Меню Закрыть

Принцип работы форсунки инжекторного двигателя: Устройство форсунки инжектора — как попадает бензин в двигатель?

Содержание

Устройство форсунки инжектора — как попадает бензин в двигатель?

Как правило, на сегодня, большое количество автомобилей оборудуются специальными системами впрыска горючего. Интересно будет узнать, о том что идея о внедрении такой системы в автомобильный мир появилась уже в далеких 50-х годах. Так, 1951 год стал годом рождения первой системы впрыска топлива, именно в этом году компания Bosch укомплектовала ею 2-х тактный двигатель купе Goliath 700 Sport.

Последователем Bosch стал Mercedes-Benz 300 SL, который подхватил эстафету в 1954 году. И вот, уже в конце 70-х годов началось массовое, серийное введение инжекторных систем впрыска топлива. Как оказалось на практике, впрыск топлива имеет множество достоинств и отличных характеристик, по которым такая система превосходит карбюраторную подачу топлива. От карбюраторного принципа смесеобразования система впрыска топлива отличается более безошибочной дозировкой топлива, а следовательно, и большей экономичностью и приемистостью автомобильного транспорта. Также система впрыска топлива славится меньшей токсичностью выхлопных газов. Можно сделать такой вывод, что переоценить работу системы впрыска топлива практически невозможно.

Форсунка является одной из аниболее важных частей системы впрыска топлива, поэтому она во многом и определяет эффективность и надежность работы движка. Однако, именно она работает в наиболее тяжелых условиях. Каждому автолюбителю важно знать что это за деталь и как она работает, дабы в случае какой-либо неисправности системы впрыска топлива произвести правильную диагностику поломки, ведь именно от состоянии форсунки зависит хорошая работоспособность самой системы. В данной статье мы акцентируем внимание именно на строении форсунки, ее видах и принципе работы. Итак, начнем.

1. Типы инжекторных форсунок

Для начала давайте разберемся, что такое форсунка и какое ее предназначение. Деталь форсунки (по-другому можно назвать инжектором) представляет собой конструктивный элемент системы впрыска горючего. Главными тремя функциями, которые выполняет форсунка являются дозированная подача топлива, распыление данной топливной жидкости в камере сгорания (другими словами – впускной коллектор), а также возникновение топливно-воздушной смеси.

Как правило, форсунка приводится в эксплуатацию в системах впрыска топлива как дизельных, так и двигателей, работающих на бензине. Если говорить о современных двигателях, установленные в них форсунки руководствуются электронным управлением впрыска. Данную деталь принято разделять на три типа, в зависимости от способа произведения впрыска.

Итак, существуют такие три вида форсунки:

1. Электрогидравлическая

2. Электромагнитная

3. Пьезоэлектрическая

Теперь о каждом виде поподробнее.

Форсунка электромагнитная

Данную форсунку, как правило, принято устанавливать именно на бензиновых движках, в том числе укомплектованных системой непосредственного впрыска. Сама по себе электромагнитная форсунка имеет довольно обычное строение и состоит непосредственно из электромагнитного клапана с иглой и сопла. Работает такая форсунка по своеобразному принципу. В соотношении с заложенным алгоритмом, установленный электронный блок управления способен обеспечить в нужный момент передачу напряжения прямиком на обмотку возбуждения клапана. В этот момент создается своеобразное электромагнитное поле, которое может преодолевать усилие пружины, втянуть якорь с иглой и отпустить сопло. После проделанной операции осуществляется впрыск топлива. После того момента, как напряжение исчезнет, пружина возвращает иглу форсунки обратно на седло.

Форсунка электрогидравлическая

Как правило, электрогидравлическую форсунку принято приводить в действие на двигателях использующих дизель, в том числе и таких, которые укомплектованы системой впрыска Common Rail.

Сама по себе электрогидравлическая форсунка состоит из впускной и сливной дроссели, камеры управления, а также электромагнитного клапана. Такая форсунка приводится в эксплуатацию по принципу применения в процессе работы давления топлива, как при произведении впрыска, так и при его окончании.

Как правило, на начальной позиции электромагнитный клапан обесточен и находится в закрытом состоянии, игла форсунки прислоняется к седлу благодаря мощности давления топлива на поршень, которое имеет место в камере управления. В этом случае впрыск топлива не производится. В этот момент давление топлива на иглу ввиду несоответствии площадей контакта порядка меньше чем давление на поршень.

Электронный блок управления посылает сигнал и по его команде в работу включается электромагнитный клапан, который осуществляет открытие сливной дроссели. В свою очередь, топливо, которое выходит из камеры управления, начинает проходить через дроссель прямиком в сливную магистраль. В таком случае, дроссель способна воспрепятствовать скорой стабилизации давлений в камере управления и впускной магистрали. Таким образом, происходит снижение давления на поршень, но давление топлива на иглу остается на прежнем уровне. Под воздействием давления игла двигается вверх и происходит впрыск топлива.

Форсунка пьезоэлектрическая

Пьезоэлектрическая форсунка является самым совершенным и надежным устройством, которое способно обеспечить впрыск горючего. Такую форсунку, как правило, устанавливают на двигателях, использующих дизель, которые укомплектованы системой впрыска Common Rail. Такой вид форсунки имеет много достоинств, среди которых имеет место быстрота срабатывания Данная форсунка превосходит всех своих оппоненток и является самым надежным устройством, обеспечивающим впрыск горючего.

Преимуществом пьезофорсунки является быстрота срабатывания, которая в четыре раза превышает быстроту электромагнитного клапана. Из этого следует осуществимость многократного впрыска горючего в период одного цикла, а также безошибочная дозировка впрыскиваемого горючего.

Вся операция происходит благодаря использованию пьезоэффекта в руководстве форсункой, который был основан на изменении показателей длины пьезокристалла под воздействием напряжения. Вся конструкция пьезоэлектрической форсунки состоит из пьезоэлемента, переключающего клапана, толкателя, а также иглы, которые умещаются в корпусе. Пьезофорсунка приводится в работу по такому же принципу как и электрогидравлическая, а именно по гидравлическому. В связи с высоким давлением горючего, игла, находящаяся на исходной позиции, посажена на седло.

Во время подачи электрического сигнала на пьезоэлемент, производится увеличение его длины, при этом это позволяет пьезоэлементу толкать усилие непосредственно на поршень толкателя. В этот момент, переключающий клапан приходит в открытое состояние и топливо проходит в сливную магистраль. При этом падает давление, которое находится выше иглы. При этом, за счет давления в нижней части игла идет вверх и происходит впрыск горючего. Как правило, количество впрыскиваемого топлива может определяться длительностью воздействия на пьезоэлемент, а также уровнем давления горючего в топливной рампе.

2. Принцип работы форсунки инжектора

Для того, чтобы разобраться в принципе работы форсунки, нужно в общем понять работу всей системы впрыска топлива. Итак, данная система производит подачу горючего в цилиндр двигателя либо во впускной коллектор по принципу прямого впрыска благодаря форсунке, или как принято называть еще, инжектора. Исходя из этого, все автомобили, которые комплектуются такой системой, получают название инжекторных.

Классифицирование инжекторного впрыска проводится в зависимости от того, какой принцип работы инжектора, а также по месту его установки и суммарному количеству инжекторов. Как правило, центральный впрыск топлива осуществляется по такому принципу: во всеобщий впускной трубопровод, с помощью форсунки впрыскивается топливо на все цилиндры двигателя.

Форсунку, как мы уже упоминали, принято устанавливать именно перед дроссельной заслонкой, в том месте, где должен находиться карбюратор. Она показывает низкое сопротивление обмотки электромагнита (до 4-5 Ом). Как же распределяется впрыск? С помощью отдельных форсунок происходит впрыск топлива во впускные трубопроводы каждого имеющегося цилиндра. Они занимают место у основания впускных трубопроводов (как правило, у корпуса головки блока цилиндров) и отличаются довольно-таки высоким сопротивлением обмоток электромагнитов (до 12-16 Ом). Он может быть и меньшим, но при условии наличия дополнительного блока сопротивлений.

Как известно, большинство современных автомобилей снабжаются системой именно распределенного впрыска топлива. Как мы уже говорили, она работает по принципу, что отдельная форсунка отвечает за свой цилиндр. Важно знать, что каждая система распределенного впрыска топлива делится на четыре разных типа:

1. Одновременный

2. Попарно-параллельный

3. Фазированный

4. Прямой

Теперь о каждом поподробнее. Одновременный тип характеризируется подачей горючего от всех форсунок системы одновременно во все цилиндры. Что ж, название говорит само за себя. Попарно-параллельный тип впрыска подразумевает парное открытие форсунок, при котором, одна открывается непосредственно пред циклом впуска, а вторая — перед циклом впуска. Главной отличительностью этого типа является применение попарно-параллельный принцип открытия форсунок в момент запуска двигателя, или же в период аварийного режима неисправности датчика положения распредвала. В период эксплуатации автомобиля, то есть во время движения, в работу включается фазированный впрыск топлива. Это тип впрыска. При котором каждый инжектор открывается перед тактом впуска. Наконец, прямой тип впрыска происходит непосредственно в камеру сгорания.

Некоторые автомобили новейшего поколения могут похвастаться подачей топлива непосредственно в камеру сгорания (это и есть непосредственный впрыск). Отличительной чертой форсунок таких двигателей является наличие высокого рабочего напряжения электромагнита, которое достигает до 100 В. Маркировки форсунок отражают фабричную, или торговую, марку либо название, а также каталожный номер, или наименование и номер серии.

Как правило, горючее подается к форсунке под определенным давлением, которое зависит от режима работы движка. Принцип действия инжектора предполагает использование сигналов микроконтроллера, который в свое время получает данные от датчиков. Поступившие на электромагнит электрические импульсы, которые исходят от блока управления, заставляют работать игольчатый клапан, который открывает и закрывает канал форсунки. Все количество топлива которое распыляется зависит от длительности импульса, которая задается непосредственно блоком управления. Если говорить о форме и направлении распыляемого факела очень важны при смесеобразовании и определяются количеством и расположением распылительных отверстий.

Как правило, если топливо впрыскивается во всеобщий трубопровод с помощью одной форсунки, то это называется системой моновпрыска. Такая система на сегодня не пользуется особым спросом среди автомобилестроителей. Большинство автопроизводств предпочитают использовать сразу две форсунки в системе впрыска.

Как ни крути, но как и любая другая система, инжекторная ситсема имеет и свои недостатки, среди которых достаточно высокая цена на узлы инжектора, низкая уровень ремонтопригодности, высокие запросы по поводу состава и качества горючего, крайняя необходимость использования специального оборудования для диагностики каких-либо поломок, и, конечно же, довольно высокие ценовые показатели стоимости ремонта.

3. Как устроена форсунка инжектора

А теперь давайте рассмотрим конструкцию форсунки, из чего же она состоит. Каждому автолюбителю известно, что подача топлива в форсунках происходит преимущественно сверху вниз. Если говорить в общих чертах, можно сказать, что форсунка состоит из одного, реже двух каналов. Как правило, по первому к выходу подходит распыляемая жидкость, а по второму проходят жидкость, пар, газ, который служит для распыления первой жидкости. Как показывает практика, чистая и качественная форсунка способна дать конусообразный распыл, а факел получается непрерывный и ровный.

Если детализировать построение форсунки, можно сказать, что она, в первую очередь состоит из корпуса. В верхней части корпуса можно отыскать так называемый гидравлический разъем, который, в свою очередь, закрепляется к топливной рампе. Благодаря наличию насоса и обратного клапана в рампе непрерывно поддерживается установленное давление горючего. Известно, что форсунка прикрепляется к топливной рампе посредством специального зажимного устройства.

Нижнюю часть форсунки занимает распылительная пластина с отверстиями для впрыскивания топлива. Для того, чтобы обеспечить герметичность соединения сверху и снизу находятся специальные уплотнительные кольца. С одной стороны форсунки находится электрический разъем, который используется для управления соленоидом форсунки. Весь основной механизм находится внутри форсунки и состоит из фильтрующей сетки, электромагнитной обмотки, седлом клапана, пружины, игольчатого клапана с якорем соленоида и запорным сферическим элементом, а также распылительной пластины. Сопло принято считать самым важным элементом форсунки.

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

устройство, неисправности, чистка и проверка

Топливная форсунка (ТФ), или инжектор, относится к деталям топливной системы впрыска. Она управляет дозированием и подачей ГСМ с его последующим разбрызгиванием в камере сгорания и соединением с воздухом в единую смесь.

ТФ выступают в роли главных исполнительных деталей, относящихся к системе впрыска. Благодаря им происходит разделение топлива на мельчайшие частицы путем разбрызгивания и его поступление в двигатель. Форсунки для любого типа моторов выполняют одинаковое назначение, однако различаются конструкционно и по принципу действия.

Топливные форсунки

Данный вид изделий отличается индивидуальным изготовлением под конкретный тип силового агрегата. Иначе говоря, универсальной модели этого устройства не существует, поэтому переставлять их с бензинового мотора на дизельный нельзя. В качестве исключения можно привести пример гидромеханических моделей от BOSCH, устанавливаемых на механические системы, работающие на непрерывном впрыске. Они находят широкое применение для различных силовых агрегатов в качестве составного элемента системы «K-Jetronic», хотя и имеют несколько модификаций, не связанных между собой.

Расположение и принцип работы

Схематично форсунка – это электромагнитный клапан, управляемый программно. Она обеспечивает подачу топлива в цилиндры в установленных дозах, причем установленная система впрыска определяет вид используемых изделий.

Как устроена форсунка

Топливо в форсунку подается под давлением. При этом блок управления мотором посылает электроимпульсы на электромагнит инжектора, которые активируют работу игольчатого клапана, отвечающего за состояние канала (открыто/закрыто). Количество поступающего топлива определяется длительностью поступающего импульса, влияющего на промежуток нахождения игольчатого клапана в открытом состоянии.

Расположение форсунок зависит от конкретного типа системы впрыска:

• Центральный – размещаются перед дроссельной заслонкой во впускном трубопроводе.

• Распределенный –всем цилиндрам соответствует отдельная форсунка, размещаемая у основания впускного трубопровода и осуществляющая впрыск ГСМ.

• Непосредственный –форсунки находятся вверху стенок цилиндра, что обеспечивает впрыск напрямую в камеру сгорания.

Форсунки для бензиновых моторов

Бензиновые моторы комплектуются следующими типами инжекторов:

• Одноточечные – подают топливо, расположены до дроссельной заслонки.

• Многоточечные – за подачу ГСМ на цилиндры отвечают несколько форсунок, располагаемых перед трубопроводами.

ТФ обеспечивают подачу бензина в камеру сгорания силовой установки, при этом конструкция таких деталей неразборная и не предусматривает ремонт. По стоимости они дешевле тех, что устанавливаются на дизельных моторах.

грязные форсунки

Как деталь, обеспечивающая нормальную работу топливной системы автомобиля, форсунки часто выходят из строя по причине загрязнения расположенных на них фильтрующих элементов продуктами сгорания. Подобные отложения перекрывают распылительные каналы, что нарушает работу ключевого элемента – игольчатого клапана и прерывает поступление топлива в камеру сгорания.

Форсунки для дизельных моторов

Правильную работу топливной системы дизельных двигателей обеспечивают два типа устанавливаемых на них форсунок:

• Электромагнитные, за работу которых отвечает специальный клапан, регулирующий поднятие и опускание иглы.

• Пьезоэлектрические, работающие за счет гидравлики.

Правильная настройка форсунок, а также степень их износа влияет на работу дизельного мотора, выдаваемую им мощность и объем расходуемого горючего.

Поломку или неисправность работы дизельной форсунки автовладелец может заметить по ряду признаков:

• Увеличился расход топлива при нормальной тяге.

• Машина не хочет двигаться с места и дымит.

• У авто вибрирует двигатель.

Проблемы и неисправности форсунок двигателя

Для поддержания нормальной работы топливной системы необходимо проводить периодическую чистку форсунок. По мнению специалистов, процедура должна выполняться каждые 20-30 тыс. км пробега, но на практике необходимость в таких работах возникает уже после 10-15 тыс. км. пробега. Это связано с некачественным топливом, плохим состоянием дорог и не всегда правильным уходом за машиной.

К самым актуальным проблемам, преследующими форсунки любого типа, относится появление на стенках деталей отложений, являющихся следствием использования низкокачественного топлива. Результатом является появление загрязнений в системе подачи горючей жидкости и возникновение перебоев в работе, потеря мощности мотором, чрезмерный расход ГСМ.

Причинами, влияющими на работу форсунок, могут быть:

• Чрезмерное содержание серы в ГСМ.

• Коррозия металлических элементов.

• Износ.

• Засорение фильтров.

• Неверная установка.

• Воздействие высоких температур.

• Проникновение влаги и воды.

Надвигающиеся неполадки можно определить по ряду признаков:

• Появление незапланированных сбоев при старте двигателя.

• Существенное увеличение расхода топлива в сравнении с номинальными значениями.

• Появление выхлопов черного цвета.

• Появление сбоев, нарушающих ритмичность работы мотора на холостом ходу.

Способы чистки форсунок

Для решения вышеназванных проблем требуется периодическая промывка топливных форсунок. Для устранения загрязнений применяют ультразвуковую очистку, используют особую жидкость, выполняя процедуру вручную, либо добавляют специальные присадки, позволяющие очистить форсунки без разбора мотора.

Заливка промывки в бензобак

Наиболее простой и щадящий способ очистки загрязненных форсунок. Принцип действия добавляемого состава заключается в постоянном растворении с его помощью имеющихся отложений в системе впрыска, а также частичное предотвращение их появления в будущем.

промывка форсунки с помощью присадок

Такая методика хороша для новых машин либо автомобилей с небольшим пробегом. В этом случае добавление промывки в бак с топливом выступает профилактикой, позволяющей поддерживать силовую установку и топливную систему машины в чистоте. Для машин с серьезными загрязнениями топливной системы данный способ не подходит, а в ряде случаев может нанести вред, усугубив имеющиеся проблемы. При большом количестве загрязнений смытые отложения попадают в форсунки и забивают их еще больше.

Чистка без снятия с двигателя

Промывка ТФ без разбора двигателя выполняется путем подключения промывочной установки непосредственно к мотору. Такой подход позволяет отмыть скопившуюся грязь на форсунках и топливной рампе. Двигатель на полчаса запускается на холостом ходу, подача смеси происходит под давлением.

промывка форсунок с помощью аппарата

Данный способ не используется на сильно изношенных двигателях, а также не подходит для автомобилей с установленной системой КЕ-Jetronik.

Чистка со снятием форсунок

При сильных загрязнениях двигатель разбирают на специальном стенде, снимают форсунки и выполняют их индивидуальную очистку. Подобные манипуляции дополнительно позволяют определить наличие неисправностей в работе форсунок с их последующей заменой.

снятие и промывка

Чистка ультразвуком

Очистка форсунок выполняется в ультразвуковой ванне для предварительно снятых деталей. Вариант подходит при сильных загрязнениях, не убирающихся очистителем.
Операции по очистке форсунок без снятия с двигателя в среднем обходятся владельцу автомобиля в 15-20 у.е. Стоимость диагностики с последующей чистой для одной форсунки в ультразвуке либо на стенде составляет около 4-6 у.е. Комплексные работы по промывке и замене отдельных деталей позволяют обеспечить бесперебойную работу топливной системе еще на полгода, добавив 10-15 тыс. км. пробега.

устразвуковая чистка топливных форсунок

Что такое форсунка — Статья

Форсунка-инжектор — устройство, предназначенные для подачи (впрыскивания) жидкостей и газов в двигателях различных механических устройств легкой и тяжелой промышленности. В более узком представлении форсунки – электромагнитные клапаны, обеспечивающие дозированную подачу топлива в цилиндры дизельного двигателя с системой непосредственного впрыска. Подача топлива осуществляется периодически через равные промежутки времени, и подобная система имеет

неоспоримые преимущества перед карбюраторной системой. Первое из них – точная дозировка топлива, которую осуществляют форсунки, и это важно, когда экономичный расход топлива играет одну из первостепенных ролей. Инжекторные двигатели позволяют использовать все топливо, в то время как карбюраторные «теряют» примерно 10 процентов его потенциала.

Второе преимущество – экологичность, поскольку инжекторные двигатели (работающие на системе непосредственного впрыска топлива при помощи форсунок) снабжены системой нейтрализации токсичных выхлопов. Дизельные двигатели современных автомобилей работают на принципе распределенного впрыска, когда каждый цилиндр двигателя получает топливо из отдельной форсунки. Впрочем, и владельцы автомобилей с карбюраторными двигателями не стоит отчаиваться, поскольку всегда есть возможность перейти на инжектор и, в зависимости от конструктивных особенностей автомобиля, установить инжекторную систему любого типа.

В последние годы отечественные автомобилисты все чаще стремятся оснастить свои устаревшие двигатели системой непосредственного впрыска и, соответственно, одна из главных ее деталей – форсунка – является одновременнои одной из наиболее востребованных деталей на рынке автозапчастей. Учитывая, что работают форсунки в достаточно жестких условиях, их обслуживание должно осуществляться максимально аккуратно и ответственно. То же самое следует сказать и о выборе форсунок для двигателя с инжекторной системой подачи топлива. Непременно основное внимание следует уделить качеству деталей (и готовых комплектов), которое наиболее часто подкреплено репутацией фирмы-производителя. Поэтому лучше всего не скупиться и приобретать у официальных дилеров новые автозапчасти проверенных торговых марок с гарантийным сроком службы.

Гидромеханические форсунки

Гидромеханические форсунки (ГМ-форсунки) бывают открытого и закрытого типов. Первый тип ГМ-форсунок представляет собой жиклерные форсунки и в современных системах впрыска бензина не используется. ГМ-форсунки закрытого типа предназначены для применения в механических системах непрерывного распределенного по цилиндрам впрыска топлива на бензиновых ДВС. Такие форсунки не имеют электрического управления. Они открываются под напором бензина, а закрываются возвратной пружиной. Давление напора бензина, при котором закрытая форсунка открывается, называется начальным рабочим давлением (НРД) форсунки и обозначается как Рфн. ГМ-форсунки закрытого типа устанавливаются в предклапанных зонах впускного коллектора для каждого цилиндра в отдельности.

По конструкции закрытые форсунки могут различаться устройством запорного клапана и способом крепления в литом корпусе впускного коллектора. По типу запорного устройства закрытые форсунки подразделяют на форсунки со сферическим, дисковым и штифтовым клапаном; по способу крепления — на вставные и резьбовые.

Закрытые ГМ-форсунки в дозировании топлива участия не принимают. Их главная функция — распылять бензин на горячие впускные клапаны двигателя. При этом распыленные частицы бензина переходят в парообразное состояние, а впускной клапан охлаждается. Чтобы не было соприкосновения струи бензина со стенками предклапанной зоны впускного коллектора, бензин распыляется с раскрывом на угол не более 35е, а форсунка по отношению к клапану устанавливается по строго заданной геометрии.

Дозирование топлива в механической системе впрыска производится изменением напора бензина у постоянно открытого распылительного сопла форсунки. При этом давление напора формируется давлением вне форсунки — в дифференциальном клапане дозатора-распределителя механической системы впрыска.

Для того чтобы клапан форсунки закрытого типа находился в состоянии «открыто», давление бензина в клапанной полости 6 должно быть все время несколько выше усилия Рп возвратной пружины 10 (Рфн > Р„).

Это достигается заданием достаточно высокого (не менее 6 бар) рабочего давления Ps (РДС) в системе (в топливоподающей магистрали до дозатора-распределителя) и поддержанием РДС на постоянном уровне.

Основными параметрами закрытой форсунки являются пять показателей.

1. Начальное рабочее давление Рфн (НРД) форсунки сразу после ее сборки на заводе-изготовителе (давление открывания новой форсунки). НРД для закрытых форсунок разных модификаций лежит в пределах 2,7…5,2 кг/см2. Для новых форсунок из одного типоразмерного ряда НРД может отличаться не более чем на ±20%. При подборе комплекта форсунок на двигатель различие НРД не должно превышать ±4%. В продажу (как запчасти) форсунки поступают с одинаковым НРД в упаковке. Замена форсунок неполным комплектом может стать причиной нарушения нормальной работы двигателя.

2. Минимальное рабочее давление Рф т|„ (МРД) форсунки после ее приработки на двигателе (после 5000 км пробега). Это давление становится меньше НРД новой форсунки на 15…20% и стабилизируется (за 5 лет нормальной эксплуатации изменяется не более чем на 5%).

3. Рабочее давление Рф форсунки после ее приработки. Это изменяющееся во время работы двигателя давление во внутренней полости форсунки от минимального рабочего давления Рф min (МРД) до максимального значения рабочего давления Ps max(РДС)в механической системе впрыска.

4. Давление отсечки форсунки Р0 (ДОТ). Это давление, ниже которого форсунка надежно закрытаиногда называется давлением слива). Давление отсечки всегда меньше Рф min на 1,0…1,5 кг/см2, но несколько больше остаточного давления Рост в системе впрыска сразу после выключения двигателя.

5. Производительность Пф форсунки. Это количество бензина, которое распыляется через постоянно открытую форсунку за единицу времени при определенном рабочем давлении Рф в полости форсунки. Обычно Пф закрытой форсунки задается для двух крайних значений рабочего давления: Рф min и Ps max. Этим двум значениям соответствуют два режима работы двигателя: Рф m,n — холостому ходу, Ps m8K — полной нагрузке. Производительность Пф задается в см3/мин или в гр/с. Например, для закрытых форсунок 5-ти цилиндрового ДВС автомобиля AUDI-1O0 (2,2 л, 140 л/с) показатели производительности соответственно равны 30 и 90 см3/мин (при работе в системе «K-Jetronic»).

Вышедшие из строя форсунки закрытого типа ремонту не подлежат, но, как и любые другие, могут быть «промыты» в составе системы впрыска на работающем двигателе.

Электромагнитные форсунки

Электромагнитные форсунки применяются в современных системах впрыска бензина в качестве клапанных рабочих и пусковых форсунок (для систем распределенного по цилиндрам впрыска с электронным управлением), а также в качестве центральных форсунок впрыска (в системах питания с моновпрыском). Центральная форсунка наиболее распространенной конструкции для систем впрыска бензина группы «Mono».

Современные ЭМ-форсунки способны надежно срабатывать со скважностью* S = 0,5 и при этом устойчиво (управляемо) удерживать открытое состояние в течение 2…2,5 мс. Разброс этого параметра в конкретном типоразмерном ряде форсунок не более ±5%. Такой быстроте срабатывания ЭМ-форсунки отвечает частота возвратно-поступательного движения подвижного стержня электромагнита форсунки в 200…250 с-1. Это является пределом возможного для данного типа электроуправляемых форсунок.

При применении ЭМ-форсунок в качестве клапанных рабочее давление Ps в системе впрыска может быть понижено с 6,5 бар (в механических системах) до 4,8…5 бар, что повышает надежность работы электробензонасоса и понижает вероятность протечек топлива в уплотнительных соединениях бензома-гистралей.

При электронном управлении форсунками точность дозирования впрыснутого бензина значительно повышается. Это становится возможным потому, что давление внутри ЭМ-форсунки поддерживается постоянным, и количество впрыснутого топлива определяется только временем открытого состояния форсунки.

Основными параметрами ЭМ-форсунки являются:

1. Постоянное рабочее давление в полости форсунки (РДФ), равное рабочему давлению Ps системы, выраженное в бар.

2. Производительность форсунки (пропускная СПОСОбнОСТЬ В ОТКРЫТОМ СОСТОЯНИИ — В СМ3/МИН или в г/с при заданном Ps РДС).

3. Минимальное напряжение надежного срабатывания форсунки (постоянное напряжение в вольтах).

4. Минимальное время цикловой подачи топлива (минимальное надежно управляемое время продолжительности открытого состояния форсунки — в мс).

5. Внутреннее омическое сопротивление Нф форсунки (сопротивление катушки соленоида — в омах).

На корпусе форсунки набивается цифровой код, по которому в справочном каталоге можно определить все вышеперечисленные параметры. На корпусе выбивается также торговый знак или название фирмы-изготовителя.

О внутреннем омическом сопротивлении Нф форсунки следует сказать отдельно. Если катушка соленоида намотана медным проводом, то получить величину Нф более 2…3 Ом невозможно (накладывается требование минимизации индуктивности Ls катушки). В таком случае для ограничения величины рабочего тока 1ф форсунки последовательно с катушкой соленоида включают дополнительный резистор. Применяют также обмоточный провод с высоким удельным сопротивлением (для катушки соленоида), что исключает необходимость установки дополнительных резисторов. Но в любом случае общий средний ток управления сразу всеми форсунками (или группой форсунок) впрыска на двигателе не должен превышать значения 3…5 А. В некоторых случаях на многоцилиндровых двигателях применяют «групповое» управление форсунками. Это когда форсунки объединены в группы, а каждая группа управляется от отдельного электронного блока. Но наиболее эффективной является система впрыска бензина, в которой каждая рабочая клапанная ЭМ-форсунка управляется независимо от других (последовательный синхронизированный распределенный по цилиндрам импульсный впрыск бензина с управлением от многоканального ЭБУ впрыском).

По типу запирающего клапана ЭМ-форсунки, как и гидромеханические, подразделяют на три вида:

— форсунки со сферическим профилем запорного элемента:

— форсунки с штифтовым клапаном (с конусным или игольчатым запорным стержнем):

— форсунки с дисковым клапаном (с плоским или тарельчатым запорным элементом).

Выпускаются форсунки с внутренним электрическим сопротивлением 2,4 Ом: 12,5 Ом; 16 Ом. Малое сопротивление связано с применением обмоточного провода из меди и с необходимостью иметь малую величину индуктивности L соленоида, которая прямо зависит от числа витков Wc обмотки соленоида.

Низкое сопротивление форсунки увеличивают дополнительным сопротивлением в 6…8 Ом, что уменьшает потрябляемый ток. Обмотки высокоомной форсунки выполнены из провода с большим удельным сопротивлением (например, из латуни), что позволяет иметь малое L и большое R.

По производительности П впрыска форсунки подбирают по типам и мощности тех двигателей, на которые эти форсунки устанавливаются. Производительность форсунки определяется под рабочим давлением системы, как количество Кв бензина, прошедшего через форсунку за единицу времени t, если она постоянно открыта.

Пусковые электромагнитные форсунки

К электромагнитным форсункам относятся и пусковые гидроклапаны с электромагнитным управлением, которые по принципу действия мало чем отличаются от ЭМ-форсунок. Именно поэтому пусковые гидроклапаны чаще называют пусковыми форсунками.

Основное назначение пусковой форсунки (ПС-форсунки) — это работа в механической системе непрерывного распределенного впрыска во время запуска холодного двигателя. Иногда ПС-форсунка используется как форсажное устройство, наподобие ускоритвльного насоса в карбюраторе, или как устройство для запуска перегретого двигателя с турбонаддувом. Пусковая форсунка применяется и в некоторых системах впрыска группы «L». В любом случае ПС-форсунка работает непосредственно от бортсети автомобиля, а в систему электронного управления двигателем включается опосредовано через специальное электронное реле управления.

К ПС-форсункам требования высокой скорости срабатывания не предъявляются, что значительно упрощает конструктивное исполнение ее составных компонентов. Так, масса якоря электромагнита, который (якорь) одновременно является и запирающим элементом клапана форсунки, число витков катушки электромагнита, сечение распылительного сопла, упругость возвратной пружины — все это заметно увеличено по сравнению с рабочей клапанной ЭМ-форсункой.

Форсунка закрытого типа с плунжерным насосом

Ведутся исследования в направлении поиска принципиально новых способов впрыска бензина с помощью форсунок. Испытаны так называемые магнитоэлектрические форсунки, которые отличаются высоким быстродействием (0,5 мс), так как работают с принудительным высокочастотным (до 1000 с»1) переключением полярности магнитного поля в катушке соленоида.

Перспективными считаются также форсунки закрытого типа с дополнительным электромагнитным управлением (электрогидравлические).

В системах впрыска бензина группы «Д» (впрыск в камеру сгорания) используется насос-форсунка закрытого типа с плунжерным насосом высокого давления, который приводится в действие от кулачка распредвала.

Насос-форсунка оснащен сливным каналом с быстродействующим электрогидравлическим клапаном. Комбинация — плунжерный насос, закрытая гидромеханическая форсунка, электроуправляемый от электронной автоматики сливной канал — дает возможность реализовать так называемый «послойный впрыск бензина» непосредственно в камеру сгорания ДВС. Это обеспечивает значительную экономию топлива за счет работы двигателя на очень бедных ТВ-смесях (а = 2,0), а также повышает ряд его эксплуатационных показателей.

При послойном впрыске цикловая подача бензина непрерывно дифференцируется по времени посредством управления давлением в рабочей полости насос-форсунки (под плунжером). Давление регулируется электроуправляемым гидроклапаном в сливном канале. Суть послойного впрыска топлива состоит в его подаче отдельными, строго дозированными порциями. Получается так: за один цикл впрыска бензин подается прямо в цилиндр не сплошной однородной струей, а несколькими частями, каждая из которых образует «свой» коэффициент избытка воздуха а. В объеме цилиндра образуется «послойный пирог» из ТВ-смеси разной концентрации. Преимущество послойного впрыска бензина состоит в том, что в первый момент воспламенения в зону центрального электрода свечи зажигания подается нормальная (стехиометрическая) ТВ-смесь с а = 1, которая легко возгорается. Далее процесс горения топлива в очень бедной ТВ-смеси (а = 2.0) поддерживается за счет «открытого огня», образовавшегося в первый момент воспламенения. Однако система впрыска бензина с насос-форсунками обладает двумя существенными недостатками: она содержит дорогостоящие и очень сложные механические устройства, а также способствует появлению значительных количеств оксидов азота (N0X) в выхлопных отработавших газах двигателя, бороться с которыми крайне сложно. Тем не менее система выпускается фирмой TOYOTA для двигателей TD4 легковых автомобилей.

Обслуживание форсунок (инжектора) бензиновых двигателей

Многие современные автомобили оснащаются системами впрыска топлива. Состояние форсунок — неотъемлемой части системы впрыска — во многом определяет эффективность работы двигателя. Впрыск топлива имеет неоспоримые преимущества по сравнению с карбюраторным принципом смесеобразования. В первую очередь, это более точное дозирование топлива, а следовательно, большая экономичность и приемистость автомобиля и меньшая токсичность отработавших газов. Однако основная исполнительная деталь системы впрыска — форсунка — работает в тяжелых условиях и поэтому весьма требовательна к обслуживанию.

Общие понятия

Форсунка (инжектор) — управляемый электромагнитный клапан, обеспечивающий дозированную подачу топлива в цилиндры двигателя. Существуют форсунки для центрального (одноточечного, моно) и для распределённого (многоточечного) впрыска. Блок управления — электронный блок, управляющий системой впрыска, в частности работой форсунок.

Устройство и принцип работы

Топливо подаётся к форсунке под определённым (зависящим от режима работы двигателя) давлением. Электрические импульсы, поступающие на электромагнит форсунки от блока управления, приводят в действие игольчатый клапан, открывающий и закрывающий канал форсунки. Количество распыляемого топлива пропорционально длительности импульса, задаваемой блоком управления. Форма и направление распыляемого факела играют существенную роль в процессе смесеобразования и определяются количеством и расположением распылительных отверстий.

Расположение, классификация и маркировка форсунок

Центральный впрыск — В общий впускной трубопровод топливо впрыскивается одной форсункой (или двумя как на Хонде), которая устанавливается перед дроссельной заслонкой, в месте, где «должен стоять карбюратор», и характеризуется низким сопротивлением обмотки электромагнита (до 4-5 Ом).Распределённый впрыск — Отдельные форсунки осуществляют впрыск топлива во впускные трубопроводы каждого цилиндра. Они располагаются у основания впускных трубопроводов (у корпуса головки блока цилиндров) и отличаются относительно высоким сопротивлением обмоток электромагнитов (до 12-16 Ом). Или меньшим, но с дополнительным блоком сопротивлений. На некоторых автомобилях последнего поколения топливо подаётся непосредственно в камеру сгорания (непосредственный впрыск). Форсунки таких двигателей отличаются высоким рабочим напряжением электромагнита (до 100 В).В маркировке форсунок может отражаться фабричная (торговая) марка или название; каталожный номер или наименование; номер серии.

Основные признаки и причины неисправности форсунок

Состояние форсунок существенно влияет на работу двигателя. Основными признаками их неисправности бывают: недостаточная мощность, развиваемая двигателем; рывки и провалы при увеличении нагрузки на двигатель; неустойчивая работа на малых оборотах; повышенная токсичность отработавших газов. Наиболее распространенной неисправностью форсунок является их загрязнение. Они расположены в зоне воздействия высоких температур. Следствие этого — закоксовывание содержащимися в топливе (особенно низкокачественном) смолами, образование на форсунке твердых отложений, перекрывающих (частично или полностью) распылительные отверстия и нарушающих герметичность игольчатого клапана. Кроме того, общее загрязнение элементов топливной системы (бака, трубопроводов, фильтра и т.д.) приводит к засорению частичками шлама каналов и фильтра форсунки. Основным способом восстановления нормальной работоспособности форсунок является их промывка.

Промывка форсунок

Эта операция подразумевает удаление (вымывание) накопившихся загрязнений из системы. К основным способам промывки форсунок относятся: промывка специальными присадками к топливу; промывка без демонтажа форсунок с двигателя с помощью специальной установки; промывка на ультразвуковом стенде с демонтажом форсунок с двигателя. Промывка с помощью присадок к топливу отличается простотой и заключается в периодическом (каждые 2-3 тыс.км) добавлении в топливо специальных препаратов. Это позволяет промывать не только сами форсунки, но и всю топливную систему. Данный способ эффективен при регулярном удалении небольших загрязнений и носит, скорее, профилактический характер. Внимание! Удаление застарелых отложений подобным методом может привести к прямо противоположному результату: большое количество шлама, смытого моющей присадкой со стенок топливной системы, засоряет трубопровод, топливный фильтр, а иногда и сами форсунки, окончательно выводя их из строя. Промывка форсунок с помощью специальной установки без их демонтажа заключается в работе двигателя на специальном промывающем топливе (сольвенте). Для этого отключается штатный топливный насос автомобиля и магистраль слива топлива в бак (обратка), а топливопровод системы впрыска соединяется с установкой, имеющей резервуар с сольвентом, который под давлением подаётся на форсунки. Процесс делится на несколько этапов. Сначала двигатель работает в течении 15 минут в режиме холостого хода. Затем его останавливают на 15 минут для размягчения особо стойких отложений. Потом двигатель снова запускается и работает 15 минут в режиме периодического увеличения оборотов до их максимального числа. Заключительным этапом промывки является восстановление соединений штатных топливопроводов и работа двигателя на бензине в течении 30 минут. Подобную промывку рекомендуется проводить через каждые 15-20 тыс. км пробега. Промывка на ультразвуковом стенде с демонтажом форсунок применяется в качестве крайней меры для удаления больших затвердевших отложений, когда первые два способа не приводят к желаемым результатам. Принцип действия таких стендов основан на разрушении отложений погруженной в специальный моющий состав форсунки с помощью ультразвука. Кроме того, стенды, как правило, позволяют точно оценить производительность и качество распыла форсунки.

Работа форсунки инжектора — принцип действия форсунок в двигателе

Главная » Двигатели » Работа форсунки инжектора — принцип действия форсунок в двигателе

просмотров 1 524

На современных двигателях используются различные типы форсунок. О работе форсунок, их расположении и возможных проблемах пойдёт речь ниже.

Различие инжекторных форсунок

Форсунка инжектора служит для распыления поступающего топлива, которое подаётся под высоким давлением. По способу впрыска их можно разделить на три категории:

  1. Электромагнитного принципа действия.
  2. Электрогидравлическая.
  3. Пьезоэлектрический вариант.

Давайте в сжатой форме ознакомимся с каждым вариантом.

  • Электромагнитная форсунка.

Простейший вариант, который устанавливается на двигатели, в том числе моторы с непосредственным впрыском. Вид топлива: бензин.

  • Электрогидравлическая форсунка.

Она используется на дизельных двигателях. В том числе, агрегирует с системой Common Rail.

  • Пьезоэлектрическая форсунка.

Вариант более современный по сравнению с вышеперечисленными форсунками. Применяется на дизельных двигателях. Достаточно сказать, что скорость работы в четыре раза быстрее, чем у электромагнитной форсунки.

Принцип работы

По сути, форсунка – это ёмкость наполненная топливом, которое проходит под высоким давлением из топливной магистрали. Подача выполняется через фильтровочную сетку: это с одной стороны. С дугой, топливо, уже в распыленном состоянии, поступает в рабочую область двигателя при условии, что есть определённое напряжение на клапане форсунки.

Какие бывают форсунки и их расположение

Существует несколько видов комплекта, о котором идёт речь. Это:

  • низкоомные с рабочими показателями 1-7 Ом. В цепях может быть добавочное сопротивление от 5 до 8 Ом;
  • высокоомные с показателями 14-17 Ом.
  1. В рядном двигателе на четыре цилиндра задействована одна форсунка инжектора – это моно впрыск.
  2. В V-образном двигателе с шестью цилиндрами работают две форсунки при разделении процесса – это дубль моно впрыск.
  3. При работе одной форсунки на один цилиндр – это распределительный впрыск.
  4. При расположении одной форсунки, рабочая часть которой находится внутри цилиндра – это прямой впрыск.
  5. Одна форсунка на силовой агрегат с расположением рабочей части во впускном коллекторе – это пусковая форсунка.
  • Расположение.

Пусковая форсунка, находящаяся во впускном коллекторе, установлена таким образом, чтобы широкий факел распылённого топлива (до 900) поступал к впускным клапанам всех цилиндров.

Форсунку моно впрыска можно найти на месте установки карбюратора. Топливо поступает во впускной коллектор.

Форсунки распределительного впрыска располагаются на впускном коллекторе (район клапанной впуска каждого цилиндра). Если 2 клапана, следовательно, факел распылённого топлива состоит из 2 частей. Подача направлена на каждый клапан.

В зависимости от работы двигателя поступающее в него топливо регулируется показателями 80-130 рабочих атмосфер. Речь идёт о прямом впрыске топлива.

Не имеет значения, на каком виде топлива солярке или бензине работает самоходное транспортное средство. Часто возникают технические проблемы с форсунками. Эта деталь, отвечающая за впрыск горючего под высоким давлением из-за некачественного топлива, регулярно направляет автомобиль в ремонтные боксы. Водители должны знать, каким образом проверяется работа форсунки инжектора, если запуск двигателя затруднён.

Чем опасны сбои работы форсунок, и какие признаки вероятных проблем

Если электро форсунка льёт, то снижается КПД (коэффициент полезного действия) распыления топлива. Иными словами рассеивается форма пламени. Об этой проблеме сигнализирует чёрный или серый дым. Автомобиль неохотно заводится. Когда льют форсунки, может теряться мощность двигателя.

При льющей форсунке повышается расход топлива. Грязный фильтр может стать проблемой. Форсунка может не лить, а сбои в работе могут возникнуть из-за плохих свечей. Виной может стать топливный насос или ГРМ. Сложность пуска двигателя – это 90% нерабочих форсунок.

Зачастую когда в автомобиле не установлен фильтр тонкой очистки топлива, на сеточке форсунки скапливается грязь, которая не дает проходить топливу и как следствие отсутствие распыления топлива, а в худшем случае и вовсе двигатель может начать троить!

О проблемах во время езды может свидетельствовать рывки авто, в частности при наборе скорости. После переключения скоростей, и наборе скорости, машина может дёргаться. Разгон транспортного средства и выполнение манёвров, весьма затруднены. Если ездить с проблемами впрыска, что, кстати, не рекомендуют специалисты, может существенно уменьшиться продолжительность работы двигателя.

Дефекты необходимо безотлагательно исправлять. Страшно подумать, что может произойти на крутом подъёме или опасном спуске, если выйдет из строя форсунка.

Диагностика как профилактика и решение проблем на ранней стадии «технического заболевания»

В современной, «правильно» оборудованной СТО, можно провести диагностику форсунок без их снятия. Тестирование проходит весьма быстро. Упор делается на анализ шума. Высокочастотный приглушённый шум – это прямой путь на прочистку форсунок. При диагностике следует уделить внимание подаче топлива.  Проверка подачи питания начинается с отключения колодки инжекторной системы. С АКБ подсоединяют 2 конца провода, а другие закрепляются с форсунками. Проводится запуск двигателя  и выполняется контроль подачи, поступающего горючего. Результаты фиксируются, обрабатываются и делаются соответствующие выводы:

  1. Если происходит вытекание топлива, следовательно, возможны неполадки в электрической сети авто.
  2. Если топливо не вытекает, значит с форсунками всё в порядке.

Когда нужно измерить сопротивление на форсункак, можно прибегнуть к использованию омметра.  Далее, сравнить с рекомендованными значениями. Если обнаружены отклонения от норм нерабочая форсунка демонтируется. Её меняют на исправную. Далее снова проводится проверка сопротивления и заводится двигатель. Работы подразумевают снятие топливной рейки, а форсунки демонтируются вместе с рейкой.

В заключение

Топливная аппаратура вещь капризная, но проверку можно выполнить самостоятельно. Ведь многие водители неплохо разбираются в устройстве автомобиля. Поэтому спешить в сервисный центр не стоит. Экономьте собственные деньги.

Проголосуйте, понравилась ли вам статья? Загрузка…

Форсунка дизельная — устройство и разновидности

Дизельная форсунка, которую нередко называют инжектором, является ключевой деталью дизельного двигателя. Ее основной задачей выступает подача топлива в камеру сгорания, а также его точная дозировка и распыление. Учитывая сложные условия эксплуатации, которые сопровождают эксплуатацию дизельного двигателя и выражаются в высокой температуре и серьезном давлении, от качества изготовления и эффективности выполнения форсункой своих функций зависит КПД всего агрегата.

Наличие в конструкции топливной форсунки выступает отличительной чертой не только дизельных, но и бензиновых инжекторных двигателей. Необходимость в этой детали возникает из принципа работы обоих типов силовых установок, который предусматривает использование системы прямого впрыска горючего в камеры сжигания. При этом воспламенение топлива происходит под воздействием высокого давления, достигаемого за счет ТНВД. Уровень этого показателя в дизельных агрегатах намного выше, чем в инжекторных бензиновых установках.

Как следствие, эффективная работа двигателя на дизельном топливе возможна только при наличии специальной детали, способной обеспечить своевременную подачу нужного количества горючего, его распыление внутри камеры и герметичность си

темы. Основные функции дизельной форсунки уже были перечислены выше. Они состоят в следующем:

· дозировка горючего, представляющая собой определение такого его количества, которое необходимо для достижения нужной мощности;

· распыление топлива внутри камеры сгорания, что обеспечивает более полное и эффективное сжигание;

· сохранение герметичности системы подачи топлива.

История изобретения и совершенствования

Первые модели дизельного двигателя, разработанные и изготовленные в конце позапрошлого века при непосредственном участии Рудольфа Дизеля, предусматривали наличие так называемой компрессорной форсунки и применение в качестве топлива керосина. Появление ТНВД позволило использовать намного более компактные и удобные бескомпрессорные форсунки.

Особенно удачной оказалась модель инжектора, созданная в 20-х годах прошлого века Робертом Бошем. Этот вариант дизельной форсунки с незначительными доработками и усовершенствованиями применяется до настоящего времени. Конечно же, эксплуатационные и технические параметры современных деталей, несмотря на общую схожесть конструкции, существенно превосходят разработки Боша, что объясняется значительным улучшением качества и точности изготовления, а также использованием в процессе производства новейших сталей и сплавов.

Ключевым усовершенствованием форсунки стало активное применение разнообразной электроники. Использование датчиков контроля и управления работой дизельного двигателя в целом и его отдельных узлов позволяет заметно повысить КПД и эффективность эксплуатации транспортного средства.

Устройство

В настоящее время продолжает активно использовать большое количество различных по конструкции и принципу действия типов дизельных форсунок. Несмотря на определенные особенности каждого из них, можно выделить несколько общих элементов или деталей, в том или ином виде присутствующих практически всегда. К ним относятся:

· корпус, в котором размещаются остальные детали и элементы дизельной форсунки;

· распылитель в виде иглы. Предназначение детали очевидно и заключается в распределении топлива в пространстве над поршнем;

· стержень или плунжер, который движется внутри корпуса форсунки, за счет чего нагнетается необходимый уровень давления;

· пружина запирания иглы. Используется для фиксации иглы в нужном положении;

· штуцер подвода топлива. Предназначен для подачи горючего в форсунку;

· управляющий клапан. Применяется для эффективного решения двух главных задач – дозировки топлива и определения регулярности его впрыскивания в камеру сжигания;

· фильтр очистки топлива. Один из элементов общей системы очистки используемого в дизельном двигателе горючего;

· штуцер обратного отвода излишков топлива. Назначение этого элемента форсунки также предельно очевидно – он применяется для того, чтобы отвести из форсунки топливо, не попавшее в камеру сжигания.

Устройство современных дизельных форсунок предусматривает обязательное наличие электронного блока управления. Входящие в него приборы и датчики в автоматическом режиме регулируют процессы, протекающие в рассматриваемом механизме, обеспечивая эффективную работу как инжектора, так и двигателя в целом.

Рабочие стадии

Эксплуатация дизельной форсунки предусматривает циклическое и последовательное повторение 4 рабочих стадий. В указанное число входят:

1. Закрытое положение форсунки. Начальный этап процесса. Предусматривает создание высокого давления одновременно со стороны плунжера и пружины, благодаря чему форсунка остается закрытой.

2. Начало впрыска. Автоматика подает сигнал, вследствие которого плунжер форсунки начинает двигаться вверх. В результате давление на иглу уменьшается, она также начинает подниматься, обеспечивая начало поступления топлива в камеру сгорания.

3. Полностью открытое положение форсунки. На этом этапе плунжер управления поднимается максимально, достигая верхнего упора. Это означает аналогичное перемещение иглы и режим полного открытия форсунки.

4. Конец впрыска. Завершающая стадия рабочего процесса. Она состоит в опускании управляющего плунжера и иглы форсунки, следствием чего становится перекрытие доступа горючего в камеру сжигания.

Приведенная выше схема с некоторыми корректировками достаточно точно описывает эксплуатацию дизельных форсунок любого типа. Важно понимать, что количество подобных рабочих циклов в период времени зависит от типа и мощности агрегата, вида самой форсунки и большого количества других факторов.

Разновидности и принцип работы

В сегодняшних условиях применяются самые разные виды дизельных форсунок. Их большое разнообразие объясняется как крайне широкой сферой применения, так и различиями в задачах, для решения которых они предназначаются.

Механическая форсунка

Традиционный вариант устройства, постепенно уступающий по популярности современным инженерным решениям. Именно его принцип действия был приведен выше при описании рабочего цикла дизельной форсунки. Он базируется на срабатывании клапана при достижении определенного уровня давления.

Механическая форсунка применяется в автомобилестроении в течение нескольких десятков лет. Однако, введение новых экологических стандартов и всеобщее стремление к повышению уровня экономичности дизельных двигателей привело к неуклонному вытеснению этого классического устройства более эффективным разработкам последних лет.

Главное направление совершенствования форсунки в частности и дизельного двигателя в целом – это передача контроля и управления большинством рабочих процессов электронным приборам и датчикам. Кроме того, отдельного упоминания заслуживает форсунка с двумя пружинами, разделяющая подъем иглы на две стадии. В результате обеспечивается гибкость в подаче горючего, более полное сгорание топлива и уменьшение шума при работе агрегата.

Электромеханическая форсунка

Главное отличие от механического варианта состоит в использовании для перемещения иглы форсунки вместо пружины электромагнитного клапана. Он управляется автоматикой, благодаря чему достигается точное определение количества необходимого топлива и оптимальная периодичность его впрыска.

Электромеханическая форсунка напоминает часто используемую в инжекторных бензиновых двигателях электромагнитную версию устройства. Она не используется в дизель-моторах, так как не способна выдерживать высокое давление.

Насос-форсунка

Еще одна вариация традиционного дизельного двигателя. Устройство агрегата не предполагает наличие обычного ТНВД. Вместо него для нагнетания необходимого уровня давления используются специальные насос-форсунки. Фактически, вместо одного топливного насоса высокого давления устанавливаются несколько более простых, каждый из которых обслуживает только одну форсунку.

Такое устройство двигателя позволяет подавать топливо в камеру сгорания под очень высоким давлением. Как следствие – обеспечивается уверенное самовоспламенение и более полное сжигание горючего. Отсутствие ТНВД позволяет сделать двигатель более компактным, что также выступает немаловажным достоинством.

Однако, использование системы насос-форсунка имеет и определенные недостатки. Главные из них – высокая требовательность к качеству применяемого дизельного топлива, а также более значительные расходы на изготовление двигателя в целом. Именно поэтому стремительно растет популярность еще одной разновидности дизельных форсунок и системы, предусматривающей их применение.

Пьезоэлектрическая форсунка

Устройство пьезофорсунки напоминает электромеханические или электромагнитные аналоги. Главное отличие заключается в использовании вместо электромагнитного клапана специального пьезоэлемента, часто называемого пьезоэлектрическим кристаллом. Его наличие обеспечивает крайне высокое быстродействие устройства. Благодаря этому клапан срабатывает в 4 раза чаще, чем в обычных электромагнитных форсунках.

Нет ничего удивительного, что пьезоэлектрические форсунки стали важным элементом системы впрыска Common Rail, которая используется сегодня практически повсеместно. Ее использование позволяет увеличить эффективность работы дизельного двигателя и повысить КПД при одновременном уменьшении расхода топлива и количества вредных выбросов.

Причины и способы устранения неисправностей

Главной проблемой при эксплуатации форсунок выступает низкое качество дизельного топлива. Оно может быть вызвано с продажей некачественного горючего на автозаправочных станциях, использованием различных красителей и присадок для дизтоплива, слишком большим количеством тяжелых фракций углеводородов или элементарным загрязнением топлива мелкими частицами различных веществ.

В любом из перечисленных случаев возникают крайне неприятные последствия в виде повышенного уровня износа и быстрой эрозии поверхности деталей и узлов дизельной форсунки. Следствием этого становятся очевидные проблемы в работе двигателя в целом, которые обычно выражаются в следующем:

· ослабление или перепады мощности в процессе эксплуатации автомобиля;

· трудности при запуске двигателя;

· порывистое движение при увеличении оборотов;

· заметный рост расхода дизельного топлива;

· увеличение количества выбросов или их качества (черный или сизый дым из выхлопной трубы) и т.д.

Современное диагностическое оборудование позволяет заблаговременно выявить возможные проблемы с форсунками двигателя. Поэтому для длительной и бесперебойной работы агрегата целесообразно регулярно проходить техническое обслуживание, причем в солидной специализированной организации.

Для устранения выявленных проблем применяются различные современные и весьма эффективные методы, требующие наличия соответствующего оборудования и навыков и обслуживающих его специалистов:

· чистка ультразвуком;

· промывка при помощи специальных присадок, добавляемых в дизельное топливо;

· промывка специальными техническими жидкостями на стенде;

· ручная промывка форсунок дизельного двигателя.

Своевременно проведенная диагностика и ремонт форсунок обеспечат длительную и беспроблемную эксплуатацию. В свою очередь, это гарантирует владельцу транспортного средства эффективную и экономную работу всего дизельного двигателя, установленного на автомобиле.

Устройство и работа форсунки двигателя

Устройство и работа насос-форсунки

Насос-форсунка предназначается для подачи в цилиндр двигателя определенной порции мелкораспыленного топлива.

В средней утолщенной пасти корпуса 17 насос-форсунки установлены штуцер 20 для подвода топлива к насос-форсунке и штуцер для отвода от нее излишнего топлива. Во входном и выходном каналах размещены фильтры 19 из спаянной металлической дроби.

В нижней части корпуса находятся втулка 9 плунжера и плунжер 8, который при работе насос-форсунки движется во втулке вверх и вниз.

Рис. Насос-форсунка: 1 — толкатель; 2 — втулка толкателя; 3 — пружина толкателя; 4 — стопор , толкателя; 5 — кольцо корпуса; 6 — шестерня плунжера; 7 — дистанционная втулка; 8 — плунжер; 9 — втулка плунжера; 10 — отражатель; 11 — седло пластинчатого клапана; 12 — пластинчатый клапан; 13 — седло контрольного клапана; 14 — контрольный клапан; 15 — упор контрольного клапана; 16 — распылитель; 17 — корпус; 18 — рейка; 19 — фильтр; 20 — штуцер; 21 — штифт толкателя

На нижнем конце плунжера имеется выточка, кромки которой служат для отсечки начала и конца подачи топлива. Кромки на плунжере выполнены с наклоном, в результате чего при повороте плунжера изменяется момент начала и конца впрыска.

На верхнем конце плунжера, имеющем лыску, посажена шестерня 6 так, что плунжер в ней может свободно перемещаться в вертикальном направлении, а при повороте шестерни поворачивается вместе с ней. Шестерня плунжера находится в зацеплении с зубчатой рейкой 18.

При вдвигании и выдвигании рейки шестерня поворачивается, поворачивая одновременно и плунжер.

Рис. Схема работы насос-форсунки: а — схема работы насос-форсунки; б — изменение подачи топлива насос-форсункой; 1 — входное отверстие во втулке плунжера; 2 — выходное отверстие

Плунжер совершает возвратно-поступательное движение под действием толкателя 1, имеющего пружину 3, которая удерживает толкатель и плунжер в верхнем положении.

В нижней части насос-форсунки размещена клапанная система, состоящая из пластинчатого клапана 12, седла 11 пластинчатого клапана, контрольного клапана 14, седла 13 контрольного клапана и пружины, опирающейся на упор 15.

Контрольный клапан предназначается для создания достаточного начального давления впрыска топлива, которое необходимо для хорошего распыления топлива и предотвращения его подтекания.

Пластинчатый клапан не допускает прорыва газа из цилиндра в насос-форсунку.

В распылителе 16 имеется центральный канал для подвода топлива к отверстиям, через которые топливо впрыскивается в цилиндр.

Распылитель, клапанная система и втулка плунжера крепятся к корпусу стяжной гайкой. Между стяжной гайкой и втулкой плунжера имеется кольцевое пространство, соединенное каналами с входным и выходным отверстиями.

КОНСУЛЬТАЦИЯ ЮРИСТА


УЗНАЙТЕ, КАК РЕШИТЬ ИМЕННО ВАШУ ПРОБЛЕМУ — ПОЗВОНИТЕ ПРЯМО СЕЙЧАС

8 800 350 84 37

При работе двигателя топливо через входной штуцер 20 непрерывно поступает в насос-форсунку и заполняет кольцевое пространство. При том положении плунжера, когда верхняя кромка выточки не перекрывает отверстие во втулке; топливо свободно выходит из-под плунжера через это отверстие. По мере поворота плунжера против хода часовой стрелки оба отверстия во втулке перекрываются кромками выточки. Чем больше поворот плунжера, тем большая часть его хода происходит при перекрытых отверстиях во втулке, тем больше топлива подается в цилиндр.

Рис. Привод насос-форсунки: 1 — распределительный вал; 2 — толкатель; 3 — стакан; 4 — коромысло; 5 — пружина толкателя

Насос-форсунка устанавливается в головке блока в медном стакане 3, который охлаждается водой. Привод насос-форсунки осуществляется от распределительного вала 1. Кулачок распределительного вала набегает на ролик толкателя 2 и приподнимает его. Толкатель через штангу действует на коромысло 4 насос-форсунки. Коромысло, поворачиваясь, нажимает на толкатель насос-форсунки, который в свою очередь нажимает на плунжер и заставляет его двигаться вниз. Обратный ход плунжера совершается под действием пружины 5 толкателя.

Источник: http://ustroistvo-avtomobilya.ru/dizel-naya-toplivnaya-apparatura/ustrojstvo-i-rabota-nasos-forsunki/

Топливная форсунка. Назначение, устройство, принцип работы

Форсунка — это элемент системы впрыска, предназначенный для дозированной подачи топлива, его распыления в камере сгорания (впускном коллекторе) и образования топливно-воздушной смеси.

Форсунки используются в системах впрыска как бензиновых, так и дизельных двигателей. На современных двигателях устанавливаются форсунки с электронным управлением впрыска.

В зависимости от способа осуществления впрыска различают:

  • электромагнитные форсунки
  • электрогидравлические форсунки
  • пьезоэлектрические

Общий вид форсунки системы «коммон рейл» фирмы «Бош» показан на рисунке.

Рис. Разрез электрогидравлической форсунки фирмы Бош:
1 – отводящий дроссель; 2 – игла; 3 – распылитель; 4 – пружина запирания иглы; 5 – поршень управляющего клапана; 6 – втулка поршня; 7 – подводящий дроссель; 8 – шариковый управляющий клапан; 9 – шток; 10 – якорь; 11 – электромагнит; 12 – пружина клапана

Форсунка состоит из:

  • электромагнита 11
  • якоря электромагнита 10
  • маленького шарикового управляющего клапана 8
  • запорной иглы 2
  • распылителя 3
  • поршня управляющего клапана 5
  • подпружиненного штока 9

Шарик клапана прижимается к седлу с усилием пружины и электромагнита. Сила пружины рассчитана на давление до 100 кг/см2, что значительно ниже давления в линии высокого давления (250…1800 кг/см2), поэтому только при приложении усилия электромагнита шариковый клапан не отойдет от седла, отделяя аккумулятор от линии слива. Игла распылителя форсунки в нерабочем состоянии прижимается к седлу пружиной распылителя – это предотвращает попадание воздуха в форсунку при пуске двигателя.

В отличие от бензиновых электромеханических фор­сунок, в форсунках «Коммон Рейл» электромагнит при давлении 1350 … 1800 кгс/см2 не в состоянии поднять за­порную иглу, поэтому используется принцип гидроусиления.

Рис. Принцип действия электрогидравлической форсунки:
а – форсунка в закрытом состоянии; b – форсунка в открытом состоянии; c – фаза закрытия форсунки

При создании давления в аккумуляторе, оно действует как на конусную поверхность иглы, так и на поршень управляющего клапана 5. Поскольку площадь рабочей поверхности поршня на 50% больше площади конусной поверхности иглы, игла распылителя продолжает прижиматься к седлу.

При подаче напряжения от блока управления на электромагнит 11, шток 9 якоря штока поднимается и открывается шариковый управляющий клапан 8. Давление в камере управления 7 падает в результате открытия дроссельного отверстия и топливо пропускается из зоны над поршнем управляющего клапана в зону слива. Давление на поршень управляющего клапана падает, так как подводящее дроссельное отверстие управляющего клапана имеет меньшее сечение чем отводящее. Запорная игла 2 при этом под действием высокого давления в кармане распылителя 3 открывается. Количество подаваемого топлива зависит от времени подачи напряжения в электромагнит 11, а значит от времени открытия шарикового управляющего клапана 8. При прекращении подачи напряжения на электромагнит 11, якорь под действием пружины опускается вниз, при этом шариковый управляющий клапан закрывается, давление в камере управления восстанавливается через специальный жиклер. Под действием давления топлива на поршень управляющего клапана 5, имеющего диаметр больше диаметра иглы, последняя закрывается.

На входе топлива в форсунку установлен аварийный ограничитель подачи топлива. Он предотвращает опорожнение аккумулятора через форсунку с зависшей иглой или клапаном управления, а также повреждение соответствующего цилиндра дизеля. В нем используется принцип возникновения разницы давлений по обе стороны от клапана 1 при прохождении топлива через его жиклеры 2. Сечение жиклеров, за­тяжка пружины 3 и диаметр клапана подобраны по максимальной продолжительности и расходу, т.е. подаче топлива.

Рис. Аварийный ограничитель подачи топлива через форсунку

Видео удалено.

Видео (кликните для воспроизведения).

В системах «коммон рейл» первых поколений общее количество горючей смеси, впрыскиваемой в цилиндр, разделялось на предварительное и основное. Однако более гармоничной является такая схема сгорания, когда во время одного рабочего такта горючая смесь будет разделена на возможно большее количество частей. До сих пор добиться этого было невозможно по причине инерционности традиционных форсунок с электромагнитным управлением.

Одним из путей совершенствования системы «коммон рейл» является увеличение быстродействия открытия форсунки. Минимальное время открытия форсунки для электромагнита с подвижным сердечником составляет 0,5 мс, что не позволяет оперативно изменять подачу топлива. Для более быстрого срабатывания форсунки в настоящее время применяется пьезокерамическая форсунка, которая работает вчетверо быстрее.

Известно, что при подаче электрического напряжения на пьезокерамическую пластинку она на несколько микрон изменяет свою толщину.

Пьезоэлемент, являющийся исполнительным элементом форсунки, представляет собой параллелепипед длиной 30…40 мм, состоящий из спеченных между собой 300 керамических пластинок (кристаллов), расширяющийся на 80 мкм всего за 0,1 мс, чего достаточно чтобы воздействовать на иглу форсунки с усилием 6300 Н. При этом для управления пьезоэлементом используют напряжение бортовой сети автомобиля.

Для усиления пьезоэффекта в керамику добавляют палладиум и цирконий. Пьезоэлемент потребляет энергию только при подаче напряжения и регенерирует ее при выключении напряжения, таким образом, являясь регенератором энергии.

Использование пьезоэлемента, кроме быстроты срабатывания, обеспечивает большую силу открытия клапана сброса давления над иглой форсунки и высокую точность хода для быстрого сброса давления подачи топлива.

Электрогидравлическая форсунка с пьезоэлементом показана на. Основными составляющими форсунки являются модуль исполнительного элемента, состоящего из пьезоэлектрического элемента и его составляющих, модуль плунжера, состоящего из поршней, амортизатора давления и пружины, клапан переключения, игла. Для окончательной очистки топлива применяется специальный стержневой фильтр.

Рис. Разрез пьезоэлектрогидравличе­ской форсунки:
1 ­– патрубок рециркуляции; 2 – электрический разъем; 3 – стержневой фильтр; 4 – корпус форсунки; 5 – пьезоэлектричесий элемент; 6 – сопряженный поршень; 7 – поршень клапана; 8 – клапан переключения; 9 – игла форсунки; 10 – амортизатор давления

Увеличение длины модуля исполнительного элемента преобразуется модулем соединителя в гидравлическое давление и перемещение, воздействующие на клапан переключения. Модуль плунжера действует как гидравлический цилиндр. На него постоянно воздействует давление подачи топлива 10 кгс/ см2 через редукционный клапан в обратной магистрали.

Топливо выполняет роль амортизатора давления между плунжером соединителя выпускного дросселя 8 и плунжером клапана 5 в модуле плунжера. Из пустого закрытого инжектора (присутствует воздух) воздух удаляется при стартерном пуске двигателя (с частотой вращения вала стартера). Помимо этого, инжектор наполняется топливом, подаваемым погруженным в топливном баке насосом, проходящим через управляемый обратный клапан против направления потока топлива.

Клапан переключения состоит из пластины клапана, плунжера клапана 5, пружины клапана и пластины дросселя 3. Топливо под давлением протекает через впускной дроссель 4 в пластине дросселя к игле форсунки и в камеру над иглой форсунки. Благодаря этому происходит выравнивание давления над и под иглой форсунки. Игла форсунки удерживается в закрытом положении силой пружины форсунки. При нажиме плунжера клапана 5 открывается канал выпускного дросселя и топливо под давлением вытекает через выпускной дроссель 8 большего размера, расположенный над иглой форсунки. Топливо под давлением поднимает иглу форсунки, в результате чего происходит впрыск. Благодаря быстрым командам на переключение пьезо-электрического элемента за один рабочий такт друг за другом производятся несколько впрысков.

Рис. Принцип работы пьезофорсунки:
1 – игла форсунки; 2 – пружина форсунки; 3 – пластина дросселя; 4 — впускной дроссель; 5 – плунжер клапана; 6 – линия высокого давления; 7 – соединительный элемент; 8 – выпускной дроссель; а – форсунка закрыта; б — форсунка открыта

Из-за особенностей процесса сгорания, присущих дизельным двигателям с турбонаддувом, для уменьшения шума и снижения выброса оксидов азота в цилиндры двигателя перед впрыском основной дозы топлива подается небольшая капля топлива (1…2 мм3) «пилотный впрыск», которая плавно перетекает в распыление остальной части топлива. Предварительный впрыск позволяет топливу воспламеняться быстрее. Давление и температура при этом возрастают медленнее чем при обычном впрыске, что уменьшает «жесткость» работы двигателя и его шум с одновременным снижением выбросов окислов азота. Характер процесса двойного впрыска показан на рисунке:

Рис. График процесса двойного впрыска и характер распыления топлива

При холодном двигателе и в режиме, приближенном к холостому ходу, происходит два предварительных впрыска. При увеличении нагрузки предварительные впрыски один за одним прекращаются, пока при полной нагрузке двигатель не перейдет в режим основного впрыска. Оба дополнительных впрыска необходимы для регенерации сажевого фильтра.

Благодаря тому, что пьезофорсунки имеют намного меньшее время срабатывания, чем традиционные электромагнитные, стало возможным разделение горючей смеси на несколько отдельных микродоз: после многократных предварительных впрыскиваний очень небольших количеств горючей смеси следуют либо основное впрыскивание, либо при необходимости многие так называемые «послевпрыскивания».

Рис. Характер протекания процесса многоступенчатого впрыска

Время между предварительным впрыскиванием и основным впрыскиванием составляет 100 мс. Объем топлива, попадающего в цилиндр в момент каждого предварительного впрыскивания, составляет 1,5 мм3. Это делается для равномерного распределения давления в камере сгорания и, соответственно, уменьшения шума, создаваемого в процессе сгорания. После впрыскивания, в свою очередь, служат для снижения токсичности отработавших газов. Если в конце цикла сгорания произвести еще одно впрыскивание в цилиндр, то оставшиеся частицы сгорают лучше. Кроме того, в случае, когда во впускной системе установлен фильтр для улавливания несгоревших частиц, такая технология за счет высокой температуры способствует его очистке. Это особенно актуально для двигателей с большим рабочим объемом.

Более того, сейчас стало возможным использовать до семи тактов впрыска вместо трех за один рабочий процесс. Благодаря этому появляются новые возможности для увеличения номинальной мощности двигателя и еще более точного контроля за составом отработавших газов.

Новое поколение форсунок позволяет регулировать не только количество впрыска по времени и его фазы, но и управлять подъемом иглы, что позволяет более четко управлять процессом впрыска.

В настоящее время производители дизельной топливной аппаратуры, например фирма Бош, разработала системы Common Rail с давлением впрыска до 2500 кгс/см2. В этих системах форсунка отличается от традиционной тем, что максимальное давление создается не гидроаккумуляторе, а в самой форсунке. Она снабжена миниатюрным гидроусилителем давления и двумя электромагнитными клапанами, позволяющими варьировать момент впрыска и количество топлива в пределах одного рабочего цикла. Таким образом, здесь совмещены принципы работы Common Rail и форсунки.

Другим направлением форсунок фирмы Bosch является устройство в форсунках небольшого напорного резервуара, сокращающего обратный ход к циклу низкого давления. Это позволяет увеличить давление впрыска и КПД системы.

Форсунки с повышенным давлением впрыска соответствуют нормам Евро-6.

Источник: http://ustroistvo-avtomobilya.ru/dizel-naya-toplivnaya-apparatura/forsunki/forsunki/

Инжектор: устройство, принцип работы и возможности ремонта

С течением времени азы автомобилестроения менялись и становились всё более далёкими от своих истоков. Так, топливная система транспортных средств подвергалась постоянной модернизации до тех пор, пока не появился универсальный инжектор, используемый в конструкции большинства бензиновых машин и сегодня. Инжекторное питание мотора топливом, по сути, особых премудростей и сложностей не имеет, однако для понятия принципов и смысла его функционирования не лишним будет ознакомиться с таковым более подробно. Именно о типовой конструкции и работе современных инжекторов пойдёт речь в сегодняшнем материале. Интересно? Обязательно «листайте» страницу ниже.

Виды инжекторных систем

Первые инжекторы, которые массово начали использовать на бензиновых моторах все еще были механическими, но у них уже начал появляться некоторые электрические элементы, способствовавшие лучшей работе мотора.

Современная же инжекторная система включает в себя большое количество электронных элементов, а вся работа системы контролируется контроллером, он же электронный блок управления.

Всего существует 3 типа инжекторных систем, различающихся по типу подачи топлива:

  1. Центральная;
  2. Распределенная;
  3. Непосредственная.
Центральная (моновпрыск) инжекторная система
Видео удалено.
Видео (кликните для воспроизведения).

Центральная инжекторная система сейчас уже является устаревшей. Суть ее в том, что топливо впрыскивается в одном месте – на входе во впускной коллектор, где оно смешивается с воздухом и распределяется по цилиндрам. В данном случае, ее работа очень схожа с карбюратором, с единственной лишь разницей, что топливо подается под давлением. Это обеспечивает его распыление и более лучшее смешивание с воздухом. Но ряд факторов мог повлиять на равномерную наполняемость цилиндров.

Центральная система отличалась простотой конструкции и быстрым реагированием на изменение рабочих параметров силовой установки. Но полноценно выполнять свои функции она не могла Из-за разности наполнения цилиндров не удавалось добиться нужного сгорания топлива в цилиндрах.

Распределенная (мультивпрыск) инжекторная система

Распределенная система – на данный момент самая оптимальная и используется на множестве автомобилей. У этого инжектора топливо подается отдельно для каждого цилиндра, хоть и впрыскивается оно тоже во впускной коллектор. Чтобы обеспечить раздельную подачу, элементы, которыми подается топливо, установлены рядом с головкой блока, и бензин подается в зону работы клапанов.

Благодаря такой конструкции, удается добиться соблюдения пропорций топливовоздушной смеси для обеспечения нужного горения. Автомобили с такой системой являются более экономичными, но при этом выход мощности – больше, да и окружающую среду они загрязняют меньше.

К недостаткам распределенной системы относится более сложная конструкция и чувствительность к качеству топлива.

Система непосредственного впрыска

Система непосредственного впрыска – разновидность распределенной и на данный момент самая совершенная. Она отличается тем, что топливо впрыскивается непосредственно в цилиндры, где уже и происходит смешивание его с воздухом. Эта система по принципу работы очень схожа с дизельной. Она позволяет еще больше снизить потребление бензина и обеспечивает больший выход мощности, но она очень сложная по конструкции и очень требовательна к качеству бензина.

Немного истории

Активно устанавливаться такая система питания на автомобилях стала со средины 80-х годов, когда начали вводиться нормы экологичности выбросов. Сама идея инжекторной системы впрыска топлива появилась значительно раньше, еще в 30-х годах. Но тогда основная задача крылась не в экологичном выхлопе, а повышении мощности.

Первые инжекторные системы применялись в боевой авиации. На то время, это была полностью механическая конструкция, которая вполне неплохо выполняла свои функции. С появлением реактивных двигателей, инжекторы практически перестали использоваться в военной авиатехнике. На автомобилях же механический инжектор особо распространения не получил, поскольку он не мог полноценно выполнять возложенные функции. Дело в том, что режимы двигателя автомобиля меняются значительно чаще, чем у самолета, и механическая система не успевала своевременно подстраиваться под работу мотора. В этом плане карбюратор выигрывал.

Но активное развитие электроники дало «вторую жизнь» инжекторной системе. И немаловажную роль в этом сыграла борьба за уменьшение выброса вредных веществ. В поисках замены карбюратору, который уже не соответствовал нормативам экологии, конструкторы вернулись к инжекторной системе впрыска топлива, но кардинально пересмотрели ее работу и конструкцию.

Виды электронных форсунок

Существует классификация электронных форсунок, основывающихся на способе впрыска топлива. Выделяют такие три разновидности:

Электромагнитная. Зачастую характерна для бензиновых ДВС (и с прямым впрыском тоже). Конструкцию нельзя назвать очень сложной, а основными составляющими её частями выступают клапан с иголкой (электромагнитный), сопло. Контроль за работой указанной форсунки выполняется с помощью ЭБУ, обеспечивающего на обмотке клапана напряжение в наиболее подходящий для этого момент.

Электрогидравлическая. По большей части используют на дизельных движках. Являет собой электромагнитный клапан, дополненный камерой управления, а также сливным и впускным дросселями. Рабочий принцип этой разновидности форсунок основывается на участии давления самой топливной смеси в любой момент работы. За деятельностью электрогидравлической форсунки следит ЭБУ, именно он отправляет рабочие сигналы электромагнитному клапану.

Пьезоэлектрическая. Считается наиболее удачным устройством среди всех представленных, но может работать только на дизельных агрегатах с системой впрыска Common Rail. Основное преимущество этого типа — быстрота реакции, что гарантирует многократную подачу топлива за один полный цикл. В основе работы пьезоэлемента — гидравлический принцип действия (как и в предыдущем варианте), предусматривающий срабатывание поршня толкателя за счёт увеличения длины пъезоэлемента под воздействием электрического сигнала ЭБУ. Количество подаваемого за один раз топлива определяется продолжительностью такого воздействия и давлением топливной смеси в топливной рампе.

Direct injection

Непосредственный впрыск, являющийся разновидностью системы распределительного впрыска, – последнее слово в системах питания бензиновых двигателей. Главной особенностью прямого впрыска является подача топлива непосредственно в камеру сгорания.

GDI, FSI, D4 – аббревиатуры, использующиеся Mitsubishi, Volkswagen и Toyota, соответственно, для обозначения двигателей с непосредственным впрыском. Система питания таких ДВС больше походит на дизельные моторы, нежели на привычные всем ДВС цикла Отто. Устройство:

Принцип работы инжектора

Принцип работы инжектора на автомобилях можно условно поделить на 2 части — механическую составляющую и электронную.

К механической части инжектора относится:

  • топливный бак;
  • электрический бензонасос;
  • фильтр очистки бензина;
  • топливопроводы высокого давления;
  • топливная рампа;
  • форсунки;
  • дроссельный узел;
  • воздушный фильтр.

Конечно, это не полный список составных частей. В систему могут быть включены дополнительные элементы, выполняющие те или иные функции, все зависит от конструктивного исполнения силового агрегата и системы питания. Но указанные элементы являются основными для любого двигателя с инжектором распределенного впрыска.

Бак является емкостью для бензина, где он хранится и подается в систему. Электробензонасос располагается в баке, то есть забор топлива производится непосредственно им, причем этот элемент обеспечивает подачу топлива под давлением.

Далее в систему установлен топливный фильтр, обеспечивающий очистку бензина от сторонних примесей. Поскольку бензин находится под давлением, то передвигается он по топливопроводу высокого давления.

Для предотвращения превышения давления, в систему входит регулятор давления. От фильтра, через него по топливопроводам бензин движется в топливную рампу, соединенную со всеми форсунками. Сами же форсунки устанавливаются во впускном коллекторе, недалеко от клапанных узлов цилиндров.

Современная форсунка – электромагнитная, в ее основе лежит соленоид. При подаче электрического импульса, который поступает от ЭБУ, в обмотке образуется магнитное поле, воздействующее на сердечник, заставляя его переместиться, преодолев усилие пружины, и открыть канал подачи. А поскольку бензин подается в форсунку под давлением, то через открывшийся канал и распылитель бензин поступает в коллектор.

С другой стороны через воздушный фильтр в систему засасывается воздух. В патрубке, по котором движется воздух, установлен дроссельный узел с заслонкой. Именно на эту заслонку и воздействует водитель, нажимая на педаль акселератора. При этом он просто регулирует количество воздуха, подаваемого в цилиндры, а вот на дозировку топлива водитель вообще никакого воздействия не имеет.

Основным элементом электронной части является электронный блок, состоящий из контроллера и блока памяти. В конструкцию также входит большое количество датчиков, на основе показаний которых ЭБУ выполняет управление системой. Для своей работы ЭБУ использует показания датчиков:

  • Лямбда-зонд, устанавливается в выпускной системе авто, определяет остатки несгоревшего воздуха в выхлопных газах;
  • Датчик массового расхода воздуха (ДМРВ), расположен в корпусе воздушного фильтрующего элемента, определяет количество проходящего через дроссельный узел воздуха при всасывании его цилиндрами;
  • Датчик положения дроссельной заслонки (ДПДЗ), установлен в дроссельном узле, подает сигнал о положении педали акселератора;
  • Датчик температуры силовой установки, располагается возле термостата, регулирует состав смеси в зависимости от температуры мотора;
  • Датчик положения коленчатого вала (ДПКВ), установлен возле шкива коленчатого вала;
  • Датчик детонации, расположен на блоке цилиндров;
  • Датчик скорости, установлен на коробке передач;
  • Датчик фаз,предназначен для определения углового положения распредвала, установлен в головке блока.

Элекробензонасос заполняет всю систему топливом. Контролер получает показания от всех датчиков, сравнивает их с данными, занесенными в блок памяти. При несовпадении показаний, он корректирует работу системы питания двигателя так, чтобы добиться максимального совпадения получаемых данных с занесенными в блок памяти.

На основе данных от датчиков, контролером высчитывается время открытия форсунок, чтобы обеспечить оптимальное количество подаваемого бензина для создания топливовоздушной смеси в необходимой пропорции.

При поломке какого-то из датчиков, контролер переходит в аварийный режим. То есть, он берет усредненное значение показаний неисправного датчика и использует их для работы. При этом возможно изменение функционирование мотора – увеличивается расход, падает мощность, появляются перебои в работы. Но это не касается ДПКВ, при его поломке, двигатель функционировать не может.

Преимущества инжектора и его недостатки

Если бы в этой системе не было преимуществ, инжекторы не получили бы столь широкое распространение. Надежность инжектора многие могут оспорить, ведь автомобилисты нередко сталкиваются с проблемами и неизлечимыми болезнями системы. Тем не менее, в технологии намного больше плюсов, которые привлекают покупателей и дарят определенные выгоды в поездке.

Несмотря на то, что инжектор дороже в обслуживании и более прихотлив к качеству бензина, его надежность и возможность широкой настройки параметров опережает на сотни шагов вперед карбюратор. В конце концов, за определенный пробег два типа мотора могут выйти одинаково в цене, только карбюратору нужно будет чаще уделять внимание, а инжектор сделать один раз и надолго.

И напоследок представляем вашему вниманию видео для более полного понимания принципа работы инжектора.

Источник: http://automanya.ru/remont/inzhektornyj-dvigatel.html

Устройство и принцип работы топливной системы с насос-форсунками

Насос-форсунки предназначены преимущественно для использования в системах впрыска дизельных двигателях. Они представляют собой одновременно и насос, и распылитель топлива. Их применение позволяет добиться снижения расхода, повышения мощности автомобиля, уменьшения количества вредных выбросов в отработавших газах и снижения уровня шума двигателя. О том, как работают насос-форсунки, вы узнаете из статьи.

Устройство насос-форсунок

Насос форсунки дизельных двигателей устанавливаются индивидуально для каждого цилиндра. Они крепятся в головке блока цилиндров, при этом очень важно выполнить правильный монтаж.

Насос-форсунка в разрезе

Привод насос-форсунки осуществляется от распредвала двигателя. Состоит насос форсунка из следующих элементов:

  • Винт с шаровой головкой.
  • Плунжер, оснащенный пружиной — создаёт рабочее давление внутри форсунки. Он приводится в движение кулачковым механизмом распредвала и возвращается в исходную позицию под воздействием пружины.
  • Приводной кулачок.
  • Коромысло.
  • Уплотнители — обеспечивают герметичность форсунки.
  • Камера высокого давления.
  • Игла — выполняет впрыск топлива.
  • Клапан — может быть электромагнитным и пьезоэлектрическим. С его помощью осуществляется управление процессом впрыска. Пьезоэлектрический клапан является более современным.
  • Магистраль впуска — подает топливо в форсунку.
  • Сливная магистраль.
  • Обратный клапан и запорный поршень — поддерживают давление топлива на заданном уровне.

Пьезоэлектрический клапан срабатывает намного быстрее электромагнитного, при этом его работа контролируется лишь изменением подаваемого на него напряжения. Конструктивно он состоит из пьезопривода, расположенного в корпусе, оснащенном штекерным разъемом, а также рычажного мультипликатора и иглы распылителя.

Принцип работы насос-форсунки

Формирование и распределение топливовоздушной смеси в системе насос-форсунки происходит в три этапа:

  1. Предварительный впрыск — осуществляется для обеспечения плавного сгорания топливовоздушной смеси на основном этапе работы двигателя.
  2. Основной впрыск — выполняет образование топливовоздушной смеси в оптимальном для текущего режима соотношении.
  3. Дополнительный впрыск — предназначен для очистки системы от остатков сажи в фильтре (регенерации).

Насос форсунка и ее положение в головке блока цилиндров

Сам процесс работы насос-форсунок заключается в следующем:

Кулачковый механизм, расположенный на распредвале, воздействует на плунжер, перемещая его в нижнюю позицию. Это обеспечивает перетекание горючего по каналам топливной форсунки. Когда клапан закрывается, топливо перестает поступать в камеру и давление начинает повышаться до уровня 13 МПа. При достижении критического показателя игла форсунки преодолевает давление пружины и начинает перемещаться в верхнее положение, что и обеспечивает впрыск топлива.

В отличие от других систем двигатели с насос-форсунками не имеют общего ТНВД (топливного насоса высокого давления). Каждый инжектор сам по себе представляет небольшой ТНВД.

Далее, работа форсунки зависит от вида впрыска. При предварительном впрыске топливо поступает в магистраль впуска, и давление падает. В некоторых случаях этот режим может повториться. Во время основного впрыска топлива плунжер продолжает движение вниз, и клапан закрывается. Давление топлива повышается до 30 МПа и лишь по достижению этого уровня игла начинает подниматься, выполняя впрыск и образуя топливовоздушную смесь.

Регулировка количества топлива происходит в зависимости от уровня давления, максимум которого составляет 220 МПа. Завершение основного впрыска происходит открытием клапана, в результате чего уровень сжатия падает, и игла распылителя опускается в исходное положение. Дальнейшее движение плунжера вниз провоцирует дополнительный впрыск топлива (как правило, их два). При этом работа форсунки аналогична основному этапу.

Достоинства и недостатки систем с насос-форсунками

Положительными сторонами применения насос-форсунок являются следующие качества:

  • Возможность впрыска топлива под высоким давлением. Это обеспечивает эффективный распыл горючего, а следовательно, и его полное сгорание. Таким образом, дизельные двигатели, оснащенные насос-форсунками, получаются довольно мощными и отличаются экономным расходом топлива.
  • Системы впрыска с насос-форсунками работают с меньшим уровнем шума.
  • Высокая устойчивость к остановке двигателя в случае наличия поломок форсунок.
  • Более эффективный распыл обеспечивает низкий уровень сажи в выхлопах, а потому такие системы можно назвать более экологичными.
  • Отсутствие чувствительности к температуре окружающей среды и погодным условиям эксплуатации двигателя.

В числе недостатков можно отметить:

  • Сложное устройство форсунки и следовательно ее высокую стоимость. Также они практически не подлежат ремонту и в случае неисправности требуют полной замены.
  • Так же, как и для системы Common Rail, для корректной работы насос-форсунок требуется применение качественного топлива с минимальным количеством примесей и присадок.

Частой неисправностью форсунок является их загрязнение. Определить последнее можно по следующим симптомам:

  • Резкое повышение расхода топлива.
  • Существенное падение мощности двигателя автомобиля.
  • Ощутимые сложности при запуске мотора.

Несмотря на то что системы с насос-форсунками постепенно вытесняются двигателями Common Rail, они имеют несомненные преимущества, которые и обеспечивают их сферу применения в современном автомобилестроении.

Источник: http://techautoport.ru/dvigatel/toplivnaya-sistema/nasos-forsunki.html

Как работает инжекторный двигатель?

Инжекторный двигатель – это довольно сложный механизм, работа которого должна быть хорошо отлажена, чтобы получить от него максимальную производительность. В статье подробно рассмотрен принцип работы инжекторного двигателя.

Содержание статьи:

  • Датчики
  • Исполнительные элементы
  • Принцип работы
  • Карбюратор ил инжектор

Прежде чем начать разговор об этом чуде техники, развеем некоторые мифы. Инжекторный двигатель работает по тому же принципу, что и дизельный, за исключением системы зажигания, однако, это не придает ему гораздо большей мощности, чем карбюраторному. Прибавка составит максимум 10%.

Центром всей системы является ЭБУ (электронный блок управления). Он носит много названий, «мозги», «компьютер» и так далее. По сути да, это компьютер, в который заложено огромное количество таблиц по составу смеси, времени впрыска топлива и прочего. Например, если обороты двигателя равны 1500, дроссельная заслонка открыта на 10 градусов, а расход воздуха составляет 23 кг, то в цилиндр будет поступать одно количество топлива. Если же вводные параметры изменяются, то и результат будет другим. Если с блоком управления возникают какие-то проблемы, например, слетает прошивка, то все идет прахом, двигатель либо начинает как попало работать, либо и вовсе перестает.

Датчики инжекторного двигателя

Все элементы можно поделить на исполнительные и датчики. Для начала мы рассмотрим датчики.

Датчик массового расхода воздуха (ДМРВ)

Этот элемент устанавливается перед воздушным фильтром, прямо на входе. В основе его работы лежит принцип разницы показаний. Так, через две платиновые нити проходит электричество. В зависимости от температуры их сопротивление меняется. Одна из нитей надежно укрыта от потока воздуха, что делает ее сопротивление неизменным. Вторая же охлаждается потоком, и на основании разницы величин, по тем же таблицам, о которых сказано выше, ЭБУ рассчитывает количество воздуха.

Датчик абсолютного давлении и температуры двигателя (ДАД)

Он используется либо в качестве альтернативы, либо вместе с вышеописанным для более высокой точности снятия показаний. Если вкратце, в нем имеется две камеры, одна из которых герметична и имеет внутри абсолютный вакуум. Вторая же камера подсоединяется к впускному коллектору, где создается разрежение во время такта впуска. Между этими камерами имеется диафрагма, а так же пьезоэлементы. Они вырабатывают напряжение при движении диафрагмы. Далее сигнал идет на ЭБУ.

Датчик положения коленчатого вала (ДПКВ)

Если посмотреть на шкив коленвала инжекторного двигателя, то можно рассмотреть на нем гребенку. Она магнитная. По всему периметру установлены зубцы. Всего их должно быть 60 штук, через каждые 6 градусов. Но двух из них нет, они нужны для синхронизации. Датчик положение коленчатого вала имеет в своем составе намагниченный стальной сердечный, а так же медную обмотку. При прохождении зубцов в обмотке возникает индукционный ток, напряжение которого зависит от скорости вращения шкива.

Датчик фаз (ДФ)

Не все двигатели им оснащались раньше, но сейчас его можно встретить практически везде. Он работает по принципу датчика Холла, то есть имеет диск с катушкой, а так же прорезь. Как только прорезь попадает на датчик, выходное напряжение на нем нулевое. Этот момент означает верхнюю мертвую точку такта сжатия первого цилиндра. Нужно это для того, чтобы ЭБУ мог генерировать напряжение для зажигания в нужном цилиндре, а так же контролировать такты. Чтобы, например, форсунка не открылась во время рабочего хода.

Датчик детонации

Он устанавливается на блоке цилиндров инжекторного двигателя. Как только в двигателе возникает детонация, по блоку передается вибрация. Датчик представляет собой пьезоэлемент, который генерирует напряжение, чем сильнее вибрации, тем выше напряжение. Соответственно, ЭБУ на основании его показаний корректирует момент зажигания. Но об этом позже.

Датчик положения дроссельной заслонки (ДПДЗ)

По сути своей, это обычный потенциометр. Опорное напряжение на нем, как правило, составляет 5 вольт. Так вот, в зависимости от того, на какой угол отклоняется дроссельная заслонка, меняется напряжение на контрольном выводе. Все просто.

Датчик температуры охлаждающей жидкости (ДТОЖ)

Этот датчик нужен для определения температуры двигателя. Если на карбюраторном двигателе он нужен просто для включения и выключения электровентилятора, то здесь он представляет собой более сложное устройство. Это термосопротивление, величина которого меняется в зависимости от температуры. Соответственно, меняется и напряжение, при прохождении через него.

Датчик кислорода

Он устанавливается в выхлопной системе, существуют системы с двумя датчиками. Его задача – отслеживать количество свободного кислорода в выхлопных газах. Например, если его слишком много, то это значит, что смесь вся не сгорает, а значит, надо обогатить. Если же кислорода меньше, чем значится в нормативных таблицах ЭБУ, то ее надо обеднить.

Исполнительные элементы

Исполнительные элементы получили свое название за то, что именно они вносят коррективы в работу двигателя. ТО есть, блок управления получает сигнал от датчика, анализирует его, после чего отправляет сигнал на исполнительный элемент.

Топливный насос

Начнем с системы питания. Он установлен в баке и подает топливо в топливную рампу под давлением 3,2 – 3,5 Мпа. Это позволяет гарантировать качественный распыл топлива в цилиндры. Как только повышаются обороты двигателя, повышается и аппетит, а значит в рампу надо подавать большее количество топлива для сохранения давления. Насос начинает вращаться быстрее по команде блока управления. Большинство современных автомобилей, начиная примерно с 2013 года выпуска, оснащаются топливным модулем, который включает в себя насос и встроенный фильтр. Это существенно сказывается на стоимости замены фильтра, потому что менять надо весь модуль. Некоторые производители в инструкциях пишут, что модуль устанавливается на весь срок службы авто, однако не стоит верить, что какой-то фильтр способен проходить больше 2 сезонов.

Форсунка

После того, как топливо прошло всю цепь провода, оно попадает в форсунку, которая дозирует его подачу в цилиндр. Форсунка представляет собой электромагнитный клапан очень маленького диаметра, который обеспечивает распыл бензина в камеру сгорания. ЭБУ изменяет количество топлива, которое подается, при помощи временных промежутков, пока открыта форсунка. Как правило, это десятые доли секунды.

Дроссельная заслонка

Все мы когда-то видели карбюратор, заглядывали в него сверху. Так вот в нем имелись заслонки, которые перекрывали воздух. Здесь принцип тот же. Пожалуй, и рассказать больше нечего.

Регулятор холостого хода (РХХ)

Это тоже электромагнитный клапан, шток которого закрывает воздуховод, проходящий в обход дроссельной заслонки. В зависимости от напряжения, которое на него подает блок управления, он открывает этот самый канал.

Модуль зажигания

Принцип работы инжекторного двигателя

Итак, после того, как мы разобрались в основных узлах инжекторного двигателя, посмотрим, как же он работает. После того как стартер провернул коленчатый вал, ДПКВ сообщил блоку управления, какой цилиндр в каком положении находится. В свою очередь, датчик фаз сообщил о тактах. Блок управления принял эту информацию к сведению и открыл форсунку в том цилиндре, в котором начинается такт впуска. Но открыл ее не просто так, а на строго определенный промежуток времени, который по таблицам соответствует показаниям ДМРВ или ДАД. Так сформировалась рабочая смесь.

Видео: как работает бензиновый инжекторный двигатель внутреннего сгорания

После того как здесь такт впуска закончился, начинается сжатие, в это время впуск происходит в другом цилиндре. Здесь же поршень доходит до верхней мертвой точки, о чем говорит ДПКВ и ДФ, соответственно, пора подавать напряжение на модуль зажигания, в нужный цилиндр. Для этого в блоке управления стоит два транзистора, которые берут на себя по два цилиндра.

Дальше, когда взрыв произошел, ЭБУ смотрит на показания датчик детонации и корректирует момент зажигания уже для следующего по ходу цилиндра. Но это еще не все. После этого, когда газы дошли до датчика кислорода, блок управления корректирует состав смеси, а именно, время открывания форсунки, что позволяет максимально эффективно использовать топливо и его сгорание. Если ЭБУ распознает недостаток кислорода, но при этом дроссельная заслонка остается открытой, то приоткрывается регулятор холостого хода.

Прогрев двигателя и датчик температуры двигателя

Этот момент стоит рассмотреть отдельно, скажем так, это небольшое уточнение. Итак, прогревочный режим двигателя никак не связан с показаниями некоторых датчиков, то есть, от них ничего не зависит. В частности, это ДМРВ и ДАД, а так же датчик детонации. В блоке, как уже говорилось, заложены определенные таблицы, их очень много, миллионы. Так вот, во время прогревочного режима ЭБУ работает строго по этим таблицам и никак иначе. Это значит, что если в него прописано соотношение воздуха к топливу 14,1:1, то так оно и будет. Эта цифра является общепринятой нормой для рабочей температуры. Так вот, пока температура двигателя не достигнет той, которая прописана в прошивке блока управления, то прогревочный режим не отключится. После ЭБУ начинает работать по датчикам.

Что лучше, инжекторный или карбюраторный двигатель?

Этот вопрос достаточно спорный, у каждой точки зрения есть много противников и приверженцев как среди простых водителей, так и среди специалистов, которые полностью понимают принцип работы инжекторного двигателя. Итак, карбюраторный двигатель отличает простота и прозрачность работы. То есть, если механик отрегулировал холостые обороты, то они такими и остались.

Что касается инжекторного двигателя, то ту все дело сводится к своевременному обслуживанию, а так же к качеству применяемых деталей.

Источник: http://fastmb.ru/autoremont/647-kak-rabotaet-inzhektornyy-dvigatel.html

Устройство и работа форсунки двигателя

Оценка 5 проголосовавших: 1

Профессионал в области гражданского права с 10 летним стажем.

Как работает форсунка инжектора. Устройство системы питания инжекторного двигателя

Министерство образования и науки Российской Федерации

Сыктывкарский лесной институт филиал

Федерального государственного бюджетного образовательного учреждения

высшего профессионального образования

Санкт-Петербургского государственного лесотехнического университета

им. С.М.Кирова

Факультет ЛТФ

Кафедра АиАХ

Лабораторная работа № 1,2

Дисциплина: ТЭА

Тема: Система питания инжекторного двигателя.

Выполнил Артеева Т. П., гр. 141

Проверил Юшков А. Н., к.т.н.

Зав. кафедрой Чудов В. И., к.т.н.

Сыктывкар – 2011

    Устройство системы питания инжекторного двигателя…..………………….4

    Основные неисправности системы питания.………………………………7

    1. Датчики………………………………………………………………….7

      Форсунки………………………………………………………………..9

      Бензонасос……………………………………………………………..11

    ТО системы питания………….………………..………………………….12

Введение

На сегодняшний день инжекторный двигатель практически полностью заменил устаревшую карбюраторную систему.

Инжекторный двигатель улучшает эксплуатационные и мощностные показатели автомобиля (динамика разгона, экологические характеристики, расход топлива и т.д.).

Инжектор позволяет длительное время соблюдать высокие экологические стандарты, без ручных регулировок, благодаря самонастройки по датчику кислорода.

Инжекторный двигатель. Основные достоинства.

Основные достоинства инжектора по сравнению с карбюратором: уменьшенный расход топлива, улучшенная динамика разгона, уменьшение выбросов вредных веществ, стабильность работы. Изменение параметров электронного впрыска может происходить буквально «на лету», так как управление осуществляется программно, и может учитывать практически большое число программных функций и данных с датчиков. Также современные системы электронного впрыска способны адаптировать программу работы под конкретный экземпляр мотора, под стиль вождения водителя, и т.п.

Инжекторный двигатель. Недостатки.

Основные недостатки инжекторных двигателей по сравнению с карбюраторными: высокая стоимость ремонта, высокая стоимость узлов, неремонтопригодность элементов, высокие требования к качеству топлива, необходимо специализированное оборудование для диагностики, обслуживания и ремонта.

Инжекторные системы питания двигателя классифицируются следующим образом. Моновпрыск или центральный впрыск — одна форсунка на все цилиндры, расположенная на месте карбюратора (во впускном коллекторе). В современных двигателях не встречается. Распределённый впрыск — каждый цилиндр обслуживается отдельной изолированной форсункой во впускном коллекторе. Одновременный — все форсунки открываются одновременно. Попарно-параллельный — форсунки открываются парами, причём одна форсунка открывается непосредственно перед циклом впуска, а вторая перед тактом выпуска.

  1. Устройство системы питания инжекторного двигателя

Рис.1. Схема подачи топлива двигателя с системой впрыска топлива

1 – форсунки; 2 – пробка штуцера для контроля давления топлива;3 – рампа форсунок; 4 – кронштейн крепления топливных трубок;5 – регулятор давления топлива; 6 – адсорбер с электромагнитным клапаном; 7 – шланг для отсоса паров бензина из адсорбера;8 – дроссельный узел; 9 – двухходовой клапан;10 – гравитационный клапан; 11 – предохранительный клапан;12 – сепаратор; 13 – шланг сепаратора; 14 – пробка топливного бака; 15 – наливная труба; 16 – шланг наливной трубы; 17 – топливный фильтр; 18 – топливный бак; 19 – электробензонасос; 20 – сливной топливопровод; 21 – подающий топливопровод.

Топливо подается из бака, установленного под днищем в районе задних сидений. Топливный бак ваз 2111 – стальной, состоит из двух сваренных между собой штампованных половин. Заливная горловина соединена с баком резиновым бензостойким шлангом, закрепленным хомутами. Пробка герметична. Бензонасос – электрический, погружной, роторный, двухступенчатый, установлен в топливном баке. Развиваемое давление — не менее 3 бар (3 атм).

Бензонасос ваз 2110 включается по команде контроллера системы впрыска (при включенном зажигании ваз 2112) через реле. Для доступа к насосу под задним сиденьем в днище автомобиля имеется лючок. От насоса по гибкому шлангу топливо под давлением подается к фильтру тонкой очистки и далее – через стальные топливопроводы и резиновые шланги – к топливной рампе.

Фильтр тонкой очистки топлива – неразборный, в стальном корпусе, с бумажным фильтрующим элементом. На корпусе фильтра нанесена стрелка, которая должна совпадать с направлением движения топлива.

Топливная рампа служит для подачи топлива к форсункам и закреплена на впускном коллекторе. С одной стороны на ней находится штуцер для контроля давления топлива, с другой – регулятор давления. Последний изменяет давление в топливной рампе – от 2,8 до 3,2 бар (2,8-3,2 атм) – в зависимости от разрежения в ресивере, поддерживая постоянный перепад между ними. Это необходимо для точного дозирования топлива форсунками.

Регулятор давления топлива ваз 2111, ваз 2112 представляет собой топливный клапан, соединенный с подпружиненной диафрагмой. Под действием пружины клапан закрыт. Диафрагма делит полость регулятора на две изолированные камеры – «топливную» и «воздушную». «Воздушная» соединена вакуумным шлангом с ресивером, а «топливная» – непосредственно с полостью рампы. При работе двигателя разрежение, преодолевая сопротивление пружины, стремится втянуть диафрагму, открывая клапан. С другой стороны на диафрагму давит топливо, также сжимая пружину. В результате клапан открывается, и часть топлива стравливается через сливной трубопровод обратно в бак. При нажатии на педаль «газа» разрежение за дроссельной заслонкой уменьшается, диафрагма под действием пружины прикрывает клапан – давление топлива возрастает. Если же дроссельная заслонка закрыта, разрежение за ней максимально, диафрагма сильнее оттягивает клапан – давление топлива снижается. Перепад давлений задается жесткостью пружины и размерами отверстия клапана, регулировке не подлежит. Регулятор давления – неразборный, при выходе из строя его заменяют.

Форсунки крепятся к рампе через уплотнительные резиновые кольца. Форсунка представляет собой электромагнитный клапан, пропускающий топливо при подаче на него напряжения, и запирающийся под действием возвратной пружины при обесточивании. На выходе форсунки имеется распылитель, через который топливо впрыскивается во впускной коллектор. Управляет форсунками контроллер системы впрыска. При обрыве или замыкании в обмотке форсунки ее следует заменить. При засорении форсунок их можно промыть без демонтажа на специальном стенде СТО.

В системе впрыска с обратной связью применяется система улавливания паров топлива ваз 2110. Она состоит из адсорбера, установленного в моторном отсеке, сепаратора, клапанов и соединительных шлангов. Пары топлива из бака частично конденсируются в сепараторе, конденсат сливается обратно в бак. Оставшиеся пары проходят через гравитационный и двухходовой клапаны. Гравитационный клапан предотвращает вытекание топлива из бака при опрокидывании автомобиля ваз 2111, а двухходовой препятствует чрезмерному повышению или понижению давления в топливном баке.

Затем пары топлива попадают в адсорбер ваз 2110, где поглощаются активированным углем. Второй штуцер адсорбера соединен шлангом с дроссельным узлом, а третий – с атмосферой. Однако на выключенном двигателе третий штуцер перекрыт электромагнитным клапаном, так что в этом случае адсорбер не сообщается с атмосферой. При запуске двигателя контроллер системы впрыска начинает подавать управляющие импульсы на клапан с частотой 16 Гц. Клапан сообщает полость адсорбера с атмосферой и происходит продувка сорбента: пары бензина отсасываются через шланг в ресивер. Чем больше расход воздуха двигателем, тем больше длительность управляющих импульсов и тем интенсивнее продувка.

В системе впрыска без обратной связи система улавливания паров топлива состоит из сепаратора с двухходовым обратным клапаном. Воздушный фильтр ваз 2111 установлен в передней левой части моторного отсека на трех резиновых держателях (опорах). Фильтрующий элемент – бумажный, при установке его гофры должны располагаться параллельно оси автомобиля. После фильтра воздух проходит через датчик массового расхода воздуха и попадает во впускной шланг, ведущий к дроссельному узлу. Дроссельный узел закреплен на ресивере. Нажимая на педаль «газа», водитель приоткрывает дроссельную заслонку, изменяя количество поступающего в двигатель воздуха, а значит, и горючей смеси – ведь подача топлива рассчитывается контроллером в зависимости от расхода воздуха. Когда двигатель работает на холостом ходу и дроссельная заслонка закрыта, воздух поступает через регулятор холостого хода – клапан, управляемый контроллером. Последний, изменяя количество подаваемого воздуха, поддерживает заданные (в программе компьютера) обороты холостого хода. Регулятор холостого хода ваз 2112 – неразборный, при выходе из строя его заменяют.

Система подачи топлива инжекторного двигателя получила распространение в современных автомобилях и имеет ряд преимуществ перед топливной системой карбюраторного двигателя. В этой статье мы рассмотрим устройство инжектора и узнаем, как работает система подачи топлива инжекторного двигателя.

1.Устройство инжектора

Основная задача системы питания инжекторного двигателя заключается в обеспечении подачи оптимального количества бензина в двигатель при разных режимах работы. Подача бензина в двигатель осуществляется с помощью форсунок, которые установлены во впускном трубопроводе.

1.1.Устройство системы питания инжектора:

1. Электробензонасос — устанавливается в модуле, который располагается в топливном баке. Модуль также включает в себя такие дополнительные элементы, как топливный фильтр, датчик уровня бензина и завихритель.

Электробензонасос предназначен для нагнетания бензина из топливного бака в подающий топливопровод. Управление электробензонасосом осуществляется с помощью контроллера через реле.

2. Топливный фильтр — предназначен для очистки топлива от грязи и примесей, которые могут привести к неравномерной работе двигателя, неустойчивой работе инжектора, загрязнению форсунок. В инжекторных системах к качеству топлива предъявляются высокие требования.

3. Топливопроводы — служат для подачи топлива от бензонасоса к рампе и обратно от рампы в топливный бак. Соответственно существует прямой и обратный топливопроводы.

4. Рампа форсунок с топливными форсунками — конструкция рампы обеспечивает равномерное распределение топлива по форсункам. На топливной рампе располагаются форсунки, регулятор давления топлива и штуцер контроля давления в топливной системе инжектора.

5. Регулятор давления топлива — предназначен для поддержания оптимального перепада давления, который способствует тому, что количество впрыскивания топлива зависит только от длительности впрыска. Излишки топлива регулятор подает обратно в бак.

1.1.1.

Как работает система питания инжекторного двигателя?

Для стабильной работы двигателя необходимо обеспечить сбалансированное поступление топливовоздушной смеси в камеру сгорания. Приготовление топливовоздушной смеси происходит в впускном трубопроводе, благодаря смешиванию бензина с воздухом. Контроллер с помощью управляющего импульса открывает клапан форсунки и путем изменения длительности импульса регулирует состав топливовоздушной смеси.
Регулятор давления топлива поддерживает перепад давления топлива постоянным, соответственно количество топлива, что подается пропорционально времени, при котором форсунки находятся в открытом состоянии . Контроллер поддерживает оптимальное соотношение топливовоздушной смеси путем изменения длительности импульсов. Если длительность импульса увеличивается — смесь обогащается, если уменьшается — смесь обедняется.

Технический прогресс сейчас движется очень быстрыми темпами. Одной из наиболее активно развивающихся отраслей, является автомобилестроение. Здесь постоянно вводятся новые изобретения и конструктивные решения. Помогают в этом деле и ужесточающиеся нормы экологии.

Потому производители машин повсеместно внедряют новые разработки. Инжекторные агрегаты стали одной из разработок, стимулированных ужесточением требований токсичности выхлопа.

В инжекторном моторе горючее попадает в камеру сгорания не через , а впрыскивается специальными устройствами. Последние именуются форсунками или инжекторами.

Устройство форсунки:
a — форсунка одноточечного впрыска, б — форсунка распределенного впрыска 1 — фильтр, 2 — электрический разъем, 3 — обмотка электромагнита, 4 — корпус форсунки, 5 — сердечник, 6 — корпус клапана, 7 — клапан (б — игла клапана), 8 — уплотнительное кольцо, 9 — распылительное отверстие.

Откуда появился инжекторный двигатель?

В автомобилестроение инжекторные двигатели пришли в 1951 году, когда был создан автомобиль Goliath 700 Sport.

Правда в то время такая система питания не получила распространения среди автоконцернов. Вспомнили о данной системе питания лишь в 70-х годах, когда изменились нормы токсичности. В результате начался процесс вытеснения данными двигателями карбюраторных.

В итоге к концу века большая часть легковых авто и микроавтобусов имели именно такие моторы. Сегодня же все машины имеют такую систему питания.

Подвиды инжекторной системы питания

Отмечу, что инжекторная система питания имеет несколько подвидов. В зависимости от количества инжекторов выделяют моновпрыск или как его еще именуют, центральный впрыск, а также распределенный впрыск.

Первый имеет одну форсунку, устанавливаемую вместо карбюратора. Она осуществляет впрыск горючего во впускной коллектор единовременно во все цилиндры. Правда эта конструкция уже несколько устарела.

Сейчас все производители применяют распределенный впрыск, имеющий отдельную форсунку на каждом цилиндре.


Устройство системы распределенного впрыска:
1 — топливный бак; 2 — электробензонасос; 3 — топливный фильтр; 4 — регулятор давления топлива; 5 — форсунка; 6 — электронный блок управления; 7 — датчик массового расхода воздуха; 8 — датчик положения дроссельной заслонки; 9 — датчик температуры ОЖ; 10 — регулятор; 11 — датчик положения коленвала; 12 — датчик кислорода; 13 — нейтрализатор; 14 — датчик детонации; 15 — клапан продувки адсорбера; 16 — адсорбер.

Система распределенного впрыска подразделяется на подтипы:

  • одновременный впрыск – все форсунки одновременно впрыскивают порцию топлива;
  • попарно-параллельный. В данном случае форсунки работают попарно. Одни осуществляют впрыск на такте впуска, а другие – на такте выпуска. Данная система применяется в современных агрегатах при запуске;
  • фазированный впрыск осуществляется на такте впуска. Причем каждая форсунка имеет отдельное управление;
  • прямой впрыск имеет форсунки, которые находятся непосредственно возле цилиндров.

Видео — принцип работы системы питания инжекторного двигателя:

Инжекторные агрегаты обладают несомненными «плюсами», по сравнению с карбюраторными. Они менее токсичны, экономны, легко запускаются. Кроме того, таких моторов доступен в широком диапазоне оборотов.

Имеет данная система питания и «минусы»: более сложная конструкция, высокая чувствительность агрегата к . Кроме того, форсунки являются не ремонтируемыми узлами, что удорожает ремонт. Для диагностики же их состояния и очистки, СТО должно иметь современное дорогое оборудование.

Как работает топливная форсунка? Бензин и Дизель

Назначение топливной форсунки:

В основном, топливная форсунка предназначена для распыления топлива в распыленной или туманной форме, чтобы оно сгорело полностью и равномерно. Топливный насос высокого давления (FIP) подает дизельное топливо под давлением через линии высокого давления к впускному отверстию каждого инжектора. Однако обычные форсунки или форсунки первого поколения открываются под действием гидромеханического давления. Внутри обычного инжектора пружина удерживает игольчатый клапан в «закрытом» положении до тех пор, пока давление в линиях высокого давления не достигнет определенного значения.В дизельных двигателях DI и IDI более ранних поколений использовались обычные форсунки, как показано на диаграмме ниже.

Диаграмма поперечного сечения обычной дизельной форсунки

Принцип работы обычной топливной форсунки:

Игольчатый клапан точно управляется чувствительной к давлению пружиной. Он поднимается со своего седла, впрыскивая дизельное топливо в цилиндр в сильно распыленной форме или в виде тумана. В момент падения давления игольчатый клапан возвращается на свое место, что приводит к остановке впрыска.Форсунка впрыска имеет чрезвычайно критические допуски. Зазор между его движущимися частями составляет всего 0,002 мм или 2 микрона.

Современный инжекторный блок нагнетает дизельное топливо через небольшое отверстие в форсунке размером всего 0,25 мм². Количество впрыскиваемого топлива может варьироваться от 1 мм³ до 350 мм³. Обычные форсунки открываются и закрываются гидромеханически. Они имеют среднее давление открытия сопла от 140 до 210 кг / см2. Современный агрегат Bosch распыляет дизельное топливо на скорости до 2000 км / ч.Bosch и Lucas — ведущие мировые производители дизельных форсунок.

Принцип работы бензинового инжектора:

Бензиновые форсунки нового поколения существенно отличаются по конструкции и размерам от обычных дизельных форсунок. Двигатель с непосредственным впрыском бензина (GDI) создает топливно-воздушную смесь внутри камеры сгорания. Открытие впускного клапана позволяет поступать только свежему воздуху. В то время как форсунки высокого давления впрыскивают бензин в камеру сгорания, это улучшает охлаждение камеры сгорания.Это обеспечивает более высокий КПД двигателя за счет более высокой степени сжатия, что, в свою очередь, увеличивает топливную экономичность и крутящий момент.

Бензиновый тип GDI (Фото любезно предоставлено Bosch)

Насос высокого давления подает топливо в топливную рампу высокого давления (также известную как Common Rail). Кроме того, электромагнитный инжектор высокого давления Bosch HDEV5 имеет номинальное давление в системе до 20 МПа и размер капли / SMD (средний диаметр по Заутеру) всего 15 мкм. Форсунки установлены на топливной рампе / общей топливной рампе. Кроме того, форсунки дозируют и распыляют топливо под высоким давлением и очень быстро.Кроме того, форсунки обеспечивают оптимальную смесь и впрыскивают бензин в камеру сгорания.

Для получения дополнительной информации прочтите о GDI.

Что такое блочный инжектор?

Кроме того, в системах впрыска топлива на дизельных двигателях CRDi используется «насос-форсунка» или «насос / форсунка». Она объединяет функции форсунки-форсунки и топливного насоса в единый блок. Эта конструкция состоит из отдельного насоса, назначенного для каждого цилиндра, а не из общего насоса, используемого для всех цилиндров в моделях предыдущих поколений.

Блочный инжектор (Изображение предоставлено Bosch)

В этой системе насос и форсунка объединены в единый компактный узел, который устанавливается непосредственно на головку блока цилиндров. Такая конструкция устраняет необходимость в топливопроводах высокого давления. Встроенные каналы, встроенные непосредственно в головку блока цилиндров, подают дизельное топливо. Таким образом, это помогает исключить потенциальные отказы утечек топливопровода.

Функционирование насос-форсунки:

При работе верхний распредвал приводит в действие топливный насос низкого давления.Затем он подает дизельное топливо в топливные каналы в головке блока цилиндров и во впускное отверстие всех форсунок. Для привода плунжерного насоса внутри форсунки используется общий распределительный вал. Эта конструкция может обеспечить более высокое давление впрыска до 2200 бар и точное время впрыска. Кроме того, он точно контролирует количество впрыскиваемого топлива. Кроме того, электромагнитный клапан работает как двухпозиционный переключатель для подачи топлива в форсунку.

Помпа двойного типа (Фото: VW)

Пьезоэлектрический инжектор:

Самым совершенным типом инжектора, несомненно, является пьезоэлектрический инжектор.’Он не только обеспечивает повышенную точность для двигателей последнего поколения CRDi, но также создает давление топлива до 3000 бар или 44000 фунтов на квадратный дюйм. Кроме того, эти современные топливные форсунки работают по принципу «пьезо». Слово «пьезо» происходит от греческого слова «пьезеин», что означает сдавливание или надавливание.

Пьезо-тип (Фото любезно предоставлено Denso)

Пьезо-привод состоит из сотен керамических пластин, уложенных одна над другой в инжекторе. Будучи электрически заряженными, пьезокристаллы могут изменить свою структуру всего за несколько тысячных долей секунды, слегка расширившись.Это расширение штабеля приводит к его линейному перемещению. Затем он передается непосредственно на иглу инжектора без какой-либо механической связи между ними. В результате форсунки открываются / закрываются за несколько миллисекунд (тысячную долю секунды). Следовательно, он может впрыснуть крошечное количество топлива, весом менее одной тысячной грамма, а также тонко его распределять.

Пьезоэлектрические форсунки имеют:

1. Очень высокая скорость работы
2. Чрезвычайно быстрое время отклика
3.Повторяемость движения клапана
4. Точное дозирование впрыскиваемого топлива
5. Повышенная частота — до семи впрысков на цикл сгорания

Пьезо-форсунки:

1. Оптимизировать сгорание топливовоздушной смеси.
2. Меньший расход топлива.
3. Уменьшить загрязнение, снизить выбросы.

Видео о работе топливной форсунки смотрите здесь:

О CarBikeTech

CarBikeTech — это технический блог. Его члены имеют опыт работы в автомобильной сфере более 20 лет.CarBikeTech регулярно публикует специальные технические статьи по автомобильным технологиям.

Посмотреть все сообщения CarBikeTech

Принцип работы и схема топливной форсунки

Электронная система впрыска топлива — это серия топливных систем, в которых используются электромеханические детали для подачи топлива из бака в цилиндр с идеальным соотношением.

Одной из основных частей системы EFI является инжектор. Тогда каково определение инжектора? как работает инжектор на двигателе? проверьте содержимое ниже

Определение и функция топливной форсунки


Топливная форсунка — это клапан с электроуправлением, который используется для распыления топлива.В системе впрыска бензина форсунка действует как дверца для распыления топлива из топливных магистралей во впускной коллектор.

Инжектор выполняет не только функцию распылителя, но и распыляет топливо во впускном коллекторе. Когда топливо находится в распыленной форме, молекулы могут лучше смешиваться с воздухом.

Когда на форсунку подается питание, форсунка открывается, так что топливо под высоким давлением внутри форсунки может распыляться.

Тогда кто контролирует работоспособность инжектора? это работа ЭБУ.ЭБУ (электронный блок управления) будет регулировать открытие форсунки, и это так. Но ЭБУ нуждается в помощи ряда датчиков.

Итак, схема, датчик будет определять несколько состояний двигателя, таких как температура двигателя, температура всасываемого воздуха, период всасываемого воздуха и другие. Затем датчик отправит данные в ЭБУ, данные будут обрабатываться ЭБУ, а выходные данные будут отправлены для форсунок, находящихся под напряжением.

Дополнительные сведения о системе впрыска топлива в бензиновых двигателях

Принцип работы инжектора

img от enginebasics.com


Форсунка работает с использованием электроэнергии, когда на форсунку подается напряжение, форсунка открывается, и топливо распыляется. Какова продолжительность подачи напряжения, влияющего на объем распыляемого топлива.

Форсунка состоит из трех основных компонентов;

Трубка — это основной корпус форсунки (цилиндрическая часть), здесь заканчивается топливо.

Соленоид — это магнитная катушка, которая может преобразовывать электрическую энергию в энергию движения.При этом напряжение от ЭБУ поступает на соленоид. На соленоидах электромагнитные силы возникают из-за протекания электричества через катушку.

Электромагнитная сила будет перемещать железный сердечник в середине катушки, это движение открывает сопло.

При этом форсунка представляет собой игольчатую деталь (конусообразную). В нормальных условиях (форсунка выключена) форсунка закрывает зазор трубки. Однако, когда сопло слегка жидкое, зазор трубки откроется.

Это вызывает разбрызгивание топлива.

Одна вещь, о которой нельзя забывать, это распыление топлива в виде распылителя.

Это происходит из-за того, что зазор на трубке очень мал и имеет круглую форму. При высоком давлении топлива топливо распыляется.

Тип топливной форсунки


Широко применяются три типа форсунок;

1. Инжектор пружинного типа



Этот тип также называется механическим инжектором, это вызвано его работой, которая не использует электрическую энергию, а вместо этого использует существующее давление топлива.

Основным компонентом этой форсунки является пружина. В выключенном форсунке пружина толкает форсунку вниз и закрывает трубку. Однако при самопроизвольном повышении давления топлива форсунка открывается автоматически.

Но форсунка также открывается очень мало, потому что пружина все еще удерживается.

Поскольку он работает только тогда, когда давление топлива повышается самопроизвольно, давление топлива в этой системе впрыска не может поддерживаться непрерывно. Давление топлива будет увеличиваться только при достижении угла опережения зажигания.

Итак, как контролировать тайминг и продолжительность форсунки?

Это работа от ТНВД. Насос самопроизвольно поднимает давление по достижении тайминга, в то время как продолжительность регулируется топливным баллоном внутри насоса, и объем может изменяться в зависимости от открытия педали газа.

Этот тип широко применяется в обычных дизельных двигателях

2. Электромагнитный инжектор

Соленоидный инжектор работает на электромагнитных принципах, процесс описан выше.Где электрические силы будут преобразованы в механические движения через магнитную катушку.

Отличие от первого типа, соленоидный тип имеет стабильное давление топлива (постоянно). Это потому, что инжектор управляется ЭБУ.

Этот тип широко применяется в бензиновых двигателях EFI, а также в дизельных системах впрыска Common Rail.

3. Форсунка Pizeo



Топливный инжектор Pizeo — это инжектор, в котором используется материал кусочков пизео.Ломтик пизео — это материал, который может изменять свой объем под напряжением.

В этом случае в инжектор помещаются тысячи ломтиков пизео. Когда ЭБУ подает напряжение, этот кусок пизео сдуется. Сдув будет совершать минимальное движение, и движение используется для перемещения сопла так, чтобы зазор сопла был открыт.

Этот тип относительно новый, поэтому пока мало разработчиков, использующих эту модель.

Электронный впрыск топлива: определение, типы, принцип и компоненты

Что такое электронный впрыск топлива?

Электронный впрыск топлива — это система распыления топлива, которая работает с электронным управлением, так что смесь воздуха и топлива всегда соответствует потребностям топливного двигателя.

Таким образом, сгорание камеры будет происходить правильно для получения оптимальной мощности двигателя и экологически чистых выхлопных газов. Способ заправки ЭБУ (электронного блока управления) на форсунку основан на сигналах от датчиков, например:

  • датчик оборотов двигателя
  • датчик температуры воды
  • датчик расходомера
  • Коллектор абсолютного давления
  • Датчик положения дроссельной заслонки и др.

Принцип работы электронного впрыска топлива

Электронная система впрыска топлива разделена на датчики и исполнительные механизмы.Датчики действуют как источники информации об условиях, связанных с определением количества бензина, которое необходимо впрыснуть. Предоставление этой информации может быть либо аналитическими, либо цифровыми сигналами. Примерами датчиков, которые отправляют данные в аналоговой форме, являются датчики массового расхода воздуха и датчики положения дроссельной заслонки (TPS).

Система EFI

В то время как привод — это компонент, работа которого регулируется ЭБУ аналоговым или цифровым способом, аналоговые команды подаются на электрический бензонасос и контрольные лампы двигателя.Напротив, команды цифрового сигнала подаются на форсунку, катушку зажигания, сапунные клапаны топливного бака, регулятор холостого хода и нагреватели лямбда-зонда.

Электронный впрыск топлива VS Карбюратор

Ниже приводится разница между системой EFI и карбюратором при низкой температуре двигателя автомобиля и ускорении.

Карбюраторная система

В карбюраторной системе подача бензина при холодном двигателе автомобиля будет регулироваться за счет минимизации забора воздуха.

Карбюраторная система

Таким образом, топливо выйдет богаче, и все устроено за счет дроссельной цепи, которая работает автоматически или механически. Кроме того, подача топлива регулируется значением уровня вакуума в двигателе — чем выше значение вакуума, тем больше топлива необходимо обеспечить.

Карбюраторная система при разгоне

Цепь ускорения обеспечивает подачу газа в карбюраторную систему во время разгона.Цепь ускорения осуществляется рычагом, соединенным с рычагом наклона.

Между тем, рычаг наклона приводится в действие за счет ускорения дроссельной заслонки, и затем бензин выходит через струю насоса в сторону вентиляционного отверстия.

Система EFI

В системе EFI подача топлива при холодном двигателе будет определяться ЭБУ (электронным блоком управления) на основе рабочих температурных условий двигателя и значения давления воздуха во впускном коллекторе.

Система EFI при разгоне двигателя

Подача топлива во время разгона двигателя регулируется ЭБУ на основе информации о количестве воздуха, проходящего через впускной коллектор, измеренном расходомером воздуха.Исходя из этих данных, ЭБУ даст команду инжектору добавить бензин для впрыска.

Типы и компоненты электронной системы впрыска топлива Система

EFI делится на два типа, а именно тип D и L.

EFI Тип D

В EFI типа D измерение воздуха, поступающего во впускной коллектор, осуществляется датчиком вакуума.

EFI тип D

Значение давления во впускном коллекторе используется в качестве информации для ЭБУ.Кроме того, он используется в качестве детерминанта количества впрыскиваемого бензина.

EFI Тип L

В EFI типа L количество воздуха, поступающего во впускной коллектор, измеряется с помощью расходомера. Он используется в качестве информации для ЭБУ для определения количества впрыскиваемого бензина.

EFI тип L

Компоненты EFI

Ниже представлены компоненты электрического впрыска топлива и их функции.

  1. Топливный насос: всасывать топливо из бака и прижимать его к напорной линии, чтобы быть готовым к впрыску
  2. ЭБУ: Обработка данных, полученных от датчиков, и передача команд компонентам на работу.
  3. Датчик скорости: определяет скорость автомобиля
  4. Разъем канала передачи данных: диагностика работы системы
  5. Переменный резистор: регулирует уровень топливно-воздушной смеси
  6. Датчик дроссельной заслонки: определяет размер отверстия газового клапана
  7. Датчик давления: обнаруживает / измеряет давление во впускном коллекторе
  8. Регулировка холостого хода: регулировка холостого хода двигателя
  9. Форсунка: получает команду на впрыск определенного количества топлива
  10. Датчик угла кулачка: Зная размер угла кулачка
  11. Датчик угла поворота коленчатого вала: обнаруживает высокие или низкие обороты двигателя
  12. Датчик детонации: обнаруживает детонацию в двигателе.
  13. Датчик температуры: Контроль высокой и низкой температуры воды

Топливный насос

Топливные насосы, обычно используемые в двигателях с системами EFI, представляют собой электрические газовые насосы, которые всасывают топливо из бака и вдавливают его в топливную систему.

Обычно используются насосы «в баке» и «в линию». Тип в баке означает, что топливный насос находится в баке, погруженном в бензин. В то время как тип inline означает, что топливный насос находится вне топливного бака.

В серии за работой бензонасоса следит ЭБУ. Если транзистор в ЭБУ выключен, электрический ток не течет в массу. Таким образом, реле помпы выключено. В результате электрический ток батареи не поступает на насос, и насос не может работать.

Электронный блок управления

Электронный блок управления — это компонент топливной системы, который получает электрические сигналы от датчиков. Кроме того, датчик преобразуется в командную строку для исполнительного механизма.

Электронный блок управления

ЭБУ получает питание от аккумулятора и направляет его на датчик и исполнительный механизм. Значение напряжения регулируется в соответствии с мощностью датчика или исполнительного механизма.

Описание частей блока управления двигателем и их функций

  • Микропроцессор: Установите порядок и принимайте решения о данных, которые были обработаны, на основе информации из хранилища данных в системной памяти.
  • Память: хранить входные данные, готовые для передачи в микропроцессор
  • Вход: предоставляет информацию в виде электрического сигнала в память для обработки микропроцессором.
  • Сбор данных: данные, обработанные микропроцессором, выделяются и затем передаются на выход
  • Выход: электрический сигнал, генерируемый сбором данных, передаваемый на исполнительные механизмы
Разъем канала передачи данных
Коннектор канала передачи данных

представляет собой набор кодов, облегчающих обнаружение работы датчиков или исполнительных механизмов.DLC применяется ко всем автомобилям с системами EFI в качестве соединителя для диагностики работающей системы с помощью специального программного обеспечения. Обнаружить это вручную можно с помощью кодов перемычек с другими кодами в справочнике каждого транспортного средства или марки автомобиля.

Переменный резистор

Переменный резистор предназначен для регулирования топливной смеси на холостом ходу. Регулировка направлена ​​на получение правильного значения co, поэтому не регулируйте переменный резистор без использования тестера CO.

Регулировка

Если топливная смесь чрезмерная, замените переменный резистор, повернув регулировочный винт с SST по часовой стрелке.Между тем, если регулировочный болт повернуть против часовой стрелки, это означает, что топливо слишком бедное.

Датчик дроссельной заслонки

Датчик дроссельной заслонки определяет степень открытия газового клапана. Движение газового клапана будет перемещать ползунок или фрикционный рычаг, что влияет на значение сопротивления. На основе этой информации блок управления двигателем определяет количество впрыскиваемого бензина.

Датчик дроссельной заслонки установлен на корпусе дроссельной заслонки, который определяет угол открытия дроссельной заслонки.Когда дроссельная заслонка полностью закрыта, ЭБУ через клемму VTH / VTA обеспечивает напряжение 0,3 + — 0,8 Вольт.

Между тем, если дроссельная заслонка открыта, напряжение ЭБУ до VTH / VTA будет увеличиваться в соответствии с углом открытия дроссельной заслонки. Значение напряжения становится от 3,2 до 4,9 вольт, когда дроссельная заслонка открыта. ЭБУ учитывает условия движения на основе входного сигнала и использует его для определения правильного соотношения воздух-топливо, прироста мощности и управления отсечкой подачи топлива.

Датчик давления

Датчик давления прикреплен к впускной камере для определения давления воздуха во впускном коллекторе. Значение давления на впуске будет передано в ЭБУ как аналоговый вход.

датчик давления
Датчик холостого хода

Регулятор холостого хода расположен в нижней части дроссельной камеры и регулирует подачу воздуха на холостом ходу.ЭБУ управляет клапаном ISC только для увеличения холостого хода и обеспечения обратной связи для достижения целевого значения вращения на холостом ходу.

Инжектор

Форсунка является частью топливной системы, поэтому становится возможным процесс однородного смешения воздуха и топлива. Форсунки имеют поршни, которые могут открывать или закрывать топливопроводы.

Форсунка EFI

В соответствии с инструкциями блока управления двигателем, соленоид управляет работой плунжера.Если продлить время удержания плунжера, выйдет больше топлива, и наоборот. Настройки избыточной топливной смеси, обедненной смеси и времени впрыска зависят от сигнала, отправляемого двигателем ECU.

Датчик угла поворота кулачка

Датчик угла поворота кулачка установлен на верхней стороне головки блока цилиндров и обнаруживает любое изменение угла поворота кулачка. Датчик заметит изменения угла распредвала, связанного с впускным клапаном. Кроме того, ЭБУ учитывает сигнал начала или прекращения впрыска топлива.

Датчик угла поворота коленчатого вала

Датчик угла поворота коленчатого вала определяет частоту вращения двигателя и положение поршня в каждом цилиндре.

Датчик температуры

Датчик температуры воды определяет состояние нагрева охлаждающей воды и устанавливается в блоке двигателя или в нижней части корпуса термостата. Датчик будет работать по значению сопротивления. Чем выше температура охлаждающей воды, тем меньше сопротивление, и наоборот.

Датчик охлаждающей воды связан с двигателем ECU, который подает на датчик напряжение источника питания 5 В через резистор от клеммы THA / THW.

Когда значение сопротивления изменяется в соответствии с изменениями температуры охлаждающей воды, потенциал на клемме THA / THW также изменится. Следуя этим сигналам, ЭБУ регулирует объем впрыска топлива для поддержания производительности двигателя во время работы.

Датчик детонации

Датчик детонации обнаруживает признаки детонации в двигателе, потому что, если это происходит в камере сгорания, ЭБУ устанавливает зажигание в более прямом или обратном направлении, чтобы исключить детонацию.

Классификация электронного впрыска топлива
Согласно области распыления топлива

В зависимости от места распыления бензина система EFI делится на прямой и непрямой впрыск.
Прямой впрыск: Форсунка впрыскивает бензин прямо в камеру сгорания.

Напротив, непрямой впрыск: топливо впрыскивается не в камеру сгорания, а через впускной коллектор.

В соответствии с ритмом распыления топлива

Ритм одновременного распыления означает, что бензин непрерывно впрыскивается в камеру обжига.Другими словами, распыление топлива не учитывает условия работы двигателя. Он распыляется одновременно на все цилиндры за один оборот коленчатого вала (360 градусов).

В ритме распыления групповой модели бензин впрыскивается в камеру сгорания непрерывно вслед за группой цилиндров.
Распылитель топлива учитывает состояние рабочих этапов двигателя. Он распыляет одновременно на все цилиндры каждые 720 градусов или два полных оборота коленчатого вала.

В последовательном ритме распыления бензин непрерывно впрыскивается в камеру сгорания в соответствии с FO (порядок зажигания). Распылитель топлива учитывает условия работы двигателя и одновременно на всех цилиндрах каждые два оборота коленчатого вала (720 градусов).

По данным службы распыления топлива

Существует две модели впрыска топлива во впускной коллектор, а именно одноточечный впрыск и многоточечный впрыск.

Одноточечный впрыск (SPI)

В этой модели распыление топлива будет производиться форсункой во впускном коллекторе перед дроссельной заслонкой.Впрыскиваемое топливо будет всасываться в соответствии с работой каждого цилиндра двигателя. Одна форсунка обслуживает все цилиндры, и это почти то же самое, что и обычная топливная система.

Одноточечный инжектор

Смесь топлива и воздуха во впускном коллекторе будет ждать открытия впускного клапана. В результате он вызывает отложение вдоль впускного коллектора и становится недостатком для системы одноточечного впрыска.

Модель
Многоточечный впрыск (MPI)

Точка разбрызгивания топлива находится на каждом входе в цилиндр. Таким образом, эффективность забора топлива на цилиндр выше.

Многоточечный впрыск

Исходя из конструкции системы управления, система EFI делится на:

  • механический впрыск
  • Электронный механический впрыск
  • электронный впрыск
  • Система управления двигателем.
Механический впрыск

В этой системе впрыск топлива происходит механически, когда движение дроссельной заслонки регулирует количество воздуха, необходимого двигателю, и перемещает рычаг. Затем рычаг толкает рычаг указателя уровня топлива, чтобы определить количество впрыскиваемого топлива.

Электронный механический впрыск

Электронная механическая система впрыска топлива имеет электронную систему регулирования, называемую электронным блоком управления. Система управления ограничена только на время впрыска.Одновременно количество топлива, которое необходимо впрыснуть, будет определяться рычагом управления подачей топлива (блоком управления смесью).

Электронный впрыск

EFI обеспечивает потребности в топливе, когда количество и время подачи регулируются электронным способом двигателем ECU. Двигатель ECU будет обрабатывать данные, полученные от датчиков, и будет рассматриваться для определения времени и количества топлива, которое необходимо впрыснуть.

Система управления двигателем

Система управления двигателем — это электронная система впрыска топлива, в которой система зажигания регулируется в 1 блоке с ЭБУ двигателя.Другими словами, система зажигания неотделима от двигателя ECU.

Поиск и устранение неисправностей электронного впрыска топлива

Двигатель автомобиля не заводится

Проверить компоненты:

  1. Иммобилайзер
  2. Датчик положения коленчатого вала
  3. Количество топлива и состояние топливного фильтра
  4. Топливный насос и соединение
  5. Утечка или состояние системы впуска и вакуума
  6. коллектор датчика абсолютного давления
  7. Форсунки
  8. Датчик положения распредвала
  9. Разъем
  10. , кабель и реле ECM
  11. ECM
  12. Подключение электричества к двигателю / аккумуляторной батарее
  13. Система зажигания
  14. Регулятор давления и топлива
  15. Датчик температуры охлаждающей жидкости двигателя
Двигатель автомобиля не запускается

Проверить компоненты:

    1. Количество топлива и состояние бензинового фильтра
    2. Регулятор давления и топлива
    3. Утечка состояния системы впуска-вакуумирования
    4. Подключение электродвигателя / аккумулятора
    5. Датчик температуры охлаждающей жидкости двигателя
    6. Датчик положения дроссельной заслонки
    7. Форсунки
    8. Датчик положения распределительного вала
    9. Система зажигания
    10. Датчик положения коленчатого вала
    11. разъемы, кабели и реле ECM
    12. ECM

Как работают топливные форсунки, Пошаговый процесс о том, как работают форсунки

Как работают топливные форсунки, Зависимость человеческой жизни в наши дни от машин, конкретных транспортных средств, теперь достигла точки, когда это стало необходимостью.В наши дни покупка автомобиля для повседневной жизни стала неизбежной. Но с этим даром технологий связано и множество других обязанностей. Эти машины не только регулярно нуждаются в топливе и других дорогостоящих материалах, но также требуют большого ухода со стороны владельца. И для этого вам необходимо иметь базовые знания о том, как работает ваш автомобиль.

Работа топливных форсунок

Обычно люди довольно хорошо осведомлены о том, как работают их автомобили, но одна проблема, с которой они сталкиваются, — это , как работают топливные форсунки и как топливо подается в их двигатели.Итак, здесь, в этой статье, я подробно объясню вам вопрос, упомянутый выше, и удовлетворю все ваши потребности в знаниях.

Что такое топливные форсунки

Назначение топливных форсунок — подавать правильное количество топлива в двигатель, чтобы оно могло эффективно сжигать его для питания двигателя. К сожалению, это не так просто, как кажется. В двигатель необходимо подавать точное количество топлива и воздуха для сгорания, слишком много или слишком мало топлива может вызвать засорение двигателя или даже не дать ему запуститься, соответственно.В прошлом механизм для решения этой задачи при реализации карбюраторных двигателей был не столь совершенен. Благодаря современным технологиям у нас теперь есть гораздо лучший способ реализовать это, а именно топливные форсунки.

Топливная форсунка — это механический клапан с электронным управлением. Обычно его устанавливают под определенным углом, чтобы впрыснуть нужное количество топлива в камеру сгорания двигателя. Не только количество впрыскиваемого топлива должно быть точным, но и угол его расположения, давление и форма распыления также должны быть очень точными в соответствии с необходимостью идеального соотношения топлива и воздуха для сгорания.

Что такое топливные форсунки

Типы топливных форсунок различаются как для бензиновых, так и для дизельных двигателей. В то время как топливные форсунки для бензиновых двигателей используют косвенный механизм для распыления топлива, в дизельных двигателях используется скорее прямой механизм. Но это касается только механизма, используемого для распыления, и не имеет никакого отношения к тому, как работают топливные форсунки.

Читайте также: Лучший очиститель топливных форсунок

Как работают топливные форсунки

Топливная форсунка — это клапан, управляемый пружинами или ЭБУ (электронный блок управления), способный открываться и закрываться несколько раз в секунду.Топливо забирается из топливного бака и транспортируется к форсункам. Топливные магистрали используются для транспортировки. Как только топливо достигает форсунки, давление в нем повышается до нужной степени с помощью регулятора давления топлива. Затем топливо разделяется на несколько цилиндров. После этого в качестве последнего шага топливо окончательно распыляется на камеру сгорания. Однако это всего лишь обобщенный обзор, и ниже вам будет подробно объяснено , как работают топливные форсунки .

Существует два типа топливных форсунок:

Механическая топливная форсунка

Первичный механизм, используемый здесь для впрыска топлива, очень похож на карбюраторные системы, используемые в прошлом, поэтому многие люди до сих пор получают его путали с карбюраторными двигателями, но на самом деле между ними есть довольно важное различие.В то время как карбюраторная система забирает топливо под низким давлением из топливного бака, эти системы механических топливных форсунок перекачивают топливо под высоким давлением из топливного бака, что является основным принципом работы механических топливных форсунок.

После откачки из топливного бака топливо попадает в аккумулятор. Вы можете думать об аккумуляторе как о буфере для временного хранения топлива. Затем вступает в действие блок управления дозированием системы. Его задача — распределять топливо по цилиндрам.Здесь важна подача нужного количества топлива в цилиндры за нужное время.

Механическая топливная форсунка

При входе в цилиндр топливо и воздух должны быть очень точно смешаны с нужным количеством обоих. Это достигается за счет использования заслонки, которая находится внутри воздухозаборника двигателя. Это позволяет топливу поступать правильным потоком и смешиваться с воздухом в нужном количестве. Всякий раз, когда мы увеличиваем или уменьшаем скорость транспортного средства, откидной клапан открывается более или менее, соответственно, то же самое и в случае с распределителем топлива.Следовательно, оба остаются пропорциональными.

Здесь для работы системы используются две пружины. Одна из них — это основная пружина, а другая — поршневая пружина. Основная пружина предназначена для управления подачей топлива в топливную форсунку, топливо, поступающее из топливного насоса, находится под давлением, и это давление заставляет главную пружину открываться и пропускать топливо внутрь топливной форсунки.

Когда топливо поступает во впускное отверстие, оно смешивается с воздухом, и давление увеличивается, это увеличивающееся давление заставляет пружину плунжера двигаться вперед и назад, что, в свою очередь, заставляет плунжер перемещаться наружу, вызывая открытие сопла и, следовательно, регулируемое происходит разбрызгивание топлива.Как вы можете заметить, используемый здесь механизм зависит от пружин, поэтому многие техники часто называют механические форсунки подпружиненными форсунками.

После завершения впрыска топлива для данного цикла, в соответствии с вводом, заданным блоком управления, давление затем снижается, и в конечном итоге толкаемый наружу плунжер перестает испытывать давление и возвращается в исходное положение. Это приводит к заеданию спрея и, следовательно, к прекращению подачи топлива на определенный цикл.

Читайте также: Что происходит, когда топливные форсунки выходят из строя

Электронные топливные форсунки

Здесь мы поговорим о втором типе топливных форсунок и о том, как эти топливные форсунки работают . Это довольно новая реализация топливных форсунок, так как многие новые автомобили, поступающие в настоящее время, имеют эту систему.

Как было написано выше, основной принцип работы этой и механической системы совершенно одинаковый. Однако есть два момента, в которых они различаются.А именно, количество топлива и натяжение, используемое для открытия и закрытия клапана с помощью пружины. Вместо того, чтобы использовать эти две функции для управления разбрызгиванием топлива, электронные системы используют электронный блок управления, который управляет всеми необходимыми функциями.

Некоторые датчики помогают отслеживать такие параметры, как температура воздуха, давление воздуха на впуске, температура двигателя, частота вращения двигателя, положение акселератора. Все они подключены к ЭБУ, и текущая информация поступает в ЭБУ в режиме реального времени.

Электронная топливная форсунка

В соответствии с условиями и расчетами, выполненными ЭБУ, он вычисляет конкретное количество топлива, которое необходимо для подачи в цилиндры. Все эти входные данные поступают в ЭБУ в режиме реального времени, и обработка происходит так быстро, что степень открытия клапанов вычисляется почти одновременно.

Топливные направляющие используются для перекачки топлива из топливного бака, и эти направляющие соединены с топливной форсункой. Внутри топливных направляющих поддерживается постоянное давление, и установлен электрический топливный насос, который позволяет топливу перемещаться по топливным направляющим в топливную форсунку.

По мере поступления данных в ЭБУ он вычисляет количество топлива, которое необходимо впрыснуть, и количество клапанов, которые необходимо открыть, чтобы это произошло. Когда электронные сигналы отправляются от блока управления двигателем на штифты топливной форсунки, которые, в свою очередь, подключены к батарее и системе зажигания, внутри топливной форсунки создается электромагнит, который заставляет плунжер перемещаться наружу, тем самым создавая путь для подачи топлива. проходить. Это отверстие для топлива очень точно рассчитывается ЭБУ.Таким образом, форсунка наконец открылась, и топливо распыляется на двигатель внутреннего сгорания.

После завершения определенного цикла впрыска топлива ЭБУ прекращает посылать электронный сигнал на топливную форсунку и, таким образом, отключать электромагнит. Когда электромагнит деактивируется, больше нет ничего, что толкало бы плунжер наружу, форсунка закрывается, что приводит к остановке распыления топлива.

Это механизм, используемый электронными топливными форсунками, где электронная схема используется для точного открытия клапана, и, следовательно, здесь не используется никакой механический механизм, хотя принцип управления как в механических, так и в электронных топливных форсунках практически одинаков.

Заключение

Топливная форсунка является прекрасным примером инженерной мысли и значительно упростила задачу доставки нужного количества топлива для сгорания. Они также помогли автомобильной промышленности достичь эффективности, улучшить переходную реакцию дроссельной заслонки, и они также очень помогают при холодном пуске, поскольку клапаны позволяют протекать большему количеству топлива в течение короткого промежутка времени, что невозможно сделать с использованием карбюраторных двигателей.

Как работает впрыск топлива? Работа системы впрыска топлива (FIS)

Карбюрация долгое время была предпочтительным методом смешивания воздуха и топлива и подачи его во впускную систему двигателей внутреннего сгорания.Впрыск топлива, гораздо более эффективная система, создающая больше лошадиных сил, изначально была разработана для дизельных двигателей. В пятидесятых годах Chevrolet представила систему впрыска топлива на своей высокопроизводительной модели Corvette. С тех пор эта система набирает популярность, и ее основные операции сначала описаны ниже. Далее вам будут представлены основные части большинства систем впрыска топлива, а также их функции. После ознакомления с основами и функциями будут описаны два основных типа используемых систем впрыска.

Работа системы впрыска топлива

В исходных системах впрыска топлива использовался распределитель топлива для впрыска топлива в каждый цилиндр индивидуально в порядке зажигания цилиндров. Эта система распределения топлива до сих пор используется на более крупных двигателях. В большинстве систем с впрыском топлива датчики измеряют объем воздуха, поступающего в двигатель, и температуру выхлопного потока, а компьютер выдает команду инжекторам на импульс в течение определенного времени. Длина импульса и давление топлива определяют объем подаваемого топлива.Воздух дозируется дроссельной заслонкой, которая движется вместе с педалью акселератора. Впрыск топлива распыляет топливо намного лучше, чем карбюрация, что повышает эффективность и мощность впрыска.

Детали системы впрыска топлива

Части системы впрыска топлива существуют либо для подачи топлива в форсунки, либо для предоставления информации, которая требуется блоку управления для обеспечения максимальной возможна эффективная работа двигателя.

Компоненты для хранения и подачи топлива включают топливный бак, насос и трубопроводы. Топливный насос способен подавать давление топлива до 60 фунтов на квадратный дюйм, поэтому топливные магистрали и соединения спроектированы так, чтобы выдерживать давление, почти вдвое большее.

В вашем автомобиле будет либо две форсунки, либо по одной на цилиндр, а иногда и по одной дополнительной. В автомобилях с впрыском дроссельной заслонки будет две форсунки, а в системах впрыска через порт будет одна форсунка для каждого цилиндра, а иногда и форсунка акселератора / холодного пуска.

Одним из способов управления объемом впрыскиваемого топлива является ограничение продолжительности импульса форсунки. Другой вариант — измерение давления топлива в форсунке, которое осуществляется с помощью регулятора давления топлива, который может быть предварительно откалиброван, с вакуумным или электрическим управлением.

Большинство систем впрыска топлива имеют как минимум четыре датчика: датчик положения дроссельной заслонки использует реостат для определения желаемого ускорения. Датчик массового расхода воздуха определяет, сколько воздуха поступает во впускную систему.Кислородные датчики измеряют температуру выхлопных газов, которая интерпретируется, чтобы определить, работает ли двигатель бедной или богатой. Датчик, определяющий положение коленчатого вала, сообщает системе, какой цилиндр сработает следующим. Этот датчик также требуется для системы зажигания; на большинстве автомобилей это датчик положения коленчатого вала, датчик положения распределительного вала или, на некоторых автомобилях, оба.

Различные схемы впрыска

Существует несколько вариантов конструкции впрыска топлива. Система впрыска дроссельной заслонки, или TBI, или одноточечная система впрыска, впрыскивает топливо в корпус дроссельной заслонки,

, аналогично карбюратору.Смесь всасывания проходит через бегунки впускного коллектора. Затем постоянное распыление топлива было достигнуто с помощью системы непрерывного струйного впрыска, представленной в 1974 году, когда бензин перекачивается из топливного бака в большой регулирующий клапан, называемый распределителем топлива, который распределяет топливо по ряду меньших трубок каждого инжектора. Затем General Motors внедрила впрыск через центральный порт, или CPI, или впрыск топлива через центральный порт, в котором используется трубка с тарельчатыми клапанами от центрального инжектора для распыления топлива на каждое впускное отверстие, а не на центральный корпус дроссельной заслонки.Существует также система многоточечного впрыска топлива, которая впрыскивает топливо во впускные каналы, а не в центральную точку коллектора двигателя. Другой пример — прямой впрыск, используемый в дизельных двигателях, где форсунка расположена внутри камеры сгорания.

Ссылки

Основные сведения: электронный впрыск топлива

Электронный впрыск топлива

(EFI) навсегда исключил карбюраторы из производства новых автомобилей около десяти лет назад. Тем не менее, мы можем проследить корни EFI до того времени — до систем, разработанных Робертом Бошем в конце 60-х — начале 70-х годов для Volkswagen и других европейских автопроизводителей.(Большая часть первоначальных инженерных работ была проделана Bendix Corp. в США еще в 1950-х годах.) Самыми ранними установками Bosch были системы D-Jetronic и L-Jetronic, и мы до сих пор можем найти их принципы работы в Работа в автомобилях 2001 модельного года.

Отечественные автопроизводители широко внедрили электронный впрыск топлива на легковых автомобилях в начале 80-х: Ford в 83-м, GM и Chrysler в 83-84. Японские производители также поддержали EFI в конце 70-х — начале 80-х годов.Сегодня EFI является универсальным стандартом почти для всех легковых и легких грузовиков в мире.

Требования к двигателю не изменились

Четырехтактному двигателю внутреннего сгорания с циклом Отто около 125 лет, и его принципы работы не изменились за все это время. Двигатели с циклом Отто нуждаются в различных соотношениях воздуха и топлива для различных условий эксплуатации, и эти соотношения воздух / топливо являются измерениями количества потребляемого воздуха и бензина по весу. Таким образом, соотношение воздух / топливо 15: 1 означает 15 фунтов воздуха на 1 фунт бензина.(Если измерять объем, это будет примерно 9000 галлонов воздуха на 1 галлон бензина.)

Соотношение воздух / топливо для четырехтактных бензиновых двигателей может варьироваться от примерно 8: 1 в самом высоком диапазоне до примерно 18,5: 1 или 19: 1 в самом бедном. Если соотношение выходит за пределы этого диапазона, двигатель не запускается. Лучшее соотношение для максимальной мощности составляет от 12: 1 до 13,5: 1. Наилучшая экономия топлива наблюдается при диапазоне от 15: 1 до 16: 1. Для современных двигателей контроль выбросов является основной задачей, поэтому используемое соотношение воздух / топливо является компромиссом между пониженными выбросами и хорошей мощностью и экономичностью.Это соответствует соотношению 14,7: 1, более известному как стехиометрия.

Основные компоненты системы

Каждая топливная система — карбюраторная или впрыскиваемая — имеет в основном одни и те же общие части или подсистемы: топливный бак, насос и трубопроводы, фильтры, воздухозаборник и фильтр, впускной коллектор и корпус дроссельной заслонки, дозатор топлива. компоненты (карбюратор или форсунки) и средства контроля за выбросами паров. Добавьте еще один важный элемент для системы EFI — прибор для измерения воздуха, к которому мы вернемся через минуту.

Работа двигателя с циклом Отто определяется движением поршней вверх и вниз внутри закрытых цилиндров, а также открытием и закрытием впускных и выпускных клапанов, синхронизированных с движением поршня распределительным валом. Это механическое движение позволяет двигателю накачивать воздух для процесса сгорания и удалять отработавшие выхлопные газы. Количество всасываемого двигателем воздуха регулируется ногой водителя на педали, которая соединена с механическим дроссельным клапаном. Этот фундаментальный факт управления подачей воздуха характерен как для карбюраторных, так и для двигателей с впрыском топлива.

Дайте ему воздух, дайте ему воздух!

В карбюраторном двигателе существуют разные области давления воздуха в разных частях карбюратора и во впускном коллекторе. Эти различия в давлении воздуха, известные как перепад давления, действуют непосредственно на бензин в поплавковом резервуаре и на концах выпускных форсунок, чтобы дозировать топливо из карбюратора во впускной воздушный поток. Количество воздуха, нагнетаемого двигателем, напрямую регулирует количество бензина, подаваемого карбюратором.Карбюраторы элегантны в своей простоте и отлично проработали сто лет. Однако сегодняшние требования к большему контролю за выбросами и экономии топлива требуют большей точности в дозировании топлива. Электронное управление с помощью цифрового компьютера и топливных форсунок обеспечивает такую ​​точность.

Важное фундаментальное различие между системой EFI и карбюратором заключается в том, что в системе впрыска топливо отключается за форсунками, где давление воздуха не может попасть в него. Однако топливо по-прежнему необходимо дозировать в определенных соотношениях с всасываемым воздухом, поэтому системе EFI требуется какой-то способ электронного измерения воздуха.По сути, это можно сделать только тремя способами: измерение давления воздуха, измерение объема воздуха и измерение веса или массы воздуха.

Скорость-плотность — впереди …

Самые ранние системы Bosch D-Jetronic были основаны на электронных датчиках, которые измеряли давление воздуха во впускном коллекторе. Основными измерениями, используемыми для регулирования дозирования топлива, были давление в коллекторе и частота вращения двигателя (об / мин). Этот вид системы EFI стал называться системой плотности скорости, потому что регулирование подачи топлива основывалось на частоте вращения двигателя и давлении (плотности) воздуха в коллекторе.

Давление воздуха рассчитывается как абсолютное давление в коллекторе (MAP), которое представляет собой разницу между атмосферным давлением и низким давлением в коллекторе, которое мы традиционно называем «вакуумом». Если компьютер знает скорость двигателя и давление в коллекторе, он может рассчитать вес воздуха, который перекачивает двигатель, и соответственно измерить топливо. Системы измерения скорости и плотности на основе MAP-сенсоров по-прежнему являются одними из самых популярных систем EFI в производстве в новом столетии.

…После измерения объема воздуха

В середине 70-х компания Bosch представила систему EFI, в которой был датчик для измерения расхода воздуха по объему. Это была система L-Jetronic («L» для luft, или «воздух» на немецком языке), в которой использовался датчик с подвижной заслонкой, установленной перед дроссельной заслонкой в ​​воздухозаборнике. Заслонка датчика перемещалась пропорционально потоку всасываемого воздуха и приводила в действие потенциометр, который подавал входной сигнал в компьютер EFI. Эти системы обычно называются системами с регулируемым воздушным потоком и используются Ford и рядом азиатских и европейских производителей.Поскольку компьютер знает объем воздушного потока и скорость двигателя, он может рассчитать вес всасываемого воздуха и соответственно измерить топливо.

Почему бы просто не взвесить воздух?

Как в системах с регулированием скорости и плотности, так и в системах с регулируемым воздушным потоком компьютер должен рассчитывать вес всасываемого воздуха на основе измерений давления или объема. Эти методы работают довольно хорошо, но система могла бы работать с еще большей точностью, если бы могла взвешивать воздух напрямую. Так работают системы массового расхода воздуха (MAF).

Датчики массового расхода воздуха

бывают нескольких разновидностей — датчики с подогревом, толстопленочные резисторы с подогревом и устройства для измерения турбулентности воздуха (вихрь Кармана). Все они используют сложные электронные методы измерения для фактического подсчета количества поглощенных молекул воздуха. Поскольку молекулярная масса эквивалентна весу любого объекта (включая воздух) на поверхности земли, измерение воздушной массы эквивалентно измерению веса. Затем компьютер может рассчитать соотношение воздух / топливо напрямую и точно по весу.

Системы EFI с массовым расходом воздуха

являются наиболее точными системами управления подачей топлива, но они также являются одними из самых проблемных из-за своей сложности электроники.К счастью, большинство ошибок, которые существовали в некоторых системах десять лет назад, были исправлены, и системы MAF выглядят так, как будто они станут стандартными системами измерения воздуха в будущем.

От разнообразия к единообразию

Пятнадцать-двадцать лет назад автопроизводители построили примерно равное количество систем с впрыском топлива (PFI) и дроссельной заслонкой (TBI). Системы PFI выпускались в нескольких вариантах конструкции с одинарным и двойным пламенем с различными инжекторами, сгруппированными вместе. Группы форсунок и то, сработала ли каждая группа один или два раза для каждого четырехтактного цикла, усложнили отслеживание различных систем EFI.Чтобы еще больше усложнить жизнь, системы TBI имели либо одну, либо две форсунки, которые работали непрерывно и либо одновременно, либо поочередно. Все это разнообразие постепенно исчезло, поскольку производители перешли к единой системе PFI, в которой каждый инжектор запускается последовательно в порядке зажигания цилиндра. У этой тенденции есть несколько веских причин, которые значительно упростили процедуры обслуживания.

Системы

TBI были в основном электронными карбюраторами. Короче говоря, инженеры по сути отрубили воздушный рожок и поплавковые чаши и заменили их одной или двумя форсунками с электромагнитным управлением.Бензин брызнул из форсунок через одну или две трубки Вентури в корпусе дроссельной заслонки и попал во впускной воздушный поток. Топливо распылялось и испарялось, а затем смешивалось с воздухом в коллекторе, как в карбюраторном двигателе.

Системы

TBI были экономичным и эффективным переходом от карбюраторов к впрыску топлива и работали лучше с электронным управлением с обратной связью, чем карбюраторы, но системы TBI имели некоторые недостатки карбюратора. Смешивание воздуха и топлива в коллекторе было неравномерным, и его трудно было контролировать при очень горячей или очень холодной работе.Неравномерное распределение топлива через направляющие коллектора все еще оставалось проблемой для систем TBI, как и для карбюраторов. По этим и другим причинам производство TBI было в значительной степени прекращено к началу 90-х годов.

В середине и конце 80-х компьютеры управления двигателем сделали важный, но мало рекламируемый шаг вперед. Скорость компьютерной обработки и пропускная способность шины данных (производительность) значительно увеличились. Модули управления двигателем могли обрабатывать больше информации и выдавать больше команд вывода быстрее, чем когда-либо прежде.Это сделало возможным последовательный впрыск топлива. Раньше контроллеры впрыска топлива не могли работать достаточно быстро, чтобы изменять ширину импульса форсунки и синхронизацию от одного цилиндра к другому. Следовательно, групповое или групповое зажигание было правилом в системах раннего впрыска через порт, хотя более желательно последовательное зажигание.

К счастью, эти успехи в компьютерных технологиях произошли в связи с очередным ужесточением лимитов на выбросы. Внесение изменений в Закон о чистом воздухе в начале 90-х годов и жесткие требования к бортовой диагностике OBD II сделали практически обязательным контроль и изменение расхода топлива прямо на впускном клапане для каждого рабочего хода.Это можно сделать только с последовательным впрыском топлива.

Основы поиска и устранения неисправностей

Системы EFI с последовательным портом в текущих серийных автомобилях подкреплены мощными встроенными диагностическими возможностями, которые помогут вам точно определить системные проблемы. Даже более старые системы портов и TBI 15–20 лет назад имели модули управления двигателем (ECM), которые обеспечивали коды неисправностей, самотестирование и потоки последовательных данных, чтобы помочь вам в поиске и устранении неисправностей. Контроллер ЭСУД управляет дозированием топлива на основе комбинации нескольких входных сигналов.Это означает, что многие проблемы с датчиками и механическими факторами работы двигателя могут проявляться в виде симптомов в топливной системе. Однако в основном проблемы в самой топливной системе делятся только на две категории: проблемы с регулированием или измерением воздуха и проблемы с подачей топлива.

Старомодные утечки воздуха на впуске или утечки вакуума нарушат контроль топлива EFI, как это было на карбюраторных двигателях в течение почти ста лет. Вы можете определить места утечки на слух — просто прислушайтесь к ним — или опрыскав предполагаемые места утечки мыльной водой или раствором для мытья окон.Пропан тоже хорошо работает.

Среди наиболее распространенных проблем с дозатором топлива — грязные или ограниченные форсунки и неправильное давление топлива. Засоренные или иным образом загрязненные форсунки порта были более серьезной проблемой в середине 80-х, чем сегодня. Бензины той эпохи не содержали моющих добавок, необходимых для поддержания чистоты крошечных отверстий форсунок. Моющие средства, которые хорошо работали в карбюраторах, не врезались (буквально) в форсунки для впрыска топлива. Бензиновые компании быстро осознали эту проблему, и за несколько лет количество забитых форсунок значительно снизилось.

Улучшенные присадки к бензину и тонкий, но важный реинжиниринг, сделанный автопроизводителями, также позволили уменьшить еще одну проблему раннего впрыска — отложения на задней стороне впускных клапанов. Ранние форсунки PFI подавали топливо на концы впускных каналов и были нацелены почти прямо на заднюю часть клапанов. Отложения имели тенденцию формировать этот сильно ограниченный приток воздуха. Слегка переставление форсунок так, чтобы топливо имело тенденцию «отскакивать» от клапанов, а также переработанные присадки к бензину уменьшили эту проблему.Хотя забитые форсунки и отложения на впускных клапанах не так распространены, как когда-то, не исключайте их из своего контрольного списка для устранения неполадок EFI.

Давление топлива должно быть одной из двух или трех основных вещей, которые необходимо проверить в первую очередь для устранения неполадок EFI. Большинство систем впрыска имеют контрольный порт с клапаном Шредера, к которому вы можете подключить манометр. Некоторые системы, однако, требуют подключения к топливной магистрали тройника, соединенного с контрольным манометром.

Портовые системы впрыска обычно считаются системами высокого давления, работающими в диапазоне от 30 до 50 фунтов на квадратный дюйм.Хотя было построено несколько систем TBI высокого давления, давления TBI обычно ниже — в диапазоне от 10 до 20 фунтов на квадратный дюйм — потому что у топлива есть больше времени для распыления и испарения в коллекторе. Точное давление топлива имеет решающее значение для всех систем EFI, поэтому не стоит гадать о характеристиках.

Электронный впрыск топлива является основным направлением автомобильной техники уже около 20 лет. В будущем ищите системы, которые будут проще и легче устранять неполадки благодаря улучшенной встроенной диагностике.Кроме того, если вы понимаете EFI в контексте основных требований двигателя к воздуху / топливу, ваша работа по обслуживанию станет намного проще и станет намного проще.

Скачать PDF

Энергии | Бесплатный полнотекстовый | Оптимизация рабочих параметров для стабильной и высокой производительности системы топливных форсунок GDI

Рисунок 1. Электрическая схема управления с тремя режимами широтно-импульсной и широтно-импульсной модуляции (ШИМ), добавленными к длительности последнего импульса.

Рисунок 1. Электрическая схема управления с тремя режимами широтно-импульсной и широтно-импульсной модуляции (ШИМ), добавленными к длительности последнего импульса.

Рисунок 2. Плата управления полупроводниковыми полевыми транзисторами на основе оксидов металлов на металле (MOSFET) с трехимпульсными управляющими сигналами. ( a ) Плата логической операции и управляющего сигнала, ( b ) Плата управления трехимпульсным полевым МОП-транзистором.

Рисунок 2. Плата управления полупроводниковыми полевыми транзисторами на основе оксидов металлов на металле (MOSFET) с трехимпульсными управляющими сигналами. ( a ) Плата логической операции и управляющего сигнала, ( b ) Плата управления трехимпульсным полевым МОП-транзистором.

Рисунок 3. ( a ) Сигналы управляющих импульсов и профили тока форсунок с прямым впрыском бензина (GDI) без операции переключения ШИМ, добавленные к длительности последнего импульса (I p1 = 180 мкс), ( b ) Сигналы управляющих импульсов и GDI Профили тока форсунок с операцией переключения ШИМ, добавленные к длительности последнего импульса (I p1 = 180 мкс).

Рисунок 3. ( a ) Сигналы управляющих импульсов и профили тока форсунок с прямым впрыском бензина (GDI) без операции переключения ШИМ, добавленные к длительности последнего импульса (I p1 = 180 мкс), ( b ) Сигналы управляющих импульсов и GDI Профили тока форсунок с операцией переключения ШИМ, добавленные к длительности последнего импульса (I p1 = 180 мкс).

Рисунок 4. Система подачи и впрыска топлива высокого давления (HP) (статическое измерение; 80–100 бар макс.).

Рисунок 4. Система подачи и впрыска топлива высокого давления (HP) (статическое измерение; 80–100 бар макс.).

Рисунок 5. Измерения количества динамического впрыска в. инжектор. ( a ) датчик SITRANS F C MASS 2100, ( b ) датчик MASS 6000.

Рисунок 5. Измерения количества динамического впрыска в. инжектор. ( a ) датчик SITRANS F C MASS 2100, ( b ) датчик MASS 6000.

Рисунок 6. Стенд для испытаний двигателей GDI с двигателем H.P. система подачи и впрыска топлива (80–100 бар макс.)

Рисунок 6. Стенд для испытаний двигателей GDI с двигателем H.P. система подачи и впрыска топлива (макс. 80–100 бар)

Рисунок 7. Блок-схема оптимизации рабочих факторов системы впрыска топлива высокого давления.

Рисунок 7. Блок-схема оптимизации рабочих факторов системы впрыска топлива высокого давления.

Рисунок 8. ( a ) график отклика отношения сигнал / шум (первое измерение Тагучи), ( b ) график отклика наклона β (первое измерение Тагучи).

Рисунок 8. ( a ) график отклика отношения сигнал / шум (первое измерение Тагучи), ( b ) график отклика наклона β (первое измерение Тагучи).

Рисунок 9. ( a ) График M-y оригинальной конструкции (первое измерение Тагучи), ( b ) график M-y новой конструкции (первое измерение Тагучи).

Рисунок 9. ( a ) График M-y оригинальной конструкции (первое измерение Тагучи), ( b ) график M-y новой конструкции (первое измерение Тагучи).

Рисунок 10. ( a ) график отклика отношения сигнал / шум (третье измерение Тагучи), ( b ) график отклика наклона β (третье измерение Тагучи).

Рисунок 10. ( a ) график отклика отношения сигнал / шум (третье измерение Тагучи), ( b ) график отклика наклона β (третье измерение Тагучи).

Рисунок 11. ( a ) График M-y оригинального дизайна (третье измерение), ( b ) график M-y нового дизайна (третье измерение).

Рисунок 11. ( a ) График M-y оригинального дизайна (третье измерение), ( b ) график M-y нового дизайна (третье измерение).

Таблица 1. Коэффициенты контроля количества впрыскиваемого топлива и соответствующих уровней (первое измерение Тагучи).

Таблица 1. Коэффициенты контроля количества впрыскиваемого топлива и соответствующих уровней (первое измерение Тагучи).

Этикетки Контрольный фактор Ед. B Ток первой ступени A 8 10 12
C Скорость об. / Мин. бар 80 90 100

Таблица 2. Необработанные данные крутизны β и отношения сигнал / шум для ортогонального массива L9 коэффициентов динамического управления для H.P. инжектор.

Таблица 2. Необработанные данные крутизны β и отношения сигнал / шум для ортогонального массива L9 коэффициентов динамического управления для H.P. инжектор.

45

61

909 Q1 909 Q1 9062 9062 Q1 9062 Q1 9062 Q1 9062 2 кв. 9

Таблица 3. Анализ ANOVA (первое измерение Тагучи).

Таблица 3. Анализ ANOVA (первое измерение Тагучи).

L 9 M = 1200 мкс M = 1400 мкс M = 1600 мкс M = 1800 мкс M = 2000 мкс β Sd
N1 N2 N1 N2 N1 N2 N1 N2 N1 N2
1 кв. 2 кв. 1 кв. 2 кв. 1 кв. 2 кв. 1 кв. 2 кв. 11.331 +11,265 11,401 11,367 13,124 13,211 13,121 13,087 15,119 15,398 15,243 15,133 17,149 16,943 17,043 17,198 19,079 19,178 19,086 18,984 9,490 0,117 38,197
2 12,266 12.305 +11,253 12,278 14,029 14,993 14,095 14,084 16,398 16,432 16,289 16,341 18,397 18,345 18,434 18,376 20,600 20,498 20,675 20,532 10,219 0,298 30,703
3 15,398 15,398 15.407 +15,374 14,617 14,598 14,681 14,677 16,637 16,703 16,749 16,598 18,938 18,821 19,078 18,987 20,963 21,078 20,898 20,877 10,731 1,185 19,141
4 12,635 12,643 12,598 12.698 +14,690 14,672 14,735 14,683 16,935 17,103 16,943 16,881 19,305 19,434 19,406 19,287 21,411 21,501 21,478 21,378 10,653 0,168 36,048
5 11,594 11.601 11,577 11,612 13.439 13,407 13,486 13,507 15,896 15,843 15,971 15,799 17,755 17,687 17,854 17,789 19,808 19,764 19,854 19,932 9,836 0.202 33.734
6 12.234 12.246 12.308 12.209 14.363 14.384 +14,401 14,334 16,307 16,391 16,402 16,251 18,541 18,398 18,601 18,579 20,526 20,411 20,576 20,654 10,257 0,083 41,880
7 11,912 11,983 11,871 11,923 13,849 13,879 13.911 13.861 15.888 15.838 15.909 15.793 18.040 18.165 17.986 18.109
8 12.904 12.891 11.032 12.911 14.885 14.906 14.867 14.919 17.111 17.071 17.045 16.972 19.445 19.395 19.502 19.487 21.549 11,746 11,735 11,762 11,741 13,795 13,832 13,763 13,781 15.638 15.731 15.593 15.691 17.761 17.846 17.702 17.802 19.655 19.843
Этикетки Разница Свобода Сумма квадратов F Вклад
A 0.5 2 0,2 0,03 2,72%
B 6,1 2 3,1 0,34 28,64%
0,04 3,53%
D 77,6 2 38,8 4,35 97,13%

Таблица 4. Прогнозируемые значения отношения сигнал / шум (S / N) и β для исходного и нового дизайна (первое измерение Тагучи).

Таблица 4. Прогнозируемые значения отношения сигнал / шум (S / N) и β для исходного и нового дизайна (первое измерение Тагучи).

Таблица 5. Исходные данные, крутизна β и отношение сигнал / шум для исходного и нового дизайна (первое измерение Тагучи).

Таблица 5. Исходные данные, крутизна β и отношение сигнал / шум для исходного и нового дизайна (первое измерение Тагучи).

Фактор Оригинальный дизайн Новый дизайн
Отклик Отклик
Настройка N / N β β
A 1 29.1 10,147 2 37,0 10,249
B 1 37,5 10,042 1 9077 9077 37,5 2 36,4 10,236
D 1 38,1 9,721 1 38,1 9,721
Среднее значение 342 10,190 34,2 10,190
Прогнозируемое значение 38,0 9,490 46,4 9,786
962 962 962 962 962 67 N1062 N1 67 N1062 9 N1 Q61 Q62 Q9
Exp M = 1200 мкс M = 1400 мкс M = 1600 мкс M = 1800 мкс M = 200010 мкс S / N
N1 N2 N1 N2 N1 N2 N2 B C D Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q2 Q61 Q62 Q1 Q61 Q1 Q2 Q1 Q2 Q1 Q2
Исходный 1 1 1 1 11.775 11,792 11,732 11,727 13,409 13,416 13,354 13,342 15,321 15,303 15,278 15,287 17,037 17,028 17,007 17,005 18,933 18,927 18,923 18,911 9,530 0,175 34,713
Новый 2 1 3 1 739 12,638 12,691 12,813 14,925 14,876 15,012 14,957 17,036 17,102 16,998 17,086 18,972 18,987 19,051 19,093 21,509 21,598 21,481 21,551 10,666 0,138 37,779

Таблица 6. Коэффициенты контроля количества впрыскиваемого топлива и соответствующих уровней (второе измерение Тагучи).

Таблица 6. Коэффициенты контроля количества впрыскиваемого топлива и соответствующих уровней (второе измерение Тагучи).

Этикетки Фактор Ед. B Ток включения первой ступени A 8 10 12
C Ток удержания второй ступени A * 3 * 4 *
4 5 6
D Давление топлива бар 80 90 100

Таблица 7. Вторые эксперименты над оригинальным и новым дизайном.

Таблица 7. Вторые эксперименты над оригинальным и новым дизайном.

962 962 962 962 67 N1062 N1 67 N1062 9 N1 Q1 Q9
Exp M = 1200 мкс M = 1400 мкс M = 1600 мкс M = 1800 мкс M = 200010 мкс S / N
N1 N2 N1 N2 N1 N2 N2 B C D Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q61 Q62 Q2 Q61 Q1 Q1 Q62 Q1 Q1 Q2 Q1 Q2 Q1 Q2
Исходный 1 1 1 9 0189 1 11.693 +11,713 11,643 11,674 13,272 13,288 13,038 13,131 15,280 15,295 15,166 15,236 16,991 16,959 16,993 17,018 18,965 18,975 18,954 18,988 9,499 0,156 35,680
Новый 3 1 1 1 901 7.009 7.753 7.749 7.229 7.396 7.898 7.784 7.402 7.777 7.205 7,586 7229 8,037 7,693 7,997 4,598 1,204 11,642

Таблица 8. Необработанные данные, крутизна β и отношение сигнал / шум для ортогонального массива L9 коэффициентов динамического управления для H.Инжектор P. (третье измерение Тагучи).

Таблица 8. Исходные данные, крутизна β и отношение сигнал / шум для ортогонального массива L9 коэффициентов динамического управления для H.P. инжектор (третье измерение Тагучи).

62 61 9061 Q2 Q2 Q2 Q62 9

Таблица 9. Анализ ANOVA (третье измерение Тагучи).

Таблица 9. Анализ ANOVA (третье измерение Тагучи).

M = 1200 мкс M = 1400 мкс M = 1600 мкс M = 1800 мкс M = 2000 мкс β Sd S / N
N1 N2 N1 N2 N1 N2 N1 N2 N1 N2
2-й квартал 1-й квартал 2-й квартал 1-й квартал 2-й квартал 1-й квартал 2-й квартал 1-й квартал 2-й квартал 1-й квартал 2-й квартал Q1 Q2 Q1 909 1 11.693 11,713 11,643 11,674 13,272 13,288 13,038 13,131 15,280 15,295 15,166 15,236 16,991 16,959 16,993 17,018 18,965 18,975 18,954 18,988 9,499 0,160 35,457
2 12,841 12.854 12,849 12,864 14,478 14,503 14,543 14,558 16,596 16,629 16,612 16,631 18,394 18,428 18,504 18,535 20,479 20,527 20,545 20,564 10,351 0,231 33,040
3 13,205 13,284 13.268 +13,358 15,083 15,118 15,177 15,197 17,014 17,025 17,228 17,274 19,023 19,045 19,297 19,348 21,128 21,151 21,414 21,456 10,731 0,246 32,780
4 12,729 12,778 12,793 12.806 +14,521 14,540 14,579 14,644 16,763 16,789 16,825 16,863 18,679 18,695 18,832 18,851 20,915 20,934 20,992 21,037 10,480 0,126 38,421
5 12,306 12,286 12,358 12,339 13.876 По 13,904 14,060 14,061 15,905 15,947 15,966 16,002 17,683 17,716 17,812 17,842 19,627 19,681 19,719 19,743 9,942 0,219 33,122
6 12,651 12,675 12,747 12,773 14,534 14.579 14.649 14.678 16.486 16.536 15.592 16.638 18.506 18.536 18.685 31,270
7 12,419 12,428 12,385 12,402 14,169 14,179 14.176 14.182 16.295 16.323 16.263 16.288 18.174 18.187 18.175 18.178
8 13,016 13,043 13,045 13,067 14,783 14,834 14,895 14.916 17,092 17.128 17.118 17.155 19.096 19.145 19.168 19.235 21.282 12,462 12,438 12,442 12,446 14,237 14,254 14,269 14,294 16.158 16.196 16.203 16.229 18.007 18.024 18.067 18.090 19.894 19.932
0
Фактор SS DOF Var F Доверие Значительно?
А 19.4 2 9,7 2,997 83,98% Да
B 33,7 2 16,8 5,211
D Объединенный
Ошибка 12,9 4 3,2 S = 1,8
8 8,2 * Уровень достоверности не менее 80%

Таблица 10. Прогнозируемые значения отношения сигнал / шум и β для оригинального и нового дизайна. (третье измерение Тагучи).

Таблица 10. Прогнозируемые значения отношения сигнал / шум и β для оригинального и нового дизайна. (третье измерение Тагучи).

9177
Фактор Оригинальный дизайн Новый дизайн
Настройка Отклик Настройка Отклик
S / N β А 1 32.6 10.205 3 36.0 10.185
B 1 37,3 10.002 1 9077 37.3 1 34,9 10,170
D 1 33,7 9,808 3 36,2 10,633
10,218 34,6 10,218
Прогнозируемое значение 34,7 9,530 40,5 10,334

Таблица 11. Подтверждающие эксперименты для оригинального и нового дизайна.

Таблица 11. Подтверждающие эксперименты для оригинального и нового дизайна.

962 962 962 962 67 N1062 N1 67 N1062 Q1 Q9
Exp M = 1200 мкс M = 1400 мкс M = 1600 мкс M = 1800 мкс M = 200010 мкс S / N
N1 N2 N1 N2 N1 N2 N2 B C D Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q61 Q62 Q2 Q61 Q1 Q1 Q62 Q1 Q1 Q2 Q1 Q2 Q1 Q2
Исходный 1 1 1 1 11.775 +11,792 11,732 11,727 13,409 13,416 13,354 13,342 15,321 15,303 15,278 15,287 17,037 17,028 17,007 17,005 18,933 18,927 18,923 18,911 9,530 0,175 34,713
Новый 3 1 1 3 12.581 +12,578 12,521 12,527 14,348 14,352 14,307 14,322 16,537 16,551 16,514 16,515 18,491 18,502 18,476 18,481 20,616 20,618 20,614 20.609 10,309 0,103 40,021
3 1 3 3 12.754 с +12,747 12,724 12,735 14,569 14,584 14,609 14,598 16,649 16,653 16,685 16,686 18,724 18,713 18,767 18,757 20,727 20,724 20,791 20,783 10,426 0,117 39,031

Таблица 12. Улучшение значения дБ для оригинального и нового дизайна.

Таблица 12. Улучшение значения дБ для оригинального и нового дизайна.

Уровень Расчетный Прогноз Разница Улучшение
Серийный номер Серийный номер 1 дБ 1 дБ −0,253 5,308
Оптимальный A3B1BC1D3 40.

Добавить комментарий

Ваш адрес email не будет опубликован.