания – в силу конструктивных особенностей она не охлаждалась свежей смесью, а посему часто отказывала. Значительным событием стало появление NSU Ro 80. Автомобиль создан с максимальным использованием достоинств РПД. 115-сильный двухроторный мотор (объем камеры каждого ротора остался как у Spider, а суммарный «литраж» удвоился; эксцентрики сдвинуты друг относительно друга на половину оборота вала) расположен в переднем свесе. В результате получился просторный салон. NSU Ro 80 разгоняется до 100 км/ч за 12,8 с; достигает скорости 180 км/ч; расход топлива составляет 11,2 л на 100 км пути. Подведем промежуточный итог. По сравнению с обычным поршневым мотором той же мощности двигатель Ванкеля получается компактнее и легче, но отличается повышенным аппетитом и имеет больше проблем с экологией. Он хорошо уравновешен, однако желательно увеличить надежность и долговечность. Все сказанное относится к раннему периоду развития РПД. В дальнейшем его параметры удалось значительно улучшить, но и «шевелящие поршнями» тоже не стояли на месте и значительно продвинулись и по экономичности, и по экологичности, и по степени форсирования. В итоге реальной конкуренции со стороны РПД Ванкеля так и не получилось.

Японская эра

Появление работоспособного роторного двигателя произвело сильное впечатление на мировую научно-техническую общественность. Многие фирмы закупили лицензии. РПД Ванкеля пытались применять в авиации, на водном транспорте, для газонокосилок, использовать в качестве стационарных для привода электрогенераторов и насосов. Для установки на мотоциклы создали роторные двигатели с воздушным охлаждением. Однако, несмотря на все усилия конструкторов, особого успеха эта деятельность не принесла. Хотя не обошлось и без исключения – Mazda, купив лицензию у немцев, внесла в двигатель собственные изменения и с 1967 года начала серийно комплектовать ими свою продукцию. Первым японским автомобилем с РПД стал двухместный спортивный Mazda Cosmo Sport (110S). Его 110-сильный двигатель (2 ротора, объем каждой камеры 491 см3) позволял достигать скорости 185 км/ч. За ним последовали другие. Выпуском роторных автомобилей фирма занималась более четырех десятилетий, причем в весьма приличных количествах. Большинство моделей могли комплектоваться как роторным, так и обычным моторами. К сожалению, при таком подходе теряется одно из главных достоинств РПД – его компактность. Зато увеличивается тираж, что благоприятно сказывается на цене. Среди роторных «японцев» были и более, и менее удачные модели. Значительным успехом стало создание в 1978 году Mazda Savanna RX-7. 2-роторный 130-сильный мотор разгонял 4-местный автомобиль до 180 км/ч. Специалисты фирмы постоянно занимались совершенствованием конструкции роторного двигателя. В целом нововведения шли в том же направлении, что и у обычных моторов. На смену карбюратору пришел электронный впрыск, электронным стало и зажигание. Экспериментировали с впускными трубопроводами, применяли турбонаддув, создавали устройства дополнительной очистки отработавших газов. Вершиной достижений стал 230-сильный «движок» RENESIS для 4-дверного купе Mazda RX-8. Компания всемерно старалась привлечь внимание к роторным двигателям, в том числе участвуя в соревнованиях «24 часа Ле Мана». В 1991 году пришел большой успех – роторная Mazda 787В с бортовым номером 55 выиграла эту престижнейшую гонку.

Принцип работы роторно-поршневого двигателя Ванкеля

Отечественная эпопея

Ротор и корпус РПД Ванкеля

Отдельная страница в истории РПД – работы по данной теме в СССР, а затем и в России. Мы лицензию не покупали – перед тем как платить деньги, надо сначала разобраться, за что. Вот мы и разбирались. А позднее оказалось, что сделали правильно – платить-то было не за что. Все фирмы, кроме Mazda, купившие лицензию, их повыбрасывали. Кроме того, любая индустриально-развитая держава, а Советский Союз, несомненно, был таковой, должна быть в курсе всех нюансов развития техники, что заставляло нас заниматься и данной тематикой. В нашей стране работы по РПД велись несколькими организациями, в том числе мото- и автостроителями. В Серпухове создали несколько моделей мотоциклов с такими моторами. Их испытывали, и они даже принимали участие в соревнованиях. Существенных успехов в роторном деле добились в Тольятти. На ВАЗе своими силами сумели разработать целое семейство двигателей мощностью от 40 до 200 л.с., причем наибольшие усилия были направлены на 120- и 140-сильные варианты. Первоначально идея заключалась в создании «бешеных» «Жигулей» примерно таким путем, как в Горьком поступали с «Волгами», оснащая их силовыми агрегатами от «Чайки». Эти автомобили предназначались для спецслужб, и они были созданы и производились в небольших количествах. Затем волжскими РПД заинтересовались авиаторы, например, была предпринята попытка установить их на легкий вертолет Ми-34. Во второй половине 1990-х годов роторные машины из Тольятти даже стали поступать в свободную продажу. Эпопея с РПД закончилась, когда на ВАЗ пришла компания Renault. Французы действовали по хорошо известному принципу: экономика должна быть экономной. Подробнее о ВАЗовских роторных изделиях и возможностях их обслуживания наш журнал рассказал в № 3/2002. В заключение вновь вернемся в Японию. В июне прошлого года Mazda выпустила последний роторный автомобиль (RX-8), и в настоящее время такие транспортные средства нигде в мире не производятся, по крайней мере, серийно. По поводу дальнейшего хода событий от пресс-службы компании поступают противоречивые сведения. Так и должно быть – фирма подогревает интерес к своей продукции. Попробуем порассуждать о перспективах РПД Ванкеля. В последние десятилетия направление развития мирового моторостроения в основном задавалось законодателями, которые, стараясь угодить избирателям (и это хорошо), принимали один за другим все более жесткие экологические стандарты. Но теперь проблема загрязнения окружающей среды автомобилями практически решена (Euro VI вступили в действие) и на первый план вышла обеспокоенность по поводу изменения климата. То ли происходит потепление, то ли похолодание. Пока точно не известно, но виновный уже назван – парниковые газы, а значит, с ними надо бороться. Это очень выгодно для имиджа слуг народа. А что эта борьба означает для автомобилестроения? Ответ прост: повышение КПД силовой установки и снижение массы транспортного средства посредством уменьшения его размеров и применения легких материалов в конструкции. Здесь и кроется основная опасность для роторных двигателей – по экономичности они далеко не лидеры. Правда, остается надежда на подзаряжаемые гибридомобили. Эти транспортные средства имеют приличный пробег на электротяге и при небольшой протяженности поездок им двигатель внутреннего сгорания особо и не нужен. В таких случаях ДВС фактически превращается в балласт, и главное требование к нему – низкая масса и малый размер, т.е. то, чем отличаются РПД. Кроме того, роторные двигатели неплохо проявили себя при работе на водороде, а футурологи называют водород топливом будущего. Так что для РПД Ванкеля пока еще не все потеряно. Уникальную информацию по устройству, эксплуатации и ремонту систем турбонаддува смотрите на сайте turbomaster.ru

  • Геннадий Дунин

Роторно — поршневой двигатель внутреннего сгорания

Главной особенностью любого роторно-поршневого двигателя можно считать применение специального ротора (поршня), имеющего три грани, который вращается внутри специального цилиндра по эпитрохоиде (впрочем, возможны и другие формы цилиндра). Постараемся подробно разобрать конструкцию РПД, его преимущества и недостатки перед другими типами двигателей.

Особенности конструкции роторно — поршневых двигателей Венкеля

Впервые, такой тип двигателя был разработан в 1957 году двумя инженерами: Вальтером Фройде и Феликсом Ванкелем. На валу устанавливается ротор, который имеет жесткое соединение со специальным зубчатым колесом. Это колесо входит в зацепление со статором, который имеет вид неподвижной шестерни. Диаметр ротора достаточно сильно превышает диаметр статора, что дает возможность зубчатому колесу полностью обкатываться вокруг статора. Каждая вершина граней ротора движется по эпитрохоидальной поверхности и отделяет три, постоянно меняющихся, объема.

Данная конструкция позволяет выполнить действия всех четырех тактов любого из существующих двигателей внутреннего сгорания, причем, без применения механизма, отвечающего за газораспределение. Камеры сгорания герметизируются с помощью специальных пружинных лент и пластин, которые придавливаются к поверхности цилиндра давлением, создаваемым газом. Так как в роторно-поршневом двигателе отсутствует ГРМ, это делает его конструкцию намного проще любого другого двигателя. Кроме того, отсутствие различных тяжелых элементов, таких как, шатуны и коленчатый вал, позволяют сделать его размеры намного меньше, в то время как, мощность увеличивается. Один оборот такого двигателя равняется одному циклу, что можно сравнить с полным оборотом двухцилиндрового поршневого двигателя.

Подача топлива в камеру сгорания, смазка подвижных частей двигателя, охлаждение и запуск осуществляются точно также, как и на обычном ДВС. Расход топлива может варьироваться от

Видео — Принци работы РДП

Преимущества и недостатки РДП

Преимущества

1. Прежде всего, такой двигатель обладает самым низким уровнем вибраций. Его конструкция абсолютно уравновешена и делает движение на легких транспортных средствах намного комфортнее.

2. Очень высокие динамические характеристики. Такой двигатель позволяет разогнать транспортное средство на первой передаче до 100 километров в час, при низкой нагрузке на механизмы. Двигатель достаточно долгое время выдерживает число оборотов, достигающее 8000 об/мин.

3. Движущиеся части механизма имеют очень низкую массу, а ротор двигателя выдает мощность в течение всех четвертей каждого оборота. Это позволяет добиться достаточно большой удельной мощности, в отличие от обычного поршневого двигателя. Для сравнения, роторно-поршневой двигатель с рабочим объемом 1.3 литра, выдает мощность, равную 220 лошадиным силам, в то время как, обычный поршневой двигатель с тем же объемом выдает мощность, не превышающую 100 лошадиных сил.

4. Вместо сотен различных деталей, в роторно-поршневых двигателях применяется всего 2-3 десятка. Кроме того, размеры и масса РПД намного меньше, чем у обычных двигателей с шатунами и коленчатым валом.

Недостатки

1. Соединение вала ротора с выходным валом, посредством эксцентрированного механизма, вызывает слишком большое давление между соединяемыми трущимися деталями. Это приводит к лишнему перегреву двигателя и повышенному износу деталей механизма. В связи с этим, появляется острая необходимость в периодической замене масла и уплотнительных элементов. Если выполнять данные требования в соответствии с регламентом, то ресурс двигателя значительно увеличивается, в противно случае, происходит поломка, которая непременно выведет агрегат из строя.

2. Камера сгорания имеет форму линзы, это означает, что при очень малом объеме она имеет очень большую площадь. Все это приводит к образованию лучистой энергии, которая бесполезно влияет на работу двигателя и также приводит к излишнему перегреву. Таким образом, КПД двигателя значительно снижается, что не позволяет использовать его в полной мере.

3. На пониженной передаче такой двигатель обладает очень большим расходом топлива, по сравнению с обычными ДВС.

4. Площадь соприкосновения уплотнителей и вращающихся деталей быстро снижается, это говорит о быстром износе сальников, которые способствует утечке смазывающего вещества и попаданию масла в камеру сгорания. В результате выхлоп получается очень токсичным, а ресурс двигателя быстро снижается. Тем не менее, данную проблему устранили применением высоколегированных сталей при изготовлении РПД.

5. В связи со строгими требованиями к геометрии всех деталей механизма, возникает необходимость в высокоточном оборудовании для изготовления таких двигателей. Это усложняет и делает дороже процесс их производства.

Где применяют роторно-поршневые двигатели?

Изначально, разработка роторно-поршневых двигателей велась для спортивных автомобилей. Ведь для гоночных автомобилей не столь важен большой ресурс, так как ремонт поршневых двигателей тоже требовался и после первого заезда.

В серийном производстве РПД устанавливался на автомобили немецкого производства. Это был седан представительского класса NSU Ro 80. Автомобиль для своего времени был достаточно современным, так как имел привлекательный дизайн и хорошие аэродинамические свойства. Однако, ввиду серьезных недостатков роторно-поршневых двигателей, связанных со слишком частым техническим обслуживанием, получил отрицательную оценку, в связи с чем, стал оснащаться обычными поршневыми двигателями. Это связано с тем, что двигатель приходил в негодность уже после 50 тысяч километров, что являлось малоэкономичным показателем.

В настоящее время роторно-поршневые двигатели изготавливают только два завода в мире – это ВАЗ (Россия) и Mazda (Япония). 

устройство, принцип работы, преимущества и недостатки

Роторный двигатель (РПД или роторно-поршневой двигатель), в отличие от традиционного поршневого ДВС, проще в плане конструкции. Также данный тип силовой установки имеет более высокий КПД. Соответственно, даже при небольшом рабочем объеме «отдача» от такого мотора достаточно высокая. 

При этом РПД не получил широкого распространения в автомобильной индустрии. К сожалению, даже с учетом всех преимуществ, агрегат также имеет целый ряд недостатков. Далее мы рассмотрим, как устроен и работает роторный мотор, а также его сильные и слабые стороны.

Содержание статьи

Роторный двигатель: устройство и принцип работы РПД

Итак, роторный двигатель, который также называют двигатель Ванкеля в честь его создателя, представляет собой достаточно обособленный тип ДВС. При этом данный вид двигателей устанавливался на разные авто (например, роторный двигатель ВАЗ, роторный двигатель Мазда и т.д.), однако в большей степени популяризировали агрегат именно Mazda благодаря спорткару Мазда RX‑8 с роторным двигателем 13B-MSP.

Если коротко, в обычном поршневом моторе энергию от сгорания топлива в цилиндрах преобразует в возвратно-поступательное движение громоздкая поршневая группа, после чего происходит дальнейшее преобразование во вращательное движение (вращение коленвала).

В свою очередь, в роторном моторе нет ЦПГ, преобразование энергии происходит фактически «напрямую», то есть практически без потерь. Само собой, на Мазда роторный двигатель стал достаточно мощным «сердцем» с выдающимися характеристиками.

Примечательно то, что бензиновый атмосферный роторный мотор с рабочим объемом всего лишь 1.3 литра (13B-MSP) с 2  роторами в виде секций выдавал 192 лошадиных силы. В то же время его форсированная версия позволяла снять уже 231 «лошадку».

  • Если рассматривать конструкцию, двигатель получил 5 корпусов, в результате чего были образованы 2 камеры. Указанные камеры, подобно цилиндрам, предназначены для сгорания топливно-воздушной смеси. Энергия сгорания топлива вращает роторы, которые закреплены на эксцентриковом валу, который напоминает коленвал обычного ДВС.

При этом движение ротора сложное, так как ротор не вращается, а фактически «обкатывается» своей внутренней шестерней вокруг стационарной шестерни, которая прикреплена в центре одной из боковых стенок камеры. Сам эксцентриковый вал проходит через все корпуса и стационарные шестерни. Вращение ротора, точнее, его вращательное движение происходит так, что на 1 его оборот приходится 3 оборота эксцентрикового вала.

Еще примечательно то, что хотя в роторном моторе также есть циклы впуска, сжатия, рабочего такта и выпуска, механизм ГРМ максимально упрощен. Отсутствует привод газораспределительного механизма, нет распределительных валов, а также и самих клапанов.

Все необходимые функции реализованы счет впускных и выпускных окон,  которые выполнены в боковых стенках. На деле, ротор во время вращения открывает, а также закрывает эти окна. Чтобы было понятно, давайте рассмотрим принцип работы роторного двигателя на примере агрегата с одной секцией.

  • Итак, боковые стороны ротора вместе со стенками корпусов формируют рабочую полость. Кода ротор двигателя находится в начальном положении, по объему полость небольшая (это начало такта впуска). Далее, вращаясь, ротор, открывает впускные окна, в результате в камеру попадает рабочая топливная смесь. Когда полость достигает максимального объема, ротор перекроет впускные окна, после чего начнется такт сжатия (полость начнет уменьшаться).

В момент, когда объем полости снова минимален, за счет искры от свечи произойдет воспламенение смеси и начнется рабочий такт. Далее энергия сгорания топлива вращает ротор, после чего ротор перейдет в положение, при котором открываются выпускные окна (осуществляется выпуск отработавших газов). После выпуска весь цикл повторяется.

Другие полости будут работать точно так же. С учетом того, что полостей 3, за один оборот ротора произойдет 3 рабочих такта. Более того, эксцентриковый вал вращается быстрее ротора в 3 раза. Результат — по одному рабочему такту на один оборот вала мотора с одной секцией. Вполне очевидно, что поршневой четырехтактный ДВС с одним цилиндром имеет соотношение в 2 раза ниже по сравнению с роторным.

Получается, если сопоставить число рабочих тактов на оборот вала, тогда двухсекционный 13B-MSP напоминает обычный поршневой мотор на 4 цилиндра, однако при объеме 1.3 л двигатель такой же мощный, как и поршневой агрегат с объемом чуть более 2.5 литров. Еще добавим, что роторный мотор  имеет намного более высокую детонационную стойкость, что позволяет превратить этот мотор в двигатель на водороде.

Конструктивные особенности роторного мотора

Хотя роторный мотор конструктивно имеет меньше деталей, его принцип работы несколько сложнее. Также в устройстве роторного двигателя применены элементы из разных материалов (чугун, алюминий). Еще имеются особые покрытия (например, хром).

Статоры (корпусы роторов) имеют металлические вставки из особой стали, интегрированные в алюминиевый корпус. На деле, статор больше похож на цилиндр с хонингованной гильзой. В свою очередь, боковые корпусы выполнены из чугуна, в них сделаны впускные и выпускные окна. На крайних статорах крепятся шестерни.

Сам ротор является поршнем и шатуном, сделан из облегченного чугуна. Н каждой стороне ротора есть камера сгорания и уплотнители для сохранения герметичности. Во внутренней части ротора стоит роторный подшипник, напоминающий вкладыш коленвала.

  • На обычном поршне традиционного ДВС поршень имеет 3 кольца – пара компрессионных и маслосъемное кольцо. В свою очередь, ротор имеет апексы (уплотнители вершин ротора). Апексы играют роль компрессионных колец. Указанные элементы прижимаются к стенке статора пружиной, а также они прижаты за счет центробежной силы.

Функцию второго пояса компрессионных колец выполняют боковые, а также угловые уплотнения. Они тоже прижимаются пружинами. Эти боковые уплотнители выполнены из металлокерамики, в то же время  угловые уплотнители чугунные. Дополнительно имеются  уплотнения для изоляции, чтобы отработавшие газы не попадали во впускные окна через зазоры, которые образуются между самим ротором и боковым корпусом соответственно.

Еще с двух сторон ротора имеются особые масляные уплотнения (по аналогии с маслосъемными кольцами), которые удерживают масло, поступающее во внутреннюю полость ротора для охлаждения.

Кстати, система смазки роторного ДВС сложная, включает в себя радиатор охлаждения масла, а также целую группу из нескольких типов масляных форсунок. Форсунки интегрированы в эксцентриковый вал для охлаждения роторов, также они установлены в статоры.

Еще масло подается и в рабочую полость, смешиваясь с горючей смесью и выгорая вместе с топливным зарядом. На деле, роторный мотор весьма требователен к качеству масла. Если заливать неподходящую смазку, агрегат коксуется, возникает детонация и т.д.

Также добавим, что система питания простая, есть несколько форсунок (пара форсунок перед впускными окнами, а также во впускном коллекторе). Что касается зажигания, использованы две свечи на один ротор. Это сделано по причине того, что камеры сгорания сами по себе получились длинными. В результате, чтобы добиться равномерного и полноценного сгорания смеси,  используют две свечи, причем их электроды отличаются. При замене свечей важно обращать на это внимание.

Недостатки роторного двигателя

На старте продаж роторная Мазда пользовалась активным спросом, так как автомобиль привлекал автолюбителей своим  необычным и мощным двигателем (особенно форсированные версии с мощностью около 500 л.с.). Однако немного позже владельцы уже на относительно небольших пробегах столкнулись с первыми проблемами и минусами данного типа ДВС.    

Основные недостатки — большой расход топлива и относительно низкий ресурс роторного двигателя 13B-MSP. В идеальных условиях силовая установка данного типа способна выходить около 100 тыс. км пробега. Что касается реальной эксплуатации, часто моторы приходили в негодность уже к 50-60 тыс. км. пробега.

Обычно первыми выходят из строя уплотнения ротора. Причина вполне очевидна, так как уплотнения находятся под высокими нагрузками и сильно нагреваются. Также дает о себе знать и детонация, износ подшипников эксцентрикового вала, роторов и т.д.

  • Примечательно то, что первыми сдаются апексы (уплотнения на торцах), тогда как боковые уплотнители ходят намного дольше. В результате износа апексов, а также их установочных мест на роторе, в двигателе падает компрессия, углы уплотнителей могут отваливаться, повреждая поверхности статора.

Также следует отметить быстрый выход из строя коренных вкладышей эксцентрикового вала. С учетом того, что вал осуществляет вращение в 3 раза быстрее роторов, роторы несколько смещаются по отношению к стенкам статора, причем вершины роторов должны всегда быть удалены на одно расстояние от стенок.

Рекомендуем также прочитать статью о том, что такое гибридный двигатель автомобиля. Из этой статьи вы узнаете, как устроен и работает двигатель гибрид, а также что нужно знать о гибридном двигателе перед покупкой автомобиля с силовой установкой данного типа.

В результате, когда углы апексов выпадают, на поверхности статора неизбежно появляются задиры. При этом диагностика роторного двигателя сильно затруднена, так как, в отличие от обычного мотора, роторный двигатель не стучит в случае износа вкладышей.

Параллельно отметим, что на версиях данного мотора с наддувом работа агрегата на обедненной смеси приводит к перегреву апекса. Далее пружина, прижимающая апекс, просто гнет его и компрессия сильно снижается. Еще форсированные (роторные двигатели с наддувом) отличаются неравномерным нагревом корпуса.

В верхней части ДВС, где происходят такты впуска и сжатия, более холодные. В то же время нижняя часть, где протекает процесс сгорания смеси и выпуска раскаленных газов, нагревается намного сильнее. Результат – деформация корпуса форсированных версий.

  • Также отметим, что отдельно проявились и проблемы системы смазки. На практике, масляные форсунки в статоре часто загрязняются и перестают работать. При этом промыть клапаны форсунок не получается, то есть нужна замена. Если же вовремя проблема не была установлена, масляное голодание становится причиной сильного износа целого ряда элементов роторного двигателя.

При этом во всех случаях и независимо от причины, статор на практике восстановить практически не представляется возможным, а также следует отметить отсутствие ремонтных запчастей. Это значит, что если статор поврежден, восстановить двигатель очень сложно и дорого. То же самое касается и ротора. Если пазы под апексы повреждены, отремонтировать деталь практически невозможно.

Все это означает, что мотор фактически «одноразовый» и качественно его отремонтировать нет возможности. Единственный выход – покупка и установка нового двигателя, так как контрактные варианты в большинстве случаев тоже будут изношены и долго не прослужат. Само собой, купить роторный двигатель без пробега можно, но цена роторного двигателя будет высокой.   

Советы и рекомендации

Прежде всего, роторный двигатель необходимо «кормить» только качественным высокооктановым бензином (не ниже АИ-98). Только качественное топливо позволяет избежать детонации, а также замедляет процесс накопления нагара на электродах свечей зажигания.

Еще следует помнить, что этот мотор предельно чувствителен не только к качеству, но и типу масла. Например, не рекомендуется лить синтетику, так как быстро скапливается нагар на апексах, компрессия падает. Заливать в такой мотор следует исключительно рекомендуемое самим производителем масло или подходящую по всем допускам «минералку».

Также замену масла нужно производить часто, масло в роторном моторе меняют каждые 4-5 тыс. км.  Еще важно своевременно менять воздушный фильтр двигателя, так как его загрязнение может привести к закоксовке масляных форсунок системы смазки. Что касается свечей зажигания, лучше производить их замену каждые 10-15 тыс. км.

  • Как правило, основным признаком проблем роторного мотора является потеря компрессии, которая проявляется в затрудненном холодном пуске. Далее неполадки прогрессируют, мотор начинает плохо заводиться как на «холодную», так и на «горячую». Обычно в таком случае очевиден износ апексов, скопление отложений на электродах свечей зажигания и т.д.

В подобной ситуации необходимо срочно отправляться на диагностику к специалистам по ремонту ДВС данного типа. На практике, хотя ремонт сложный и дорогой, в последнее время  в СНГ появилось  несколько центров, специализирующихся на дефектовке и ремонте роторного двигателя  с гарантией.

Как правило, в рамках ремонта выполняется замена статоров, уплотнений роторов, самих роторов и т.д. Конечно, ремонт не дешевый, но однозначно более доступный по сравнению с покупкой нового силового агрегата.

Напоследок отметим, как и поршневой двигатель, роторный мотор нуждается в прогреве перед поездкой. При этом пока мотор не выйдет на рабочие температуры, нагружать агрегат не следует. При таком подходе, а также в сочетании с качественным бензином и маслом, а также своевременном обслуживании, есть все шансы, что роторный двигатель Mazda RX-8 пройдет без ремонта около 80 или даже 100 тыс. км.

Подведем итоги

С учетом приведенной выше информации становится понятно, почему роторный двигатель не получил широкого распространения даже с учетом целого ряда преимуществ. Прежде всего, небольшой ресурс,  необходимость частого и затратного облуживания, а также сложность ремонта РПД являются серьезными недостатками силовых установок данного типа.

Рекомендуем также прочитать статью о том, что такое двигатель на водороде. Из этой статьи вы узнаете, какие особенности имеет водородный двигатель, а также какие перспективы имеет двигатель на водороде.

По этой причине следует отдельно изучить все нюансы, рассмотренные выше, особенно если к покупке рассматривается автомобиль с роторным двигателем. Например, Мазда RX-8 на вторичном рынке может показаться  отличным вариантом, так как данные авто продаются по привлекательной цене на фоне конкурентов с аналогичными характеристиками.

Однако на практике такой автомобиль может требовать замены или серьезного и дорогостоящего ремонта силового агрегата. Более того, даже если с двигателем все в порядке, не стоит рассчитывать на большой ресурс, а также потенциальным владельцам следует готовиться к более высоким расходам на плановое обслуживание роторного двигателя по сравнению с форсированными поршневыми ДВС (как атмосферными, так и с наддувом).  

Роторный двигатель, принцип работы и техника применения | Халва

Роторный двигатель изобрел доктор Феликс Ванкель, вернее он был соавтором совместно с Вальтером Фройде. В 1957 году они разрабатывали две модели аналогичных роторных двигателей, но двигатель Ванкеля нашел более широкое применение. Именно поэтому этот двигатель часто также называют двигателем Ванкеля или роторным двигателем Ванкеля.
 Роторный двигатель, как и двигатель в вашей машине является двигателем внутреннего сгорания, но принцип его работы совершенно другой, в отличии от обычного поршневого двигателя.

 Если в поршневом двигателе, существует несколько (в зависимости от цилиндров) рабочих объемов (цилиндр и поршень),  поочередно выполняющих свои стандартные циклы – забор смеси, сжатие, зажигание и выхлоп, то в роторном, поршни заменены ротором. (рабочий треугольный орган в форме эпитрохоида), который в зависимости от угла поворота поочередно, совместно с корпусом, участвует все в тех же циклах перечисленных ранее (забор, сжатие, зажигание, выброс)
 В этой статье мы узнаем о том, как работает роторный двигатель, о его особенностях и интересных фактах связанных с ним, о достоинствах и недостатках. Давайте начнем наше знакомство с роторным двигателем, с принципа его работы.

Принцип работы роторно-поршневого  двигателя

Как и поршневой двигатель, роторный двигатель использует давление, создаваемое при сгорании топливно-воздушной смеси. Как и в поршневом двигателе, входное отверстие сообщается с дроссельной заслонкой, а выпускное с выхлопной системой. Если в поршневом двигателе это давление образуется в цилиндрах, а затем посредством поршней, шатунов передается на коленчатый вал, то в роторном двигателе передаточные звенья отсутствуют. Треугольный ротор в роторном двигателе является своеобразным поршнем, вращающимся по кругу и передающим крутящий момент на выходной вал.
 Фактически ротор при вращении делит общую камеру на три изолированных, в объеме каждой из этих условных камер происходит свой цикл (забор, сжатие, зажигание, выброс). Как и в случае с поршневым двигателем, роторные двигатели имеют всего 4 такта.
 Как правило, даже в самом простом роторном двигателе применяют два ротора. Такая конструкция позволяет уменьшить детонацию, увеличить стабильность работы двигателя. Если вы внимательно посмотрите на картинку, то увидите, что один полный оборот ротора, соответствует 3 оборотом вала.
 Сердцем роторного двигателя является ротор. Ротор в данном случае эквивалентен поршням в обычном двигателе. Ротор установлен на вал с неким эксцентриситетом. Фактически такое смещение можно сравнить с рукояткой на лебедке. Подобная установка ротора, позволяет передавать крутящий момент от него на вал.
 Как мы уже говорили, двигатель имеет 4 такта, они меняются в зависимости от угла поворота ротора. Сейчас мы кратко рассмотрим каждый из данных тактов в роторном двигателе. 

Забор топливно-воздушной смеси в роторном двигателе

Забор смеси начинается в тот момент, когда одна из вершин ротора проходит впускной клапан в корпусе. В это время, объем камеры расширяется, вовлекая в свое увеличивающееся пространство топливно-воздушную смесь. В тот момент, когда следующая вершина ротора проходит впускной канал, начинается следующий такт.
Сжатие топливно-воздушной смеси в роторном двигателе
Во время поворота ротора, объем смеси захваченной ротором уменьшается, что приводит к повышению давления. Максимальное давление образуется в тот момент, когда топливно-воздушная смесь находится в зоне свечей.

Сжигание топливно-воздушной смеси

Для зажигания смеси, как и в поршневом двигателе, используются свечи. Они зажигают смесь одновременно, то есть срабатывают синхронно. Обычно для роторного двигателя применяют две свечи зажигания. Применение двух свечей зажигания связано с особенностями рабочего объема. Он как бы вытянут по стенке корпуса, именно поэтому, эффективней использовать две свечи, чтобы смесь сгорала более быстро и равномерно. В случае с одной свечкой, смесь будет сгорать дольше, если можно так сказать постепенно, что значительно понизит пиковое давление во время взрыва при зажигании топливно-воздушной смеси.
 В итоге, от образовавшегося давления взрывной волны, получается рабочее усилие, проворачивающее ротор на эксцентрике вала. Крутящий момент передается на выходной вал. Ротор проворачивается до отверстия выпуска выхлопных газов.

Выброс отработавших выхлопных газов

Как только ротор одной из своих вершин пересекает границу выпускного отверстия, начинается выброс выхлопных газов. Ротор по инерции, а также посредством второго ротора, работающего асинхронно, продолжает менять свой угол и перемещается вершиной до впускного отверстия. Здесь все происходит заново от такта забора до такта выброса.

Узлы (детали) роторного двигателя

Далее мы расскажем о составляющих частях роторного двигателя, что также отчасти поможет вам в более точном понимании работы двигателя. Роторный двигатель имеет в своем составе систему зажигания, систему питания, систему охлаждения, которые похожи на те, что применяются в поршневых двигателях. А теперь о уникальных деталях.

Ротор роторного двигателя

Ротор имеет три выпуклых поверхности с фразированными углублениями. Углубление позволяют несколько увеличить рабочий объем.  На вершинах (углах) ротора имеются уплотнительные, однонаправленные пластинки. Именно они учувствуют в герметизации между ротором и корпусом. Есть также металлические кольца на каждой из сторон ротора, которые отделяют рабочую камеру от картера двигателя.  Кроме того, ротор имеет в центре с одной стороны зубчатый венец. Этот венец жестко закреплен с ротором. Именно через данную зубчатую передачу передается рабочий крутящий момент от двигателя.

Корпус роторного двигателя

Корпус роторного двигателя, словно многослойный пирог. Он имеет свои крышки, рабочие камеры, разделительные стенки. Лучше всего понять конструкцию корпуса можно будет взглянув на картинку.
Из нее видно, что двигатель имеет две камеры, разделенные стенкой и крышки с двух сторон. Все остальное конечно тоже имеет значение, но первостепенно именно то, что мы перечислили.
 А теперь мы расскажем о рабочих камерах корпуса роторного двигателя. 

  Внутренняя полость корпуса представляет из себя сложную форму, напоминающую овал. На самом деле овал имеет определенные компенсирующие отливы, которые обеспечивают герметизацию всех трех камер разделенных ротором, вне зависимости от угла его поворота и происходящего цикла. Для каждого цикла, в корпусе роторного двигателя, отведено свое место. В зависимости от угла поворота ротора выполняется соответствующий цикл, который повторяется с периодичностью через каждые 360 градусов поворота ротора
 Выпускные отверстия для выброса сгоревших газов, находятся также в корпусе рабочей камеры. Промежуточная стенка между камерами (на фото ниже)

удерживает вал в совеем центральном отверстии, уплотняется с роторами по боковым стенкам, имеет элементы системы охлаждения, инжекционные порты, направляющие втулки.

Выходной вал роторного двигателя

 Выходной вал имеет эксцентрики, в данном случае их два, так как на вал устанавливается два ротора, которые работают в противофазе, когда один в цикле выброса отработавших газов, второй в цикле забора смеси. Применение двух роторов позволяют скомпенсировать биения во время работы двигателя и соответственно уменьшить детонацию. За счет смещения эксцентрика и перемещения каждого из роторов по стенкам в корпусе двигателя, они стараются провернуть вал. В итоге, на нем образуется рабочий крутящий момент.

Достоинства роторного двигателя

Как мы уже упоминали, главным достоинством роторного двигателя является отсутствие передающих звеньев, а именно шатунов. Кроме того, для роторного двигателя не требуется  клапанов, пружин клапанов, распределительного вала, ремня ГРМ и т.д. Все это в итоге сказывается на габаритах и массе двигателя. Именно поэтому многие производители самолетов (например Skycar, Schleicher), предпочитают поршневым двигателям роторные.
 К плюсам роторного двигателя, как мы уже тоже говорили, можно отнести и очень хорошую сбалансированность деталей в нем. Его можно сравнить с оппозитным 4 поршневым двигателем.
 роторный двигатель более длительное время, по сравнению с поршневым, выдает крутящий момент на выходной вал. Если для роторного двигателя выход мощности на вал длится порядка ¾ оборота (270 градусов), то для поршневого двигателя крутящий момент передается только в течении ½ оборота (180 градусов)
 Так как ротор вращается всего один раз за три оборота вала, это также сказывается на ресурсе ротора, в отличии от поршневых двигателей, где поршень делает полный цикл за оборот вала. У японский моделей автомобилей, ресурс двигателя может достигать 300 т. км.

Недостатки роторных двигателей

 Так в современном мире роторные двигатели массово не применяются вследствие низкой экологичности.
 Роторные двигатели потребляют большее количество топлива, вследствие низких рабочих давлений в камере сгорания.
 Роторные двигатели не так распространены, что может стать проблемой при их ремонте и эксплуатации.
 В двигателе фактически нет системы смазки. Определенное количество смазки (моторного масла) постоянно выбрасывается в корпус к ротору. В итоге у двигателя имеется значительный расход масла. Кроме того, это должно быть высококачественное минеральное масло без присадок, так как «синтетика» выгорая, образует на стенках корпуса нагар.
 Двигатели намного сильнее нагреваются чем поршневые двигатели.

Всемирно известные автомобили, выпускающиеся с роторными двигателями

(На фото Mazda Cosmo Sport и Mazda RX8)

 Японская компания Mazda была пионером в разработке серийных автомобилей с роторным двигателем. Так первая Мазда Cosmo Sport увидела свет в далеком 1967 году. Следующее поколение — Mazda RX-7 поступила в продажу в 1978 году. Пожалуй, это была одна из самых удачных машин с роторным двигателем.  И последнее поколение автомобилей с роторным двигателем это Мазда RX-8.
 И в итоге, самым мощным без турбонаддува двигателем внутреннего сгорания стал двигатель «Renesis» от Мазда, объёмом всего 1,3 л. Именно у него рекордный показатель мощности к рабочему объему двигателя, а именно 250 л. с.
 В последние годы компании Мазда удалось значительно улучшить характеристики роторных двигателей. Двигатели стали более экологичны, и не требуют такого объема масла для смазки.
Выпускались автомобили с роторным двигателем и другими авопроизводителями: Audi, Mercedes.
  В СССР на АвтоВАЗе также выпускали ряд роторных двигателей. Роторные двигатели ставились на автомобиль 21079 (1,3 л 140 л.с.) и планировались к эксплуатации в спецслужбах.
 В 90 годах, в Научно-техническом центре ВАЗ были созданы следующие роторные двигатели ВАЗ-416, ВАЗ-426, ВАЗ-526.

Перспективы роторных двигателей

Основные перспективы роторных двигателей связаны с переходом на водородное топливо. Во-первых сразу решается проблема экологичности, а во-вторых, роторные двигатели практически не подвержены детонации при работе с этим видом топлива.

Роторный двигатель на автомобиль.

Роторный двигатель внутреннего сгорания (или как его ещё называют роторно-поршневым, так как сам ротор выполняет роль поршня) был изобретён ещё в 1957 году прошлого века талантливыми инженерами Феликсом Ванкелем и Вальтером Фройде. Этот двигатель существенно отличается от обычного двигателя внутреннего сгорания. В этой статье мы подробно рассмотрим эти основные отличия, а так же преимущества и недостатки роторного двигателя перед обычным мотором, и почему всё таки РПД не так распространён, как обычный ДВС.

Основное отличие роторно-поршневого двигателя перед обычным поршневым, это отсутствие цилиндропоршневой группы, то есть поршней с кольцами, шатунов и цилиндров. Ну и самое главное — это отсутствие множества деталей механизма газораспределения, что позволило сэкономить на производстве около тысячи деталей!

 

 

 

 

 

 

Основная деталь такого двигателя — это ротор, имеющий форму треугольника (cм. фотографии и рисунок). И этот ротор, с помощью зубьев шестерни, входит в зацепление с шестерней другой детали, но неподвижной — статором. Принцип работы роторного двигателя можно посмотреть на видеоролике чуть ниже и он основан на том, что вершины треугольного ротора, при его вращении трутся по эпитрохоидальной (имеющей форму восьмёрки) и полированной внутренней поверхности картера (статора).

И при этом ротор своими гранями вершин отсекает при вращении переменные объёмы трёх камер (трёх камер потому, что у ротора три вершины, бывает и другое число, но три — самый распространённый вариант). Камеры образуются отсеканием вершинами ротора внутренней поверхности статора (при вращении ротора).

При вращении ротора получается, что ротор играет роль и поршня и клапанов при работе мотора. И такая уникальная конструкция позволяет осуществлять любой четырёхтактный цикл Отто, Стерлинга или Дизеля, и при этом не нужен отдельный механизм газораспределения с множеством деталей, который имеется в головке цилиндров обычного и хорошо известного нам ДВС.

А герметичность пар в роторном двигателе, достигается торцевыми и радиальными уплотнителями (пластинами), которые при работе ещё лучше прижимаются давлением газов, центробежной силой, а так же специальными плоскими пружинами.

К тому же благодаря отсутствию головки цилиндров с механизмом ГРМ, а так же отсутствию кривошипно-шатунного механизма (коленвала, шатунов) и самих цилиндров, роторно-поршневой двигатель получается очень компактным (см фото слева) и не занимает много места под капотом. Так ещё и кроме своей компактности, такие моторы имеют бóльшую мощность, чем обычные двигатели.

 

 

 

 

 

 

И у такого мотора гораздо меньше деталей, чем у привычного нам ДВС. Это хорошо видно на фото слева. И это далеко не все преимущества и подробнее о преимуществах РПД написано ниже.

 

 

 

Преимущества роторного двигателя.

  • Меньшие габаритные размеры, чем у обыччного ДВС (примерно в полтора и даже в два раза). Это позволяет сделать машину более просторной и удобной для обслуживания.
  • Бóльшая удельная мощность, при меньшем объёме камеры сгорания, чем у обычного ДВС. Это достигается благодаря тому, что однороторный мотор выдаёт мощность в течении трёх четвертей каждого оборота вала. А на знакомом нам обычном моторе, мощность выдаётся только в течении одной четверти оборота коленвала.
  • Меньшее количество деталей (примерно около тридцати), а у обычного ДВС несколько сотен деталей.
  • Способность развить большие обороты при отсутствии вибрации, так как нет кривошипно-шатунного механизма, который преобразует возвратно-поступательное движение поршней в вращательное.
  • Низкий уровень вибрации, и мотор хорошо уравновешен.
  • Отличные динамические показатели автомобиля с РПД, и на низкой передаче можно легко разогнаться более сотни км/ч.
  • Ну и главный плюс, который я считаю вернёт эти моторы на дороги в будущем — это меньшая склонность к детонации, по сравнению с обычным ДВС. А значит можно использовать в качестве топлива не только бензин, но и водород — топливо будущего.

Так почему же такой двигатель не стал популярен у производителей автомобилей (исключение фирма Мазда) и до сих пор распространены обычные двигатели?. Чтобы ответить на этот вопрос, рассмотрим недостатки роторного-поршневого двигателя (РПД).

Недостатки роторного двигателя.

Кроме множества преимуществ, у РПД имеется ряд недостатков, из-за которых он не получил широкого распространения:

  • Повышенный расход топлива, особенно на низких оборотах, по сравнению с обычным двигателем.
  • Сложность производства, так как требуется очень большая точность изготовления трущихся пар и очень качественные сплавы (легированные стали). К тому же на производстве должны быть очень дорогие, сложные и точные металлообрабатывающие станки, так как фреза должна при обработке (например внутренней поверхности статора) следовать очень сложной траектории.
  • Быстрый износ уплотнителей, так как площадь пятна контакта маленькая а обороты вала большие. А при износе уплотнителей, из-за прорыва газов повышается токсичность, резко теряется коэффициент полезного действия (КПД) двигателя и потеря мощности.
  • Бóльшая склонность к перегреву, чем обычный ДВС. Из-за повышенного перегрева, даже бывают проблемы с воспламенением смеси в камере и чтобы улучшить воспламенение, на такие моторы устанавливают по две свечи зажигания на камеру. Две свечи ставят ещё и потому, что камера сгорания имеет вытянутую плоскую форму, и одной свечи в ней недостаточно.
  • В большинстве регионов не возможность ремонта таких двигателей, так как нет ни адекватных специалистов, ни запасных частей.
  • Более частая замена моторного масла, из-за того, что ротор соединяется с выходным валом через эксцентриковый механизм и получается большое давление между трущимися деталями. В добавок к этому ещё и большая температура приводит к быстрому износу двигателя, особенно если вовремя не поменять масло, а менять как я уже говорил, его надо чаще. Если же вовремя менять масло, уплотнители и делать капремонт, то ресурс РПД будет достаточно большим. А у некоторых двигателях японской фирмы Мазда, проработать РПД без поломок может около трёхсот тысяч км.

Устройство и более подробный принцип работы роторно-поршневого двигателя.

В роторном двигателе, как и в обычном ДВС вращение выходного вала (работа двигателя) происходит за счёт сгорания топливно-воздушной смеси. И так же как в привычном нам обычном двигателе, РПД имеет впускной канал, через который впрыскивается рабочая смесь, и имеет выпускной канал, через который выбрасываются отработавшие газы.

Но основное отличие состоит в том, что газы, образуемые при сгорании топлива, давят не на поршень (поршни), а на ротор, и от этого ротор передаёт вращение через зубья шестерни и эксцентрики на приводной вал. При этом сам ротор при этом выполняет и роль газораспределителя (как в двухтактном моторе, но не совсем), и делит внутренний объём картера на три отдельных камеры.

 

 

И в каждой камере в определённый момент происходит всасывание рабочей смеси, её сжатие, вспышка рабочей смеси и сам рабочий ход от расширения газов, ну и выпуск отработанных газов (четыре такта). Подробно это показано на рисунке слева и описано ниже.

 

 

 

 

  1. Такт впуска. Всасывание рабочей смеси происходит в тот момент, когда соответствующая вершина ротора проходит через впускное отверстие в картере двигателя. А при дальнейшем движении ротора, объём соответствующей камеры увеличиваетс и создаётся разряжение, при котором рабочая смесь засасывается в камеру.
  2. Такт сжатия. Далее при вращении ротора, впускное отверстие отсекается кромкой другой (следующей) вершины ротора, и одновременно объём камеры уменьшается, таким образом рабочая смесь сжимается и давление в камере увеличивается. Пик сжатия (наибольшего давления смеси) достигается в районе свечей зажигания.
  3. Такт рабочий ход. В этот момент происходит разряд на двух свечах зажигания и соответственно вспышка сжатой рабочей смеси. От вспышки происходит сгорание и расширение продуктов горения, которые с силой толкают ротор, и от этого он проворачивается и вращает выходной вал.
  4. Такт выпуска. Далее, при вращении ротора, кромка одной из вершин ротора проходит выпускное отверстие в картере, открывая его, и через это выпускное отверстие под давлением выходят отработанные газы. Далее первый ротор благодаря силе инерции, а так же благодаря действию второго ротора, работающего асинхронно первому ротору, продолжает своё вращение и подходит опять кромкой к впускному отверстию, для нового такта впуска, и всё повторяется заново.

Но как понял читатель из выше описанного, чтобы лучше сбалансировать РПД, а так же уменьшить вибрацию и предотвратить детонацию, применяют не один а два ротора (см. фото выше, где показан РПД в разобранном виде). А сам ротор (роторы) немного смещён (эксцентричен) от выходного вала, ось которого расположена строго по центру и передаёт вращение на вал как бы обкатывая его по кругу.

Передача вращения происходит воздействием шестерни ротора на шестерню вала (а шестерня вала находится внутри шестерни ротора), а передаточное число рассчитано так, что за один оборот ротора, вал совершает три оборота.

Основные детали роторно-поршневого двигателя. Главная деталь РПД это ротор, имеющий форму треугольника. Причем на каждой из трёх немного выпуклых плоскостей ротора, имеются выборки (углубления — см. фото), которые делаются на заводе для того, чтобы немного увеличить рабочий объём двигателя.

На каждой из трёх вершин ротора, вставлены уплотнительные пластинки, которые уплотняют сам ротор относительно внутренней поверхности картера двигателя, и делят внутреннюю полость картера на три камеры. Пластинки трутся о внутреннюю поверхность картера с большой скоростью и разумеется постепенно изнашиваются. Поэтому они вставлены в вершину ротора так, что бы по необходимости их можно было заменить новыми, взамен изношенных.

Так же с каждой стороны ротора (ближе к центру — см. фото) установлены уплотнительные кольца, которые герметизируют (отделяют) полость камер от картера. Ну и в самом центре ротора жёстко вмонтирована кольцевая шестерня (зубчатый венец), которая как бы обкатывается вокруг меньшей шестерни, закреплённой на валу двигателя, и передаётся вращение выходному валу.

Сам ротор (роторы) помещён в картер, а картер состоит из нескольких плит, которые плотно соединяются между собой, образуя несколько отсеков и разделяющие их стенки. Как правило разделительная стенка делит двигатель на две основные части (полости), в каждой их которых работает свой отдельный ротор (обычно в моторе два ротора).

Каждая полость имеет впускной и выпускной каналы, и сложную форму в виде восьмёрки, которую не так то просто выполнить при производстве. К тому же стенки должны быть изготовлены из очень твёрдого материала, иначе они быстро износятся, и от этого давление в камерах упадёт, и соответственно упадёт и мощность мотора.

Сам картер имеет с наружи двойную стенку (как блок обычного ДВС) для циркуляции между стенками охлаждающей жидкости системы охлаждения. А в центре картера имеются отверстия, в которые запрессованы подшипники, на которых висит вал мотора.

Вал роторного двигателя с виду похож на распределительный вал обычного ДВС (см. фото), так как имеет эксцентрики, похожие на кулачки распредвала обычного мотора. Вал изготовлен так, что эксцентрики расположены на нём в противоположных сторонах вала. И когда на эти эксцентрики при сборке будет насажены два ротора (насажены на подшипники скольжения), то роторы будут работать в противофазе, помогая друг другу в работе.

То есть работа двух роторов будет подобна работе двух поршней четвёртого и второго цилиндров обычного четырёхцилиндрового мотора — один из них в начальной стадии впуска рабочей смеси, а другой в стадии выпуска отработавших газов. И именно из-за того, что роторы сидят на эксцентриках вала, при вращении роторов в противофазе будет вращаться и вал РПД, передавая вращение на трансмиссию.

Ну а как же применение роторно-поршневого двигателя на автомобилях — есть ли смысл?

Первым автопроизводителем, который установил РПД на свой автомобиль ещё в конце 60-х годов прошлого века, была компания NSU (о их машине, двигателе и о машинах Мазда, смотрите интересный видеоролик под статьёй). А авто-производитель, которому удалось поставить такие двигатели на поток, применяя их на своих автомобилях — является всем известная японская Мазда.

РПД установленный на некоторые её машины, при рабочем объёме всего в 1,3 литра, способен развить мощность в 250 лошадей. Но и это ещё не всё, благодаря постоянному совершенствованию своих роторных моторов, им удалось существенно снизить расход топлива и масла, а главное снизить токсичность. Это позволило вывести автомобили с РПД на европейский рынок, который наиболее жёсткий к экологическим нормам.

К тому же в 1995 году был разработан новейший РПД, который назвали RENESIS, что означает новая жизнь роторного мотора. Этот мотор был впервые установлен на новый маздовский концепткар «Mazda RX-01″ и показал отличную динамику разгона. А улучшенный вариант такого мотора был установлен в 1999 году на спортивный концепткар «RX-EVOLV». Этот двигатель планируют устанавливать серийно на автомобиль «Mazda RX-8″.

Большая экономичность нового двигателя была достигнута за счёт применения более совершенных форсунок и использования боковых окон для выпуска отработанных газов. Так же были установлены усовершенствованные свечи зажигания, которые существенно улучшили полноту сгорания топлива.

К тому же выпускной коллектор был изготовлен с двойной стенкой, позволяющей повысить температуру выпускных газов и быстро прогревать каталитический нейтрализатор, даже при минусовой температуре окружающего воздуха. Ну и была усовершенствована система смазки с мокрым картером, и количество масла в картере было уменьшено вдвое, по сравнению с обычными РПД.Ну и кроме идеальной плавности работы нового мотора, был улучшен и звук выхлопа, который не описать, это нужно слышать.

Многие могут сказать, что несмотря на многие преимущества, технология производства таких двигателей довольно сложна и требует новейшего оборудования. Но ведь многие высокотехнологические детали, которые имеются сейчас на многих серийных машинах, когда то казались сложными и не практичными, и применялись только на спортивных машинах.

Например когда то и никасилевое покрытие цилиндров серийного двигателя, или вентилируемые тормозные диски, казались сложными, дорогими и трудновыполнимыми, а сейчас на большинстве серийных машин это обычное явление.

Сейчас ведутся работы по применению на таких двигателях водородного топлива, ведь роторный двигатель не склонен к детонации и способен работать на водороде, и скорей всего за РПД будущее, поживём — увидим.

Роторный двигатель Mazda | Преимущества и информация

Роторный двигатель: главный элемент наследия Mazda

Большинство двигателей внутреннего сгорания, которые вы видите сегодня на дорогах, построены с использованием стандартных принципов поршневых двигателей. Однако это не единственный двигатель внутреннего сгорания. Роторный двигатель, часто называемый двигателем Ванкеля в честь его изобретателя, доктора Феликса Ванкеля, является мощной альтернативой поршневому двигателю и важной частью фирменного наследия Mazda в области технических характеристик.

Как это работает

Роторный двигатель работает по тому же основному принципу, что и поршневой двигатель: сгорание в силовой установке высвобождает энергию для приведения в действие транспортного средства. Однако система подачи в роторном двигателе полностью уникальна.

Поршневой двигатель выполняет четыре ключевые операции: впуск, сжатие, сгорание и выпуск. Роторный двигатель также выполняет каждую из этих ключевых операций, но делает это совершенно уникальным образом. В случае роторного двигателя каждый из этих ключевых процессов обрабатывается отдельной секцией корпуса силовой установки.

Детали роторного двигателя

Роторный двигатель состоит из нескольких ключевых компонентов. Когда вы сами увидите роторный двигатель, станет ясно, насколько он отличается от вашего типичного поршневого двигателя.

  • Ротор : три выпуклые поверхности ротора действуют аналогично поршню, но ротор подвижен, перемещаясь по пути через систему подачи корпуса двигателя.
  • Корпус : Корпус имеет овальную форму и состоит из нескольких частей, отвечающих за впуск, сжатие, сгорание и выпуск.
  • Выходной вал : Этот длинный цилиндрический инструмент построен со смещением относительно центральной линии вала. Каждый из роторов двигателя размещается над выступами выходного вала, чтобы заставить его вращаться. Величина вращения, выполняемая этими лопастями, определяет крутящий момент величиной силы, прикладываемой к ним роторами.

Гордые традиции

Mazda зарекомендовала себя в 1960-х и 1970-х годах как ведущий новатор, когда дело дошло до сложной разработки роторного двигателя.Новаторская традиция Mazda вошла в историю благодаря ряду популярных моделей с роторным двигателем, в том числе Mazda RX-7, которая поступила в продажу еще в 1978 году.

В то время как Mazda прекратила продажу RX-7 еще в 1995 году, нынешние разработчики и инженеры Mazda осознали уникальные возможности роторного двигателя. Радуйтесь возрождению роторного двигателя инженерами Mazda в ближайшие несколько лет!

Как работают роторные двигатели | HowStuffWorks

Роторные двигатели используют четырехтактный цикл сгорания, который является тем же циклом, что и четырехтактные поршневые двигатели.Но в роторном двигателе это делается совершенно по-другому.

Если вы посмотрите внимательно, вы увидите, что лепесток смещения на выходном валу вращается три раза за каждый полный оборот ротора.

Сердце роторного двигателя — это ротор. Это примерно эквивалент поршней в поршневом двигателе. Ротор установлен на большом круглом выступе выходного вала. Этот выступ смещен от центральной линии вала и действует как рукоятка кривошипа лебедки, давая ротору рычаг, необходимый для поворота выходного вала.Когда ротор вращается внутри корпуса, он толкает лепесток по узким кругам, поворачивая три раза на за каждый оборот ротора.

По мере того, как ротор перемещается через корпус, три камеры, создаваемые ротором, изменяют размер. Это изменение размера вызывает перекачивающее действие. Давайте рассмотрим каждый из четырех тактов двигателя, глядя на одну сторону ротора.

Впуск

Фаза впуска цикла начинается, когда кончик ротора проходит через впускное отверстие.В момент, когда впускное отверстие выходит в камеру, объем этой камеры близок к своему минимуму. Когда ротор движется мимо впускного отверстия, объем камеры увеличивается, втягивая топливно-воздушную смесь в камеру.

Когда пик ротора проходит через впускной канал, эта камера закрывается и начинается сжатие.

Сжатие

По мере того, как ротор продолжает движение вокруг корпуса, объем камеры уменьшается, и топливно-воздушная смесь сжимается.К тому времени, когда поверхность ротора добралась до свечей зажигания, объем камеры снова близок к своему минимуму. Это когда начинается горение.

Сгорание

Большинство роторных двигателей имеют две свечи зажигания. Камера сгорания длинная, поэтому пламя распространялось бы слишком медленно, если бы была только одна заглушка. Когда свечи зажигания воспламеняют топливно-воздушную смесь, давление быстро растет, заставляя ротор двигаться.

Давление сгорания заставляет ротор перемещаться в направлении увеличения объема камеры.Газы сгорания продолжают расширяться, перемещая ротор и создавая мощность, пока пик ротора не пройдет через выхлопное отверстие.

Выхлоп

Как только пик ротора проходит через выхлопное отверстие, газы сгорания под высоким давлением могут свободно выходить из выхлопа. По мере того как ротор продолжает двигаться, камера начинает сжиматься, вытесняя оставшийся выхлоп из порта. К тому времени, когда объем камеры приближается к своему минимуму, пик ротора проходит через впускное отверстие, и весь цикл начинается снова.

Особенность роторного двигателя заключается в том, что каждая из трех сторон ротора всегда работает в одной части цикла — за один полный оборот ротора будет три такта сгорания. Но помните, что выходной вал вращается три раза за каждый полный оборот ротора, а это означает, что на каждый оборот выходного вала приходится один ход сгорания.

Как работают роторные двигатели | HowStuffWorks

Роторные двигатели используют четырехтактный цикл сгорания, который является тем же циклом, что и четырехтактные поршневые двигатели.Но в роторном двигателе это делается совершенно по-другому.

Если вы посмотрите внимательно, вы увидите, что лепесток смещения на выходном валу вращается три раза за каждый полный оборот ротора.

Сердце роторного двигателя — это ротор. Это примерно эквивалент поршней в поршневом двигателе. Ротор установлен на большом круглом выступе выходного вала. Этот выступ смещен от центральной линии вала и действует как рукоятка кривошипа лебедки, давая ротору рычаг, необходимый для поворота выходного вала.Когда ротор вращается внутри корпуса, он толкает лепесток по узким кругам, поворачивая три раза на за каждый оборот ротора.

По мере того, как ротор перемещается через корпус, три камеры, создаваемые ротором, изменяют размер. Это изменение размера вызывает перекачивающее действие. Давайте рассмотрим каждый из четырех тактов двигателя, глядя на одну сторону ротора.

Впуск

Фаза впуска цикла начинается, когда кончик ротора проходит через впускное отверстие.В момент, когда впускное отверстие выходит в камеру, объем этой камеры близок к своему минимуму. Когда ротор движется мимо впускного отверстия, объем камеры увеличивается, втягивая топливно-воздушную смесь в камеру.

Когда пик ротора проходит через впускной канал, эта камера закрывается и начинается сжатие.

Сжатие

По мере того, как ротор продолжает движение вокруг корпуса, объем камеры уменьшается, и топливно-воздушная смесь сжимается.К тому времени, когда поверхность ротора добралась до свечей зажигания, объем камеры снова близок к своему минимуму. Это когда начинается горение.

Сгорание

Большинство роторных двигателей имеют две свечи зажигания. Камера сгорания длинная, поэтому пламя распространялось бы слишком медленно, если бы была только одна заглушка. Когда свечи зажигания воспламеняют топливно-воздушную смесь, давление быстро растет, заставляя ротор двигаться.

Давление сгорания заставляет ротор перемещаться в направлении увеличения объема камеры.Газы сгорания продолжают расширяться, перемещая ротор и создавая мощность, пока пик ротора не пройдет через выхлопное отверстие.

Выхлоп

Как только пик ротора проходит через выхлопное отверстие, газы сгорания под высоким давлением могут свободно выходить из выхлопа. По мере того как ротор продолжает двигаться, камера начинает сжиматься, вытесняя оставшийся выхлоп из порта. К тому времени, когда объем камеры приближается к своему минимуму, пик ротора проходит через впускное отверстие, и весь цикл начинается снова.

Особенность роторного двигателя заключается в том, что каждая из трех сторон ротора всегда работает в одной части цикла — за один полный оборот ротора будет три такта сгорания. Но помните, что выходной вал вращается три раза за каждый полный оборот ротора, а это означает, что на каждый оборот выходного вала приходится один ход сгорания.

Как работает роторный двигатель Ванкеля

Итак, вначале первый инженерный подход заключался в создании двигателя, отличающегося от конструкции поршневого двигателя внутреннего сгорания.И первым, кто построил и запатентовал такой двигатель, был Felix Millet в 1888 году. Милле создал 5-цилиндровый роторный двигатель, встроенный в спицы заднего колеса велосипеда. Его конструкция силового агрегата была позже запущена в производство компанией Darracq в 1900 году.

Ранние типы роторных двигателей имели нечетное количество цилиндров, смещенных по радиусу (обычно 7 или 9 цилиндров, поскольку эта нечетная конфигурация приводила к более плавной работе благодаря поршню). последовательность стрельбы). Начиная с этой конструкции, сначала двигатель имел неподвижный блок цилиндров, который непосредственно вращал коленчатый вал, расположенный в центре, и назывался радиальным двигателем.Теперь с винтом, прикрепленным к вращающемуся коленчатому валу, радиальный двигатель получил широкое применение в авиастроении.

Однако конструкция этого радиального двигателя вызвала проблему с охлаждением, особенно при работе в неподвижном состоянии, поскольку блок цилиндров не получал достаточного воздушного потока. Решение этой проблемы с охлаждением пришло в виде реверсирования роли вращающейся детали из ансамбля, что означало, что коленчатый вал теперь был прикреплен болтами к шасси, а пропеллер вращался вместе со всем блоком цилиндров.Так родился роторный двигатель . Положительным моментом в этом было то, что охлаждение двигателя было улучшено, но недостатком было то, что самолет стал нестабильным и им было труднее управлять.

К началу 1920-х роторные двигатели (которые находили применение в основном в авиастроении) устарели, и интерес к дальнейшим разработкам двигателей этого типа резко упал. Но для роторного двигателя не все было потеряно, поскольку немецкий инженер Феликс Ванкель изобрел в 1957 году вращающуюся конструкцию, в которой использовался ротор треугольной формы, вращающийся внутри овального корпуса.Поскольку в конструкции не используются поршни, как в поршневом двигателе, роторный двигатель внутреннего сгорания Ванкеля считается одним из типов роторных двигателей без поршней. Исследования роторных двигателей действительно начались в 1960-х годах, но только японскому автомобилестроителю Mazda удалось успешно модифицировать его и интегрировать в фирменный стиль бренда, став единственным производителем автомобилей, способным выйти на массовое производство. Итак, как это работает

Роторный двигатель Ванкеля — это двигатель внутреннего сгорания, в котором используется тот же принцип преобразования давления во вращательное движение, но без вибраций и механических нагрузок при высоких скоростях вращения поршневого двигателя.Доктор Феликс Ванкель и его коллеги получили конструкцию корпуса двигателя, выполнив следующие шаги: сначала они закрепили внешнее зубчатое колесо на белом листе и сцепили его с более крупным внутренним зубчатым колесом; с соотношением между двумя передачами 2: 3. Затем они прикрепили руку с ручкой к внешней стороне большего зубчатого колеса с внутренними зубьями. При повороте внутренней зубчатой ​​передачи на малой шестерне ручка образовывала трохоидную кривую в форме кокона.

Двигатель Ванкеля работает в том же 4-тактном цикле, что и поршневой двигатель с возвратно-поступательным движением, при этом центральный ротор последовательно выполняет четыре процесса впуска, сжатия, зажигания (сгорания) и выпуска внутри трохоидной камеры.Таким образом, хотя оба типа двигателей полагаются на давление расширения, создаваемое сгоранием топливно-воздушной смеси, разница между ними проистекает из того, как они используют его для преобразования

в механическую силу. В роторном двигателе внутреннего сгорания это давление расширения прилагается к боковой поверхности ротора. Из-за треугольной формы ротора внутреннее пространство корпуса всегда будет разделено на три рабочие камеры. Это принципиально отличается от поршневого двигателя, где в каждом цилиндре происходят четыре процесса.Первоначальная конструкция

Ванкеля имела внешнее зубчатое колесо с 20 зубьями, в то время как более крупное внутреннее зубчатое колесо имело 30 зубцов. Из-за этого передаточного числа частота вращения между ротором и валом определяется как 1: 3 . Это означает, что в то время как меньшая шестерня совершает один оборот, большая шестерня с внутренними зубьями вращается три раза. Поскольку эксцентриковый вал , который аналогичен коленчатому валу в поршневом двигателе, соединен с меньшей зубчатой ​​передачей, это означает, что с двигателем, работающим со скоростью 3000 об / мин, ротор будет вращаться только со скоростью 1000 об / мин.Это не только означает, что роторный двигатель внутреннего сгорания работает более плавно, но также позволяет достичь более высокой красной черты.

Рабочий объем роторного двигателя обычно выражается объемом камеры агрегата и количеством роторов (например, 654 см3 x 2). Единичный объем камеры представляет собой разницу между максимальным объемом и минимальным объемом рабочей камеры, в то время как степень сжатия определяется как соотношение между максимальным объемом и минимальным объемом.

Мы рекомендуем вам внимательнее изучить схемы и трехмерное анимационное видео Мэтта Риттмана в конце руководства, чтобы лучше визуализировать и понять режим работы двигателя Ванкеля. Плюсы и минусы двигателя Ванкеля
Первое, что в пользу двигателя Ванкеля — его малый размер и легкая конструкция . Это может оказаться решающим при разработке легкого автомобиля с высокой выходной мощностью и небольшим объемом двигателя. Это также обеспечивает улучшенную конструкцию защиты от столкновений , больше рабочего пространства для аэродинамики или отсеков для хранения вещей и лучшее распределение веса .

Второй благоприятной чертой роторного двигателя внутреннего сгорания является его плоская кривая крутящего момента во всем диапазоне скоростей. Результаты исследований показали, что при использовании конфигурации с двумя роторами колебания крутящего момента во время работы были на одном уровне с рядным 6-цилиндровым поршневым двигателем, в то время как трехроторная компоновка оказалась более плавной, чем поршневой двигатель V8.

Другими преимуществами роторного двигателя внутреннего сгорания являются простая конструкция, надежность и долговечность .Из-за отсутствия поршней, штоков, исполнительного механизма клапана, ремня газораспределительного механизма и коромысла двигатель легче построить, и для него требуется гораздо меньше деталей. Кроме того, из-за отсутствия этих компонентов двигатель Ванкеля более надежен и долговечен при работе с высокими нагрузками. И помните, когда роторный двигатель работает со скоростью 8000 об / мин, ротор (который составляет большую часть всей совокупности) вращается только на одну треть от этой скорости. Недостатки
двигателя Ванкеля включают несовершенное уплотнение на концах камеры, которое учитывается на утечку между соседними камерами, и несгоревшую топливную смесь.Роторный двигатель внутреннего сгорания также на имеет продолжительность хода на 50% больше, чем у поршневого двигателя. Работа двигателя также допускает увеличение количества окиси углерода и несгоревших углеводородов в потоке выхлопных газов, что делает его очевидным изгоем среди любителей деревьев.

Самым большим недостатком, однако, является его значительный расход топлива . Сравнительные испытания показали, что Mazda RX8 потребляет больше топлива, чем более тяжелый двигатель V8 с рабочим объемом двигателя более чем в четыре раза, но с сопоставимыми характеристиками.Еще одним недостатком является то, что небольшое количество масла попадает в рабочую камеру, и в результате владельцы должны периодически добавлять масло, что увеличивает эксплуатационные расходы. Вклад Mazda в двигатель Ванкеля

Mazda представила первый в мире автомобиль с двухроторным роторным двигателем в мае 1967 года — модель Cosmo Sport / Mazda 110S . Он был оснащен двигателем Ванкеля объемом 491 куб.см, который развивал 110 л.с. при 7000 об / мин. В 1970 году Mazda представила первую автоматическую коробку передач с двигателем Ванкеля, а три года спустя — первый в мире пикап с роторным двигателем.

После внедрения шестипортовой впускной системы для большей экономии топлива и мощности Mazda продолжила разработку роторного двигателя внутреннего сгорания для достижения низких выбросов. Индукционная система с шестью портами имела по три впускных отверстия на камеру ротора и позволяла снизить расход топлива за счет трехступенчатого управления. Еще одним примечательным событием стало внедрение двухступенчатого монолитного катализатора .

Следующая эра в эволюции двигателей Ванкеля Mazda ознаменовалась введением турбонагнетателей.В 1982 году Cosmo RE Turbo поступил в продажу как первый в мире автомобиль с роторным двигателем, оснащенный турбонагнетателем. Основываясь на этом достижении, Mazda позже применила турбонаддув с двойной прокруткой, чтобы минимизировать турбо-лаг двигателя.

Однако ключевым нововведением Mazda стала презентация двигателя RENESIS, который означает ГЕНЕЗИС RE (роторный двигатель). RENESIS — это двигатель объемом 654 куб. См x 2, который развивает мощность 250 л.с. при 8500 об / мин и 216 Нм крутящего момента при 5500 об / мин. Помимо плавной работы двигателя и четкого отклика, двигатель RENESIS обеспечивает значительные улучшения с точки зрения топливной экономичности и выбросов выхлопных газов.RENESIS от Mazda получил награды «Международный двигатель года» и «Лучший новый двигатель» в 2003 году. Вдохновленная международным успехом RENESIS, Mazda представила новый двигатель Ванкеля, способный работать как на водороде, так и на бензине. Однако этот водородный двигатель RE не смог вызвать такой же интерес, как бензиновый, возможно, из-за отсутствия водородной инфраструктуры в то время. В мае 2007 года японский производитель автомобилей Mazda отпраздновал 40 лет разработок двигателя Ванкеля.

Роторный двигатель внутреннего сгорания RENESIS следующего поколения уже находится в разработке и появился в концептуальном автомобиле Mazda Taiki. Двигатель следующего поколения обещает больший рабочий объем 1600 куб. См (800 куб. См x 2), что, как ожидается, увеличит крутящий момент на всех оборотах двигателя и повысит тепловую эффективность. Но, несмотря на прогресс, достигнутый в отношении выбросов выхлопных газов, выходной мощности и уплотнения рабочей камеры, двигатель Ванкеля по-прежнему будет бороться с расходом масла и топлива из-за его особой конструкции функционирования.

Руководство для начинающих: что такое роторный двигатель (и как он работает)?

Роторная и поршневая

ПРОФИ
• Характер двигателя означает, что гораздо меньший рабочий объем может производить значительно большую мощность, чем поршневой двигатель сопоставимого размера — Mazda RX-8 технически имеет объем 1,3 литра, но выдает около 230 л.с.

• Двигатели физически намного меньше, легче и имеют меньше движущихся частей, которые могут выйти из строя.

• Из-за характера двигателя они внутренне сбалансированы — роторы действуют как вращающиеся противовесы, поэтапно компенсирующие друг друга. Это означает, что вибрации меньше, поэтому двигатель работает более плавно и будет раскручиваться до более высоких оборотов (10000 об / мин отнюдь не является чем-то неслыханным) без повреждений.

МИНУСЫ
• Роторные двигатели менее экономичны, чем их аналоги с поршневыми двигателями, поскольку они менее эффективны с точки зрения теплового воздействия.

• Выбросы низкие из-за частичного совпадения событий впуска и выпуска, и ни одно из них не соответствует действующим нормам.

• Наконечники ротора, также известные как уплотнения вершины, подвергаются огромным нагрузкам и склонны к выходу из строя — это была огромная проблема для старых моделей Wankels, и ее еще предстоит полностью решить в современных вариантах.

• Высокий расход масла из-за необходимости поддерживать внутреннюю смазку роторов и уплотнений.

• Из-за небольшого эксцентриситета вала по сравнению с ходом коленчатого вала роторные двигатели имеют небольшой крутящий момент по сравнению с обычным двигателем на низких оборотах.

Mazda — крупнейший производитель роторных двигателей и единственный производитель, использующий их с конца 1970-х годов. General Motors разрабатывала свою собственную более 40 лет назад, но законы о смоге и первое нефтяное эмбарго в 1973 году заставили их отказаться от нее до того, как она была завершена для производства. NSU и Citroen в Европе продавали автомобили в небольших количествах, а Hercules, Norton и Suzuki производили мотоциклы, но никто не производил столько, сколько Mazda. Mazda Cosmo впервые появилась с роторным двигателем в 1965 году, за ним последовали R100, R130, RX-2, RX-3, RX-7, Luce, Rotary Pickup Truck, RX-7 и, наконец, RX-8, который выпускался до тех пор, пока 2012 г.

Недавно было проведено исследование производства небольших роторных двигателей для питания генераторной части гибрида из-за их компактных размеров и плавности хода. Считается, что, работая на постоянной скорости для выработки энергии, двигатель Ванкеля может, наконец, решить проблемы с топливной экономичностью и выбросами.

Роторные двигатели

: как работает роторный двигатель?

Сложная работа транспортного средства может быть интересна некоторым, а других — совершенно запутанной.От разноцветных проводов до количества автомобильных масел для любознательных умов становится задачей понять, как все работает.

На самом деле, как только вы поймете, как все работает, вам станет намного легче заботиться и обслуживать вашу драгоценную машину. В этой статье мы говорим о другом типе двигателя, который произвел большое впечатление на автомобильную промышленность.

Rotary Engine — это шаг назад от двигателя обычного типа, который является сердцем любого транспортного средства, и представляет собой другой механизм, направленный на повышение эффективности работы.Роторные двигатели, представленные и широко использовавшиеся во время Первой мировой войны, вышли из моды в 1920-х годах. Однако с современными технологиями и мощными автомобильными брендами многие компании принимают вызов создать полностью функциональный роторный двигатель, который прослужил бы долгое время.

Прежде чем я начну объяснять, как работает роторный двигатель, давайте взглянем на обычный двигатель пистолетного типа и его работу.

Как работает поршневой двигатель?

Обычный двигатель внутреннего сгорания состоит из поршней, которые совершают линейное движение внутри цилиндров.Поршни прикреплены к коленчатому валу с помощью шатуна. Когда поршень движется вверх и вниз, его соединение с коленчатым валом заставляет вал вращаться. Это вращение в конечном итоге достигает коробки передач, а через них — колес, позволяя транспортному средству двигаться вперед.

В зеркале коленчатого вала есть камера сгорания с клапанами, которые позволяют топливу и воздуху входить, а ненужным газам выходить. Когда поршень движется вверх, он сжимает взрывоопасную топливно-воздушную смесь, которая воспламеняет свечу зажигания.Взрыв заставляет поршень двигаться вниз, вызывая вращательное движение кривошипа, которое в конечном итоге достигает колес.

Теперь, когда вы знаете, как работает обычный поршневой двигатель, давайте перейдем к более важному вопросу — как работает роторный двигатель?

| Читайте также: Моторные масла : как выбрать лучшее моторное масло для вашего автомобиля? |

Что такое роторный двигатель и как он работает?

Роторный двигатель был гениальным изобретением, хотя и немного необычным.В нем используются те же принципы горения, но совершенно другим способом. Однако бочкообразному двигателю не хватает большинства деталей, которые обычно встречаются в обычном двигателе.

Как мы упоминали ранее, в обычном двигателе давление поддерживается в цилиндрах, что в конечном итоге заставляет поршень двигаться вперед и назад. В роторном двигателе такое же давление сгорания находится в роторе, треугольной камере, которую двигатель использует вместо поршней.Таким образом, вместо того, чтобы поршни с пыхтением поднимались и опускались, нетрадиционный двигатель использует один, два, а иногда и три треугольных ротора.

Как и в обычных двигателях, топливо и воздух закачиваются в двигатель, но они, однако, оставляют пространство на боковых сторонах роторов и внутренних стенках цилиндра. Поскольку топливо и воздух воспламеняются в камере, расширение газов заставляет роторы вращаться. Это помогает генерировать мощность, необходимую двигателю для движения колес вперед.

Чтобы сделать работу более понятной, давайте подробнее рассмотрим принцип роторного двигателя.

Там, где в обычном двигателе расположены цилиндры, роторный двигатель имеет корпуса, в которых находятся треугольные роторы. Прикрепленные к эксцентриковому валу, эти роторы остаются в контакте с корпусом все время, пока он вращается. Конструкция ротора и корпуса такова, что создается пустота, которая расширяется и сжимается в зависимости от положения ротора. Каждая из этих пустот направлена ​​на то, чтобы заботиться об одном аспекте цикла сгорания.

Когда ротор вращается, он сжимает смесь, снова расширяет камеру при воспламенении, а затем выдавливает выхлопные газы из выхлопного отверстия.

Феликс Ванкель, немецкий инженер, был вдохновителем создания очень эффективного и энергосберегающего прототипа роторного двигателя. В 1920-х годах инженер хорошо работал над развитием своего видения, но из-за войны не мог далеко развить свое видение до 1951 года, когда он был приглашен немецким автопроизводителем NSU для создания прототипа.

Вскоре другой инженер, Ханнс Дитер Пашке, которого NSU также пригласил, чтобы попытаться раскрыть оригинальную концепцию Ванкеля, разработал простой прототип для роторного двигателя, который стал использоваться в Mazda в 21 веке.

Роторный двигатель приобрел популярность благодаря меньшему количеству компонентов, но с использованием того же процесса, что и обычный двигатель. Отсутствие клапанов, распределительных шестерен, шатунов, поршня, коленчатого вала делает вещи значительно легче и дешевле. Всего три основных движущихся части составляют весь двигатель и работают довольно хорошо по сравнению с «обычным».

| Читайте также: Как работает автомобильная тормозная система? |

Детали роторного двигателя

Вы знаете, как работает роторный двигатель, давайте теперь рассмотрим различные части роторного двигателя, чтобы лучше рассмотреть.

Обычный роторный двигатель включает систему зажигания и систему подачи топлива, очень похожую на систему поршневых двигателей. Однако есть несколько деталей, которые настолько отличаются от обычного двигателя, что заставляют даже самых заядлых автолюбителей почесать затылок в замешательстве.

Ротор

Ротор является основным MVP двигателя по сравнению с поршнем в «нормальном» двигателе. Треугольной формы он имеет три выпуклые грани, на каждой из которых есть карман, обеспечивающий давление и пространство для воздушно-топливной смеси.

В верхней части каждой выпуклой поверхности находится металлическая лопасть, предназначенная для крепления ротора к внешней стороне камеры сгорания. Металлические кольца на каждой стороне ротора также помогают герметизировать компонент по бокам камеры.

Кроме этого, ротор также содержит набор внутренних зубчатых колес, вырезанных по центру одной стороны. Эти зубья используются, чтобы прикрепить его к шестерне, находящейся в корпусе. Это очень важный момент, поскольку это соединение определяет маршрут, по которому ротор будет проходить через корпус.

Корпус

После ротора идет корпус, который составляет важную часть роторного двигателя. Он имеет эпитрохоидную форму, также известную как овальная форма, которая сконструирована таким образом, что кончики ротора всегда соприкасаются со стенками камеры. Корпус чрезвычайно важен, поскольку каждая его часть используется для завершения одной части процесса сгорания, который включает впуск, сжатие, сгорание и выпуск.

Впускной и выпускной каналы расположены в корпусе, однако клапаны в этих портах отсутствуют.Выпускной порт находится в прямом контакте с выпускным отверстием, а впускной канал подключается непосредственно к дроссельной заслонке.

Выходной вал

После ротора и корпуса идет выходной вал.

Выходной вал содержит круглые выступы, которые установлены со смещением, то есть немного смещены от центра вала. Роторы спроектированы так, чтобы соответствовать этим выступам, как и роторы коленчатого вала в поршневом двигателе.

Когда ротор движется, он толкает лопасти назад, что создает крутящий момент на валу, заставляя его вращаться.

| Читайте также: Дизельный сажевый фильтр : что такое DPF в автомобиле? |

Как роторный двигатель вырабатывает энергию?

В обычном двигателе есть концепция четырехтактного поршня, который используется для приведения в действие сердца машины. Точно так же роторный двигатель использует четырехтактный цикл сгорания, в котором одна и та же работа выполняется другим способом.

Ротор, также известный как сердце двигателя, размещен на круглом выступе выходного вала.Как мы уже обсуждали, на кулачке необычно расположен вал, который позволяет ротору вращать выходной вал. Когда ротор завершает вращение внутри корпуса, он вращает лопасть по кругу, поворачиваясь три раза за каждый оборот ротора.

Когда ротор вращается внутри корпуса, камеры, созданные ротором, изменяются в размере, что вызывает действие, аналогичное действию откачки.

Давайте рассмотрим шаг за шагом, чтобы лучше понять принцип действия роторного двигателя.

Впуск

Фаза впуска роторного двигателя начинается, когда кончик ротора касается впускного отверстия.

Это открывает впускное отверстие в камеру. На данный момент объем камеры минимален.

По мере того, как ротор проходит через впускной канал, объем камеры увеличивается, тем самым вбирая в себя топливно-воздушную смесь.

Когда точка пика ротора проходит, камера закрывается, и начинается сжатие.

Сжатие

На этом этапе ротор сохраняет круговое движение вокруг корпуса, что снова заставляет камеру уменьшаться. Это заставляет воздушно-топливную смесь сжиматься.

Когда поверхность ротора проходит вокруг свечей зажигания, объем камеры снова достигает минимума. Это вызывает процесс горения.

Сгорание

Роторные двигатели оснащены двумя свечами зажигания. Поскольку камера сгорания довольно длинная, для распространения пламени требуются две свечи зажигания.Когда свеча зажигания воспламеняет смесь воздуха и топлива, давление в здании заставляет ротор двигаться дальше.

По мере продвижения ротора объем камеры увеличивается. Газы сгорания продолжают расширяться, толкая ротор, инициируя мощность, пока ротор не наткнется на выхлопное отверстие.

Выхлоп

Как только пик ротора проходит через выхлопное отверстие, газообразные продукты сгорания под высоким давлением могут свободно выходить из выхлопа. Ротор продолжает двигаться вперед, что сжимает камеру, выталкивая оставшийся выхлоп из порта.

Когда объем камеры приближается к минимальной стороне, ротор проходит через впускное отверстие, начиная весь процесс заново. Интересный вывод здесь заключается в том, что ротор всегда работает в одной части цикла, а это означает, что в полном обороте есть три такта сгорания.

Поскольку выходной вал вращается три раза за каждый оборот ротора, на каждый оборот выходного вала приходится один ход сгорания.

Теги: роторный двигатель mazda, поршневой двигатель, роторный двигатель, детали роторного двигателя, давление роторного двигателя, роторный двигатель работает, роторы

Что такое двигатель Ванкеля? | Как работает роторный двигатель?

Двигатели наиболее распространены во всем мире.Они стали важной частью всех транспортных средств. Существуют разные типы двигателей в зависимости от потребностей различных областей применения. Двигатель Ванкеля — самый известный тип двигателя внутреннего сгорания. В предыдущей статье мы обсуждали различные типы двигателей внутреннего сгорания (ДВС). В этой статье речь пойдет в основном о движке Ванкеля.

Что такое двигатель Ванкеля?

Двигатель Ванкеля — это тип роторного двигателя внутреннего сгорания, который использует вращательное движение треугольного ротора , установленного в эллиптической камере, для преобразования тепловой энергии во вращательное движение без использования традиционного поршневого поршня.Двигатель Ванкеля также известен как роторный двигатель , потому что он имеет все вращающиеся части.

По сравнению с поршневыми двигателями роторные двигатели Ванкеля имеют небольшой вес, небольшие размеры и более компактные размеры. Напротив, поршневой двигатель имеет поршень, совершающий возвратно-поступательное движение, который движется вверх и вниз внутри цилиндра.

Роторный двигатель Ванкеля имеет меньшую вибрацию и более равномерный крутящий момент, чем поршневой двигатель.

История двигателя Ванкеля
  • В 1924 году Феликс Генрих Ванкель создал небольшую лабораторию и начал разработку и исследование двигателя своей мечты, который мог вращаться, всасывать, сжиматься, гореть и выхлопывать.
  • В 1951 году компания NSU Motorenwerke AG приступила к разработке двигателя Ванкеля.
  • В 1957 году инженер Феликс Генрих Ванкель разработал первый роторный двигатель Ванкеля в качестве замены обычного поршневого двигателя.
  • Инженер Ханнс Дитер Пашке разработал второй двигатель KKM , следуя некоторым технологическим изменениям и усовершенствовав технологию двигателя Ванкеля.
  • Роторный двигатель Ванкеля был впервые представлен специалистам и прессе на конференции Союза инженеров Германии в Мюнхене в 1960 году.
  • В 1960-х годах, благодаря простоте, отличному соотношению прочности и веса, плавности работы и очень высокой эффективности роторных двигателей, они были у всех на слуху в автомобильной и мотоциклетной промышленности.
  • В августе 1967 года компания NSU Motorenwerke AG получила широкую известность в связи с появлением нового NSU Ro 80, оснащенного 115-часовым двигателем Ванкеля с двумя роторами. Это был первый немецкий автомобиль в 1968 году, который был признан «Автомобилем года».
  • Благодаря отличным характеристикам двигателя Ванкеля, многие крупные производители автомобилей (Ford, Toyota, Mercedes-Benz, Porsche, Rolls-Royce и Mazda) подписали между ними лицензионные соглашения на производство роторных двигателей Ванкеля в течение следующего десятилетия.

Конструкция роторного двигателя

Роторный двигатель работает по принципу оттоцикла . В отличие от поршневого двигателя с возвратно-поступательным движением, 4-тактный стандартного двигателя с циклом Отто организован последовательно вокруг эллиптического ротора в двигателе Ванкеля. Роторный двигатель имеет один ротор и одну эллиптическую коробку, окруженную треугольным ротором (трехсторонним у Reuleaux), который вращается и перемещается в коробке.Сторона уплотнения ротора соединена с тремя камерами сгорания на стороне корпуса и углами уплотнения ротора по периметру основной коробки.

По мере того, как ротор вращается, вращение и форма корпуса толкают ротор ближе к стенке корпуса, а камеру сгорания двигателя ближе и дальше вниз по «ходам» возвратно-поступательного поршня. Но эти 4-тактные двигатели производят такт сгорания после двух оборотов поршня внутри цилиндра.

Камеры сгорания двигателя Ванкеля производят один «ход сгорания » за каждый оборот.Поскольку приводной вал Ванкеля вращается со скоростью, в три раза превышающей частоту вращения ротора, он становится одним «тактом» сгорания на один оборот выходного вала ротора, что в два раза больше, чем у четырехтактного поршневого двигателя, и эквивалентно таковому у двухтактного двигателя. Эти двигатели имеют высокую выходную мощность по сравнению с четырехтактными бензиновыми двигателями с аналогичным ходом двигателя.

Двигатель Ванкеля рабочий

Роторный двигатель Ванкеля — это известный тип двигателя внутреннего сгорания, который работает по основному принципу отто-цикла .

Двигатель Ванкеля четырехтактный и работает по следующей схеме:

  1. Всасывание
  2. Сжатие
  3. Сгорание
  4. Выхлоп
Двигатель Ванкеля работает

1) Ход всасывания или всасывания: —

  • Когда кончик ротора проходит через впускное отверстие, свежий воздух начинает поступать в первый цилиндр, как показано на диаграмме выше.
  • Цилиндр 1 st продолжает всасывать свежий воздух до тех пор, пока кончик ротора 2 и не достигнет впускного отверстия и не закроет его.
  • После этого впускной канал закрывается, и свежая топливно-воздушная смесь улавливается в первом цилиндре для сжатия и сгорания.

2) Степень сжатия: —

  • После завершения такта впуска начинается такт сжатия захваченной топливовоздушной смеси.
  • Когда ротор начинает вращаться, зазор между углом 1 и углом 2 первого цилиндра (как показано на диаграмме выше) уменьшается за счет уменьшения объема смеси и ее сжатия.
  • По мере того, как топливно-воздушная смесь сжимается в соответствии с требованиями, она отправляется на процесс сгорания.

3) Сгорание: —

  • Поскольку смесь первого цилиндра (от 1 до 2 углов) сжимается в соответствии с требованием, свеча зажигания создает искру внутри цилиндра, которая воспламеняет топливовоздушную смесь.
  • Из-за возгорания смесь превращается в газы с высокой температурой и давлением. Энергия сгоревшей смеси заставляет ротор двигаться вперед.Этот процесс продолжается до тех пор, пока угол 1 st не пройдет мимо выпускного отверстия.

4) Выхлоп: —

  • Когда угол 1 касается выпускного или выпускного отверстия, горючие газы под высоким давлением выходят из двигателя.
  • После выпуска отработавших газов выпускной канал закрывается, и снова весь цикл повторяется.

Для лучшего понимания посмотрите следующее видео:

Детали роторного двигателя Ванкеля

Роторный двигатель может иметь сложную конструкцию, но в нем не так много движущихся частей или компонентов, как в поршневом двигателе.Ниже мы рассмотрим основные компоненты роторного двигателя Ванкеля, чтобы вы лучше поняли, как все работает.

Роторный двигатель состоит из следующих основных частей:

  1. Ротор
  2. Свеча зажигания
  3. Выходной вал
  4. Кожух
  5. Впускные и выпускные патрубки

1) Ротор

Ротор представляет собой треугольную вогнутую часть, которая обеспечивает плотное уплотнение при нажатии на кожух двигателя. На каждой стороне ротора есть воздушный карман или воздухозаборник, чтобы пропускать больше газа в корпус.Эти впускные отверстия или карманы эффективно увеличивают рабочий объем двигателя Ванкеля.

Ротор вращается на нескольких шестернях, соединенных с валом. Этот вал устанавливается в центре корпуса. Шестерни позволяют краям ротора вращаться таким образом, что они всегда контактируют с корпусом, поддерживая три отдельных камеры сгорания.

2) Корпус или кожух

Кожух — самая важная часть двигателя. Он также известен как корпус двигателя.Эллиптическая конструкция корпуса помогает увеличить рабочий объем двигателя при вращении ротора. Во время вращения ротора края ротора находятся в постоянном контакте с внутренней стенкой корпуса.

Когда ротор вращается в кожухе, каждая воздушная полость проходит через четыре части цикла сгорания:

  1. От всасывания до сжатия
  2. Сгорание до выхлопа.

Топливная форсунка и свеча зажигания вставляются непосредственно в камеру сгорания через стенку кожуха.Внешние каналы позволяют охлаждающей жидкости и маслам проходить через систему для поддержания температуры и целостности системы.

Корпус также защищает внутренние части двигателя. Это предохраняет внутренние детали от повреждений, вызванных падением любой внешней нагрузки на двигатель.

3) Выходной вал

Выходной вал передает энергию, образующуюся в результате сжатия и сгорания, в систему трансмиссии, которая приводит в движение колесо транспортного средства.Он оснащен круглым выступом, который касается ротора и вращает вал.

4) Впускной и выпускной патрубки

Впускной канал позволяет свежей смеси поступать в камеру сгорания, а выхлопные газы выводят газы через выпускное или выпускное отверстие.

5) Свеча зажигания

Свеча зажигания — это часть двигателя, используемая для передачи электрического тока от системы зажигания в камеру сгорания двигателя SI для сжигания сжатой топливовоздушной смеси с помощью электрической искры.Он имеет металлический корпус с резьбой, который электрически изолирован от центрального электрода керамическим изолятором.

Этот штекер соединяется с катушкой зажигания, которая генерирует высокое напряжение. Когда ток проходит через катушку, между боковым электродом и центральным электродом возникает напряжение. Когда напряжение превышает диэлектрическую прочность газа, газ ионизируется. Ионизированный газ работает как проводник, пропускающий ток через комнату.

Экономия топлива и уровень выбросов роторного двигателя Ванкеля

Когда роторный двигатель сжигает бензин, возникает множество проблем с выбросами и эффективностью.По сравнению с водородом диаметром 0,6 мм бензин воспламеняется медленнее, имеет меньшую скорость распространения пламени и большую дистанцию ​​гашения с циклом сжатия 2 мм. Из-за этих факторов двигатель потребляет больше топлива, и его КПД снижается.

Когда роторный двигатель Ванкеля использует бензин, зазор (в цикле сжатия) между корпусом и ротором становится очень узким, в то время как этот зазор достаточно широк для водорода. Двигатель требует этого узкого зазора для сжатия.

Когда в двигателях используется бензин вместо дизельного топлива, оставшийся бензин выбрасывается в атмосферу через выпускной клапан.Но этой проблемы не возникает, когда двигатель использует водород в качестве топлива. Это связано с тем, что вся топливная смесь сгорает внутри камеры сгорания, которая имеет очень низкий уровень выбросов, а топливная эффективность также повышается до 23%.

Конструкция камеры сгорания двигателя Ванкеля более устойчива к предварительному воспламенению на бензине с более низким октановым числом, чем в аналогичном поршневом двигателе. Конструкция камеры сгорания может стать причиной недостаточного горения топливовоздушной смеси при использовании бензина. Из-за этого неполного сгорания выделяется большое количество несгоревших углеводородов в выхлопных газах.Хотя температура сгорания роторного двигателя Ванкеля ниже, чем у других двигателей, ранние двигатели также имеют рециркуляцию выхлопных газов (EGR). Таким образом, выброс выхлопных газов двигателей Ванкеля относительно невелик.

Роторный двигатель транспортного средства может работать на высокой скорости. Это происходит из-за высокого эксцентриситета ротора, более длинных всасывающих каналов и раннего открытия всасывающего клапана, увеличивающего крутящий момент на низкой скорости — положение и конструкция выемки ротора влияют на расход топлива и выбросы.Уровень расхода топлива и выбросы зависят от конструкции камеры сгорания, которая определяется положением свечи зажигания внутри камеры двигателя.

Преимущества и недостатки роторного двигателя

Роторный двигатель Ванкеля имеет следующие основные преимущества и недостатки:

Преимущества двигателей Ванкеля
  • Эти типы двигателей имеют простую конструкцию.
  • Роторный двигатель не имеет клапана для работы.
  • Для этих двигателей не требуются коленчатые валы, шатуны и т. Д. Удаление этих компонентов делает двигатель Ванкеля легче.
  • Они имеют широкий диапазон скоростей.
  • Они также могут сжигать топливо с высоким октановым числом без детонации.
  • Эти двигатели обладают множеством преимуществ в плане безопасности, что делает их полезными в самолетах.
  • Загрязнение отстойника топлива не проявляется на некоторых двигателях Ванкеля, что означает, что нет необходимости в замене топлива.
  • Двигатель Ванкеля не имеет проблем с детонацией.Проблемы детонации возникают из-за неполного сгорания топливовоздушной смеси.
  • Эти двигатели имеют значительно более высокое соотношение мощности и массы, чем колонные.
  • Более простая упаковка в ограниченном пространстве двигателя, чем поршневой двигатель.
  • Эти двигатели не нуждаются в возвратно-поступательных деталях.
  • Роторный двигатель Ванкеля имеет более высокое передаточное число по сравнению с поршневым двигателем.
  • Эти двигатели не издают большого шума во время работы.
  • Поскольку двигатель Ванкеля имеет очень мало движущихся компонентов, поэтому его производственная цена невысока.
  • Эти двигатели более чем поршневые.
  • Высокая скорость этих двигателей обеспечивает превосходную адаптивность.
  • Они лучше всего подходят для использования водородного топлива.

Недостатки двигателей Ванкеля
  • Высокая потеря уплотнения: Это также незначительная проблема, поскольку кожух двигателя Ванкеля имеет немного разные температуры в каждом отдельном сегменте камеры. Различные коэффициенты расширения вещества способствуют несовершенному экранированию.Следовательно, эти двигатели имеют высокие потери на герметичность.
  • Подъем уплотнения верхушки: Центробежная сила заставляет уплотнение верхушки на поверхности корпусов двигателя создать прочное уплотнение. При работе с малой нагрузкой зазоры между верхним уплотнением и корпусом могут образоваться в случае центробежной силы и дисбаланса давления газа.
  • Высокий уровень выбросов: Поскольку несгоревшее топливо находится в потоке выхлопных газов, поскольку оно используется, стандарты выбросов трудно выполнить. Прямой впрыск топлива в камеру сгорания двигателя решит эту проблему.
  • Низкая экономия бензинового топлива: Это обусловлено движущейся камерой сгорания, что способствует плохому сгоранию и хорошему давлению при частичной нагрузке и низких оборотах. Это приводит к присоединению несгоревшего топлива к выхлопному потоку; топливо, не используемое для производства электроэнергии, теряется.
  • Иногда роторный двигатель Ванкеля имеет проблемы с расходом топлива и сжиганием масла.
  • Топливно-воздушная смесь не может быть предварительно сохранена, потому что у этого двигателя нет впускного отверстия.
  • Эти двигатели требуют сложной технологии впрыска топлива.
  • Эти двигатели имеют низкую степень сжатия. По этой причине у них низкая экономия топлива и тепловой КПД.
  • В выхлопном потоке двигателя Ванкеля могут быть высокие выбросы несгоревших углеводородов и оксида углерода.
  • Роторный двигатель очень склонен к пропускам зажигания, поскольку потеря хода приводит к тому, что двигатель теряет импульс, а затем снова начинает двигаться при следующем запуске камеры сгорания. Чтобы избежать этой проблемы, необходимо техническое обслуживание системы зажигания.

Применения двигателя Ванкеля
  • Крошечный двигатель Ванкеля все чаще используется в других целях, в том числе в картингах, личных водных судах и вспомогательных силовых установках самолетов.
  • Некоторые люди используют двигатели Ванкеля в версиях, которые в основном использовались с 1970 года. Даже с большим глушителем весь комплект весит всего 13,4 унции (380 граммов).
  • Универсальность двигателей Ванкеля делает их пригодными для малых, микро- и микро-мини-приложений.
  • Самый большой двигатель Ванкеля доступен с ротором мощностью 550 л.с. (410 кВт) и двумя версиями ротора по 1100 л.с. (820 кВт), смещает примерно 41 литр ротора в диаметре. За счет снижения частоты вращения двигателя до 1200 об / мин и использования природного газа в качестве топлива двигатели были хорошо выбраны для привода насосов на газопроводах.
  • Эти двигатели используются в самолетах.
  • Эти двигатели используются в автомобилях Mazda.
  • Малые двигатели Ванкеля также используются в мотоциклах.
  • Эти типы двигателей также используются на лодках.

В чем разница между поршневым двигателем и двигателем Ванкеля?
Двигатель Ванкеля Поршневой двигатель
Он имеет вращающийся ротор, который используется для преобразования тепловой энергии во вращательное движение. Имеет возвратно-поступательный поршень, который перемещается вверх и вниз для преобразования тепловой энергии в механическую.
Роторный двигатель Ванкеля легче поршневого двигателя. Поршневой двигатель тяжелее двигателя Ванкеля.
Эти двигатели имеют меньшие размеры. Они имеют большой размер.
Они сжигают больше топлива. Они сжигают меньше топлива, чем двигатели Ванкеля.
Они производят меньшую мощность, чем поршневые двигатели, при том же количестве топлива. Они производят большую мощность.
Двигатели Ванкеля производят больше выбросов. Эти двигатели производят меньше выбросов.
У них меньше движущихся частей, чем у поршневых насосов. У них много движущихся частей.
Имеет плавную работу. У него нет такой плавной работы, как у двигателя Ванкеля.

Раздел часто задаваемых вопросов

Кто изобрел двигатель Ванкеля?

В 1957 году инженер Феликс Генрих Ванкель сконструировал первый двигатель Ванкеля.

Почему роторный двигатель известен как двигатель Ванкеля?

Ванкель был изобретен Феликсом Генрихом Ванкелем. Таким образом, он известен как двигатель Ванкеля по имени его основателя.

Почему роторные двигатели такие мощные?

Благодаря революционному движению роторные двигатели имеют меньшую рабочую вибрацию, чем поршневые двигатели. Это позволяет настроить двигатель Ванкеля так, чтобы он работал быстрее и мог генерировать больше мощности.

Какие автомобили имеют двигатель Ванкеля?

Двигатели Ванкеля можно найти в следующих режимах автомобилей:

  • 1969 Citroen M35.
  • Концепт Mazda RX-500 1970 года.
  • 1973 Citroen GS Birotor.
  • Mercedes-Benz C111-II 1970 года выпуска.
  • 1975 Mazda Roadpacer AP.
  • Концепт Chevrolet Corvette XP897 GT 1973 года.
  • 1974 Mazda Parkway RE13 Rotary 26 Superdeluxe.
  • 2003 Mazda RX-8 Hydrogen RE.

Почему вышел из строя двигатель Ванкеля?

Двигатель Ванкеля выходит из строя по следующим причинам:

  • Двигатели Ванкеля имеют проблемы с расходом топлива и сжиганием масла.
  • Им нужна сложная технология впрыска топлива.
  • Расход топлива: Двигатель Ванкеля имеет тонкую и длинную камеру сгорания, приводимую в движение ротором. Это замедляет сгорание топлива. В двигателе эту проблему пытались решить с помощью двойных свечей зажигания (начало и конец).
  • Выбросы: В случае роторного двигателя несгоревшее топливо и масло для сгорания вызывают ужасные выбросы.
Заключение

Двигатели этих типов не горят очень чисто и, как следствие, имеют высокий уровень выбросов.Роторные двигатели также имеют более высокий износ по сравнению с поршневыми двигателями и не служат так долго.

Кроме того, они ужасные двигатели для людей, которые ездят на короткие расстояния. Если бы вы могли завести их, переместить машину с проезжей части на дорогу и выключить их, эти двигатели сильно затопятся. Затем вам нужно пройти процесс удаления наводнения. Я думаю, что этот процесс может занять от 20 до 30 минут, чтобы перезапустить машину. Часто приходится подключать дополнительное питание, чтобы не разрядить аккумулятор.Это также может произойти, если вы едете на небольшое расстояние. Эти преимущества роторных двигателей или двигателей Вакеля делают их очень плохими для автомобилей на короткие расстояния.

Двигатели Ванкеля также используются в транспортных средствах / машинах, вращающихся на высоких оборотах в течение длительного времени, например в самолетах. Это связано с тем, что пиковая мощность обнаруживается при этих высоких оборотах, и всем им не хватает крутящего момента, что приводит к очень большим расходам топлива для достижения этого высокого диапазона мощности.

См. Также:

  1. Какие типы двигателей бывают?
  2. Двигатель внутреннего сгорания (ДВС) различных типов
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *