Меню Закрыть

Рисунок двигателя внутреннего сгорания: Двигатель внутреннего сгорания рисунок с подписями. Принцип работы двигателя внутреннего сгорания. По рабочему циклу

Содержание

Двигатель внутреннего сгорания рисунок с подписями. Принцип работы двигателя внутреннего сгорания. По рабочему циклу

Двигатель внутреннего сгорания: устройство и принципы работы

04.04.2017

Двигателем внутреннего сгорания называется разновидность тепловой машины, которая преобразует энергию, содержащуюся в топливе, в механическую работу. В большинстве случае используется газообразное или жидкое топливо, полученное путем переработки углеводородов. Извлечение энергии происходит в результате его сгорания.

Двигатели внутреннего сгорания имеют ряд недостатков. К ним относятся следующие:

  • сравнительно большие массогабаритные показатели затрудняют их перемещение и сужают сферу использования;
  • высокий уровень шума и токсичные выбросы приводят к тому, что устройства, работающие от двигателей внутреннего сгорания, могут лишь со значительными ограничениями использоваться в закрытых, плохо вентилируемых помещениях;
  • сравнительно небольшой эксплуатационный ресурс вынуждает довольно часто ремонтировать двигатели внутреннего сгорания, что связано с дополнительными затратами;
  • выделение в процессе работы значительного количества тепловой энергии обуславливает необходимость создания эффективной системы охлаждения;
  • из-за многокомпонентной конструкции двигатели внутреннего сгорания сложны в производстве и недостаточно надежны;
  • данный вид тепловой машины отличается высоким потреблением горючего.

Несмотря на все перечисленные недостатки двигатели внутреннего сгорания пользуются огромной популярностью, в первую очередь – благодаря своей автономности (она достигается за счет того, что топливо содержит в себе значительно большее количество энергии по сравнению с любой аккумуляторной батареей). Одной из основных областей их применения является личный и общественный транспорт.

Типы двигателей внутреннего сгорания

Когда речь идет о двигателях внутреннего сгорания, следует иметь в виду, что на сегодняшний день существует несколько их разновидностей, которые отличаются друг от друга конструктивными особенностями.

1. Поршневые двигатели внутреннего сгорания характеризуются тем, что сгорание топлива происходит в цилиндре. Именно он отвечает за преобразование той химической энергии, которая содержится в горючем, в полезную механическую работу. Чтобы добиться этого, поршневые двигатели внутреннего сгорания оснащаются кривошипно-ползунным механизмом, с помощью которого и происходит преобразование.

Поршневые двигатели внутреннего сгорания принято делить на несколько разновидностей (основанием для классификации служит используемое ими топливо).

В бензиновых карбюраторных двигателях образование топливовоздушной смеси происходит в карбюраторе (первый этап). Далее в дело вступают распыляющие форсунки (электрические или механические), местом расположения которых служит впускной коллектор. Готовая смесь бензина и воздуха поступает в цилиндр.

Там происходит ее сжатие и поджиг с помощью искры, которая возникает при прохождении электричества между электродами специальной свечи. В случае с карбюраторными двигателями топливовоздушной смеси присуща гомогенность (однородность).

Бензиновые инжекторные двигатели используют в своей работе иной принцип смесеобразования. Он основан на непосредственном впрыске горючего, которое напрямую поступает в цилиндр (для этого используются распыляющие форсунки, называемые также инжектором). Таким образом, образование топливовоздушной смеси, как и ее сгорание, осуществляется непосредственно в самом цилиндре.

Дизельные двигатели отличаются тем, что используют для своей работы особую разновидность топлива, называемую «дизельное» или просто «дизель». Для его подачи в цилиндр используется высокое давление. По мере того, как в камеру сгорания подаются все новые порции горючего, прямо в ней происходит процесс образования топливовоздушной смеси и ее моментальной сгорание. Поджиг топливовоздушной смеси происходит не с помощью искры, а под действием нагретого воздуха, который подвергается в цилиндре сильному сжатию.

Топливом для газовых двигателей служат различные углеводороды, которые при нормальных условиях пребывают в газообразном состоянии. Из этого следует, что для их хранения и использования требуется соблюдать особые условия:

  • Сжиженные газы поставляются в баллонах различного объема, внутри которых с помощью насыщенных паров создается достаточное давление, но не превышающее 16 атмосфер. Благодаря этому горючее находится в жидком состоянии. Для его перехода в пригодную для сжигания жидкую фазу используется специальное устройство, называемое испарителем. Понижение давления до уровня, который примерно соответствует нормальному атмосферному давлению, осуществляется в соответствии со ступенчатым принципом. В его основе лежит использование так называемого газового редуктора. После этого топливовоздушная смесь поступает во впускной коллектор (перед этим она должна пройти через специальный смеситель). В конце этого достаточно сложного цикла горючее подается в цилиндр для последующего поджига, осуществляемого с помощью искры, которая возникает при прохождении электричества между электродами специальной свечи.
  • Хранение сжатого природного газа осуществляется при гораздо более высоком давлении, которое находится в диапазоне от 150 до 200 атмосфер. Единственное конструктивное отличие данной системы от той, что описана выше, заключается в отсутствии испарителя. В целом принцип остается тем же.

Генераторный газ получают путем переработки твердого топлива (угля, горючих сланцев, торфа и т.п.). По своим основным техническим характеристикам он практически ничем не отличается от других видов газообразного топлива.

Газодизельные двигатели

Данная разновидность двигателей внутреннего сгорания отличается тем, что приготовление основной порции топливовоздушной смеси осуществляется аналогично газовым двигателям. Однако для ее поджига используется не искра, получаемая при помощи электрической свечи, а запальная порция топлива (ее впрыск в цилиндр осуществляется тем же способом, как и в случае с дизельными двигателями).

Роторно-поршневые двигатели внутреннего сгорания

К данному классу относится комбинированная разновидность данных устройств. Ее гибридный характер находит свое отражение в том, что конструкция двигателя включает в себя сразу два важных конструктивных элемента: роторно-поршневую машину и одновременно — лопаточную машину (она может быть представлена компрессором, турбиной и т.д.). Обе упомянутых машины на равных принимают участие в рабочем процессе. В качестве характерного примера таких комбинированных устройств можно привести поршневой двигатель, оснащенный системой турбонаддува.

Особую категорию составляют двигатели внутреннего сгорания, для обозначения которых используется английская аббревиатура RCV. От других разновидностей они отличаются тем, что газораспределение в данном случае основывается на вращении цилиндра. При совершении вращательного движения топливо по очереди проходит выпускной и впускной патрубок. Поршень отвечает за движение в возвратно-поступательном направлении.

Поршневые двигатели внутреннего сгорания: циклы работы

Для классификации поршневых двигателей внутреннего сгорания также используется принцип их работы. По данному показателю двигатели внутреннего сгорания делятся на две большие группы: двух- и четырехтактные.

Четырехтактные двигатели внутреннего сгорания используют в своей работе так называемый цикл Отто, который включает в себя следующие фазы: впуск, сжатие, рабочий ход и выпуск. Следует добавить, что рабочий ход состоит не из одного, как остальные фазы, а сразу из двух процессов: сгорание и расширение.

Наиболее широко применяемая схема, по которой осуществляется рабочий цикл в двигателях внутреннего сгорания, состоит из следующих этапов:

1. Пока происходит впуск топливовоздушной смеси, поршень перемещается между верхней мертвой точкой (ВМТ) и нижней мертвой точкой (НМТ). В результате этого внутри цилиндра освобождается значительное пространство, в которое и поступает топливовоздушная смесь, заполняя его.

Всасывание топливовоздушной смеси осуществляется за счет разности давления, существующего внутри цилиндра и во впускном коллекторе. Толчком к поступлению топливовоздушной смеси в камеру сгорания служит открытие впускного клапана. Этот момент принято обозначать термином «угол открытия впускного клапана» (φа).

При этом следует иметь в виду, что в цилиндре на этот момент уже содержаться продукты, оставшиеся после сгорания предыдущей порции горючего (для их обозначения используется понятие остаточных газов). В результате их смешения с топливовоздушной смесью, называемой на профессиональном языке свежим зарядом, образуется рабочая смесь. Чем успешнее протекает процесс ее приготовления, тем более полно сгорает топливо, выделяя при этом максимум энергии.

В результате растет кпд двигателя. В связи с этим еще на этапе конструирования двигателя особое внимание уделяется правильному смесеобразованию. Ведущую роль играют различные параметры свежего заряда, включая его абсолютную величину, а также удельную долю в общем объеме рабочей смеси.

2. При переходе к фазе сжатия оба клапана закрываются, а поршень совершает движение в обратном направлении (от НМТ к ВМТ). В результате надпоршневая полость заметно уменьшается в объеме. Это приводит к тому, что содержащаяся в ней рабочая смесь (рабочее тело) сжимается. За счет этого удается добиться того, что процесс сгорания топливовоздушной смеси протекает более интенсивно. От сжатия также зависит такой важнейший показатель, как полнота использования тепловой энергии, которая выделяется при сжигании горючего, а следовательно – и эффективность работы самого двигателя внутреннего сгорания.

Для увеличения этого важнейшего показателя конструкторы стараются проектировать устройства, обладающие максимально возможной степенью сжатия рабочей смеси. Если мы имеем дело с ее принудительным зажиганием, то степень сжатия не превышает 12. Если же двигатель внутреннего сгорания работает на принципе самовоспламенения, то упомянутый выше параметр обычно находится в диапазоне от 14 до 22.

3. Воспламенение рабочей смеси дает старт реакции окисления, которая происходит благодаря кислороду воздуха, входящему в ее состав. Этот процесс сопровождается резким ростом давления по всему объему надпоршневой полости. Поджиг рабочей смеси осуществляется при помощи электрической искры, которая имеет высокое напряжение (до 15 кВ).

Ее источник располагается в непосредственной близости от ВМТ. В этой роли выступает электрическая свеча зажигания, которую вворачивают в головку цилиндра. Однако в том случае, если поджиг топливовоздушной смеси осуществляется посредством горячего воздуха, предварительно подвергнутого сжатию, наличие данного конструктивного элемента является излишним.

Вместо него двигатель внутреннего сгорания оснащается особой форсункой. Она отвечает за поступление топливовоздушной смеси, которая в определенный момент подается под высоким давлением (оно может превышать 30 Мн/м²).

4. При сгорании топлива образуются газы, которые имеют очень высокую температуру, а потому неуклонно стремятся к расширению. В результате поршень вновь перемещается от ВМТ к НМТ. Это движение называется рабочим ходом поршня. Именно на этом этапе происходит передача давления на коленчатый вал (если быть точнее, то на его шатунную шейку), который в результате проворачивается. Этот процесс происходит при участии шатуна.

5. Суть завершающей фазы, которая называется впуском, сводится к тому, что поршень совершает обратное движение (от НМТ к ВМТ). К этому моменту открывается второй клапан, благодаря чему отработавшие газы покидают внутреннее пространство цилиндра. Как уже говорилось выше, части продуктов сгорания это не касается. Они остаются в той части цилиндра, откуда поршень их не может вытеснить. За счет того, что описанный цикл последовательно повторяется, достигается непрерывный характер работы двигателя.

Если мы имеем дело с одноцилиндровым двигателем, то все фазы (от подготовки рабочей смеси до вытеснения из цилиндра продуктов сгорания) осуществляется за счет поршня. При этом используется энергия маховика, накапливаемая им в течение рабочего хода. Во всех остальных случаях (имеются в виду двигатели внутреннего сгорания с двумя и более цилиндрами) соседние цилиндры дополняют друг друга, помогая выполнять вспомогательные ходы. В связи с этим из их конструкции без малейшего ущерба может быть исключен маховик.

Чтобы было удобнее изучать различные двигатели внутреннего сгорания, в их рабочем цикле вычленяют различные процессы. Однако существует и противоположный подход, когда сходные процессы объединяют в группы. Основой для подобной классификации служит положение поршня, которое он занимает в отношении обеих мертвых точек. Таким образом, перемещения поршня образуют тот отправной пункт, отталкиваясь от которого, удобно рассматривать работу двигателя в целом.

Важнейшим понятием является «такт». Им обозначают ту часть рабочего цикла, которая укладывается во временной промежуток, когда поршень перемещается от одной смежной мертвой точки к другой. Такт (а вслед за ним и весь соответствующий ему ход поршня) называется процессом. Он играет роль основного при перемещении поршня, которое происходит между двумя его положениями.

Если переходить к тем конкретным процессам, о которых мы говорили выше (впуск, сжатие, рабочий ход и выпуск), то каждый из них четко приурочен к определенному такту. В связи с этим в двигателях внутреннего сгорания принято различать одноименные такты, а вместе с ними – и ходы поршня.

Выше мы уже говорили о том, что наряду с четырехтактными существуют и двухтактные двигатели. Однако независимо от количества тактов рабочий цикл любого поршневого двигателя состоит из пяти упомянутых выше процессов, а в его основе лежит одна и та же схема. Конструктивные особенности в данном случае не играют принципиальной роли.

Дополнительные агрегаты для двигателей внутреннего сгорания

Важный недостаток двигателя внутреннего сгорания заключается в достаточно узком диапазоне оборотов, в котором он способен развивать значительную мощность. Чтобы компенсировать этот недостаток, двигатель внутреннего сгорания нуждается в дополнительных агрегатах. Самые важные из них – стартер и трансмиссия.

Наличие последнего устройства не является обязательным условием лишь в редких случаях (когда, к примеру, речь идет о самолетах). В последнее время все привлекательнее становится перспектива создать гибридный автомобиль, чей двигатель мог бы постоянно сохранять оптимальный режим работы.

К дополнительным агрегатам, обслуживающим двигатель внутреннего сгорания, относится топливная система, которая осуществляет подачу горючего, а также выхлопная система, необходимая для того, чтобы отводить отработавшие газы.

Автомобильные двигатели чрезвычайно разнообразны. Технология, которая применяется при разработке и запуске в производство силовых агрегатов, имеет богатую историю. Требования современности вынуждают производителей ежегодно внедрять в свои проекты доработки и модернизировать имеющиеся технологии.

Двигатель внутреннего сгорания имеет устройство и принцип работы, способный обеспечивать высокую мощность и длительный период эксплуатации — от пользователя требуется только минимально необходимое обслуживание и своевременный мелкий ремонт.

При первом взгляде сложно представить, как работает двигатель: слишком много взаимосвязанных механизмов собранно в одном небольшом пространстве. Но при детальном изучении и анализе связей в этой системе работа двигателя автомобиля оказывается предельно простой и понятной.

В состав двигателя автомобиля входит ряд узлов, имеющих важное значение и обеспечивающих выполнение рабочих функций всей системы .

Блок цилиндров иногда называют корпусом или рамой всей системы. Описание двигателя не обходится без изучения данного элемента конструкции. Именно в этой части мотора обустроена система связанных каналов, предназначеных для смазки и создания необходимой температуры двигателя внутреннего сгорания.

Верхняя часть корпуса поршня имеет каналы для колец. Сами поршневые кольца подразделяются на верхние и нижние. Исходя из выполняемых функций, данные кольца называют компрессионными. Крутящий момент двигателя определяется прочностью и работой рассмотренных элементов.

Нижние кольца поршня играют важную роль для обеспечения ресурса двигателя. Нижние кольца выполняют 2 роли: сохраняют герметичность камеры сгорания и являются уплотнителями, которые предотвращают проникновение масла внутрь камеры сгорания.

Двигатель автомобиля представляет собой систему, в которой осуществляется передача энергии между механизмами с минимальными потерями ее величины на различных этапах. Поэтому кривошипно-шатунный механизм становится одним из важнейших элементов системы. Он обеспечивает передачу возвратно-поступательной энергии от поршня на коленвал.

В целом, принцип работы двигателя достаточно прост и претерпел мало фундаментальных изменений за период существования. В этом просто нет необходимости — некоторые усовершенствования и оптимизации позволяют достигать лучших результатов в работе. Концепция же всей системы неизменна.

Крутящий момент двигателя создается за счет выделяемой при сгорании топлива энергии, которая передается от камеры сгорания к колесам по соединительным элементам. В форсунках топливо передается в камеру сгорания, где происходит его обогащение воздухом. Свеча зажигания создает искру, которая мгновенно воспламеняет образовавшуюся смесь. Так происходит небольшой взрыв, который обеспечивает работы двигателя.

В результате такого действия происходит образования большого объема газов, стимулируя к совершению поступательных движений. Так формируется крутящий момент двигателя. Энергия от поршня передается на коленвал, который передает движение на трансмиссию, а после этого, специальная система шестеренок переносит движение на колеса.

Порядок работы работающего двигателя незатейлив и при исправных связующих элементах гарантирует минимальные потери энергии. Схема работы и строение каждого механизма основаны на преобразовании созданного импульса в практически используемый объем энергии. Ресурс двигателя определяется износостойкостью каждого звена.

Принцип работы двигателя внутреннего сгорания

Двигатель легкового автомобиля выполняется в виде одного из типов систем внутреннего сгорания. Принцип действия двигателя может отличаться по некоторым показателям, что служит основой для разделения моторов на различные типы и модификации.

В качестве определяющих параметров, служащих для разделения силовых агрегатов на категории, служат:

  • рабочий объем,
  • количество цилиндров,
  • мощность системы,
  • скорость вращения узлов,
  • применяемое для работы топливо и др.

Разобраться в том, как работает двигатель, просто. Но по мере изучения всплывают новые показатели, которые вызывают вопросы. Так, часто можно встретить разделение двигателей по числу тактов. Что это такое и как влияет на работу машины?

Устройство двигателя автомобиля основано на четырехтактовой системе. Эти 4 такта равны по времени — за весь цикл поршень дважды поднимается вверх в цилиндре и дважды опускается вниз. Такт берет начало в тот момент, когда поршень находится в верхней или нижней части. Механики называют эти точки ВМТ и НМТ — верхняя и нижняя мертвые точки соответственно.

Такт № 1 — впуск. По мере движения вниз, поршень втягивает в цилиндр наполненную топливом смесь. Работа системы происходит при открытом клапане впуска. Мощность двигателя автомобиля определяется количеством, размерами и временем, которое клапан открыт.

В отдельных моделях работа педали газа увеличивает период нахождения клапана в открытом состоянии, что позволяет увеличить объем топлива, попадающего в систему. Такое устройство двигателей внутреннего сгорания обеспечивает сильное ускорение работы системы.

Такт № 2 — сжатие. На этом этапе поршень начинает свое движение вверх, что приводит к сжатию полученной в цилиндр смеси. Она сживается ровно до объемов камеры сгорания топлива. Эта камера представляет собой пространство между верхней частью поршня и верхом цилиндра в момент нахождения поршня в ВМТ. Клапаны впуска в этот момент работы прочно закрыты.

От плотности закрытия зависит качество сжатия смеси. Если сам поршень, или цилиндр, или кольца поршней потерты и не в надлежащем состоянии, то качество работы и ресурс двигателя значительно снизятся.

Такт № 3 — рабочий ход. Этот этап начинается с ВМТ. Система зажигания гарантирует воспламенение топливной смеси и обеспечивает выделение энергии. Происходит взрыв смеси, при котором высвобождается энергия. И за счет увеличения объема происходит выталкивание поршня вниз. Клапаны при этом закрыты. Технические характеристики двигателя во многом зависят от протекания третьего такта работы мотора.

Такт № 4 — выпуск. Окончание цикла работы. Движение поршня вверх обеспечивает выталкивание газов. Таким образом, осуществляется вентиляция цилиндра. Этот такт важен для обеспечения ресурса двигателя.

Двигатель имеет принцип работы, основанный на распределении энергии от взрывов газов, требует внимания к созданию всех узлов.

Работа двигателя внутреннего сгорания циклична. Вся энергия, которая создается в процессе выполнения работы на всех 4 тактах работы поршней, направляется на организацию работы автомобиля.

Варианты конструкций внутреннего двигателя

Характеристика двигателя зависит от особенностей его конструкции. Внутреннее сгорание — основной тип физического процесса, протекающего в системе мотора на современных автомобилях. За период развития машиностроения успешно реализовано несколько типов ДВС.

Устройство бензинового двигателя разделяет систему на 2 типа — инжекторные двигатели и карбюраторные модели. Также в производстве есть несколько типов карбюраторов и систем впрыска. Основа работы — сжигание бензина.

Характеристика бензинового двигателя выглядит предпочтительнее. Хотя для каждого пользователя есть свои личные приоритеты и преимущества от работы каждого двигателя. Бензиновый двигатель внутреннего сгорания является одним из самых распространенных в современном автомобилестроении. Порядок работы мотора прост и не отличается от классической интерпретации.

Дизельные двигатели основаны на применении подготовленного дизельного топлива. Оно попадает в цилиндры через форсунки. Главное преимущество дизельного двигателя заключается в отсутствии необходимости электричества для сжигания топлива. Оно требуется только для запуска двигателя.

Газовый двигатель применяет для работы сжиженные и сжатые газы, а также некоторые другие типы газов.

Узнать какой ресурс у двигателя на вашем авто лучше всего у производителя. Примерную цифру разработчики озвучивают в сопроводительных документах на транспортное средство. Здесь содержится вся актуальная и точная информация о моторе. В паспорте вы узнаете технические параметры мотора, сколько весит двигатель и всю информацию о движущем агрегате.

Срок службы двигателя зависит от качества обслуживания, интенсивности использования. Заложенный разработчиком срок эксплуатации подразумевает внимательное и бережное отношение с машиной.

Что значит двигатель? Это ключевой элемент в автомобиле, который призван обеспечить его движение. Надежность и точность работы всех узлов системы гарантирует качество движения и безопасность эксплуатации машины.

Характеристики двигателей различаются в широких пределах, несмотря на то. Что принцип внутреннего сгорания топлива остается неизменным. Так разработчикам удается удовлетворять потребности покупателей и реализовывать проекты по улучшению работы автомобилей в целом.

Средний ресурс двигателя внутреннего сгорания составляет несколько сотен тысяч километров. При таких нагрузках от всех составных частей системы требуется прочность и точная совместная работа. Поэтому известная и детально изученная концепция внутреннего сгорания постоянно подвергается доработкам и внедрениям новых подходов.

Ресурс двигателей различается в широком диапазоне. Порядок работы, при этом, общий (с небольшими отклонениями от стандарта). Несколько может различаться вес двигателя и отдельные характеристики.

Современный двигатель внутреннего сгорания имеет классическое устройство и досконально изученный принцип работы. Поэтому механикам не составляет труда решить любую проблему в кратчайшие сроки.

Ремонтные работы усложняются в том случае, если поломка не была устранена сразу. В таких ситуациях порядок работы механизмов может, нарушен окончательно и потребуется серьезная работа по восстановлению. Ресурс двигателя после грамотного ремонта не пострадает.

Каждому, водителю интересно и необходимо знать, как устроен автомобиль, что такое ДВС в машине, из чего состоит двигатель автомобиля и каков у ДВС ресурс.

Отличие двигателей внутреннего сгорания от двигателей внешнего сгорания

ДВС называется так именно потому, что топливо сжигается внутри рабочего органа (цилиндра), промежуточный теплоноситель, например пар, здесь не нужен, как это организовано в паровозах. Если рассматривать паровой двигатель и двигатель, но уже внутреннего сгорания автомобиля, устройство их сходно, это очевидно (на рисунке справа паровой двигатель, слева – ДВС).

Принцип работы одинаков: на поршень, действует какая-то сила. От этого поршень вынужден двигаться вперед или назад (возвратно-поступательно). Эти движения при помощи специального механизма (кривошипного) преобразуются во вращение (колеса у паровоза и коленчатого вала «коленвала» у автомобиля). В двигателях внешнего сгорания нагревается вода, превращаясь в пар, и уже этот пар совершает полезную работу толкая поршень, а в ДВС мы нагреваем воздух внутри (непосредственно в цилиндре)и он (воздух) двигает поршень. От этого коэффициент полезного действия, у ДВС, конечно, выше.

История создания ДВС

История гласит, что первый работающий двигатель внутреннего сгорания коммерческого использования, то есть выпускаемый для продажи, был разработан французским изобретателем Ленуаром. Его двигатель работал на светильном газе в смеси с воздухом. Причем именно он догадался поджигать эту смесь путем электрической искры. Только в 1864 году документально зафиксирована продажа более 310 таких двигателей. На этом он разбогател. Жан Этьен Ленуар потерял интерес к изобретательству и вскоре(в 1877 году) его моторы были вытеснены более совершенными, на тот момент, двигателями Отто, изобретателя из Германии. Донат Банки (венгерский инженер) в 1893 году произвел настоящую революцию в двигателестроении. Он изобрел карбюратор. С этого момента история не знает бензиновых двигателей без этого устройства. И так продолжалось около 100 лет. На смену ему пришла система непосредственного впрыска, но это уже новейшая история.
Все первые двигатели внутреннего сгорания были только одноцилиндровыми. Увеличение мощности велось путем увеличения диаметра рабочего цилиндра. Только к концу 19-го века появились ДВС с двумя цилиндрами, а в начале 20-го века – четырехцилиндровые. Теперь, повышение мощности производилось уже путем увеличения числа цилиндров. На сегодняшний день можно встретить автомобильный двигатель в 2-мя, 4-мя, 6-ю цилиндрами. Реже 8 и 12. Некоторые спортивные автомобили имеют 24 цилиндра. Расположение цилиндров может быть как рядным, так и V-образным.
Вопреки расхожему мнению ни Готлиб Даймлер, ни Карл Бенц, ни Генри Форд устройство двигателя автомобиля не изменяли кардинально (разве что мелкие доработки), но оказали огромное влияние в автомобилестроение как таковое. Что такое ДВС в авто мы сейчас и рассмотрим.

Общее устройство двигателя внутреннего сгорания

Итак, ДВС состоит из корпуса, в котором все остальные детали монтируются. Чаще всего это блок цилиндров.

На данном рисунке показан один цилиндр без блока. Устройство ДВС направлено на максимально комфортные условия для цилиндров, ведь именно в них производится работа. Цилиндр, это металлическая (чаще всего стальная) труба, в которой двигается поршень. Он обозначен на рисунке цифрой 7. Над цилиндром устанавливается головка цилиндра 1, в которую вмонтированы клапана (5 – впускной и 4 — выпускной), а также свеча зажигания 3 и коромысла 2.
Над клапанами 4 и 5 есть пружины, которые удерживают их в закрытом состоянии. Коромысла при помощи толкателей 14 и распределительного вала 13 открывают клапана в определенный момент (тогда, когда это необходимо). Распределительный вал с кулачками вращается от коленвала 11 через приводные шестерни 12.
Движения поршня 7 преобразуются во вращение коленвала 11 при помощи шатуна 8 и кривошипа. Этим кривошипом служит «колено» на валу (смотри рисунок), именно поэтому вал и называется коленчатым. В связи с тем, что воздействие на поршень происходит не постоянно, а только когда в цилиндре горит топливо. У ДВС есть маховик 9, довольно массивный. Маховик как бы запасает энергию вращения и отдает ее при необходимости.
В любом двигателе много трущихся деталей, для их смазывания используют автомобильное масло. Масло это хранится в картере 10 и специальным насосом подается к трущимся деталям.
Синим цветом, показаны детали кривошипно-шатунного механизма (КШМ). Голубым – смесь топлива и воздуха. Серым – свеча зажигания. Красным – выхлопные газы.

Принцип работы ДВС

Разобрав двигатель внутреннего сгорания, его устройство, необходимо уяснить, как взаимодействуют его детали, как он работает. Знать строение еще не все, а вот как взаимодействуют механизмы, в чем преимущество дизельных автомобилей и в чем их недостатки для начинающих (для чайников) очень важно.
Ничего сложного в этом нет. Пошаговым рассмотрением процессов мы постараемся рассказать, как взаимодействуют между собой основные части двигателя при работе. Из какого материала выполнены механические составляющие ДВС.
Все автомобильные двигатели работают на одном принципе: сжигание бензина или дизельного топлива. Для чего? Для получения необходимой нам энергии, конечно. Двигатели автомобилей, иногда говорят – моторы, могут быть двухтактными и четырехтактными. Тактом считается движение поршня либо вверх, либо вниз. Говорят еще от верхней мертвой точки (ВМТ), до нижней (НМТ). Мертвой эта точка называется потому, что поршень как бы замирает на мгновение и начинает движение в обратную сторону.
Итак, в двухтактном двигателе весь процесс (или цикл) происходит за 2 хода поршня, в четырехтактном – за 4. И совершенно не важно, бензиновый это двигатель, дизельный или работающий на газу.
Как ни странно, рассказывать принцип работы лучше на 4-х тактном бензиновом карбюраторном двигателе.

Первый такт — всасывание.

Поршень идет вниз и затягивает за собой смесь из воздуха и топлива. Эта смесь готовится в отдельном устройстве – в карбюраторе. При этом впускной, его еще называют «всасывающий» клапан, конечно, открыт. На рисунке он показан синим.

Следующий, второй такт – сжатие смеси.

Поршень поднимается вверх от НМТ до ВМТ. При этом растет давление и, естественно, температура над поршнем. Но этой температуры недостаточно, для того, чтобы смесь самовоспламенилась. Для этого служит свеча. Она выдает искру в нужный момент. Обычно это 6…8 угловых градусов не доходя до ВМТ. Для начала понимания процесса можно предположить, что искра зажигает смесь точно в верхней точке.

Третий такт – расширение продуктов сгорания.

При сгорании столь энергоемкого топлива, продуктов сгорания в цилиндре очень мало, а вот усилие появляется только потому, что воздух нагрелся при повышении температуры, а значит, расширился, в нашем случае увеличил давление. Именно это давление и совершает нужную работу. Нужно знать, что нагревая воздух на 273 0С, получаем увеличение давления практически в 2 раза. Температура зависит от того сколько топлива сжечь. Максимальная температура внутри рабочего цилиндра может достигать 2500 0С при работе ДВС на полной мощности.

Четвертый такт последний.

После него опять будет первый. Поршень направляется от НМТ к ВМТ. При этом выпускной клапан открыт. Цилиндр очищается, выбрасывая все что сгорело, и что не сгорело, в атмосферу.
Что касается дизельного двигателя, то все основные детали с карбюраторным практически одинаковы. Ведь и тот и другой, это двигатель внутреннего сгорания. Исключение составляет смесеобразование. В карбюраторном смесь готовится отдельно, в том самом карбюраторе. А вот в дизельном – смесь готовиться непосредственно в цилиндре, перед сжиганием. Топливо (солярка) подается специальным насосом в определенный момент времени. Зажигание смеси происходит от самовоспламенения. Температура внутри цилиндра в дизеле гораздо выше, чем в карбюраторном ДВС. По этой причине детали там детали мощнее и система охлаждения лучше. Необходимо отметить, что, несмотря на высокую температуру внутри цилиндра, рабочая температура двигателя никогда не повышается выше 90…95 0С. Иногда, детали дизельных двигателей делают из более твердого металла, что позволяет снизить массу, но увеличивает цену ДВС. Однако, коэффициент полезного действия (КПД) в дизельном двигателе выше. То есть он более экономичен и дороговизна деталей себя окупает.
У дизельного ДВС ресурс выше, если соблюдать правила эксплуатации. Особенно часто механизмы дизелей выходят из строя из-за плохого топлива.
Схема работы дизельного двигателя представлена на рисунке слева. В третьем такте подача топлива показана в момент ВМТ, хотя это и не совсем так.
Системы ДВС обеспечивающие их работоспособность практически одинаковы: система смазки, топливная система, система охлаждения и система газообмена. Есть еще несколько, но они не относятся к главным.
Глядя на устройство любого двигателя внутреннего сгорания можно подумать, что все детали выполнены из стали. Это далеко не так. Корпуса бывают и чугунные и выполненные из алюминиевого сплава, а вот поршни из чугуна не делают, они либо стальные, либо из высокопрочного алюминиевого сплава. Зная общее устройство данного двигателя внутреннего сгорания и условия работы его деталей, очевидно, что и клапана и головку цилиндра нужно делать прочными, поскольку они должны выдерживать давление внутри цилиндра более 100 атмосфер. А вот поддон, где собирается масло не несет на себе особой механической нагрузки и выполняется из тонкой листовой стали или алюминия.
Характеристики ДВС
Когда говорят об автомобиле, то обычно, в первую очередь отмечают двигатель внутреннего сгорания, не его устройство, а его мощность. Она (мощность) измеряется как обычно (по-старинке) в лошадиных силах или (по-современному) киловаттах. Безусловно, чем больше мощность, тем быстрее автомобиль набирает скорость. И в принципе экономичность тем выше, тем двигатель машины более мощный. Однако, это только тогда, когда двигатель постоянно работает на номинальных (экономически оправданных) оборотах. Но на малых скоростях (при неиспользовании полной мощности) КПД сильно падает и если на номинальных режимах дизельный двигатель имеет 40…42% КПД, то на малых только 7%. Бензиновый двигатель не может похвастаться даже этим. Использование полной мощности позволяет экономить топливо. По этой причине расход топлива на 100 километров в малолитражных автомобилях ниже. Этот показатель может составлять и 5 и даже 4 л/100 км. Расход у мощных внедорожников может составлять и 10 и даже 15 л/100 км.
Еще одним показателем для автомобилей является разгон от 0 км/час до 100 км/час. Конечно, чем мощнее двигатель, тем быстрее разгон автомобиля, но про экономичность при этом говорить вообще не приходится.
Итак, двигатель внутреннего сгорания устройство которого Вы теперь знаете, совсем не кажется сложным. И на вопрос «ДВС – что это такое?» Вы можете ответить «Это то, что я знаю».

Двигатель автомобиля может выглядеть как большая запутанная мешанина металлических частей, трубок и проводов для непосвященных. В то же время двигатель — это «сердце» почти любого автомобиля — 95% всех машин работают на двигателе внутреннего сгорания.

В этой статье мы обсудим работу двигателя внутреннего сгорания: его общий принцип, изучим конкретные элементы и фазы работы двигателя, узнаем, как именно потенциальная топлива преобразуется во вращательную силу, и постараемся ответить на следующие вопросы: как работает двигатель внутреннего сгорания, какие бывают двигатели и их типы и что означают те или иные параметры и характеристики двигателя? И, как всегда, всё это просто и доступно, как дважды два.

Главная цель бензинового двигателя автомобиля заключается в преобразовании бензина в движение, чтобы Ваш автомобиль мог двигаться. В настоящее время самый простой способ создать движение от бензина — это попросту сжечь его внутри двигателя. Таким образом, автомобильный «движок» является двигателем внутреннего сгорания — т.е. сгорание бензина происходит внутри него.

Существуют различные виды двигателей внутреннего сгорания. Дизельные двигатели являются одной из форм, а газотурбинные — совсем другой. Каждый из них имеет свои преимущества и недостатки.

Ну, как Вы заметите, раз существует двигатель внутреннего сгорания, то должен существовать и двигатель внешнего сгорания. Паровой двигатель в старомодных поездах и пароходах как раз таки и является лучшим примером двигателя внешнего сгорания. Топливо (уголь, дерево, масло, любое другое) в паровой машине горит вне двигателя для создания пара, и пар создаёт движение внутри двигателя. Разумеется, двигатель внутреннего сгорания является намного более эффективным (как минимум потребляет гораздо меньше топлива на километр пути автомобиля), чем внешнего сгорания, кроме того, двигатель внутреннего сгорания намного меньше по размерам, чем эквивалентный по мощности двигатель внешнего сгорания. Это объясняет, почему мы не видим ни одного автомобиля, похожего на паровоз.

А теперь давайте посмотрим более подробно, как же работает двигатель внутреннего сгорания.

Давайте рассмотрим принцип, лежащий в любом возвратно-поступательном движении двигателя внутреннего сгорания: если Вы поместите небольшое количество высокоэнергичного топлива (например, бензина) в небольшое закрытое пространство и зажжёте его (это топливо), то выделится невероятное количество энергии в виде расширяющегося газа. Вы можете использовать эту энергию, к примеру, для приведения в движение картофелины. В этом случае энергия преобразуется в движение этой картофелины. Например, если Вы в трубу, у которой один конец плотно закрыт, а другой — открыт, нальёте немного бензина, а затем засунете картофелину и подожжёте бензин, то его взрыв спровоцирует приведение в движение этой картофелины за счёт выдавливания её взрывающимся бензином, таким образом, картофелина подлетит высоко в небо, если Вы направите трубу вверх. Это мы кратко описали принцип действия старинной пушки. Но Вы также можете использовать такую энергию бензина в более интересных целях. Например, если Вы можете создать цикл взрывов бензина в сотни раз в минуту, и если Вы сможете использовать эту энергию в полезных целях, то знайте, что у Вас уже есть ядро ​​для двигателя автомобиля!

Почти все автомобили в настоящее время используют то, что называется четырёхтактным циклом сгорания для преобразования бензина в движение. Четырёхтактный цикл также известен как цикл Отто — в честь Николая Отто, который изобрел его в 1867 году. Итак, вот они, эти 4 такта работы двигателя:

  1. Такт впуска топлива
  2. Такт сжатия топлива
  3. Такт сгорания топлива
  4. Такт выпуска отработавших газов

Вроде бы уже всё понятно из этого, не так ли? Вы можете посмотреть ниже на рисунке, что элемент, который называется поршень, заменяет картошку в описанной нами ранее «картофельной пушке». Поршень соединен с коленчатым валом с помощью шатуна. Только не пугайтесь новых терминов — их, на самом деле не так много в принципе работы двигателя!

На рисунке буквами обозначены следующие элементы двигателя:

A — Распределительный вал
B — Крышка клапанов
C — Выпускной клапан
D — Выхлопное отверстие
E — Головка цилиндра
F — Полость для охлаждающей жидкости
G — Блок двигателя
H — Маслосборник
I — Поддон двигателя
J — Свеча зажигания
K — Впускной клапан
L — Впускное отверстие
M — Поршень
N — Шатун
O — Подшипник шатуна
P — Коленчатый вал

Вот что происходит, когда двигатель проходит свой ​​полный четырёхтактный цикл:

  1. Начальное положение поршня — в самом верху, в этот момент открывается впускной клапан, и поршень движется вниз, таким образом, засасывая в цилиндр приготовленную смесь бензина и воздуха. Это такт впуска. Всего лишь крошечная капля бензина должна смешаться с воздухом, чтобы всё это работало.
  2. Когда поршень достигает своей нижней точки, то впускной клапан закрывается, а поршень начинает перемещаться обратно вверх (бензин оказывается в «западне»), сжимая эту смесь из топлива и воздуха. Сжатие впоследствии сделает взрыв мощнее.
  3. Когда поршень достигает верхней точки своего хода, свеча зажигания испускает искру, порождённую напряжением более десятка тысяч Вольт, чтобы зажечь бензин. Происходит детонация, и бензин в цилиндре взрывается, с невероятной силой толкая поршень вниз.
  4. После того, как поршень снова достигает дна своего хода, настаёт очередь открываться выпускному клапану. Затем поршень движется вверх (это происходит уже по инерции) и отработавшая смесь бензина и воздуха выходит через выхлопное отверстие из цилиндра, чтобы отправиться в своё путешествие до выхлопной трубы и далее в верхние слои атмосферы.

Теперь, когда клапан снова в самом верху, двигатель готов к следующему циклу, так что он всасывает следующую порцию смеси воздуха и бензина, чтобы ещё сильнее раскрутить коленчатый вал, который, собственно и передаёт своё кручение далее через трансмиссию к колёсам. Теперь посмотрите ниже, как работает двигатель во всех своих четырёх тактах.

Более наглядно работу двигателя внутреннего сгорания Вы можете увидеть на двух анимациях ниже:

Как работает двигатель — анимация

Обратите внимание, что движение, которое создаётся работой двигателя внутреннего сгорания, является вращением, в то время как движение, создаваемое «картофельной пушкой», является линейным (прямым). В двигателе линейное движение поршней преобразуется во вращательное движение коленчатого вала. Вращательное движение нам нужно, потому что мы планируем повернуть наши колёса автомобиля.

Теперь давайте посмотрим на все части, которые работают вместе в дружной команде, чтобы это произошло, начиная с цилиндров!

Ядром двигателя является цилиндр с поршнем, который двигается вверх и вниз внутри цилиндра. Двигатель, описанный выше, имеет один цилиндр. Казалось бы, что ещё нужно для автомобиля?! А вот и нет, автомобилю для комфортной езды на нём нужны по меньшей мере ещё 3 таких цилиндра с поршнями и всеми необходимыми этой парочке атрибутами (клапанами, шатунами и так далее), а вот один цилиндр подойдёт разве что для большинства газонокосилок. Посмотрите — ниже на анимации Вы увидите работу 4-хцилиндрового двигателя:

Типы двигателей

Автомобили чаще всего имеют четыре, шесть, восемь и даже десять, двенадцать и шестнадцать цилиндров (последние три варианта устанавливают, в основном на спортивные автомобили и болиды). В многоцилиндровом двигателе все цилиндры, как правило, расположены одним из трёх способов:

  • Рядный
  • V-образный
  • Оппозитный

Вот они — все три типа расположения цилиндров в двигателе:

Рядное расположение 4-х цилиндров

Оппозитное расположение 4-х цилиндров

V-образное расположение 6 цилиндров

Различные конфигурации имеют разные преимущества и недостатки с точки зрения вибрации, стоимости производства и характеристик формы. Эти преимущества и недостатки делают их более подходящими для использования некоторых конкретных транспортных средств. Так, 4-хцилиндровые двигатели редко имеет смысл делать V-образными, таким образом, они обычно рядные; а 8-цилиндровые двигатели делают чаще с V-образным расположением цилиндров.

Теперь давайте наглядно посмотрим, как работает система впрыска топлива, масло и другие узлы в двигателе:

Давайте рассмотрим некоторые ключевые детали двигателя более подробно:

А теперь внимание! На основе всего прочитанного посмотрим на полный цикл работы двигателя со всеми его элементами:

Полный цикл работы двигателя

Почему двигатель не работает?

Допустим, Вы выходите утром к машине и начинаете её заводить, но она не заводится . Что может быть не так? Теперь, когда Вы знаете, как работает двигатель, можно понять основные вещи, которые могут помешать двигателю завестись. Три фундаментальные вещи могут случиться:

  • Плохая топливная смесь
  • Отсутствие сжатия
  • Отсутствие искры

Да, есть ещё тысячи незначительных вещей, которые могут создать проблемы, но указанная «большая тройка» является чаще всего следствием или причиной одной из них. На основе простого представления о работе двигателя мы можем составить краткий список того, как эти проблемы влияют на двигатель.

Плохая топливная смесь может быть следствием одной из причин:

  • У Вас попросту закончился в баке бензин, и двигатель пытается завестись от воздуха.
  • Воздухозаборник может быть забит, поэтому в двигатель поступает топливо, но ему не хватает воздуха, чтобы сдетонировать.
  • Топливная система может поставлять слишком много или слишком мало топлива в смесь, а это означает, что горение не происходит должным образом.
  • В топливе могут быть примеси (а для российского качества бензина это особенно актуально), которые мешают топливу полноценно гореть.

Отсутствие сжатия — если заряд воздуха и топлива не могут быть сжаты должным образом, процесс сгорания не будет работать как следует. Отсутствие сжатия может происходить по следующим причинам:

  • Поршневые кольца изношены (позволяя воздуху и топливу течь мимо поршня при сжатии)
  • Впускные или выпускные клапаны не герметизируются должным образом, снова открывая течь во время сжатия
  • Появилось отверстие в цилиндре.

Отсутствие искры может быть по ряду причин:

  • Если свечи зажигания или провод, идущий к ним, изношены, искра будет слабой.
  • Если провод повредился или попросту отсутствует или если система, которая посылает искру по проводу, не работает должным образом.
  • Если искра происходит либо слишком рано или слишком поздно в цикле, топливо не будет зажжено в нужное время, и это может вызвать всевозможные проблемы.

И вот ещё ряд причин, по которым двигатель может не работать, и здесь мы затронем некоторые детали за пределами двигателя:

  • Если аккумулятор мёртв, Вы не сможете прокрутить двигатель, чтобы запустить его.
  • Если подшипники, которые позволяют коленчатому валу свободно вращаться, изношены, коленчатый вал не сможет провернуться, поэтому двигатель не сможет работать.
  • Если клапаны не открываются и не закрываются в нужное время или не работают вообще, воздух не сможет войти, а выхлопы — выйти, поэтому двигатель опять-таки не сможет работать.
  • Если кто-то из хулиганских побуждений засунул картошку в выхлопную трубу, выпускные газы не смогут выйти из цилиндра, и двигатель снова не будет работать.
  • Если в двигателе недостаточно масла, то поршень не сможет двигаться вверх и вниз свободно в цилиндре, что затруднит или сделает невозможным нормальную работу двигателя.

В правильно работающем двигателе все эти факторы находятся в пределах допуска. Как Вы можете видеть, двигатель имеет ряд систем, которые помогают ему сделать свою работу преобразования топлива в движение безупречной. Мы же рассмотрим различные подсистемы, используемые в двигателях, в следующих разделах.

Большинство подсистем двигателя может быть реализована с использованием различных технологий, и лучшие технологии могут значительно повысить производительность двигателя. Вот почему развитие автомобилестроения продолжается высочайшими темпами, ведь конкуренция среди автоконцернов достаточно велика, чтобы вкладывать большие деньги в каждую дополнительно выжатую лошадиную силу из двигателя при том же объёме. Давайте посмотрим на различные подсистемы, используемые в современных двигателях, начиная с работы клапанов в двигателе.

Как работают клапаны?

Система клапанов состоит из, собственно, клапанов и механизма, который открывает и закрывает их. Система открытия и закрытия их называется распределительным валом . Распределительный вал имеет специальные детали на своей оси, которые движут клапаны вверх и вниз, как показано на рисунке ниже.

Большинство современных двигателей имеют то, что называют накладными кулачками . Это означает, что вал расположен над клапанами, как Вы видите на рисунке. Старые двигатели используют распределительный вал, расположенный в картере возле коленчатого вала. Распределительный вал, крутясь, двигает кулачок выступом вниз таким образом, чтобы он продавливал клапан вниз, создавая зазор для прохода топлива или выпуска отработавших газов. Ремень ГРМ или цепной привод приводится в движение коленчатым валом и передаёт кручение от него к распределительному валу так, что клапаны находятся в синхронизации с поршнями. Распределительный вал всегда крутится в один-два раза медленнее коленчатого вала. Многие высокопроизводительные двигатели имеют четыре клапана на цилиндр (два для приёма топлива внутрь и два для вытяжки отработавшей смеси).

Как работает система зажигания?

Система зажигания производит заряд высокого напряжения и передаёт его к свечам зажигания с помощью проводов зажигания. Заряд сначала проходит к катушке зажигания (эдакому дистрибьютору, который распределяет подачу искры по цилиндрам в определённое время), которую Вы можете легко найти под капотом большинства автомобилей. Катушка зажигания имеет один провод, идущий в центре и четыре, шесть, восемь проводов или больше в зависимости от количества цилиндров, которые выходят из него. Эти провода зажигания отправляют заряд к каждой свече зажигания. Двигатель получает такую искру по времени таким образом, что только один цилиндр получает искру от распределителя в один момент времени. Такой подход обеспечивает максимальную гладкость работы двигателя.

Как работает охлаждение?

Система охлаждения в большинстве автомобилей состоит из радиатора и водяного насоса. Вода циркулирует через проходы (каналы) вокруг цилиндров, а затем проходит через радиатор, чтобы тот её максимально охладил. Однако, существуют такие модели автомобилей (в первую очередь Volkswagen Beetle (Жук)), а также большинство мотоциклов и газонокосилок, которые имеют двигатель с воздушным охлаждением. Вы вероятно, видел такие двигатели с воздушным охлаждением, сбоку которых расположены эдакие плавники — ребристая поверхность, украшающие снаружи каждый цилиндр, чтобы помочь рассеять тепло.

Воздушное охлаждение делает двигатель легче, но горячее, и как правило, уменьшается срок службы двигателя и общая производительность. Так что теперь Вы знаете, как и почему Ваш двигатель остаётся не перегретым.

Как работает пусковая система?

Повышение производительности Вашего двигателя является большим делом, но важнее то, что именно происходит, когда Вы поворачиваете ключ, чтобы запустить его ! Пусковая система состоит из стартера с электродвигателем. Когда Вы поворачиваете ключ зажигания, стартер крутит двигатель на несколько оборотов, чтобы процесс горения начал свою работу, и остановить его смог только поворот ключа в обратную сторону, когда перестаёт подаваться искра в цилиндры, и двигатель, таким образом, глохнет.

Стартер же имеет мощный электродвигатель, который вращает холодный двигатель внутреннего сгорания. Стартер — это всегда довольно мощный и, следовательно, «кушающий» ресурсы аккумулятора двигатель, ведь должен преодолеть:

  • Всё внутреннее трение, вызванное поршневыми кольцами и усугубляющееся холодным непрогретым маслом.
  • Давление сжатия любого цилиндра (цилиндров), которое происходит в процессе такта сжатия.
  • Сопротивление, оказываемое открытием и закрытием клапанов распределительным валом.
  • Все иные процессы, непосредственно связанные с двигателем, в том числе сопротивление водяного насоса, масляного насоса, генератора и т.д.

Мы видим, что стартеру необходимо очень много энергии. Автомобиль чаще всего использует 12-вольтовую электрическую систему, и сотни ампер электричества должны поступать в стартер.

Как работает впрыск и смазочная система?

Когда дело доходит ежедневного обслуживания автомобиля, Ваша первая забота, вероятно, состоит в проверке количества бензина в Вашем автомобиле. А как бензин попадает из топливного бака в цилиндры? Топливная система двигателя высасывает бензин из бака с помощью топливного насоса, который находится в баке, и смешивает его с воздухом так, чтобы надлежащая смесь воздуха и топлива могла протекать в цилиндры. Топливо поставляется в одном из трёх распространённых способов: карбюратор, впрыск топлива и система непосредственного впрыска топлива.

Карбюраторы на сегодняшний день сильно устарели, и их не помещают в новые модели автомобилей. В инжекторном двигателе нужное количество топлива впрыскивается индивидуально в каждый цилиндр либо прямо в впускной клапан (впрыск топлива) или непосредственно в цилиндр (непосредственный впрыск топлива).

Масло также играет важную роль. Идеально и правильно смазанная система гарантирует, что каждая подвижная часть в двигателе получает масло так, что она может легко перемещаться. Две главные части, нуждающиеся в масле — это поршень (а, точнее, его кольца) и любые подшипники, которые позволяют таким элементам, как коленчатый и другие валы, свободно вращаться. В большинстве автомобилей масло всасывается из масляного поддона масляным насосом, проходит через масляный фильтр для удаления частиц грязи, а затем брызгается под высоким давлением на подшипники и стенки цилиндра. Затем масло стекает в отстойник, где снова собирается, и цикл повторяется.

Система выпуска отработавших газов

Теперь, когда мы знаем о ряде вещей, которые мы положили (налили) в свой ​​автомобиль, давайте посмотрим на другие вещи, которые выходят из него. Система выпуска включает в себя выхлопную трубу и глушитель. Без глушителя Вы бы услышали звук тысяч маленьких взрывов из своей ​​выхлопной трубы. Глушитель гасит звук. Выхлопная система также включает в себя каталитический нейтрализатор, который использует катализатор и кислород, чтобы сжечь всё неиспользованное топливо и некоторые другие химические веществ в выхлопных газах. Таким образом, Ваш автомобиль соответствует определённым евростандартам по уровню загрязнения воздуха.

Что ещё есть, кроме всего вышеперечисленного в автомобиле? Электрическая система состоит из аккумулятора и генератора . Генератор подключен к двигателю ремнём и вырабатывает электроэнергию для зарядки аккумулятора. Аккумулятор выдаёт 12-вольтовый заряд электрической энергии, доступной ко всему в машине, нуждающемуся в электроэнергии (системе зажигания, магнитоле,

Современный двигатель внутреннего сгорания далеко ушел от своих прародителей. Он стал крупнее, мощнее, экологичнее, но при этом принцип работы, устройство двигателя автомобиля, а также основные его элементы остались неизменными.

Двигатели внутреннего сгорания, массово применяемые на автомобилях, относятся к типу поршневых. Название свое этот тип ДВС получил благодаря принципу работы. Внутри двигателя находится рабочая камера, называемая цилиндром. В ней сгорает рабочая смесь. При сгорании смеси топлива и воздуха в камере увеличивается давление, которое воспринимает поршень. Перемещаясь, поршень преобразует полученную энергию в механическую работу.

Как устроен ДВС

Первые поршневые моторы имели лишь один цилиндр небольшого диаметра. В процессе развития для увеличения мощности сначала увеличивали диаметр цилиндра, а потом и их количество. Постепенно двигатели внутреннего сгорания приняли привычный нам вид. Мотор современного автомобиля может иметь до 12 цилиндров.

Современный ДВС состоит из нескольких механизмов и вспомогательных систем, которые для удобства восприятия группируют следующим образом:

  1. КШМ – кривошипно-шатунный механизм.
  2. ГРМ – механизм регулировки фаз газораспределения.
  3. Система смазки.
  4. Система охлаждения.
  5. Система подачи топлива.
  6. Выхлопная система.

Также к системам ДВС относятся электрические системы пуска и управления двигателем.

КШМ – кривошипно-шатунный механизм

КШМ – основной механизм поршневого мотора. Он выполняет главную работу – преобразует тепловую энергию в механическую. Состоит механизм из следующих частей:

  • Блок цилиндров.
  • Головка блока цилиндров.
  • Поршни с пальцами, кольцами и шатунами.
  • Коленчатый вал с маховиком.


ГРМ – газораспределительный механизм

Чтобы в цилиндр поступало нужное количество топлива и воздуха, а продукты сгорания вовремя удалялись из рабочей камеры, в ДВС предусмотрен механизм, называемый газораспределительным. Он отвечает за открытие и закрытие впускных и выпускных клапанов, через которые в цилиндры поступает топливо-воздушная горючая смесь и удаляются выхлопные газы. К деталям ГРМ относятся:

  • Распределительный вал.
  • Впускные и выпускные клапаны с пружинами и направляющими втулками.
  • Детали привода клапанов.
  • Элементы привода ГРМ.

ГРМ приводится от коленчатого вала двигателя автомобиля. С помощью цепи или ремня вращение передается на распределительный вал, который посредством кулачков или коромысел через толкатели нажимает на впускной или выпускной клапан и по очереди открывает и закрывает их

В зависимости от конструкции и количества клапанов на двигатель может быть установлен один или два распределительных вала на каждый ряд цилиндров. При двухвальной системе каждый вал отвечает за работу своего ряда клапанов — впускных или выпускных. Одновальная конструкция имеет английское название SOHC (Single OverHead Camshaft). Систему с двумя валами называют DOHC (Double Overhead Camshaft).

Во время работы мотора его детали соприкасаются с раскаленными газами, которые образуются при сгорании топливо-воздушной смеси. Чтобы детали двигателя внутреннего сгорания не разрушались из-за чрезмерного расширения при нагреве, их необходимо охлаждать. Охладить мотор автомобиля можно с помощью воздуха или жидкости. Современные моторы имеют, как правило, жидкостную схему охлаждения, которую образуют следующие части:

  • Рубашка охлаждения двигателя
  • Насос (помпа)
  • Радиатор
  • Вентилятор
  • Расширительный бачок

Рубашку охлаждения двигателей внутреннего сгорания образуют полости внутри БЦ и ГБЦ, по которым циркулирует охлаждающая жидкость. Она отбирает избыточное тепло у деталей двигателя и относит его к радиатору. Циркуляцию обеспечивает насос, привод которого осуществляется с помощью ремня от коленчатого вала.

Термостат обеспечивает необходимый температурный режим двигателя автомобиля, перенаправляя поток жидкости в радиатор либо в обход него. Радиатор, в свою очередь, призван охлаждать нагретую жидкость. Вентилятор усиливает набегающий поток воздуха, тем самым увеличивая эффективность охлаждения. Расширительный бачок необходим современным моторам, так как применяемые охлаждающие жидкости сильно расширяются при нагреве и требуют дополнительного объема.

Система смазки ДВС

В любом моторе есть множество трущихся деталей, которые необходимо постоянно смазывать, чтобы уменьшить потери мощности на трение и избежать повышенного износа и заклинивания. Для этого существует система смазки. Попутно с ее помощью решается еще несколько задач: защита деталей двигателя внутреннего сгорания от коррозии, дополнительное охлаждение деталей мотора, а также удаление продуктов износа из мест соприкосновения трущихся частей. Систему смазки двигателя автомобиля образуют:

  • Масляный картер (поддон).
  • Насос подачи масла.
  • Масляный фильтр с .
  • Маслопроводы.
  • Масляный щуп (индикатор уровня масла).
  • Указатель давления в системе.
  • Маслоналивная горловина.

Насос забирает масло из масляного картера и подает его в маслопроводы и каналы, расположенные в БЦ и ГБЦ. По ним масло поступает в места соприкосновения трущихся поверхностей.

Система питания

Система подачи для двигателей внутреннего сгорания с воспламенением от искры и от сжатия отличаются друг от друга, хотя и имеют ряд общих элементов. Общими являются:

  • Топливный бак.
  • Датчик уровня топлива.
  • Фильтры очистки топлива – грубой и тонкой.
  • Топливные трубопроводы.
  • Впускной коллектор.
  • Воздушные патрубки.
  • Воздушный фильтр.

В обеих системах имеются топливные насосы, топливные рампы, форсунки подачи топлива, но в силу различных физических свойств бензина и дизельного топлива конструкция их имеет существенные различия. Сам принцип подачи одинаков: топливо из бака с помощью насоса через фильтры подается в топливную рампу, из которой попадает в форсунки. Но если в большинстве бензиновых двигателей внутреннего сгорания форсунки подают его во впускной коллектор мотора автомобиля, то в дизельных оно подается непосредственно в цилиндр, и уже там смешивается с воздухом. Детали, обеспечивающие очистку воздуха и поступление его цилиндры – воздушный фильтр и патрубки – тоже относятся к топливной системе.

Система выпуска

Система выпуска предназначена для отвода отработанных газов из цилиндров двигателя автомобиля. Основные детали, ее составляющие:

  • Выпускной коллектор.
  • Приемная труба глушителя.
  • Резонатор.
  • Глушитель.
  • Выхлопная труба.

В современных двигателях внутреннего сгорания выхлопная конструкция дополнена устройствами нейтрализации вредных выбросов. Она состоит из каталитического нейтрализатора и датчиков, сообщающихся с блоком управления двигателем. Выхлопные газы из выпускного коллектора через приемную трубу попадают в каталитический нейтрализатор, затем через резонатор в глушитель. Далее через выхлопную трубу они выбрасываются в атмосферу.

В заключение необходимо упомянуть системы пуска и управления двигателем автомобиля. Они являются важной частью двигателя, но их необходимо рассматривать вместе с электрической системой автомобиля, что выходит за рамки этой статьи, рассматривающей внутреннее устройство двигателя.

Двигатель внутреннего сгорания — Технарь

Двигатель внутреннего сгорания — распространенней вид теплового двигателя, в нем топливо сгорает прямо в цилиндре, внутри самого двигателя. Отсюда и происходит название этого двигателя.

Двигатели внутреннего сгорания работают на жидком топливе (бензин, керосин, нефть) или на горючем газе.

Такой тип теплового Двигателя обычно устанавливают на большинстве автомобилей. На рисунке 204 показан разрез простейшего двигателя внутреннего сгорания. Двигатель состоит из цилиндра, в котором перемещается поршень 3, соединенный при помощи шатуна 4 с коленчатым валом 5. На валу укреплен тяжелый маховик 6, предназначенный для уменьшения неравномерности вращения вала.

В верхней части цилиндра имеются два клапана 1 и 2, которые при работе, двигателя автоматически открываются и закрываются в нужные моменты. Через клапан 1 в цилиндр поступает горючая смесь, которая воспламеняется с помощью свечи 7, а через клапан 2 выпускаются отработавшие газы.

В цилиндре такого двигателя периодически происходит сгорание горючей смеси, состоящей из паров бензина и воздуха. Температура газообразных продуктов сгорания достигает 1600-1800°С. Давление на поршень при этом резко возрастает. Расширяясь, газы толкают поршень, а вместе с ним и коленчатый вал, совершая механическую работу. При этом они охлаждаются, так как часть их внутренней энергии превращается в механическую энергию.

Рассмотрим более подробно, схему работы такого двигателя. Крайние положения поршня в цилиндре называют мертвыми точками. Расстояние, проходимое поршнем от одной мертвой точки до другой, называют ходом поршня.

Один рабочий цикл в двигателе происходит за четыре хода поршня, или, как говорят, за четыре такта. Поэтому такие двигатели называют четырехтактными. Один ход поршня, или один такт двигателя, совершается за пол-оборота коленчатого вала.

При повороте вала двигателя в начале первого такта поршень движется вниз (рис. 205, а). Объем над поршнем увеличивается. Вследствие этого в цилиндре создается разрежение. В это время открывается клапан 1 ив цилиндр входит горючая смесь. К концу первого такта цилиндр заполняется горючей смесью, а клапан 1 закрывается.

При дальнейшем повороте вала поршень движется вверх (второй такт) и сжимает горючую смесь (рис. 205, б). В конце второго такта, когда поршень дойдет до крайнего верхнего положения, сжатая горючая смесь воспламеняется (от электрической искры) и быстро сгорает.

Образующиеся при сгорании газы давят на поршень и толкают его вниз (рис. 205, в). Под действием расширяющихся горячих газов (третий такт) двигатель совершает работу, поэтому этот такт называют рабочим ходом. Движение поршня передается шатуну, а через него коленчатому валу с маховиком. Получив сильный толчок, маховик затем продолжает вращаться по инерции и перемещает скрепленный с ним поршень при последующих тактах.

В конце третьего такта открывается клапан 2, и через него продукты сгорания выходят из цилиндра в, атмосферу. Выпуск продуктов сгорания продолжается и в течение четвертого такта, когда поршень движется вверх (рис. 205, г). В конце четвертого такта клапан 2 закрывается.

Затем циклы работы двигателя повторяются.

Итак, цикл двигателя состоит из следующих четырех процессов (тактов): впуска, сжатия, рабочего хода, выпуска. В автомобильных двигателях пуск двигателя обычно осуществляется вспомогательным электрическим двигателем — стартером.

В автомобилях используют чаще всего четырехцилиндровые двигатели внутреннего сгорания, На рисунке 206 изображен разрез такого двигателя. Работа цилиндров согласуется так, что в каждом из них поочередно происходит рабочий ход, и коленчатый вал все время получает энергию от одного из поршней.

Имеются и восьмицилиндровые автомобильные двигатели. Многоцилиндровые двигатели в лучшей степени обеспечивают равномерность вращения вала и имеют большую мощность.

Необходимой частью всякого двигателя внутреннего сгорания является система охлаждения, так как возможны и преждевременные вспышки горючей смеси и даже ее взрыв. Охлаждение цилиндров производится проточной водой или воздухом, поэтому двигатели внутреннего сгорания бывают с жидкостным или воздушным охлаждением.

Применение двигателей внутреннего сгорания чрезвычайно разнообразно. Они приводят в движение самолеты, теплоходы, автомобили, тракторы, тепловозы. Мощные двигатели внутреннего сгорания устанавливают на речных и морских судах.

Вопросы.

1. Какой двигатель называют двигателем внутреннего сгорания? 2. Из каких основных частей состоит простейший двигатель внутреннего сгорания? 3. Какие физические явления происходят при сгорании горючей смеси в двигателе внутреннего сгорания? 4. За сколько ходов, или тактов, происходит один рабочий цикл двигателя? Сколько оборотов делает при этом вал двигателя? 5. Какие процессы происходят в двигателе в течение каждого из четырех тактов? Как называют эти такты? 6. Какую роль играет маховик в двигателе внутреннего сгорания? 7. Какие двигатели внутреннего сгорания чаще всего применяют в автомобилях? 8. Где ещё, кроме автомобилей, применяют двигатели внутреннего сгорания?

Вопросы § 22

1. Какой двигатель называют двигателем внутреннего сгорания?

Двигатель внутреннего сгорания — это тепловой двигатель, топливо в котором сгорает прямо в цилиндре внутри самого двигателя.

2. Пользуясь рисунком 26, расскажите, из каких основных частей состоит простейший двигатель внутреннего сгорания.

Простейший двигатель внутреннего сгорания состоит из цилиндра, в котором перемещается поршень, соединенный внизу шатуном с коленчатым валом. Два клапана в верхней части цилиндра открываются и закрываются автоматически в нужные моменты. Один клапан служит для подачи в цилиндр горючей смеси, воспламеняющейся от свечи, другой клапан выпускает отработавшие газы.

 

3. За сколько ходов, или тактов, происходит один рабочий цикл двигателя? Сколько оборотов делает при этом вал двигателя?

Рабочий цикл двигателя происходит за четыре хода (такта) поршня, при этом коленчатый вал делает два оборота.

4. Какие процессы происходят в двигателе в течение каждого из четырёх тактов? Как называют эти такты?

Такты поршня имеют названия в соответствии с происходящими в них процессами: впуск, сжатие, рабочий ход и выпуск. Впуск — поршень движется вниз, в цилиндре создается разряжение, открывается клапан и в цилиндр поступает горючая смесь, клапан закрывается, коленчатый вал совершает пол-оборота. Сжатие — коленчатый вал продолжает поворот, поршень движется вверх и сжимает горючую смесь, она воспламеняется от искры и быстро сгорает. Рабочий ход — поршень под давлением газов опускается вниз, передавая толчок шатуну и коленчатому валу с маховиком при закрытых клапанах. В конце третьего такта открывается другой клапан для выпуска продуктов сгорания в атмосферу. Выпуск — поршень движется вверх, продукты сгорания выходят через клапан, в конце такта клапан закрывается.

5. Какую роль играет маховик в двигателе внутреннего сгорания?

Маховик, обладая значительной инерционностью, необходим для передачи движения поршню в следующих тактах.

 

«Тепловые двигатели. Двигатель внутреннего сгорания»

МБОУ СОШ №4

Открытый урок по физике в 8 классе

по теме: «Тепловые двигатели. Двигатель внутреннего сгорания»

учитель физики Капурова А.И.

Цель урока: научить обучающихся понимать суть тепловых явлений; объяснить принцип действия тепловых двигателей; показать значение тепловых двигателей в жизни человека.

Задачи урока:

Изучить устройство, принцип действия и назначение тепловых машин на примере двигателя внутреннего сгорания.

Рассмотреть историю развития тепловой машины, экологические проблемы и перспективы развития.

Совершенствовать навыки работы с приборами, лабораторным оборудованием.

Формировать умение формулировать выводы о проведенных экспериментах.

Тип урока: урок изучения и первичного закрепления новых знаний.

Оборудование: интерактивная доска, проектор, компьютер, модель ДВС, наборы приборов для проведения эксперимента.

Ход урока

1.Актуализация знаний

Учитель Здравствуйте, садитесь. Сегодня на уроке вы сможете стать учеными-инженерами, т.к. создадите простейшее устройство, которое совершает полезную работу, узнаете принцип действия технических устройств необходимых для человека. Но для этого нам нужны знания по теме: Внутренняя энергия и способы её изменения. Вам необходимо ответить на мои вопросы.

Учитель Что называют внутренней энергией?

Какими способами её можно изменить?

Можно ли использовать внутреннюю энергию тел?

2. Объяснение нового материала

Запасы внутренней энергии огромны. Очень важно умело и грамотно использовать её запасы, содержащиеся в топливе. Использовать внутреннюю энергию – значит совершать за счет неё полезную работу. Для того, чтобы понять, как это сделать, выполним эксперимент.

Учитель На столах у вас находится карточка с заданием к эксперименту и оборудование для его проведения. Вы будете работать в группах. Ваша задача провести эксперимент и сделать вывод. По окончании работы поднять руку. На выполнение задания 3 мин.

Задание к опыту

  1. Перевернуть пробирку вверх дном.

  2. Осторожно нажимая на пробирку, выдавить из картофеля кружок (пробку) так, чтобы пробирка плотно закрылась картофельной пробкой.

  3. Перевернуть пробирку вниз донышком и опустить ее в горячую воду.

  4. Пронаблюдать происходящий процесс.

  5. Сделать вывод, используя ответы на вопросы:

  • Что произошло с внутренней энергией воздуха в пробирке, когда ее опустили в воду?

  • К чему привело изменение внутренней энергии воздуха?

  • Что произошло с внутренней энергией воздуха в пробирке после вылета пробки?

Ответы учеников:

  • Внутренняя энергия воздуха увеличилась за счет внутренней энергии воды

  • Воздух совершил работу – вытолкнул пробку.

  • Внутренняя энергия воздуха превратилась в кинетическую энергию пробки.

Слово учителя(вывод): за счет изменения внутренней энергии воздуха была совершена работа, внутренняя энергия превратилась в механическую.

Учитель Какое устройство вы сейчас создали?

Учитель (слайд 2) В 3 веке до н.э. греческий математик и механик Архимед построил пушку, которая стреляла паром. На этом принципе основана работа оружия. Это процесс кратковременный и не приводит к длительному движению. Продолжить его можно, если повторять процесс перехода внутренней энергии в механическую энергию. Для этого всю систему нужно перевести в исходное состояние.

Учитель Как это сделать?

Ученик – опустить пробирку в холодную воду

Учитель Сделаем вывод: для того чтобы внутренняя энергия топлива превращалась в механическую и совершала работу, надо систему нагревать, а потом охлаждать.

Учитель Как вы считаете если стеклянную пробирку заменить прочным металлическим цилиндром, а пробку – поршнем, который может двигаться вдоль цилиндра, то какое устройство можно создать?

Ученик – тепловую машину, тепловой двигатель

Учитель Правильно. Сегодня на уроке мы должны изучить устройство и принцип действия теплового двигателя.

Учитель Откроем тетради и запишем тему урока: «Тепловые двигатели. Двигатель внутреннего сгорания»

Учитель Давайте дадим понятие теплового двигателя. Машины, в которых внутренняя энергия топлива превращается в механическую энергию, называют тепловыми двигателями (слайд 3).

Учитель (слайд 4) Первый тепловой двигатель создал английский ученый Джемс Уатт в 1784 году.

Учитель (слайд 5) Виды тепловых двигателей: двигатель внутреннего сгорания, паровая машина, паровая и газовая турбина, реактивный двигатель.

Учитель Сейчас вы обратитесь к учебнику и найдете в тексте параграфа, одинаковый принцип работы тепловых двигателей, учебник параграф 21, стр.52 (слайд 6)

Учитель Сегодня на уроке мы с вами изучим только двигатель внутреннего сгорания. Топливо в нем сгорает прямо в цилиндре, внутри двигателя. Работают они на жидком топливе или на горючем газе. Такой вид двигателей обычно устанавливают на большинстве автомобилей. (слайд 7)

Учитель (слайд 8) Устройство ДВС: цилиндр, в котором перемещается поршень, соединенный при помощи шатуна с коленчатым валом. В верхней части цилиндра имеются два клапана. Которые при работе двигателя автоматически открываются и закрываются. Свеча, с помощью которой воспламеняется горючая смесь.

Учитель (слайд 9) Принцип работы ДВС:

Крайние положения поршня в цилиндре называют мертвыми точками. Расстояние, проходимое поршнем от одной мертвой точки до другой, называют ходом поршня. Один рабочий цикл в двигателе происходит за четыре хода поршня, или за четыре такта. Поэтому называются четырехтактными.

Учитель Записать в тетрадь такты ДВС:

  1. Впуск В начале первого такта поршень движется вниз, объем над поршнем увеличивается, поэтому создается разрежение. В это время открывается клапан 1 и в цилиндр поступает горючая смесь. К концу первого такта цилиндр заполняется горючей смесью, клапан 1 закрывается.

  2. Сжатие При дальнейшем повороте вала поршень движется вверх и сжимает горючую смесь. В конце такта, когда поршень дойдет до крайнего верхнего положения, сжатая горючая смесь воспламеняется (от искры) и быстро сгорает. Температура достигает 1600-1800 0С, давление 5 млн.паскалей

  3. Рабочий ход Образующиеся при сгорании газы давят на поршень и толкают его вниз. Под действием расширяющихся нагретых газов двигатель совершает работу. В конце 3 такта открывается клапан 2. И через него продукты сгорания выходят из цилиндра в атмосферу.

  4. Выпуск Выпуск продуктов сгорания продолжается ив течение четвертого такта, в конце 4 такта клапан 2 закрывается.

Учитель Кто попробует продемонстрировать работу ДВС на модели

Учитель диск –анимация)

Учитель (слайд 10) чем отличается этот двигатель от предыдущего

Ученик –количеством цилиндров

Учитель На что это влияет?

Ученик – на мощность двигателя, на равномерность вращения вала.

Учитель Их устанавливают на автомобилях, тракторах – 4, 8, 12 цилиндровые двигатели.

Учитель Какие ДВС стоят на мопедах, мотоциклах

Ученик – одно и двухцилиндровые двигатели (слайд 11)

Учитель Но не во всех двигателях есть свеча для воспламенения рабочей смеси. В этих двигателях воспламенение происходит за счет резкого сжатия воздуха, из-за этого увеличивается температура смеси. Как называются эти двигатели?

Ученик Дизельные двигатели (слайд 12)

Учитель (слайд 13) ДВС нашли широкое применение на производстве, быту. Они приводят в движение самолеты, теплоходы, автомобили, тракторы, тепловозы.

Учитель Поработав в группах, назовите положительные и отрицательные стороны применения ДВС. На работу 2 мин.

Ученики + и –

3. Закрепление изученного материала

Учитель У вас на столе в файлах находятся 4 рисунка с разными тактами ДВС. Работая в паре правильно расположите такты двигателя, чья пара будет быстрее и правильнее получит оценки за выполнение задания. Проверка по цветам: синий, зеленый, красный, черный.

4. Давайте сделаем вывод из того, что вы изучили на уроке:

  • Тепловые двигатели преобразуют внутреннюю пара (газа) в механическую энергию.

  • Для работы нужна повторяемость процесса

  • Тепловые машины являются основой механизации производства

  • Применение приводит к загрязнению окружающей среды и требует проведения мероприятий по её охране.

5.Итог урока (рефлексия) сегодня на уроке изучили устройство, принцип действия и назначение тепловых машин на примере двигателя внутреннего сгорания. Рассмотрели историю развития тепловых двигателей, экологические проблемы и перспективы развития. Сами создали простейший тепловой двигатель.

Учитель оценки за урок

Учитель Домашнее задание: п.21,22 зад.5

Учитель рефлексия: 1 такт — я пассивно слушал

2 такт – я не все понял

3 такт – я все понял

4 такт – я ничего не понял

При выходе из класса оставьте один такт, который к вам подходит на своем рабочем месте.

Учитель Урок окончен, отдыхайте.

Приложение

Экспериментальное задание

Использование внутренней энергии воздуха

Приборы и оборудование: пробирка, калориметр, горячая вода, картофель

Ход выполнения эксперимента

  1. Перевернуть пробирку вверх дном

  2. Осторожно нажимая на пробирку, выдавить кружок из картофеля – это будет пробка для пробирки

  3. Перевернуть пробирку вниз дном и опустить её в горячую воду

  4. Пронаблюдать происходящий процесс

  5. Сделать вывод, используя ответы на вопросы:

А) что произошло с внутренней энергией воздуха в пробирке, когда её погрузили в воду?

Б) к чему привело изменение внутренней энергии воздуха?

В) что произошло с внутренней энергией воздуха в пробирке после вылета пробки?

Ответы на вопросы:

А)

Б)

В)

Вывод:

Рисунок «Такты двигателя внутреннего сгорания»

Кроссворд

Двигатель внутреннего сгорания (ДВС) » Детская энциклопедия (первое издание)

Двигатели модельные Дефектоскопия

Один из самых распространенных двигателей — двигатель внутреннего сгорания (ДВС). Его устанавливают на автомобили, корабли, тракторы, моторные лодки и т. д., во всем мире насчитываются сотни миллионов таких двигателей. Существует два типа двигателей внутреннего сгорания — бензиновые и дизели.

Бензиновые двигатели внутреннего сгорания работают на жидком горючем (бензине, керосине и т. п.) или на горючем газе (сохраняемом в сжатом виде в стальных баллонах или добываемом сухой перегонкой из дерева). Проектируют двигатели, где горючим будет водород.

Основная часть ДВС — один или несколько цилиндров, внутри которых происходит сжигание топлива. Отсюда и название двигателя.

Внутри цилиндра движется поршень — металлический стакан, опоясанный пружинящими кольцами (поршневые кольца), вложенными в канавки на поршне. Поршневые кольца не пропускают газов, образующихся при сгорании топлива, в промежутки между поршнем и стенками цилиндра. Поршень снабжен металлическим стержнем — пальцем, он соединяет поршень с шатуном. Шатун передает движения поршня коленчатому валу (см. рис.).

Верхняя часть цилиндра сообщается с двумя каналами, закрытыми клапанами. Через один из каналов — впускной подается горючая смесь, через другой — выпускной удаляются продукты сгорания. В верхней части цилиндра помещается свеча — приспособление для зажигания горючей смеси посредством электрической искры.

Наибольшее распространение в технике получил четырехтактный двигатель. Рассмотрим его работу. 1-й такт — впуск (всасывание). Открывается впускной клапан. Поршень, двигаясь вниз, засасывает в цилиндр горючую смесь. 2-й такт — сжатие. Впускной клапан закрывается. Поршень, двигаясь вверх, сжимает горючую смесь, при сжатии она нагревается. 3-й такт — рабочий ход. Поршень достигает верхнего положения. Смесь поджигается электрической искрой свечи. Сила давления газов — раскаленных продуктов горения — толкает поршень вниз. Движение поршня передается коленчатому валу, вал поворачивается, и тем самым производится полезная работа. Производя работу и расширяясь, продукты сгорания охлаждаются, давление в цилиндре падает почти до атмосферного. 4-й такт — выпуск (выхлоп). Открывается выпускной клапан, отработанные продукты сгорания выбрасываются через глушитель в атмосферу.

Из 4 тактов двигателя только один, третий, — рабочий. Поэтому двигатель снабжают маховиком, инерционным двигателем, запасающим энергию, за счет которой коленчатый вал (см. Валы и оси машин) вращается в течение остальных тактов. Отметим, что одноцилиндровые двигатели устанавливают главным образом на мотоциклах. На автомобилях, тракторах для более равномерной работы ставят 4, 6, 8 и более цилиндров на общем валу. Двигатели с цилиндрами, установленными в виде звезды вокруг одного вала, получили название звездообразных. Мощность звездообразных двигателей достигает 4 МВт. Используют их главным образом в авиации.

Дизель — другой тип двигателя внутреннего сгорания. Воспламенение в его цилиндрах происходит при впрыскивании топлива в воздух, предварительно сжатый поршнем и, следовательно, нагретый до высокой температуры. Этим он отличается от бензинового двигателя внутреннего сгорания, в котором используется особое устройство для воспламенения топлива.

Первый дизельный двигатель был построен в 1897 г. немецким инженером Р. Дизелем и получил название от его имени.

Конструктивно дизель мало чем отличается от бензинового двигателя внутреннего сгорания. На рисунке видно, что у него есть цилиндр, поршень, клапаны. И принцип действия дизеля тот же. Но есть и отличия: в головке цилиндра находится топливный клапан — форсунка. Назначение ее — в определенные фазы вращения коленчатого вала впрыскивать топливо в цилиндр. Клапаны, топливный насос, питающий форсунку, получают движение от распределительного вала, который, в свою очередь, приводится в движение от коленчатого вала двигателя.

Пусть начальным положением поршня будет верхняя мертвая точка. При движении поршня вниз (1-й такт) открывается впускной клапан, через который засасывается воздух. Впускной клапан при обратном ходе поршня закрывается и в продолжение всего 2-го такта остается закрытым.

В цилиндре дизеля происходит сжатие воздуха (в бензиновом двигателе внутреннего сгорания на этой фазе сжимается горючая смесь). Степень сжатия в дизелях в 2—2,5 раза больше, вследствие чего температура воздуха в конце сжатия поднимается до температуры, достаточной для воспламенения топлива. В момент подхода поршня в верхнюю мертвую точку начинается подача топлива в цилиндр из форсунки. Попадая в горячий воздух, мелкораспыленное топливо самовозгорается. Сгорание топлива (в 3-м такте) происходит не сразу, как в бензиновых двигателях внутреннего сгорания, а постепенно, в продолжение некоторой части хода поршня вниз, объем пространства в цилиндре, где топливо сгорает, увеличивается. Поэтому давление газов во время работы форсунки остается постоянным.

Когда поршень возвращается в нижнюю мертвую точку, открывается выпускной клапан, и давление газов сразу падает, после чего заканчивается 4-й такт, поршень возвращается в верхнюю мертвую точку. Далее цикл повторяется.

Дизель относится к наиболее экономичным тепловым двигателям (КПД достигает 44%), он работает на дешевых видах топлива. Сконструированы и построены двигатели мощностью до 30 000 кВт. Дизели используются главным образом на судах, тепловозах, тракторах, грузовиках, передвижных электростанциях.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Двигатели модельные Дефектоскопия

Открытый урок по физике в 8-м классе «Двигатель внутреннего сгорания»

Тема: Двигатель внутреннего сгорания.

Цели:

1. Изучить устройство, принцип действия и назначение тепловых машин на примере двигателя внутреннего сгорания.

2. Рассмотреть историю развития тепловой машины, экологические проблемы и перспективы развития.

3. Совершенствовать навыки работы с оборудованием. Формировать умение делать выводы о проведенных экспериментах. Развивать умение общаться друг с другом.

Оборудование:

1. Модель ДВС.
2. Фото автомобилей, мотоциклов, самолетов, катеров.
3. Карточки с заданиями для групп.
4. Презентация к уроку. (Приложение 1)

План урока:

1. Орг. момент.
2. Проверка знаний. Работа газа и пара при расширении.
3. Новый материал: двигатель внутреннего сгорания.
4. Закрепление изученного. Работа в группах.
5. Рефлексия. Подведение итогов.
6. Домашнее задание.

Ход урока

1. Учитель: Сегодня мы изучаем тему «Двигатель внутреннего сгорания». Целями нашего урока сегодня будет: изучить устройство, принцип действия и назначение тепловых машин на примере на примере двигателя внутреннего сгорания; рассмотреть историю развития тепловой машины; экологические проблемы и перспективы развития.

Форма нашего урока будет не совсем обычной. Это будет урок-игра «Конструкторское бюро». Для этого из всех учащихся класса были сформированы четыре группы, которые в течение урока будут выполнять различные задания. Когда задание выполнено, группа поднимает руку. Каждая команда будет иметь возможность высказаться. Названия команд: «Теоретики», «Испытатели», «Менеджеры», «Экологи», в каждой команде около 5 человек.

2. А сейчас проверим, насколько вы уяснили прошлый материал, а заодно и то, как подготовились к уроку. Команды получают задания на карточках.

Карточка №1

Какие двигатели называют тепловыми? Какие виды тепловых двигателей вам известны?

Карточка №2

Приведите примеры превращения внутренней энергии пара в механическую энергию тела?

Карточка №3

Зачеркните лишнее словосочетание: тепловой двигатель, работа газа, превращение энергии, Джеймс Уатт, Лев Толстой, отражение света.

Карточка №4

Разгадайте кроссворд.

Кто выполнил задание – отвечает. По одному представителю о группы.

3. Запасы внутренней энергии огромны. Очень важно умело и грамотно использовать её запасы, содержащиеся в топливе. Использовать внутреннюю энергию – значит, совершить за счёт неё полезную работу. Послушаем краткую историю создания тепловых машин (выступление учащегося):

История ДВС

В 1860 Г француз Э. Ленуар построил устройство, в котором горючее сжигалось внутри самого устройства. Модель была несовершенная, КПД не превышал 3 %.

Спустя 18 лет немецкий изобретатель Отто создал двигатель внутреннего сгорания, который работал по четырёхтактной схеме: впуск, сжатие, рабочий ход, выпуск отработанных газов. Именно модификации этого двигателя и получили наибольшее распространение.

Первый автомобиль с бензиновым двигателем построили в 1886 году под руководством немецкого инженера Даймлера. Большая роль в развитии автомобилестроения принадлежит Генри Форду, который в начале 20 века начал выпуск автомобилей с конвейера. В России первые автомобили начали строить в начале 20 века.

Учитель: Применение тепловых двигателей чрезвычайно разнообразно. Они приводят в движение самолёты, ракеты, тепловозы, паровозы, наземный и водный транспорт. В настоящее время наибольшее распространение имеют двигатели внутреннего сгорания. Остановимся на них.

В ДВС топливо сгорает прямо в цилиндре, внутри самого двигателя. Поэтому он и называется двигателем внутреннего сгорания. Работают они на жидком топливе или горючем газе.

Двигатель состоит из цилиндра, в котором перемещается поршень, соединённый при помощи шатуна с коленчатым валом (проследим по модели ДВС).

В верхней части цилиндра имеется два клапана, которые при работе двигателя автоматически открываются и закрываются в нужные моменты. Через первый клапан (впускной) поступает горючая смесь, которая воспламеняется с помощью свечи, а через второй клапан (выпускной) выпускаются отработанные газы.

В цилиндре периодически происходит сгорание горючей смеси, состоящей из паров бензина и воздуха (температура достигает 16000 — 18000С). Давление на поршень резко возрастает. Расширяясь, газы толкают поршень, а вместе с ним и коленчатый вал, совершая при этом механическую работу. При этом газы охлаждаются, так как часть их внутренней энергии превращается в механическую.

Крайние положения поршня в цилиндре называют мёртвыми точками. Расстояние, проходимое поршнем от одной мёртвой точки до другой, называют ходом поршня. Ход поршня называют ещё тактом. Поэтому двигатель называют четырёхтактным.

Такты двигателя внутреннего сгорания: впуск, сжатие, рабочий ход, выпуск.

Не во всех двигателях есть свеча для воспламенения смеси. Послушаем сообщение учащегося о двигателе Дизеля:

Двигатель Дизеля

Немецкий инженер Р. Дизель в 1897 г. изобрёл двигатель, в котором сжимали воздух и в момент максимального сжатия в камеру сгорания при помощи форсунки делали впрыск топлива. Далее раскалённые газы перемещали поршень, и происходило преобразование внутренней энергии в механическую. В двигателе внутреннего сгорания есть карбюратор, при помощи которого образуется горючая смесь (смесь бензина с воздухом). В двигателе Дизеля нет карбюратора.

КПД дизельных двигателей достигает 35 – 44 %, а у двигателя внутреннего сгорания КПД не превышает 25 – 32 %. Дизельные двигатели нашли широкое применение в тракторах, большегрузных машинах, на кораблях, передвижных электростанциях.

Учитель: При использовании для своих нужд тепловых двигателей человек сталкивается с экологическими проблемами (сообщение учащегося):

Как влияют тепловые двигатели на окружающую среду?

При работе тепловых двигателей для охлаждения используется окружающая среда (атмосферный воздух и вода открытых водоемов), в результате чего происходит повышение температуры окружающей среды, называемое «тепловым загрязнением». Этот эффект усиливается тем, что при сгорании огромного количества топлива повышается концентрация углекислого газа в земной атмосфере. А при большой концентрации углекислого газа атмосфера плохо пропускает тепловое излучение нагретой Солнцем поверхности Земли, что приводит к «парниковому эффекту».

В результате описанных процессов, средняя температура на Земле в течение последних десятилетий неуклонно повышается. Это грозит глобальным потеплением с нежелательными последствиями, к числу которых относятся таяние ледников и подъем уровня мирового океана.

Кроме того, при сжигании топлива в тепловых двигателях расходуется атмосферный кислород (в наиболее развитых странах тепловые двигатели уже сегодня потребляют больше кислорода, чем вырабатывается всеми растениями, растущими в этих странах) и образуется много вредных веществ, загрязняющих атмосферу.

Тепловые машины не только сжигают кислород, но и выбрасывают в атмосферу углекислый газ, угарный газ, различные виды сернистых соединений, а также соединения тяжелых металлов. Сгорание топлива в топках промышленных предприятий и тепловых электростанций почти никогда не бывает полным, поэтому происходит загрязнение воздуха золой, хлопьями сажи. Во всем мире обычные энергетические установки выбрасывают в атмосферу ежегодно более 200 млн. т золы и более 60 млн. т оксида серы.

Кроме промышленности, воздух загрязняют и различные виды транспорта, прежде всего автомобильный. Жители больших городов задыхаются от выхлопных газов автомобильных двигателей.

Такие виды топлива, как нефть, уголь, газ являются невосполнимыми источниками энергии. В ближайшие 45 — 70 лет человечество столкнётся с проблемой нехватки традиционных видов топлива.

Учитель: У вас на столах лежат конверты с заданиями, которые сейчас необходимо сделать.

Конверт №1

На изображении ДВС подписать его устройство.

Конверт №2

Даны рисунки всех тактов ДВС. Необходимо наклеить эти рисунки в правильном порядке и подписать названия тактов.

Конверт №3

По предложенному тексту выписать пути преодоления экологических проблем. (Приложение 2)

№4.2

Из готового текста выбрать профессии, связанные с использованием ДВС.

Врач, механик-водитель, машинист тепловоза, дизелист, автогонщик, учитель.

Группы, выполнившие задания, выдвигают по одному представителю для выступления.

1. Подведем итог урока. Что мы изучили сегодня? Из чего состоит ДВС? Назовите такты работы двигателя. Выставить оценки за урок.
2. Домашнее задание: параграф 22 — учить.

Двигатель внутреннего сгорания

Двигателями называют большую группу двигателей, в которых сгорание топлива происходит внутри двигателя.

Первый двигатель внутреннего сгорания изобрел 1860 французский инженер Этьен Ленуар. В 1876 г. немецкий инженер Николаус Отто предложил более совершенный двигатель. В 1897 г. немецкий инженер Рудольф Дизель предложил еще совершеннее двигатель, впоследствии названный дизелем.

Работа двигателя внутреннего сгорания состоит из нескольких повторяющихся друг за другом этапов, или, как говорят, тактов. Всего их четыре. Отсчет тактов начинается с момента, когда поршень находится в крайней верхней точке и оба клапана закрыты.

Первый такт называется впуск (см. рисунок а). Впускной клапан открывается, и поршень опускается, засасывает бензиново -воздушную смесь внутрь камеры сгорания. После этого впускной клапан закрывается. Второй такт — сжатие (рисунок б). Поршень, поднимаясь вверх, сжимает бензиново -воздушную смесь.

Третий такт — рабочий ход поршня (рисунок в). На конце свечи загорается электрическая искра. Бензиново -воздушная смесь почти мгновенно сгорает, и в цилиндре возникает высокая температура. Это приводит к сильному росту давления, и горячий газ выполняет полезную работу — толкает поршень вниз.

Четвертый такт — выпуск (рисунок г). Выпускной клапан открывается, и поршень, двигаясь вверх, выталкивает газы из камеры сгорания в выхлопную трубу. Затем клапан закрывается.

Итак, один рабочий цикл двигателя происходит в течение четырех тактов. При этом коленчатый вал делает два полных оборота. Итак, в двигателе внутреннего сгорания нагревателем является бензин, сгорает, рабочим телом — раскаленные газы, холодильником — окружающая среда.

В автомобильных двигателях ставят часто несколько цилиндров. Действие их согласовывают так, чтобы при каждом такте в каком-то цилиндре осуществлялся рабочий ход: тогда при каждом такте вал получает энергию от одного или нескольких цилиндров.

Благодаря малой массе при сравнительно большой мощности двигатели внутреннего сгорания получили широкого применения на транспорте: появились автомобили, тепловозы, теплоходы, самолеты.

категория: Физика

Диаграмма давление-объем (pV) и как работа выполняется в ДВС — x-engineer.org

Двигатель внутреннего сгорания — это тепловой двигатель . Принцип его работы основан на изменении давления и объема внутри цилиндров двигателя. Все тепловые двигатели характеризуются диаграммой давление-объем , также известной как диаграмма pV , которая в основном показывает изменение давления в цилиндре в зависимости от его объема для полного цикла двигателя.

Кроме того, работа , производимая двигателем внутреннего сгорания, напрямую зависит от изменения давления и объема внутри цилиндра.

К концу этого руководства читатель должен уметь:

  • понять значение диаграммы pV
  • как нарисовать диаграмму pV для 4-тактного двигателя внутреннего сгорания
  • при впуске и выпуске клапаны приводятся в действие во время цикла двигателя
  • , когда зажигание / впрыск производится во время цикла двигателя
  • как работа производится двигателем внутреннего сгорания
  • какая разница между указанным и тормозом
  • каков механический КПД двигателя

Давайте начнем с рассмотрения pV-диаграммы четырехтактного атмосферного двигателя внутреннего сгорания.

Изображение: График давление-объем (pV) для типичного 4-тактного ДВС

, где:

S — ход поршня
V c — зазорный объем
V d — смещенный (рабочий) объем
p 0 — атмосферное давление
W — работа
ВМТ — верхняя мертвая точка
НМТ — нижняя мертвая точка
IV — впускной клапан
EV — выпускной клапан
IVO — открытие впускного клапана
IVC — закрытие впускного клапана
EVO — открытие выпускного клапана
EVC — закрытие выпускного клапана
IGN (INJ) — зажигание (впрыск)

Диаграмма давление-объем (pV) построена путем измерения давления внутри цилиндра и нанесения его значения в зависимости от угла поворота коленчатого вала на протяжении всего цикл двигателя (720 °).

Давайте посмотрим, что происходит в цилиндре во время каждого хода поршня, как изменяются давление и объем внутри цилиндра.

Обратите внимание, что синхронизация впускных и выпускных клапанов имеет опережение и задержку относительно положения поршня. Например, впускной клапан открывается во время такта выпуска поршня и закрывается во время такта сжатия. В то же время, когда начинается такт впуска, выпускной клапан еще некоторое время открыт.Открытие выпускного клапана происходит до завершения рабочего хода.

ВПУСК (a-b)

Цикл двигателя начинается в точке a . Впускной клапан уже открыт, и поршень движется от ВМТ к НМТ. Объем постоянно увеличивается по мере того, как поршень перемещается по длине хода. Максимальный объем достигается, когда поршень находится в НМТ. Давление ниже атмосферного на протяжении всего хода, потому что движение поршня создает объем, а воздух втягивается внутрь цилиндра из-за эффекта вакуума.

СЖАТИЕ (b-c)

После того, как поршень прошел НМТ, начинается такт сжатия. В этой фазе объем начинает уменьшаться, а давление увеличиваться. Требуется некоторое время, пока давление в цилиндре не превысит атмосферное, чтобы впускной клапан оставался открытым даже после того, как поршень пройдет НМТ. По мере того, как поршень приближается к ВМТ, давление постепенно увеличивается. Примерно за 25 ° до ВМТ срабатывает зажигание, и давление быстро повышается до максимального.

МОЩНОСТЬ (c-e)

После события зажигания / впрыска давление в цилиндре резко повышается, пока не достигнет максимальных значений p max . Значение максимального давления зависит от типа двигателя, на каком топливе он используется. Для типичного двигателя легкового автомобиля максимальное давление в цилиндре может составлять около 120 бар (бензин) или 180 бар (дизель). Рабочий ход начинается, когда поршень движется от ВМТ к НМТ. Высокое давление в цилиндре толкает поршень, поэтому объем увеличивается, а давление начинает постепенно падать.

ВЫХЛОП (e-a)

После рабочего хода поршень снова находится в НМТ. Объем в цилиндре снова на максимальном значении, а давление около минимального (атмосферное давление). Поршень начинает двигаться в сторону ВМТ и выталкивает сгоревшие газы из цилиндра.

Как видите, давление и объем внутри цилиндров двигателя постоянно меняются. Мы увидим, что работа, производимая ДВС, зависит от изменений давления и объема.

Работа Вт [Дж] — это произведение между силой F [Н] , которая толкает поршень, и смещением, которое в нашем случае составляет ход S [м] .

\ [W = F \ cdot S \ tag {1} \]

Мы знаем, что давление — это сила, разделенная на площадь, поэтому:

\ [F = p \ cdot A_p \ tag {2} \]

где p [ Па] — давление внутри цилиндра, а A p 2 ] — площадь поршня.

Замена (2) в (1) дает:

\ [W = p \ cdot A_p \ cdot S \ tag {3} \]

Мы знаем, что умножая расстояние на площадь, мы получаем объем, следовательно:

\ [W = p \ cdot V \ tag {4} \]

Это мгновенная работа , произведенная в цилиндре для определенного давления и объема.Чтобы определить работу для полного цикла двигателя, нам нужно интегрировать мгновенную работу:

\ [W = \ int F \ cdot dx = \ int p \ cdot A_p \ cdot dx \ tag {5} \]

, где x ход поршня.

Произведение между ходом поршня и площадью поршня дает дифференциальный объем dV , смещенный поршнем:

\ [dV = A_p \ cdot dx \ tag {6} \]

Замена (6) в (5 ) дает работу , произведенную в цилиндре за полный цикл :

\ [\ bbox [# FFFF9D] {W = \ int p \ cdot dV} \ tag {7} \]

Поскольку подавляющее большинство Если двигатель внутреннего сгорания имеет несколько цилиндров, мы собираемся ввести более подходящий параметр для количественной оценки работы, которым является удельная работа Вт [Дж / кг] .

\ [w = \ frac {W} {m} \ tag {8} \]

где м [кг] — масса топливовоздушной смеси внутри цилиндров за полный цикл.

Мы можем также определить удельный объем v [м 3 / кг] как:

\ [v = \ frac {V} {m} \ tag {9} \]

Производная от удельного объем будет:

\ [dv = \ frac {1} {m} \ cdot dV \ tag {10} \]

, откуда мы можем записать:

\ [dV = m \ cdot dv \ tag {11} \]

Замена (7) в (8) дает:

\ [w = \ frac {1} {m} \ int p \ cdot dV \ tag {12} \]

Из (11) и (12) мы получаем математическое выражение удельной работы для полного цикла двигателя:

\ [\ bbox [# FFFF9D] {w = \ int p \ cdot dv} \]

Работа, производимая внутри цилиндров двигателя, называется , указывается удельная работа , w i [Дж / кг] .Что мы получаем на коленчатом валу, так это удельная работа тормоза w b [Дж / кг] . Это называется «тормозом», потому что при испытании двигателей на испытательном стенде они подключаются к тормозному устройству (гидравлическому или электрическому), которое имитирует нагрузку.

Чтобы получить работу тормоза, мы должны вычесть из указанной работы все потери двигателя. Потери связаны с внутренним трением и вспомогательными устройствами, которые требуют мощности от двигателя (масляный насос, водяной насос, нагнетатель, компрессор кондиционера, генератор переменного тока и т. Д.). Эти потери имеют эквивалент удельной работы на трение w f [Дж / кг] .

\ [w_b = w_i — w_f \]

Посмотрев на указанную выше диаграмму давление-объем (pV), мы можем увидеть, что есть две отдельные области:

  • верхняя область, образованная во время сжатия и силовых ударов ( + W)
  • нижняя область, образующаяся во время тактов выпуска и впуска (-W), также называемая насосная работа

В зависимости от значения давления всасывания рабочая область нагнетания может быть отрицательной или положительной.Для атмосферных двигателей насосная работа отрицательна, потому что она использует энергию двигателя для выталкивания выхлопных газов из цилиндров и всасывания свежего воздуха во время впуска.

Для бензиновых атмосферных двигателей из-за дросселирования всасываемого воздуха насосные потери выше и максимальны на холостом ходу. Дизельные двигатели более эффективны, чем бензиновые, потому что на впуске нет дроссельной заслонки, а нагрузка регулируется посредством впрыска топлива.

Если разделить удельный крутящий момент тормоза на указанный удельный крутящий момент, мы получим механический КПД двигателя η м [-] :

\ [\ bbox [# FFFF9D] {\ eta_m = \ frac {w_b} {w_i}} \]

Для большинства двигателей механический КПД составляет около 80-85% при полной нагрузке (полностью открытый дроссель) и падает до нуля на холостом ходу, когда весь крутящий момент двигателя используется для поддержания холостого хода. скорость, а не движущая сила.

По любым вопросам, наблюдениям и запросам относительно этой статьи используйте форму комментариев ниже.

Не забывайте ставить лайки, делиться и подписываться!

[Четырехтактный бензиновый двигатель внутреннего сгорания, разработанный Николаус А. Отто]

Подробнее об авторских правах и других ограничениях

Чтобы получить рекомендации по составлению полных цитат, обратитесь к Ссылаясь на первоисточники.

  • Консультации по правам : Нет известных ограничений на публикацию.
  • Репродукционный номер : LC-USZ62-110412 (ч / б пленка, копия негр.)
  • Телефонный номер : Illus. в TJ770 .N85 [Общие коллекции]
  • Консультации по доступу : —

Получение копий

Если изображение отображается, вы можете скачать его самостоятельно.(Некоторые изображения отображаются только в виде эскизов вне Библиотеке Конгресса США из-за соображений прав человека, но у вас есть доступ к изображениям большего размера на сайт.)

Кроме того, вы можете приобрести копии различных типов через Услуги копирования Библиотеки Конгресса.

  1. Если отображается цифровое изображение: Качество цифрового изображения частично зависит от того, был ли он сделан из оригинала или промежуточного звена, такого как копия негатива или прозрачность.Если вышеприведенное поле «Номер воспроизведения» включает номер воспроизведения, который начинается с LC-DIG …, то есть цифровое изображение, сделанное прямо с оригинала и имеет достаточное разрешение для большинства публикационных целей.
  2. Если есть информация, указанная в поле «Номер репродукции» выше: Вы можете использовать номер репродукции, чтобы купить копию в Duplication Services. Это будет составлен из источника, указанного в скобках после номера.

    Если указаны только черно-белые («черно-белые») источники, и вы хотите, чтобы копия показывала цвет или оттенок (при условии, что они есть на оригинале), обычно вы можете приобрести качественную копию оригинал в цвете, указав номер телефона, указанный выше, и включив каталог запись («Об этом элементе») с вашим запросом.

  3. Если в поле «Номер репродукции» выше нет информации: Как правило, вы можете приобрести качественную копию через Службу тиражирования.Укажите номер телефона перечисленных выше, и включите запись каталога («Об этом элементе») в свой запрос.

Прайс-листы, контактная информация и формы заказа доступны на Веб-сайт службы дублирования.

Доступ к оригиналам

Выполните следующие действия, чтобы определить, нужно ли вам заполнять квитанцию ​​о звонках в Распечатках. и Читальный зал фотографий для просмотра оригинала (ов). В некоторых случаях суррогат (замещающее изображение) доступны, часто в виде цифрового изображения, копии или микрофильма.

  1. Товар оцифрован? (Уменьшенное (маленькое) изображение будет видно слева.)

    • Да, товар оцифрован. Пожалуйста, используйте цифровое изображение вместо того, чтобы запрашивать оригинал. Все изображения могут быть смотреть в большом размере, когда вы находитесь в любом читальном зале Библиотеки Конгресса. В некоторых случаях доступны только эскизы (маленькие) изображения, когда вы находитесь за пределами библиотеки Конгресс, потому что права на товар ограничены или права на него не оценивались. ограничения.
      В качестве меры по сохранности мы обычно не обслуживаем оригинальный товар, когда цифровое изображение доступен. Если у вас есть веская причина посмотреть оригинал, проконсультируйтесь со ссылкой библиотекарь. (Иногда оригинал слишком хрупкий, чтобы его можно было использовать. Например, стекло и пленочные фотографические негативы особенно подвержены повреждению. Их также легче увидеть в Интернете, где они представлены в виде положительных изображений.)
    • Нет, товар не оцифрован. Пожалуйста, перейдите к # 2.
  2. Указывают ли указанные выше поля Консультативного совета по доступу или Номер вызова, что существует нецифровой суррогат, типа микрофильмов или копий?

    • Да, существует еще один суррогат. Справочный персонал может направить вас к этому суррогат.
    • Нет, другого суррогата не существует. Пожалуйста, перейдите к # 3.
  3. Если вы не видите миниатюру или ссылку на другого суррогата, заполните бланк звонка. Читальный зал эстампов и фотографий. Во многих случаях оригиналы могут быть доставлены в течение нескольких минут. Другие материалы требуют записи на более позднее в тот же день или в будущем. Справочный персонал может посоветуют вам как заполнить квитанцию ​​о звонках, так и когда товар может быть подан.

Чтобы связаться со справочным персоналом в Зале эстампов и фотографий, воспользуйтесь нашей Спросите библиотекаря или позвоните в читальный зал с 8:30 до 5:00 по телефону 202-707-6394 и нажмите 3.

Компоненты или части двигателя внутреннего сгорания и его функции [PDF]

Здравствуйте, читатели! В сегодняшней статье я расскажу о некоторых важных компонентах ИС и их функциях.

Двигатель внутреннего сгорания, также известный как двигатель внутреннего сгорания, представляет собой тепловой двигатель, который работает либо по циклу Отто, либо по дизельному циклу.

В двигателях этого типа сгорание топлива происходило внутри двигателя. И создаваемая тяга, которая распространяется на некоторые компоненты двигателя. Кроме того, эта тяга или сила вызывает вертикальное или горизонтальное перемещение компонентов.

Благодаря этому процессу химическая энергия преобразуется в механическую.

Итак, давайте углубимся в статью.

Основные части двигателя внутреннего сгорания с их функциями:

Двигатель внутреннего сгорания состоит из нескольких важных частей, а именно:

  • Цилиндр
  • Головка блока цилиндров
  • Поршень
  • Поршневое кольцо
  • Штифт поршневой или поршневой
  • Шатун
  • Малый конец
  • Малый конец Коленчатый вал
  • Распредвал
  • Картер
  • Клапаны или порты
  • Коллектор
  • Толкатель
  • Коромысло
  • Топливный инжектор
  • Рубашки или ребра охлаждения
  • Маховик

Это основные детали двигателя внутреннего сгорания.Итак, давайте обсудим эти компоненты один за другим!

Цилиндр:

Это одна из важных частей двигателя внутреннего сгорания. При этом поршень совершает возвратно-поступательное движение.

Обычно блок цилиндров из чугуна, выдерживающий давление выше 50-100 бар.

Кроме того, при проектировании блока цилиндров необходимо учитывать, что он также должен выдерживать тепло. Согласно NCERT, температура цилиндра двигателя может быть повышена до 2600 градусов по Цельсию.

Согласно современным научным данным, блоки цилиндров изготовлены из серого чугуна, чугуна с компактным графитом, чугуна с шаровидным графитом и литого алюминиевого сплава.

Функции головки блока цилиндров:

  • В этой камере происходит возгорание заряда [Воздух + Топливо].
  • Он направляет поршень возвратно-поступательно.

Головка цилиндра:

Головка блока цилиндров установлена ​​над блоком цилиндров.

Что касается блока цилиндров, головка блока цилиндров также изготовлена ​​из того же материала [чугун].

Как правило, цилиндр и головка цилиндра изготавливаются методом литья.

На нем установлены клапаны [впускной или выпускной], свеча зажигания [двигатель SI] или топливная форсунка [двигатель CI].

На головке цилиндров предусмотрена прокладка для предотвращения утечки сжатого топлива и обеспечения герметичности блока цилиндров.

Функции головки блока цилиндров:

  • Используется для закрытия блока цилиндров.
  • Клапаны и свеча зажигания или инжектор устанавливаются над ним.

Поршень:

Поршень обычно изготавливается из алюминиевого сплава, который хорошо переносит тепло.

Поршень преобразует возвратно-поступательное движение или возвратно-поступательное движение во вращательное движение.

Поршень также используется для передачи энергии [после рабочего хода] на шатун.

Функции поршня:

  • Поршень обеспечивает движение вперед и назад.
  • Преобразует возвратно-поступательное движение во вращательное движение.
  • Помогает передавать энергию на шатун.

Поршневое кольцо:

Поршневые кольца прикреплены к периферии поршня, как правило, из стальных сплавов.

В двигателе внутреннего сгорания используются три поршневых кольца.

Верхнее называется компрессионным кольцом, а нижнее — масляным кольцом.

Функции поршневых колец:

  • Компрессионное кольцо служит для предотвращения утечки продуктов сгорания в нижнюю камеру.
  • И масляное кольцо используется для предотвращения утечки масла внутри блока цилиндров. Кроме того, он соскабливает масло со стенок цилиндра.
  • Наконец, среднее кольцо предназначено для обеспечения безопасности, если случайно произошла утечка сгоревшего газа или масла, чем оно может предотвратить это.

поршневой палец или поршневой палец:

Поршневой палец [поршневой палец или запястье] используется для соединения шатуна с поршнем.

Изготовлен из стального сплава для обеспечения высокой прочности.

И, как правило, изготавливается методом ковки.

Функции поршневого пальца:

  • Для соединения поршня с шатуном

Шатун:

Шатун

обычно используется для передачи возвратно-поступательного движения на вращательное движение коленчатого вала.

Один конец [меньший] соединен с поршнем с помощью поршневого пальца, а другой конец [больший] соединен с коленчатым валом с помощью кривошипного пальца.

Шатун изготовлен из стального или алюминиевого сплава. Однако в последнее время шатун также изготавливают из алюминиевых сплавов Т6-2024 и Т651-7075. Эти сплавы настолько легкие и способны выдерживать высокую прочность и ударопрочность. [Источник ВЛАБС]

В остальном титан также используется для изготовления шатуна.

Шатун изготовлен методом ковки.

Функции шатуна:

  • Он используется для преобразования возвратно-поступательного движения поршня в круговое движение.

Малый и большой подшипник:

Поскольку мы уже знаем, что шатун имеет два разных конца [малый и большой], поэтому для более плавного движения шатуна используются эти два подшипника.

Подшипник малого конца прикреплен внутри соединения поршня и шатуна, а подшипник большого конца прикреплен внутри соединения шатуна и кривошипа.

Функции малых и больших подшипников:

  • Для более плавного функционирования между поршнем, шатуном и кривошипом.
  • Для минимизации потерь мощности из-за трения.

Коленчатый вал:

Это вращающийся элемент двигателя внутреннего сгорания, который преобразует возвратно-поступательное движение поршня во вращательное движение.

Все поршни двигателя соединены шатуном с коленчатым валом, а один конец этого коленчатого вала соединен с маховиком.[Я расскажу о маховике позже в этой статье].

Изготовлен из кованой стали или чугуна. [Source Science Direct]

Коленчатый вал состоит из коленчатого вала и коленчатого вала в зависимости от размера двигателя. Если двигатель 6-цилиндровый, то количество кривошипа и шатунной шейки равно 6, а когда оно уменьшается до 3 или 4, то количество кривошипа и шатунной шейки соответственно уменьшается.

Коленчатый вал состоит из четырех основных частей,

  1. Главный корпус
  2. Штифты шатуна
  3. Шатуны
  4. Противовесы

Главный журнал:

Main Journal — это подшипник, который помогает определять вращение движения.

Пальцы кривошипа:

Штифты кривошипа используются для соединения одного конца шатуна.

Шатуны:

Перемычки кривошипа используются для соединения шатунов с главной шейкой.

Противовесы:

И, наконец, противовесы используются для балансировки коленчатого вала.

Функции коленчатого вала:

  • Коленчатый вал преобразует возвратно-поступательное движение поршня во вращательное движение.
  • Приводит в движение маховик и распредвал.

Распредвал:

Это жизненно важная часть двигателя внутреннего сгорания, она используется для открытия и закрытия клапанов в нужное время [следуйте временной диаграмме клапана].

В четырехтактном двигателе вращение распределительного вала равно половине вращения коленчатого вала, а при двухтактном двигателе вращение коленвала и распределительного вала одинаково.

Изготовлен из чугуна или стали.

Функции кулачкового вала:

  • Помогает своевременно открывать тарельчатые клапаны [впускной и выпускной].

Картер картера:

Это место, где находится коленчатый вал. Также в некоторых двигателях внутри него хранится смазочное масло, особенно в двухтактных двигателях.

Находится под цилиндрами.

Картер также выполнен из чугуна.

Если мы внимательно проанализируем картер, то увидим, что он состоит из промежуточных стенок, боковых стенок и торцевых стенок, а также верхней крышки. [Подробный анализ картера двигателя можно найти здесь]

Функции картера:

  • Защищает коленчатый вал и шатун от попадания мусора.
  • В некоторых двигателях картер используется для отстойника смазочного масла.

Клапаны или порты:

Клапаны или порт

— это основная и важная часть двигателя внутреннего сгорания. Итак, позвольте мне сначала рассказать вам, где находится клапан и где используется порт! Итак, в четырехтактном двигателе мы используем клапан, а в случае двухтактного двигателя мы используем порты.

В четырехтактном двигателе внутреннего сгорания два клапана. один — впускной клапан, а другой — выпускной.

Клапаны установлены в пружине клапана, которая приводится в движение распределительным валом с помощью коромысла и толкает шток.

Эти клапаны расположены на головке блока цилиндров.

Клапаны

доступны в широком диапазоне материалов, таких как нержавеющая сталь, мартенситная клапанная сталь, аустенитная клапанная сталь, никелевый сплав, стеллитовый сплав, суперсплавы нимоник / инконель / монал. [Источник Shailesh Industries]

Функции клапанов:

  • Во время такта всасывания впускное отверстие позволяет заряду [воздух + топливо или только воздух] пройти внутрь цилиндра двигателя.
  • А после такта выпуска через об / об выхлоп сгоревший газ выходит из цилиндра.
  • Они также уплотняют поршень-цилиндр при такте сжатия.

Коллектор:

Это также важная часть двигателя. Есть два типа коллектора: впускной и выпускной.

Через впускной коллектор заряд [воздух + топливо или воздух] поступает в цилиндр двигателя.

А отработавшие газы из всех цилиндров выходят через выпускной коллектор.

Существует также термин «давление в коллекторе», то есть давление, которое образуется между воздухом или топливной смесью в дроссельной части и впускном коллекторе.Когда мы увеличиваем число оборотов в минуту, давление в коллекторе также увеличивается из-за увеличения давления окружающего воздуха.

Функции коллекторов:

  • Через коллектор свежий заряд поступает в цилиндр двигателя, а отработанные газы выходят из цилиндра двигателя.

Толкатель:

Это стержень, который приводится в действие распределительным валом для открытия или закрытия клапанов.

Функции толкателя:

  • Используется для открытия и закрытия тарельчатых клапанов

Коромысло:

Это качающийся рычаг, который преобразует радиальное движение кулачка в вертикальное или линейное движение тарельчатого клапана.

Обычно коромысла изготавливаются из алюминиевого сплава, но для тяжелых двигателей, таких как автобусы, грузовики, мы используем чугун или углеродистую сталь.

Функции коромысла:

  • Коромысло коромысла преобразует радиальное движение кулачка в линейное движение клапана в двигателе внутреннего сгорания.
  • Используется для открытия клапанов.

Свеча зажигания или топливная форсунка:

Свеча зажигания и топливный инжектор, эти две вещи разные и также используются в разных двигателях.

Свеча зажигания используется в двигателе с искровым зажиганием [двигатель SI], где топливная форсунка используется в двигателе с воспламенением от сжатия [двигатель CI].

Функция свечи зажигания:

  • Свеча зажигания используется для создания искры в двигателе SI [бензин].

Функции топливной форсунки:

  • Топливная форсунка используется для впрыска топлива в цилиндр двигателя в распыленной форме.

Рубашки или ребра охлаждения:

Как мы уже знаем, внутри цилиндра двигателя температура может быть повышена до 3000 градусов по Цельсию, поэтому во избежание износа необходимо использовать систему охлаждения.

В четырехтактных двигателях можно выделить два типа системы охлаждения.

Один — жидкостное охлаждение, другой — воздушное охлаждение. Воздушное охлаждение используется для небольших двигателей, таких как мотоциклы, а для более крупных двигателей, например от 4 до 6 цилиндров, нам необходимо использовать жидкостное охлаждение, так как скорость теплопередачи выше.

Функции охлаждающих рубашек или ребер:

  • Для снижения температуры двигателя.
  • Для защиты двигателя от износа.

Маховик:

Это большое колесо круглой формы, установленное на одном конце коленчатого вала. Он сконструирован настолько хорошо, что довольно легко может накапливать энергию вращения.

Во время рабочего такта избыточное количество энергии накапливается маховиком и передает эту запасенную энергию остальным тройкам тактов.

Функции маховика:

  • Основная функция маховика — накапливать избыточную энергию во время рабочего хода и подавать эту энергию на остальные три хода для завершения цикла.

Некоторые часто задаваемые вопросы по IC Engine:

Какие основные части двигателя внутреннего сгорания?

Двигатель внутреннего сгорания состоит из нескольких важных частей, а именно: цилиндр
, головка цилиндра, поршень, поршневое кольцо, поршневой палец или поршневой палец, шатун, малый конец и подшипник большого конца, коленчатый вал, кулачковый вал, картер картера. , Клапаны или порты, коллектор, толкатель, коромысло, свеча зажигания или топливный инжектор, рубашки охлаждения или ребра и маховик

Какие примеры двигателей внутреннего сгорания?

В нашей повседневной жизни все автомобили [автобусы, грузовики, мотоциклы и т. Д.] мы видим пример двигателя внутреннего сгорания.

Является ли двигатель внутреннего сгорания тепловым двигателем?

Да. Двигатель внутреннего сгорания — пример теплового двигателя

Итак, это вся наша тема, посвященная деталям двигателя внутреннего сгорания и их функциям.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *