Меню Закрыть

Как устроена турбина в двигателе автомобиля: Принцип работы турбины – как она работает

Содержание

Принцип работы турбины – как она работает


Турбокомпрессор или попросту турбина – это дополнительное устройство двигателя, которое для своей работы использует энергию отработавших газов. Что позволяет увеличить мощность двигателя на величину от 25% до 100%. Прежде чем понять, как работает турбокомпрессор, стоит рассмотреть функционирование двигателя внутреннего сгорания.

Принцип работы ДВС

Любой двигатель внутреннего сгорания, дизельный или бензиновый, работает на принципе получения энергии, образующейся от воспламенения топливовоздушной смеси в камерах сгорания. Через впускные клапаны в цилиндр подается отфильтрованный внешний воздух и впрыскивается топливо, причем при пассивной подаче воздуха, в цилиндр подается дозированное количество топлива. Именно эта смесь сгорает в цилиндре и заставляет двигаться поршень, который передает свою кинетическую энергию на ходовую систему автомобиля. Чем больше такой смеси подается и сгорает в цилиндрах, тем больше выходной крутящий момент и соответственно выше общая мощность мотора.

Принцип работы турбины

Для увеличения подачи воздуха в цилиндр, без изменения объема самого цилиндра, используют турбокомпрессор. При работе турбины используются продукты сгорания топливной смеси, которые приводят в действие роторный механизм турбокомпрессора, с помощью которого атмосферный воздух принудительно нагнетается в цилиндры (турбонаддув). И, благодаря этому, в цилиндр подается и большая дозировка топлива. Во время нагнетания, воздух может нагреваться, из-за чего уменьшается его плотность и масса в цилиндрах. Для подачи большего количества воздуха, его необходимо охладить. Для лучшего охлаждения используется радиаторное устройство, называемое интеркулером, который устанавливается на выходе из холодной части турбокомпрессора и через который проходит воздух перед попаданием в цилиндры. На следующем этапе поршень всасывает этот охлажденный воздух через впускные клапаны и одновременно в камеру сгорания подается топливо, образуется топливовоздушная смесь. Возгорание топливной смеси происходит от искры (бензиновые двигатели), либо от сжатия (дизельные двигатели). После того, как произошло сгорание порции смеси, продукты горения выбрасываются через выпускной клапан и попадают снова в турбину, на ее ротор. Таким образом, она работает без участия движущих частей двигателя, используя энергию потока выхлопных газов.

Для каждого двигателя турбокомпрессор подбирается индивидуально, исходя из его собственной мощности и объема. Причем величина наддува зависит от геометрических параметров (размеров) улиток, компрессорного колеса, ротора турбины. Некоторые конструкции двигателей оборудуют не одной турбиной, а двумя: одинакового размера – би-турбо, разного размера – твин-турбо. В последнее время широкое распространение получили турбокомпрессоры с механизмом изменяемой геометрии. Стоит отметить, что сложность, а соответственно и стоимость ремонта турбины зависит от ее конструктивных особенностей и модификации.

Механизм изменяемой геометрии

Такой механизм позволяет дозировать подачу отработавших газов на колесо в турбине (ротор). Тем самым, позволяет оптимизировать работу турбокомпрессора на различных оборотах.

Это достигается за счет движения специальных лопаток, смонтированных на кольце геометрии. Они синхронно передвигаются, получая движение от вакуумного актуатора или электронного сервопривода в определенный момент, и контролируют наддув. Как правило, устанавливаются они на дизельных ДВС, потому как температура выхлопных газов у бензиновых моторов выше, чем у дизеля, соответственно лопатки геометрии могут деформироваться. Такие турбины позволяют оптимизировать процесс турбонаддува, что приводит к уменьшению расхода топлива и вредных выбросов при одновременном повышении мощности и крутящего момента.

Многие автомобилисты ошибочно полагают, что турбокомпрессор начинает включаться в работу с оборотов мотора от 1500-2000 об/мин. На самом деле, он запускается сразу после заводки автомобиля и работает на холостом ходу. А оптимальных оборотов достигает в диапазоне свыше 1500 об/мин.

Турбокомпрессор достаточно надежный агрегат, однако если Вы столкнулись с его поломкой, решить проблему Вам помогут специалисты ТурбоМикрон. Мы производим замену турбины на автомобиле, а также ремонт снятых с авто турбокомпрессоров.

Принцип работы турбины. Как работает турбонаддув в автомобиле

Для более ясного представления о том, как работает турбина в автомобиле, прежде всего необходимо ознакомится с принципом работы двигателя внутреннего сгорания. Сегодня, основная масса грузовых и легковых автомобилей оснащаются 4-х тактными силовыми агрегатами, работа которых контролируется впускными и выпускными клапанами.

Каждый из рабочих циклов такого двигателя состоит из 4 тактов, при которых коленвал делает 2 полных оборота

 

Впуск — при этом такте осуществляется движение поршня вниз, при этом в камеру сгорания поступает смесь топлива и воздуха (если это бензиновый двигатель) или только воздуха в случае если это дизельный агрегат.

Компрессия — при этом такте происходит сжатие горючей смеси.

Расширение — на этом этапе происходит воспламенение горючей смеси при помощи искры, вырабатываемой свечами. В случае с дизельным двигателем, воспламенение осуществляется произвольно под действием высокого давления впрыска.

Выпуск — поршень двигается вверх, при этом освобождаются выхлопные газы.

Такой принцип работы двигателя определяет следующие способы повышения его эффективности:

— Установка турбонаддува
— Увеличение рабочего объёма двигателя
— Увеличение числа оборотов коленчатого вала двигателя

Как работает турбина в автомобиле?

 

 

 

Увеличение рабочего объёма двигателя

Увеличение объёма двигателя возможно двумя путями: либо увеличением объема камер сгорания, либо — увеличением количества цилиндров в силовом агрегате. Однако такой способ повышения мощности не совсем оправдан, так как имеет ряд недостатков, среди которых: повышенный расход топлива.

Увеличение числа оборотов коленчатого вала двигателя

Еще один возможный способ повышения производительности двигателя заключается в увеличении числа оборотов коленчатого вала. Это достигается путем увеличения количества ходов поршня за единицу времени. Но использование такого способа имеет жесткие ограничения, которые обусловлены техническими возможностями двигателя. Кроме этого, такая модернизация приводит к падению эффективности работы силового агрегата из-за потерь при впуске и других операциях.

Турбонаддув

В двух предыдущих способах двигатель использует воздух, который поступает благодаря собственному нагнетанию. При использовании турбокомпрессора в цилиндр поступает тот же объем воздуха но с предварительным его сжатием. Это дает возможность поступлению большего количества воздуха в цилиндр, благодаря чему появляется возможность сжигания большего объема топлива. При использовании такой технологии, мощность двигателя возрастает по отношению к количеству потребляемого топлива и объему двигателя.

Охлаждение воздуха

В процессе компрессии воздух может нагреваться вплоть до 180 С. Однако воздух имеет свойство увеличения плотности при охлаждении, что дает возможность значительно увеличить объем воздуха, попадающего в цилиндр. Кроме этого, увеличение плотности воздуха существенно снижает расход топлива и количество выбросов продуктов сгорания.

Также существует два разных типа турбонаддува: турбокомпрессор, основанный на использовании энергии выхлопных газов и турбонагнетатель с механическим приводом.

Турбонагнетатель с механическим приводом

В случае использования такого типа компрессии, воздух сжимается благодаря специальному компрессору, который работает от привода двигателя. Но такой метод имеет один большой недостаток. Все дело в том, что при использовании механического турбокомпрессора часть мощность двигателя уходит на обеспечение работы самого компрессора, по этому двигатель, оборудован таким нагнетателем, имеет больший расход топлива чем обычный двигатель такой же мощности.

Турбокомпрессор основанный на использовании энергии выхлопных газов

Такой метод основан на использовании энергии выхлопных газов, которая направлена на привод турбины. При использовании такого способа отсутствует механическое соединение с двигателем, благодаря чему потери мощности не происходит.

Основные преимущества двигателей с турбонаддувом

1) Турбодвигатель имеет меньшее показатели по расходу топлива нежели двигатель без турбины той же мощности и при прочих равных условиях.

2) Силовой агрегат с с турбонаддувом имеет заметно лучшие показатели соотношения веса двигателя к развиваемой им мощности.

3) Использование турбокомпрессора открывает новые возможности по оптимизации других параметров и характеристик двигателя, а также улучшения крутящего момента, что позволит избежать очень часто переключения передач при езде в пробках или гористой местности.

4) Турбодвигатели работают тише чем агрегаты такой же мощности без турбонаддува.

Система турбонаддува — принцип работы турбины, устройство турбокомпрессора автомобиля

Мощность двигателя автомобиля напрямую зависит от того, какое количество топлива и какой объем воздуха поступают в двигатель. Чтобы повысить мощность двигателя, логично увеличить количество этих компонентов. 

Просто увеличить количество топлива недостаточно, если при этом не увеличить объем воздуха, необходимого для максимально полного сгорания топлива. Использование турбокомпрессора дает возможность доставить больший объем воздуха в цилиндры, предварительно сжав его.

Принцип работы турбины двигателя таков: в цилиндры под давлением отработанных газов подается сжатый воздух, который вращает крыльчатку. Компрессор, расположенный на одном валу с крыльчаткой, нагнетает давление в цилиндр.

Турбонаддув от выхлопных газов – наиболее эффективная система увеличения мощности двигателя. Использование турбонаддува не увеличивает объем цилиндров и не влияет на частоту вращения коленвала.

Таким образом, помимо увеличения мощности, турбонаддув позволяет рационально расходовать топливо и уменьшить токсичность отработанных газов благодаря тому, что топливо сгорает полностью. 

Устройство турбокомпрессора автомобиля

Система турбонаддува используется не только в дизельных, но и в бензиновых двигателях.

Система турбонадува состоит из следующих элементов:

  • Турбокомпрессора;
  • Интеркулера;
  • Перепускного клапана;
  • Регулировочного клапана;
  • Выпускного коллектора.

 

Принцип работы турбины дизельного двигателя

Работа дизельной турбины также основана на использовании энергии выхлопных газов. 

В общих чертах принцип работы турбины дизеля выглядит так.

От выпускного коллектора выхлопные газы направляются в приемный патрубок турбины, после попадают на крыльчатку, принуждая ее двигаться.  С крыльчаткой на одном валу расположен компрессор, который нагнетает давление в цилиндрах.

Основное отличие турбокомпрессорных агрегатов от атмосферных дизелей в том, что  здесь в цилиндры воздух подается принудительно и под высоким давлением. Поэтому на цилиндр попадает значительно большее количество воздуха. В сочетании с большим объемом подающегося топлива мы получаем прирост мощности порядка 25%. При этом пропорции воздушно-топливной смеси остаются неизменными.

Чтобы еще больше увеличить объем поступающего в цилиндры воздуха, используется интеркулер – устройство, предназначенное для охлаждения атмосферного воздуха перед подачей его в двигатель. Это позволяет за один цикл подать в цилиндр еще больше воздуха, так как, холодный, он занимает меньше места.

Технология турбонаддува используется в случаях, когда необходимо увеличить мощность мотора и при этом оставить неизменными его размеры и габариты.

Более наглядно схема работы турбины показана в этом видео:

 

 

 

Принцип работы дизельной турбины несколько отличается от работы турбины на бензиновом двигателе. В чем отличие? Давайте рассмотрим подробнее.

 

Отличие работы турбины бензинового двигателя

Основное отличие турбин бензинового двигателя от турбин дизельного в том, что последние раскручиваются с помощью выхлопных газов, температура которых достигает 850 градусов.  А турбина бензинового двигателя раскручивается с помощью газов, имеющих температуру от 1000 градусов. Имея одинаковый принцип работы, бензиновая турбина изготовлена из более жароустойчивых сплавов, нежели турбина дизельная.

Само строение бензиновой турбины также имеет некоторые отличия, в частности угол входа, крутка лопаток и т.д. По этой причине не стоит использовать дизельные турбины для наддува бензинового двигателя, впрочем, как и наоборот (подробнее в статье).

 

 

 Вернутся к списку «Статьи и новости»

Устройство и принцип действия турбокомпрессора авто

Устройство и принцип действия турбокомпрессора направлены на увеличение давления топлива в коллекторе впуска для обеспечения максимального поступление кислорода в камеру, где происходит сгорание. Основное назначение турбины – значительное увеличение мощности двигателя. Даже увеличение давления на 1 атмосферу в коллекторе приводит к попаданию в двигатель двойной порции кислорода. Это позволяет даже небольшому двигателю отдавать такую мощность, как вдвое больший его аналог, но не оснащенный турбонаддувом.


Турбонаддув – принцип работы

Рассмотрим, принцип работы турбины на авто. Поток выхлопных газов поступает из выпускного коллектора в горячую часть турбины, там воздействует на лопасти крыльчатки, приводя ее в движение вместе с валом. На нем закреплена также крыльчатка компрессора, расположенного в холодном отсеке турбины. Она при вращении повышает давление в системе впуска, обеспечивая увеличенное поступление в камеру сжигания топлива и воздуха.

Устройство турбины автомобиля не сложное, она состоит из:
  • Улитки компрессора, которая всасывает воздух, а затем нагнетает его в коллектор впуска;
  • Улитки, расположенной в горячей части – здесь выхлопные газы заставляют вращать турбину, после чего выбрасываются в систему отработанных газов на выход;
  • Крыльчатки компрессора, а также ее аналога в горячей части;
  • Шарикоподшипникового картриджа;
  • Корпуса, соединяющего улитки, имеющего систему охлаждения и системы подшипников.

Во время работы устройство подвергается значительным термодинамическим нагрузкам. Попадающие в турбину выхлопные газы достигают температуры 900°С, из-за чего ее корпус делают чугунным, причем для отливки используется особая технология. Обороты турбинного вала могут достигать показателя 200 000 об/мин, поэтому в конструкцию устанавливают высокоточные детали, которые тщательно подгоняют и затем балансируют. Также для турбины предъявляются высокие требования к смазочным материалам. Отдельные турбонагнетатели оборудованы так, что система смазки является одновременно охлаждением узла подшипников.


Система охлаждения и устройство турбокомпрессора автомобиля

Охлаждающая система турбокомпрессоров необходима для улучшения передачи тепла от его механизмов и частей. Наиболее распространенные варианты охлаждения деталей — масляный способ и комплексное охлаждение антифризом и маслом. Оба типа имеют свои преимущества, но не лишены и недостатков.

Охлаждение маслом

Достоинства:
  • Простая конструкция;
  • Удешевление турбокомпрессора.
Недостатки:
  • Меньшая эффективность в сравнении с системой, где выполняется использование антифриза с маслом;
    Высокая требовательность к составу масла;
  • Необходимость часто его менять;
  • Требовательность к контролированию температурного режима.

Изначально устройство турбокомпрессора имело только масляное охлаждение, которое быстро достигало высоких температур, проходя через подшипники. Такое масло начинает сразу закипать, возникает эффект коксования, из-за которого забиваются каналы, существенно ограничивая доступ охлаждения и смазки к подшипникам.


В результате подшипники изнашиваются, их заклинивает, необходим дорогостоящий ремонт. У такой неполадки имеется несколько причин:
  • Некачественное или не то, которое рекомендовано для двигателя масло;
  • Превышение сроков замены масла;
  • Неисправности смазочной системы двигателя автомобиля.

Комплексное охлаждение турбины антифризом и маслом

Преимуществом этого варианта становится большая эффективность получаемого охлаждения. Существенный недостаток – усложнение конструкции турбонагнетателей, что повышает их стоимость.

Устройство турбонаддува в варианте охлаждения турбин антифризом и маслом более сложное, поскольку в нем имеется отдельный масляный контур, а также система с охлаждающей жидкостью. Зато повышается эффективность работы, устраняются проблемы закипания масла.

Для такого турбонагнетателя масло служит, как и прежде, для охлаждения и смазки подшипников, а антифриз, подаваемый из общей цепи охлаждения двигателя, предотвращает перегрев и не дает закипать маслу. Из-за такой сложности увеличивается цена турбонагнетателя.

Что такое интеркулер на авто?

При работе горячей турбины воздух, нагнетаемый компрессором в ее корпусе, сильно сжимается, отчего происходит его нагрев. Это вызывает нежелательные последствия, поскольку при высокой температуре в воздухе меньше кислорода. Значит, эффективность наддува также снижается. Для борьбы с подобным явлением начали, используя рекомендации ученых, устанавливать в турбину интеркулер – вспомогательный охладитель воздуха.

Конструкторы устройства отмечают, что нагрев воздуха далеко не единственная задача, которую им приходится решать при проектировании турбины. Насущной проблемой также становится ее инерционность – задержка реакции двигателя на открытие в коллекторе дроссельной заслонки.

Турбина максимально эффективна, когда достигаются определенные обороты вращения коленчатого вала. Среди автолюбителей даже распространено мнение, что турбонаддув включается только тогда, когда скорость автомобиля достигает определенного значения. Хотя турбина работает постоянно, а значение числа оборотов, при которых ее действие наиболее эффективно, для каждого двигателя индивидуальное.

Отличия твин турбо и битурбо

Решая проблемы устройства турбин, конструкторами была разработана схема, в которой соединились нагнетатели двух компрессоров. Эта конструкция получила название twin-turbo.


Твинтурбо – это система, в которой несколько одинаковых турбин соединены параллельно. Их задача – повысить давление и объем поступающего воздуха. Система управления включает твин-турбо в момент, когда необходимо получить на повышенных оборотах максимальную мощность.

Подобный компрессор реализован в прославленном японском авто бренда Nissan, который получил имя Skyline Gt-R.

В нем установлен мотор rb26-dett. Аналогичная система, однако, оснащенная одинаковыми небольшими турбинами позволяет получить заметный прирост мощности даже при малых оборотах, при этом поддерживать турбонаддув постоянно.

Последовательное соединение разных турбин получило название «битурбо».

Конструкция сделана так, что при невысоких оборотах функционирует лишь маленькая турбина, которая обеспечивает «отзывчивость» при плавно изменяемой скорости. Если обороты резко возрастают, включается «крупная» турбина». Это позволяет машине получить значительный прирост производительности, причем в любом диапазоне функционирования двигателя. Подобная система реализована в моделях BMW biturbo, тюнинг которых вызывает восхищение.



Инновационные разработки

В числе современных разработок, уже радующих автовладельцев, турбина VGT, у которой лопатки крыльчатки изменяют свой угол наклона, направляя ее в сторону, куда направлены выхлопные газы.


Когда обороты двигателя небольшие, становится более узким пропускное сечение выхода в турбину выхлопных газов, поэтому «выхлоп» получается более быстрым. Чаще эту систему применяют для дизельных агрегатов, но есть разработки и для бензиновых двигателей.

Также к инновационным разработкам относится система twinscroll, где благодаря двойному контуру, по которому совершают обход выхлопные газы, получается, что их энергия вращает общий ротор с компрессором и крыльчаткой.

При этом имеется два варианта реализации:
  1. Выхлопные газы проходят одновременно оба контура и система функционирует как twinturbo.
  2. Второй тип работает наподобие схемы biturbo – имеется два контура, у которых разная геометрия. Когда обороты невысокие, выхлопные газы идут по краткому контуру, увеличивающему энергию и скорость благодаря небольшому диаметру. Если обороты повышаются, выхлопные газы поступают в контур, имеющий больший диаметр – при этом рабочее давление сохраняется во впускной системе и отсутствует запор для выхлопных газов. Распределение регулируют механические элементы — клапаны, переключающие потоки.

Сейчас  выпускают усовершенствованные турбины, поэтому их популярность возрастает все больше . Турбокомпрессоры перспективны как в плане форсирования моторов, так и потому, что повышают экономичность двигателя, чистоту его выхлопа.

Как работает турбокомпрессор

Как работает турбокомпрессор
 
Содержание статьи
 
  1. Введение
  2. Турбокомпрессоры и двигатели
  3. Устройство турбокомпрессора
  4. Детали турбокомпрессора
  5. Использование двух турбокомпрессоров и других турбо деталей
  6. Узнать больше
  7. Читайте также » Все статьи про работу двигателя
 
 
В этой статье мы узнаем, каким образом турбокомпрессор увеличивает мощность двигателя в жестких условиях эксплуатации. Мы также узнаем о том, как регуляторы давления наддува, керамические лопатки турбины и шариковые подшипники улучшают работу турбокомпрессора. Турбокомпрессоры являются своего рода системой наддува. Они сжимают воздух, поступающий в двигатель (читайте статью «Как работает автомобильный двигатель» для описания движения воздуха в обычном двигателе). Преимущество сжатия воздуха состоит в том, что при этом можно впустить больше воздуха в цилиндр, и, соответственно, больше топлива. Таким образом, при каждом взрыве в цилиндрах высвобождается больше энергии. Двигатель с турбонаддувом является более мощным по сравнению с обычным двигателем. Благодаря этому существенно увеличивается удельная мощность двигателя (для получения более подробной информации, рекомендуем прочитать статью «Как работает лошадиная сила»).
 
Для увеличения мощности двигателя, турбокомпрессор использует выхлопные газы для вращения турбины, которая, в свою очередь, вращает нагнетатель воздуха. Турбина турбокомпрессора вращается со скоростью до 150.000 оборотов в минуту (об/мин) — это примерно в 30 раз быстрее, чем скорость вращения большинства автомобильных двигателей. В связи с тем, что выхлоп идет на турбокомпрессор, температура в турбине очень высокая.
 
Далее мы расскажем о том, как узнать, насколько увеличится мощность двигателя, если установить турбокомпрессор.

 
 
 

Система турбонаддува автомобиля Mitsubishi Lancer Evolution IX.
 
Турбокомпрессоры и двигатели
 
Одним из самых эффективных способов увеличения мощности двигателя является увеличение количества сгораемого воздуха и топлива. Для этого можно установить дополнительные цилиндры или увеличить их объем. В некоторых случаях невозможно осуществить эти модификации, поэтому установка турбокомпрессора может стать более простым и компактным способом увеличения мощности, особенно для подержанных автомобилей.
 
Турбокомпрессоры позволяют двигателю сжигать больше топлива и воздуха благодаря увеличению подачи смеси в цилиндры. Стандартное давление сжатия воздуха турбокомпрессором составляет 6-8 фунт/дюйм2 (0,4 — 0,55 бар). Учитывая, что нормальное атмосферное давление составляет 14,7 фунт/дюйм2 (1 бар), при помощи турбокомпрессора в двигатель поступает на 50% больше воздуха. Следовательно, можно рассчитывать на увеличение мощности двигателя на 50%. Однако, эта технология не идеальна, поэтому мощность увеличивается на 30 — 40%.
 
Одна причина недостаточной эффективности состоит в том, что энергия, которая вращает турбину, не является свободной. Турбина, установленная в потоке выхлопных газов, создает препятствие для выхода газов. Это означает, что во время такта выпуска двигатель должен преодолеть высокое противодавление. В связи с этим происходит расход энергии работающих цилиндров.
 

 
Расположение турбокомпрессора в автомобиле

 
Устройство турбокомпрессора
 
Турбокомпрессор крепится к выпускному коллектору двигателя при помощи болтового соединения. Выхлопы из цилиндра вращают турбину, которая работает как газотурбинный двигатель. Турбина при помощи вала соединяется с компрессором, который установлен между воздушным фильтром и впускным коллектором. Компрессор сжимает воздух, поступающий в цилиндры.
 
Отработанные газы от цилиндра проходят через лопатки турбины, вызывая ее вращение. Чем больше выхлопных газов проходит через лопатки, тем быстрее происходит вращение.
 
С другой стороны вала, который установлен на турбине, компрессор вводит воздух в цилиндры. Компрессор представляет собой своего рода центробежный насос — он втягивает воздух в центр лопаток и выпускает его под давлением во время вращения.
 
Для того, чтобы выдержать скорость вращения до 150.000 об/мин, вал турбины должен иметь надежную опору. Большинство подшипников не выдержит такую скорость и взорвется гидростатические подшипники. Такой тип подшипников поддерживает вал на тонком слое масла, которое непрерывно подается. Это обусловлено двумя причинами: Масло охлаждает вал и некоторые другие детали турбокомпрессора и позволяет валу вращаться, снижая трения.
 
Существует много различных решений, связанных с конструкцией турбокомпрессоров для автомобильных двигателей. На следующей странице мы расскажем о некоторых оптимальных вариантах и рассмотрим, как они влияют на работу двигателя.
 

Слишком сильное сжатие?

 

Когда воздух под давлением запускается в цилиндры при помощи турбокомпрессора и затем сжимается поршнями (читайте статью «Как работает автомобильный двигатель» для наглядного описания), существует риск самовозгорания смеси. Возгорание может произойти при сжатии воздуха, т.к. при этом возрастает температура. При высокой температуре может произойти возгорание еще до срабатывания свечи зажигания. Для предотвращения раннего сгорания топлива, автомобили с турбокомпрессором рекомендуется заправлять высокооктановым бензином. Если давление наддува слишком высокое, возможно придется уменьшить степень сжатия двигателя для того, чтобы избежать раннего сгорания топлива.

 

 

Как устанавливается турбокомпрессор
 
 
 

 

Как турбокомпрессор выглядит изнутри
 

 

 
Детали турбокомпрессора
 
Одна из основных проблем турбокомпрессоров состоит в том, что они не обеспечивают мгновенный форсированный наддув по нажатию на педаль газа. Турбине требуется несколько секунд для того, чтобы набрать скорость вращения, необходимую для наддува. В результате возникает задержка между временем нажатия на педаль газа и временем начала ускорения автомобиля при срабатывании турбины.
 
Одним из способов устранения задержки является снижение инерции вращающихся деталей, благодаря снижению их массы. Это способствует более быстрому набору скорости вращения турбины и компрессора и раннему началу наддува. Одним из наиболее надежных способов снижения инерции турбины и компрессора является уменьшение их размеров. Небольшой турбокомпрессор быстрее начнет наддув при низкой скорости работы двигателя, однако он не сможет обеспечить достаточный наддув при больших скоростях двигателя, когда в цилиндры поступает значительные объемы воздуха. Также существует риск слишком быстрого вращения на высоких скоростях двигателя, т.к. при этом через турбину проходит значительный объем выхлопа.
 
Большой турбокомпрессор может обеспечить сильный наддув при высокой скорости вращения двигателя, однако при этом может наблюдаться сильная задержка наддува, т.к. необходимо определенное время на разгон тяжелой турбины и компрессора. К счастью, существует ряд решений данных проблем.
 
В большинстве автомобильных турбокомпрессоров используется регулятор давления наддува, который позволяет уменьшить время задержки наддува небольших турбокомпрессоров, предотвращая слишком быстрое вращение при высокой скорости вращения двигателя. Регулятор давления наддува представляет собой клапан, который обеспечивает выпуск выхлопа в обход лопаток турбины. Регулятор давления наддува измеряет давление наддува. Если давление слишком высокое, это означает, что турбина вращается слишком быстро, поэтому регулятор давления наддува выпускает определенное количество выхлопа в обход лопаток для снижения скорости вращения турбины.
 
В некоторых турбокомпрессорах используются шариковые подшипники вместо гидростатических подшипников для поддержки вала. Но это не обычные шариковые подшипники – это особые подшипники, изготовленные из специального материала, которые могут выдержать скорости и температуры турбокомпрессора. Они снижают трение вала турбины при вращении, как и гидростатические подшипники. Они также позволяют использовать меньший и облегченный вал. Благодаря этому происходит быстрый набор скорости турбокомпрессором, что, в свою очередь, снижает задержку.
 
Керамические лопатки турбины легче стальных лопаток, которые используются в большинстве турбокомпрессоров. Благодаря этому опять же происходит быстрый набор скорости турбокомпрессором, что снижает задержку.
 

 

Турбокомпрессор обеспечивает наддув при большой скорости вращения двигателя.
 

 
Использование двух турбокомпрессоров и других турбо деталей
 
На некоторые двигатели устанавливается два турбокомпрессора разного размера. Малый турбокомпрессор быстрее набирает обороты, снижая тем самым задержку ускорения, а большой обеспечивает больший наддув при высокой скорости вращения двигателя.
 
Когда воздух сжимается, он нагревается, а при нагревании воздух расширяется. Поэтому повышение давления от турбокомпрессора происходит в результате нагревания воздуха до его впуска в двигатель. Для того, чтобы увеличить мощность двигателя, необходимо впустить в цилиндр как можно больше молекул воздуха, при этом не обязательно сжимать воздух сильнее.
 
Охладитель воздуха или охладитель наддувочного воздуха является дополнительным устройством, которое выглядит как радиатор, только воздух проходит как внутри, так и снаружи охладителя. При впуске воздух проходит через герметичный канал в охладитель, при этом более холодный воздух подается снаружи по ребрам при помощи вентиляторов охлаждения двигателя.
 
Охладитель увеличивает мощность двигателя, охлаждая сжатый воздух от компрессора перед его подачей в двигатель. Это значит, что если турбокомпрессор сжимает воздух под давлением 7 фунт/дюйм2 (0,5 бар), охладитель осуществит подачу охлажденного воздуха под давлением 7 фунт/дюйм2 (0,5 бар), который является более плотним и содержит больше молекул, чет теплый воздух.
 
Турбокомпрессоры также обладают преимуществом на большой высоте, где плотность воздуха ниже. Обычные двигатели будут работать слабее на большой высоте над уровнем моря, т.к. на каждый ход поршня подаваемая масса воздуха будет меньше. Мощность двигателя с турбокомпрессором также снизится, но менее заметно, т.к. разреженный воздух легче сжимать.
 
В старых автомобилях с карбюраторами автоматически увеличивается подачу топлива в соответствии с увеличением подачи воздуха. В современных автомобилях происходит то же самое. Система впрыска топлива ориентируется на данные датчика кислорода в выхлопе для определения необходимого соотношения топлива и воздуха, так что система автоматически увеличивает подачу топлива при установленном турбокомпрессоре.
 
При установке мощного турбокомпрессора на двигатель с впрыском топлива, система может не обеспечить необходимое количество топлива — либо программное обеспечение контроллера не допустит, либо инжекторы и насос не смогут осуществить необходимую подачу. В этом случае необходимо осуществлять уже другие модификации для максимального использования преимуществ турбокомпрессора.
 
Для получения большей информации по турбокомпрессорам, рекомендуем ознакомиться со ссылками на следующей странице.
 

 

Mazda RX-8 купе-кабриолет с установленной системой турбонаддува
 
Источник:  https://auto.howstuffworks.com/

Турбина двигателя с изменяемой геометрией (VNT)

Турбина с изменяемой геометрией

Содержание:

 

Турбокомпрессор используется для увеличения мощности двигателя, которая напрямую зависит от объема воздуха и топлива, подаваемого в цилиндр. Ведущими частями любого турбокомпрессора являются турбина и насос, которые соединены между собой жесткой осью. Турбина двигателя с изменяемой геометрией необходима для образования оптимальной мощности двигателя, имеет свойство изменять сечение турбинных колес в зависимости от общей нагрузки. Если двигатель работает на низких оборотах, то турбина может увеличить скорость отвода выхлопных газов. Это позволяет турбине вращаться быстрее, при этом количество топлива остается небольшим.

   

Как устроена турбина и как она работает

Турбина с измененной геометрией отличается от классических турбокомпрессоров тем, что имеет в своей конструкции кольцо и специальные лопасти с аэродинамической формой, которая способствует увеличению эффективности наддува. В автомобилях с двигателями небольшой мощности сечение регулируется посредством изменения ориентации этих лопастей. В двигателях большой мощности лопасти не вращаются, а покрываются специальным кожухом или перемещаются вдоль оси камеры.

Особенностью VNT турбины являются поворотные лопасти, механизм управления и вакуумный привод. Принцип работы основывается на регулировке потока отработавших газов, которые направляются на колесо турбины. Точная регулировка позволяет настроить проходное сечение для потока газов под режим работы двигателя. Если автомобиль двигается на небольшой скорости, то и турбина крутится медленнее, но при этом лепестки устанавливаются в такое положение, чтобы расстояние между ними было минимальным. Газу в малом объеме сложно преодолеть небольшое отверстие, поэтому он будет передвигаться с большей скоростью, за счет чего обороты турбины увеличиваются, увеличивая при этом давление наддува.

При помощи данных лопастей можно существенно увеличить скорость вращения турбины, не меняя объемы поступающих газов. На большой скорости компрессор раздвигает лопасти – это обеспечивает поддержание безопасного давления внутри системы и исключает перегревы. Принцип изменяемой геометрии позволяет не использовать перепускной клапан, так как весь объём выхлопных газов выходит через горячую часть крыльчатки. Изменение положения поворотных предотвращает избыточный наддув.


Преимущества турбины с изменяемой геометрией

  • Автомобили с такими турбинами развивают большую скорость с самых низких оборотов.
  • Существенно снижается объем необходимого топлива, а также количество вредных выбросов в атмосферу.
  • Улучшается прохождение газов через турбину из-за отсутствия клапана Wastegate и уменьшения количества разнонаправленных потоков газа.
  • Улучшается эластичность двигателя.

Возможные неисправности

Турбокомпрессор с изменяемой геометрией представляет собой сложный механизм, поэтому он больше подвержен различным поломкам. Однако, такие турбины сталкиваются лишь с несколькими проблемами:

  • Подклинивание лопастей в движении. Такая ситуация может сложиться из-за сильного износа трущихся пар и образовании нагара. Масляные, а также углеродистые отложения мешают плавному движению регулировочного кольца.
  • Заклинивание лопаток в одном положении. Это может происходить по причине критического нагарообразования, когда силы вакуума не хватает для движения регулировочного кольца.
  • Поломки вакуумного привода поворотных лопастей или клапана управления давлением.

Симптомами поломок считаются подергивание при разгонах, потеря мощности двигателя, увеличение расхода топлива, а также срабатывание индикатора на приборной панели Check Engine.

Как настроить и отрегулировать турбину

Правильная регулировка турбины с изменяемой геометрией крайне важна для эффективной работы, и для того, чтобы предотвратить быстрый износ деталей и снизить потребление топлива. Если отрегулировать турбину неправильно, то в дальнейшем это повлияет на работу всего автомобиля и удобство его управления.

Любой современный автовладелец немного разбирается в устройстве своего автомобиля и даже может устранить определенные небольшие поломки. Однако, чтобы сделать серьезный ремонт автомобиля, необходим специальный инструмент и оборудование, которого у обычного потребителя может и не быть.

Поэтому, если вы хотите, чтобы работа турбины была эффективной и качественной – обращайтесь за помощью к специалистам, которые правильно настроят механизм и расскажут, как лучше всего за ним ухаживать. Также, не стоит забывать о своевременных диагностиках и профилактике.

Как почистить турбину своими руками

Устройство турбины постоянно сталкивается с непрерывной нагрузкой, подвергается воздействиям продуктов горения масла и топлива, поэтому нуждается в регулярной чистке для профилактики различных поломок, которые могут быть с этим связаны. Зачастую, достаточно обработать турбину специальным средством и прогнать его через механизм для качественной очистки. Однако, иногда придется приложить побольше усилий для того, чтобы удалить все загрязнения с устройства. Также стоит помнить о том, что турбина не требует частой чистки, поэтому если она сильно загрязняется за короткое время, значит есть неполадки в ее работе или настройке.

Причинами сильных загрязнений могут выступать:

  • Увеличение нормы давления газов.
  • Износ лопастей турбины.
  • Превышение необходимого срока эксплуатации поршневого отсека.
  • Засора сапуна.
  • Износ прокладок.

Именно поэтому каждый автовладелец должен понимать, что сделать качественную чистку самостоятельно возможно, но далеко не всегда результат таких действий положительно влияет на работу механизма, а в некоторых случаях может и вовсе ухудшать ситуацию.

Отсутствие надлежащего опыта, проверенных чистящих средств, специальных инструментов – все это может негативно сказаться на результате вашей чистки, поэтому лучше всего обращаться в специализированные центры, где такой работой занимаются профессионалы.

Как сделать ремонт турбины?

Ремонт турбин гораздо проще предупредить посредством регулярного обслуживания и диагностики, чем потом пытаться исправить ситуацию самостоятельно. Процесс осложняется еще и тем, что многие автовладельцы боятся высоких цен на профессиональные услуги, забывая о том, что самостоятельное проведение ремонта отнимает также немало денег и времени. К тому же, не все получается с первого раза, и затраты на самостоятельный ремонт могут быть достаточно внушительными.

Поэтому мы настоятельно рекомендуем автовладельцам без опыта, знаний, навыков, а, самое главное, необходимого оборудования, не пытаться ремонтировать сложное устройство турбины самостоятельно, поскольку это может привести к еще более серьезным поломкам, устранить которые не сможет даже опытный специалист. При первых признаках поломки обращайтесь в наш сервисный центр, где наши мастера помогут вам восстановить картридж турбокомпрессора, а также устранить другие неисправности быстро и качественно.


зачем нужна, принцип работы и советы по эксплуатации. Турбояма.

 

Турбина двигателя является частью системы турбонадува, которая предназначена для дополнительной подачи воздуха в цилиндры двигателя.  Для работы двигателя необходимо определенное количество топливно-воздушной смеси. Чем больше смеси сгорает в двигателе, тем выше его мощность.

В обычном двигателе без системы турбонадува воздух в цилиндры всасывает поршень. Проблема состоит в том, что объем воздуха, который поступает в цилиндр, ограничен размерами самого цилиндра. И чтобы протолкнуть туда больше воздуха, нужно подавать его под высоким давлением.

Вывод: система турбонадува создана для того, чтобы подавать воздух в цилиндр двигателя под давлением.

Интересный факт: если на двигатель установить систему турбонадува, то его мощность увеличится на 30%.

 

Конструкция турбины и принцип работы

 

Основной деталью системы турбонадува является компрессор. Это устройство сжимает воздух и подает его под давлением в цилиндры двигателя. Визуально компрессор представляет собой что-то наподобие вентилятора, который вращается и засасывает на себя воздух. Если снять крышку компрессора, то можно увидеть его крыльчатку. Крыльчатка работает как винт. Она как бы вкручивается в воздух и притягивает его на себя.

Как же заставить крыльчатку компрессора вращаться? Существует два типа привода, которые раскручивают крыльчатку:

  • • Механический.  В таком случае компрессор вращается от двигателя через систему ремней.
  • • Энергия выхлопных газов. Такое устройство по-научному называется турбокомпрессор (турбина).

Принцип работы турбокомпрессора основан на том, что выхлопные газы, которые выходят из цилиндра двигателя вращают, другую крыльчатку, которая называется турбина. Это крыльчатка находится на одном валу вместе с компрессором. Поэтому когда выхлопные газы закручивают нашу турбину, то вращается соответственно и компрессор, который нагнетает свежий воздух в цилиндры двигателя.

 

Турбояма: почему возникает и решение.

 

В конструкции турбокомпрессора есть один существенный недостаток. На низких оборотах двигателя энергия выхлопных газов слишком маленькая и не позволяет разогнать компрессорное колесо до необходимой частоты вращения.

К сведению: частота вращения колес достигает 150 тыс. оборотов в минуту и выше!

Есть такое понятие как турбояма. Она возникает, когда двигатель работает на низких оборотах и турбокомпрессор еще не работает. На практике это происходит следующим образом: вы стартуете с перекрестка и какое-то время машина, так скажем, тупит, а затем, когда обороты достигают нужного момента, включается турбокомпрессор и машина начинает резко ускоряться.

Первым решением для исключения турбоямы является использование двух турбокомпрессоров. Это решение называется Битурбо. Один турбокомпрессор работает на низких оборотах, второй – на высоких оборотах. Таким образом, когда вы разгоняетесь, работает одна из двух турбин.

Вторым способом борьбы с турбоямой является использование турбины и механического нагнетателя на низких оборотах. В таком случаем компрессор работает от механического привода, т. е. от двигателя. А на повышенных оборотах работает классический турбокомпрессор. Такое решение называется система двойного турбонадува и широко используется в двигателях TSI концерна Фольксваген.

Третьим способом, чтобы исключить турбояму является использование турбокомпрессоров, в которых можно изменять геометрию направляющего аппарата.

Советы по эксплуатации турбины

В конструкции турбокомпрессора есть подшипники, на которых вращается сам вал. Т.к. частота вращения этого вала достигает 200 тыс. оборотов в минуту, то здесь не используются классические шариковые подшипники, а используются гидромеханические (скольжения). Такие подшипники требуют подачи масла под определенным давлением. Поэтому к подшипникам турбокомпрессора подводится масло под давлением. Использование масла в подшипниках турбокомпрессора накладывает определенные обязательства:

  • • Необходимо вовремя менять моторное масло и масляный фильтр.
  • • Прогревать двигатель перед поездкой, для того чтобы масло разогрелось и поступало на подшипники уже разогретым, т.е. с определенной вязкостью.
  • • В конце поездки необходимо дать остыть турбине, т.е не выключать двигатель 2-3 минуты. Особенно в зимнее время. После остановки автомобиля турбина еще некоторое время вращается, и если вы сразу выключите двигатель, то прекратиться подача масла в эти подшипники и будет происходить их повышенный износ.

 

Основной причинной неисправностей турбокомпрессоров является износ подшипников скольжения, а также уплотнений, которые препятствуют выбросу масла.

 

Быстрый подбор турбины у нас в каталоге.

 

 

газотурбинных автомобилей — вчера, сегодня и завтра

Кредит на первый газотурбинный двигатель, использованный в полете, предоставлен доктору Фрэнку Уиттлу. Доктор Уиттл сохранял твердую приверженность разработке самолетов с газотурбинными двигателями в разгар Второй мировой войны, когда на Англию нападали немецкие бомбардировщики с обычными самолетами. Хотя газотурбинный самолет не был разработан достаточно рано, чтобы повлиять на Вторую мировую войну, интерес к увеличению скорости самолета продолжал стимулировать разработку для использования в коммерческих, а также военных самолетах.Достижения в области газовых турбин в сочетании с быстрым развитием ряда технологий, включая ракетную технику, компьютеры и науки о материалах, внесли свой вклад в начало космической эры.

Эту новообретенную «жажду скорости» можно увидеть в дизайне автомобилей, особенно в Соединенных Штатах. Многие из самых популярных автомобилей того времени имели высокие плавники на задней части автомобиля, украшения на капоте, имевшие характерный вид ракеты, фары в форме торпеды и органы управления, похожие на кабину экипажа, — все было направлено на то, чтобы пробудить воодушевление и воображение водителя при вождении. быстрый, плавный автомобиль.

Фотография предоставлена ​​www.oldcarsweekly.com

Что ж, в самом реальном «термодинамическом» смысле автомобильная промышленность действительно принесла авиационную технику в массы, и в 1960-х годах была добавлена ​​функция, называемая турбонагнетателем. «Подождите! … вы сказали« турбо-зарядное устройство »? Я думал, вы пишете о газотурбинных двигателях. Да, но я сказал в «термодинамическом» смысле. Турбокомпрессор можно рассматривать как более универсальную форму газовой турбины для нужд вождения.Турбокомпрессор увеличивает давление воздуха с помощью высокоскоростного воздушного компрессора. Воздух поступает в цилиндры двигателя и позволяет сжигать больше топлива в цилиндрах того же размера. Энергия компрессора поступает от турбодетандера, установленного после двигателя. Сам двигатель обеспечивает энергию для турбины в виде выхлопных газов, выходящих из двигателя, также известных как отработанное тепло. Давление выхлопных газов непосредственно перед открытием выпускного клапана примерно в 3 раза превышает атмосферное давление, и, следовательно, выхлопные газы содержат не только тепловую, но и потенциальную энергию давления.В результате поршневой двигатель того же размера дает больше мощности, а кому не нужна большая мощность?

Газовая турбина работает по термодинамическому циклу, называемому циклом Брайтона. Газовой турбине нужны компрессор, турбина и камера сгорания. Камера сгорания газа сжигает топливо в воздухе высокого давления, который подается компрессором. Турбина расширяет этот воздух под высоким давлением и высокой температурой и выпускает его в окружающую среду. Существенное отличие конструкции турбонагнетателя состоит в том, что поршневой двигатель служит источником тепла для турбины, а не камеры сгорания.

Модуль турбонагнетателя — это удивительное инженерное сооружение, которое может увеличить мощность поршневых двигателей на 20–30%, но при этом достаточно маленькое, чтобы его можно было спрятать под капотом за гораздо более крупными компонентами двигателя. Одна из лучших частей моей работы — работать с лучшими производителями автомобилей по всему миру над проектированием и прототипами турбокомпрессоров для автомобилей, которые едут по дорогам общего пользования или высокоскоростным гоночным трассам.

Что ждет турбокомпрессоры в коммерческих автомобилях в будущем? Вам нужно только наблюдать, что используется в автомобилях на сегодняшней гоночной трассе.Индустрия автогонок проложила путь для многих достижений в автомобилестроении, которые позже нашли широкое применение в коммерческих целях. Например, мир гонок уже представил турбокомпрессоры, которые не только вырабатывают мощность, достаточную для привода компрессора, но и вырабатывают дополнительную мощность из отработанного тепла двигателя, чтобы приводить в действие высокоскоростные генераторы, которые приводятся в движение валом турбины или приводятся в движение. коленчатый вал двигателя через зацепление. Они называются двигателями с турбонаддувом и дебютировали в гоночном сезоне Формулы-1 (F1) 2014 года.В некоторых случаях электрический генератор также может служить двигателем, чтобы обеспечить более мгновенную подачу мощности к транспортному средству и помочь устранить плавный пуск, который часто возникает у транспортных средств, пытающихся разогнаться слишком быстро, прежде чем турбина наберет нужную скорость.

Автомобиль Ferrari F1 2014 года

Еще в 1970-х годах автомобильная промышленность всерьез задумывалась о создании автомобиля с газовой турбиной под капотом. Это было поддержано Министерством энергетики в надежде, что более эффективный газотурбинный двигатель поможет облегчить топливный кризис.К сожалению, несмотря на свою компактность по отношению к л. С. / Дюйм 3 и эффективность газотурбинного двигателя, газовая турбина страдает серьезной «стойкой полосой», поскольку она не любит работать при частичной нагрузке. Турбомашина поглощает воздух для горения лучше, чем поршневой двигатель, но когда дроссельная заслонка находится ниже расчетной точки, эффективность падает очень быстро. И давайте посмотрим правде в глаза, даже если у вас под капотом 300 л.с., когда вы ползаете в пробке в Бостоне после последней победы Red Sox, вам не нужно 300 л.с., чтобы проехать 2 мили в час.

Думая о 2020-х годах, возможно, нам следует вернуться «назад в будущее», чтобы получить «новую» идею будущего газовых турбин для автомобильной промышленности. Например, возможно, стоит пересмотреть идею автомобиля с газовой турбиной, учитывая предвидение и знание достижений в области электротехники и управления, которые произошли всего за последние десять лет. Если частичная загрузка газовой турбины никогда не является хорошей идеей, то, возможно, стоит пересмотреть вопрос о добавлении газотурбинного двигателя к современному гибридному автомобилю.В гибридном автомобиле двигатель, работающий на ископаемом топливе, должен работать только на фиксированной скорости и, в идеальном мире, на почти постоянном уровне мощности для выработки электроэнергии, которая либо сразу используется для питания электродвигателя (ей), либо хранится в нем. -бортовые аккумуляторы. Это идеальное приложение для газотурбинного двигателя. Когда вы включаете улучшенную систему вентиляции аккумуляторной батареи, которая экономит больше этой накопленной энергии с помощью более эффективных вентиляторов и нагнетателей, тогда эти гибридные газотурбинные двигатели действительно могут стать «крутыми» в управлении.

Узнайте о газотурбинных двигателях и их недостатках

Инженеры и конструкторы с переменным успехом пытались придумать альтернативы проверенным двигателям внутреннего сгорания для автомобилей. В разное время газовая турбина была исследована для использования в автомобилях — и хотя в конечном итоге это было неудачно, это поразительная неудача.

Автомобиль Chrysler Turbine 1963 года выпуска, Источник | Karrmann

Как работает газовая турбина?

Газовая турбина состоит из вращающегося газового компрессора и турбинного вентилятора, которые вращаются на одном валу.Зона сгорания (или камера сгорания) расположена между ними. Проще говоря, компрессор подает свежий воздух, нагнетает его и нагнетает обратно в камеру сгорания с большой скоростью. Камера сгорания состоит из кольца топливных форсунок, распыляющих топливный туман, смешанный с воздухом, который горит при температуре более 2000 градусов по Фаренгейту. Горячие газы затем вращают лопасти турбины, и поскольку турбина находится на тот же вал, что и компрессор, он также вращает компрессор для втягивания большего количества сжатого воздуха.

Газовые турбины являются обычным явлением для локомотивов, резервуаров, электростанций и кораблей и обладают преимуществом высокого отношения мощности к массе благодаря материалам и простоте конструкции. Они, как правило, работают более плавно, с меньшей вибрацией и могут работать на самых разных видах топлива с низкими выбросами CO и углеводородов.

Значит, они могут сделать отличный автомобильный двигатель, не так ли?

Газотурбинные двигатели в автомобилях

Rover JET 1

Rover Jet 1 / Stephencdickson

В 1950 году инженеры Rover разработали JET1, спортивное купе с газотурбинным двигателем.Это был испытательный стенд для технологии, и после некоторых модификаций JET1 смог разогнаться до 150 миль в час. Он был разработан для работы на бензине, дизельном топливе или керосине, но, к сожалению, его чрезмерный расход топлива сделал его непригодным для массового производства.

Firebird I, Firebird II и Firebird III

Firebird 1 / Karrmann

Концепт-кары Firebird I, Firebird II и Firebird III эпохи 50-х были разработаны с газотурбинными двигателями. Но, как и большинство концепт-каров, они предназначались для связи с общественностью и выставок и так и не поступили в массовое производство.В частности, Firebird I (1953 года выпуска) выглядел как ракета на колесах, предполагая, что это была машина с реактивным двигателем, но задние колеса двигала газовая турбина.

Fiat Turbina

Fiat Turbina Prototype 1954 / Andrew Bone

Fiat Turbina (1954 г.) Fiat Tubina был экзотическим концептуальным автомобилем со скользким аэродинамическим кузовом (он установил рекорд по самому низкому коэффициенту лобового сопротивления для полных 30 лет). лет) и турбинный двигатель, установленный за сиденьем водителя.Без коробки передач или сцепления силовая турбина двигалась прямо к задним колесам через редуктор. Turbina весила всего 2300 фунтов, а ее турбина мощностью 300 лошадиных сил могла разгонять ее до скорости 160 миль в час. Он был отложен из-за расхода топлива и перегрева.

’63 Chrysler Turbine Car

Компания Chrysler пошла немного дальше с турбинами, установив Chrysler 54 года выпуска и двухтонный грузовик Dodge с экспериментальными газотурбинными двигателями. Автомобиль Chrysler Turbine Car ’63 имел кузов, разработанный Ghia, и двигатель, который был сконструирован для работы на реактивном топливе, керосине, дизельном топливе или неэтилированном бензине.Как известно, в различных экспериментах он использовался на топочном масле, духах, соевом масле, текиле и даже на духах Chanel. Кузов Крайслера имел семейное сходство с Дартс того периода; Chrysler на самом деле произвел 55 таких автомобилей и отправил их в свои представительства по всей стране. Турбинный двигатель Chrysler решил проблему чрезмерного тепла выхлопных газов за счет использования рекуператора, который направляет горячие газы обратно в компрессор, что также повышает эффективность. В конце концов, Chrysler выкупил все, кроме нескольких автомобилей с турбонаддувом 63-го года, и раздавил их; пять сейчас живут в музеях и два находятся в частных руках (включая коллекцию Джея Лено).

Итак, что случилось с машинами с турбонаддувом?

Несмотря на более поздние попытки Ford, GM и даже AMC разработать автомобиль с газотурбинным двигателем, они так и не получили успеха. Турбинные двигатели могут быть легкими по сравнению с поршневыми, а также плавными и надежными с гораздо меньшим количеством движущихся частей, но есть ряд недостатков:

  • Металлургия, производственные процессы и экзотические материалы, необходимые для турбинных двигателей, делают их очень дорогими. для производства (очевидно, не вызывает большого беспокойства, если вы поставщик для военных, но не масштабируемый для серийных автомобилей).
  • Чрезвычайно горячие выхлопные газы и детали двигателя
  • Высокий расход топлива
  • Посредственные характеристики (автомобиль с турбинным двигателем Chrysler разгонялся от 0 до 100 за более чем 12 секунд)
  • Сложная процедура запуска и прогрева

Еще в начале 50-х годов газ Автомобиль с газотурбинным двигателем считался следующей технологией, и дни поршневых двигателей считались сочтенными. Двадцать лет спустя это стало мертвой проблемой. Возможно ли, что некоторые новейшие технологические достижения снова вернут газотурбинный двигатель? Это не невозможно, но гибридные трансмиссии и электрика — это то место, где сейчас происходят все инновации.Газовая турбина, хотя и была интригующей идеей, остается несбыточной мечтой.

Несмотря на неоднократные попытки, автомобили с турбонаддувом просто так и не взлетели.

Breadcrumb Trail Links

  1. News

Несколько автопроизводителей и гонщиков попробовали эту концепцию с реактивным двигателем с неутешительными результатами

Автор статьи:

Driving The Experiment Концепт-кар Chrysler с турбиной 1962 года проводил время в выставочном зале Gardner Motors, где инженеры запускали его каждый час.

Содержание статьи

Термин «будущее мобильности» используется в автомобильной промышленности, как курица в воке. Это не ново. В 1950-х годах небольшая, но растущая фракция внутри отрасли считала, что мобильность уйдет в будущее с приглушенным свистом реактивного двигателя; несколько автомобильных компаний пытались создать выгодное экономическое обоснование для серийного производства автомобилей с турбинным двигателем. Ни одному из них это не удалось, но их коллективные усилия и неудачи составляют интересную главу в истории альтернативных силовых агрегатов.

Объявление

Это объявление еще не загружено, но ваша статья продолжается ниже.

Содержание статьи

Chrysler представляет турбины для широкой публики

Chrysler Turbine

Самым известным автомобилем с турбинным двигателем, вероятно, является тот автомобиль, который Chrysler начал производить в 1963 году. Его метко назвал Turbine, он стал плодом проекта, начатого в 1963 году. всерьез в 1945 году, когда американская фирма приступила к разработке турбовинтового авиадвигателя для ВМС США.По пути он многому научился и, естественно, начал изучать возможность установки турбины в автомобиль.

Испытания начались в 1950-х годах, первоначально на стендах. Инженеры Chrysler столкнулись с многочисленными неудачами. Турбина имела поразительно медленное время отклика дроссельной заслонки, она сжигала огромное количество топлива и стоила очень дорого в производстве. У этого также было несколько преимуществ. Примечательно, что он был меньше, легче и надежнее сопоставимого поршневого двигателя. Он меньше загрязнял окружающую среду, генерировал меньше вибраций, не требовал охлаждающей жидкости, и его было легче запускать в более холодном климате, чем печально известные бензиновые двигатели той эпохи.

Объявление

Это объявление еще не загружено, но ваша статья продолжается ниже.

Содержание статьи

Chrysler начал испытания своего первого автомобиля с турбинным двигателем, прототипа на базе Плимута, в 1954 году. Два года спустя еще один экспериментальный Плимут с турбинным двигателем покинул здание Крайслер-билдинг в Нью-Йорке и поехал через Америку в Лос-Анджелес. Мэрия Анхелеса. Во время четырехдневной поездки турбина работала нормально и не требовала ремонта. Он сжигал неэтилированный бензин и иногда дизельное топливо.

Вдохновленный успехом поездки и, несомненно, воодушевленный публикациями в прессе, компания Chrysler попросила своих инженеров продолжить разработку технологии с прицелом на то, чтобы однажды продать общественности автомобиль с турбинным двигателем. Они провели дополнительные испытания, совершили больше поездок и даже установили турбину на пикап Dodge. Выставочные мероприятия, организованные в Соединенных Штатах, взволновали публику тем, что в то время было будущим мобильности. Крайслер был готов перейти на следующую передачу.

Объявление

Это объявление еще не загружено, но ваша статья продолжается ниже.

Содержание статьи

Компания объявила о планах построить 50 автомобилей с газотурбинным двигателем и передать их в руки реальных клиентов. Великолепная турбина, созданная собственными силами компании, выглядела как ответ Chrysler на Ford Thunderbird. Он был окрашен в бронзовый цвет Turbine Bronze и отличался несколькими акцентами в форме плавников, которые намекали на высокотехнологичную трансмиссию под капотом.Внутри дизайнеры устроили ошеломляющую демонстрацию стиля и роскоши. Это было не очень быстро; Chrysler вспоминает, что турбина мощностью 130 лошадиных сил обеспечивала примерно такие же характеристики, как двигатель V8. Однако в этом не было необходимости. Это было личное роскошное купе.

Начиная с 1963 года компания Chrysler вручную отбирала клиентов, которым посчастливилось испытать автомобиль в реальных условиях. В период с 1963 по 1966 год ровно 203 водителя в 133 городах 48 континентальных штатов жили с Turbine в течение трех месяцев.Машину они получали бесплатно, и Chrysler обычно оплачивал такие расходы, как обслуживание и страхование. Взамен они должны были купить топливо и вести подробный журнал вождения.

Объявление

Это объявление еще не загружено, но ваша статья продолжается ниже.

Содержание статьи

В конце программы Chrysler подарил несколько экземпляров Turbine музеям, сохранил пару для своей собственной коллекции и уничтожил оставшуюся часть производственного цикла, состоящего из 50 экземпляров.Компания продолжала развивать эту технологию — она ​​даже опустила турбину в резервуар — но так и не довела ее до серийного производства. По данным сайта энтузиастов AllPar, он попытался и почти преуспел.

В 1979 году Chrysler закончила разработку New Yorker с турбинным двигателем, которую планировала выпустить в 1981 году. Это не было испытательной или пилотной программой; это была настоящая сделка. Фирма предполагала, что покупатели автомобилей могут легко приобрести их в ближайшем дилерском центре, который, по данным Американского агентства по охране окружающей среды (EPA), возвращает около 22 миль за галлон.Следующим шагом было выяснение инструментов.

Объявление

Это объявление еще не загружено, но ваша статья продолжается ниже.

Содержание статьи

В том же году Chrysler оказалась по пояс в финансовых вопросах. Он получил ссуды от американского правительства, чтобы остаться на плаву. Одним из условий было то, что он должен был остановить свою турбинную программу, которая, как многие утверждали, была не чем иным, как вихрем высасывания денег, который никогда не принесет прибыли.

Ровер идет в гонку

Объявление

Это объявление еще не загружено, но ваша статья продолжается ниже.

Содержание статьи

Компания Rover, базирующаяся в Англии, начала применять технологию турбин для легковых автомобилей после Второй мировой войны. Он назвал один из своих первых функциональных прототипов Jet 1. Построенный в 1949 году, он имел форму двухместного кабриолета с дизайном, в котором сдержанная величественность Rover сочеталась со стилем родстера, который выглядел бы как дома в фешенебельном районе Лос-Анджелеса.Три воздухозаборника по обе стороны от автомобиля сигнализировали о наличии большой турбины за пассажирским салоном.

Rover внес несколько изменений в Jet 1 в 1952 году и отправил автомобиль в Бельгию для испытаний, где он достиг ошеломляющей максимальной скорости 240 км / ч. Несколько проблем (в том числе высокая стоимость производства и ужасающая экономия топлива) помешали Jet 1 сделать переход от прототипа к серийному автомобилю. В последующие годы Rover спроектировал и построил другие прототипы с турбинным двигателем, но ни один из них не был сделан для общественного потребления.

Объявление

Это объявление еще не загружено, но ваша статья продолжается ниже.

Содержание статьи

Усилия, приложенные фирмой для того, чтобы сделать реактивные двигатели пригодными для эксплуатации на дорогах, достигли пика в первой половине 1960-х годов. Rover объединил усилия с British Racing Motors (BRM) для создания автомобиля с турбинным двигателем для гонки 24 часов Ле-Мана 1963 года. Во время первого заезда официальные лица гонки посчитали автомобиль экспериментальным гонщиком, поэтому разрешили ему участвовать в Ле-Мане без официального участия.Если бы он соревновался, он официально занял бы восьмое место.

Изменения обещали сделать автомобиль более конкурентоспособным в 1964 году. Rover заметно повысил эффективность турбины. Команда решила не участвовать в гонке того года, потому что не успела проверить двигатель, и машина была повреждена во время транспортировки. Вместо этого он смотрел в сторонке.

Объявление

Это объявление еще не загружено, но ваша статья продолжается ниже.

Содержание статьи

Rover вернулся в Ле-Ман в 1965 году с удвоенной силой. На этот раз официальные лица гонки позволили автомобилю с турбинным двигателем побороться за место на подиуме. Они выбросили его в двухлитровый класс, где он соревновался с успешными машинами, такими как Porsche 904, Alfa Romeo Giulia TZ2 и, как ни странно, MG B с жесткой крышей. Грэм Хилл и Джеки Стюарт по очереди вели Rover-BRM и заняли десятое место.

Он больше никогда не участвовал в гонках, и Rover отказался от газотурбинных двигателей, чтобы сосредоточиться на продвижении своей линейки к вершине за счет более роскошных автомобилей и суперкара с двигателем V8, бросающего вызов Ferrari.Однако сотрудничество фирмы с Jaguar под зонтиком недавно созданной British Leyland положило конец большинству этих проектов. Руководители удерживали Rover, чтобы не создавать внутренней конкуренции для Jaguar.

Объявление

Это объявление еще не загружено, но ваша статья продолжается ниже.

Содержание статьи

Кратковременный турбинный период Volkswagen

1972 г. Volkswagen Turbine

В 1964 г. Volkswagen незаметно вступил в ряды турбин.Вскоре после этого он подписал соглашение с находящейся в Мичигане компанией Williams Research Corporation (WRC), которое дало ей доступ к технологиям «под ключ» и многочисленным патентам, связанным с турбинами. Официальные лица в Вольфсбурге попросили WRC спроектировать три экспериментальные турбины, которые Volkswagen мог бы установить вместо установленного сзади четырехцилиндрового двигателя и прикрутить болтами к существующей автоматической коробке передач.

В 1972 году Volkswagen объявил о создании прототипа на базе автобуса с эркером, работающего от одной из турбин WRC. Это была новость.В технических характеристиках указаны мощность 75 лошадиных сил и максимальная скорость 120 км / ч. Турбина переключалась через автоматическую коробку передач, хотя преобразование потребовало снятия гидротрансформатора. Немецкая фирма также построила тестовые мулы на базе Squareback.

Объявление

Это объявление еще не загружено, но ваша статья продолжается ниже.

Содержание статьи

Popular Mechanics тестировал GT-70 в 1974 году. В публикации сообщалось, что время разгона от нуля до 100 км / ч составляет примерно 15 секунд, что было приемлемо для автобуса с эркером.В нем указывалось, что двигатель был одним из самых чистых из существующих автомобильных двигателей, но отмечалось, что экономия топлива требует улучшения. «Когда турбина станет конкурентоспособной по стоимости с поршневым двигателем, Volkswagen будет производить автомобили с турбинным двигателем», — резюмируется статья. Однако время так и не пришло.

Автомобили с турбинным двигателем на Индианаполисе 500 и F1

Реклама

Это объявление еще не загружено, но ваша статья продолжается ниже.

Содержание статьи

В середине 1960-х годов британский инженер Кен Уоллис всерьез задумался о создании гоночного автомобиля с турбинным двигателем для Indianapolis 500.Он безуспешно пытался продать проект Дэну Герни и Кэрроллу Шелби; ни один из них не проявил интереса к отказу от обычного поршневого двигателя. Наконец, он нашел родственную душу, когда передал идею Энди Гранателли, главе компании по производству моторных масел STP.

Гранателли поручил Пакстону, инженерному подразделению STP, превратить планы Уоллиса в управляемую машину. Пакстон решил использовать турбину Pratt & Whitney, ту же установку, которая с тех пор используется в тысячах небольших турбовинтовых самолетов, производимых такими компаниями, как De Havilland и Beechcraft.Краткое описание конструкции включало размещение турбины мощностью 550 лошадиных сил прямо между осями, слева от водителя, и передачу ее мощности на четыре колеса. В общем, Turbocar не был похож ни на что, что когда-либо участвовало в гонках на Indianapolis 500. Пакстон производил почти все компоненты на собственном предприятии, опасаясь, что другая компания украдет его дизайн. Только турбина и колеса пришли не из компании.

Объявление

Это объявление еще не загружено, но ваша статья продолжается ниже.

Содержание статьи

Проект стартовал в 1966 году, но производственные проблемы не позволили Turbocar участвовать в гонке того года. В следующем году он дебютировал в соревнованиях с Парнелли Джонсом за рулем. Он рано вышел в лидеры и оставался там большую часть гонки. Похоже, Turbocar станет первой моделью с турбинным двигателем, выигравшей Indy 500, что, безусловно, стало поворотным моментом в развитии технологии. Удача была не на стороне Джонса; он вернулся в боксы с оставшимся всего тремя кругами после того, как отказал подшипник трансмиссии.

Турбокар почти выиграл; это было так близко, что STP мог попробовать это на вкус. Автомобильный клуб США (USAC) обратил на это внимание. Он уменьшил площадь воздухозаборника турбины с 23,9 до 15,9 квадратных дюймов, что привело к значительному снижению выходной мощности. Это был еще один удар по технологии, которая все еще страдала от задержки отклика дроссельной заслонки и проблем с экономией топлива.

Объявление

Это объявление еще не загружено, но ваша статья продолжается ниже.

Содержание статьи

Невозмутимо, STP продвигается вперед.В то время как Пакстон самостоятельно разработал оригинальный Turbocar, он объединился с Lotus, чтобы построить клиновидный автомобиль, на котором он участвовал в 1968 году. В нем использовалась турбина Pratt & Whitney, установленная позади, а не рядом с водителем. В гонке 1968 года участвовали три машины. Их водили Грэм Хилл, Джо Леонард и Арт Поллард. Леонард установил рекорд скорости 171,5 миль в час во время квалификационной сессии. Казалось, что он может выиграть гонку, но он сошел с дистанции из-за проблем с топливным насосом. Хилл разбился, в то время как механические проблемы также вывели Полларда из гонки.

Lotus 56 едва не столкнулся с жесткой конкуренцией. В 1966 году Шелби не понравилась идея встроить реактивный двигатель в одноместный гоночный автомобиль. Почти успех Джонса, должно быть, изменил его мнение, потому что он объединился с Уоллисом, чтобы выступить на территорию турбин в 1968 году. Однако все пошло не так, как планировалось.

Объявление

Это объявление еще не загружено, но ваша статья продолжается ниже.

Содержание статьи

Ограничение забора воздуха USAC застало команду Shelby врасплох, усложнив сложный процесс разработки.Прискорбное решение Уоллиса было просто обмануть. Главный инженер Фил Ремингтон подал в отставку, когда узнал об этом, вынудив Шелби прекратить программу и вернуться к автомобилям с поршневым двигателем. Команда протестировала два построенных прототипа, но никогда не участвовала в гонках.

В то время как изменения в Lotus 56 могли сделать его успешным в 1969 году, USAC ввел больше правил, которые сделали управление автомобилем с турбинным двигателем практически невозможным. Позже, к большому раздражению Гранателли, полный привод был запрещен. Однако Lotus не сказала своего последнего слова.Если бы он не мог гонять турбины в Америке, он бы просто собрался и попробовал пересечь пруд.

Периодические записи указывают на то, что Колин Чепмен имел в виду Формулу-1 с самого начала, когда проектировал 56. Он внес необходимые изменения в машину и участвовал в ней в сезоне 1971 года. Слишком тяжелый 56B произвел впечатление только тем, что продемонстрировал степень своих неудач. Он хорошо работал на мокрой трассе — предположительно из-за своего значительного веса и системы полного привода — но в сухую погоду он отставал.Эмерсон Фиттипальди достиг лучшего результата 56B в Формуле-1, когда финишировал в Гран-при Италии восьмым. Не впечатленная, Lotus решила провести глубокую шестерку автомобиля и его турбины.

Поделитесь этой статьей в своей социальной сети

Подпишитесь, чтобы получать информационный бюллетень Driving.ca Blind-Spot Monitor по средам и субботам

Нажимая на кнопку подписки, вы соглашаетесь на получение вышеуказанного информационного бюллетеня от Postmedia Network Inc. откажитесь от подписки в любое время, нажав на ссылку отказа от подписки внизу наших писем.Postmedia Network Inc. | 365 Bloor Street East, Торонто, Онтарио, M4W 3L4 | 416-383-2300

Спасибо за регистрацию!

Приветственное письмо уже готово. Если вы его не видите, проверьте папку нежелательной почты.

Следующий выпуск «Монитора слепых зон» Driving.ca скоро будет в вашем почтовом ящике.

Комментарии

Postmedia стремится поддерживать живой, но гражданский форум для обсуждения и поощрять всех читателей делиться своим мнением о наших статьях.На модерацию комментариев может потребоваться до часа, прежде чем они появятся на сайте. Мы просим вас, чтобы ваши комментарии были актуальными и уважительными. Мы включили уведомления по электронной почте — теперь вы получите электронное письмо, если получите ответ на свой комментарий, есть обновление в цепочке комментариев, на которую вы подписаны, или если пользователь, на которого вы подписаны, комментарии. Посетите наши Принципы сообщества для получения дополнительной информации и подробностей о том, как изменить настройки электронной почты.

Как работают турбокомпрессоры? | Кто изобрел турбокомпрессоры?

Как работают турбокомпрессоры? | Кто изобрел турбокомпрессоры? Рекламное объявление

Не бывает идеального изобретения: мы всегда можем сделать что-нибудь лучше, дешевле, более эффективный или более экологически чистый. Возьмите внутренний двигатель внутреннего сгорания. Вы можете подумать, что это замечательно, что машина приводимый в действие жидкостью, может сбить вас с дороги или ускорить небо во много раз быстрее, чем вы могли бы путешествовать иначе. Но это всегда можно построить двигатель, который будет работать быстрее, дальше или потреблять меньше топливо. Один из способов улучшить двигатель — использовать турбокомпрессор —a пара вентиляторов, которые используют отработанную мощность выхлопных газов в задней части двигателя, чтобы втиснуть больше воздух в переднюю часть, обеспечивая больше «привлекательности», чем в противном случае получать.Мы все слышали о турбинах, но как именно они работают? Давайте присмотритесь!

Фото: В типичном автомобильном турбокомпрессоре используется пара таких вентиляторов в форме улитки. Тот, который вы видите здесь, — это Garrett GT2871R, который вот-вот будет установлен на двигатель Pontiac G8. Фото Райана С. Делкора любезно предоставлено ВМС США.

Что такое турбокомпрессор?

Фото: два вида безмасляного турбокомпрессора, разработанного НАСА. Фото любезно предоставлено Исследовательский центр НАСА Гленна (NASA-GRC).

Вы когда-нибудь видели, как мимо вас проносятся машины, из выхлопной трубы которых струится сажа? Очевидно, выхлопные газы вызывают загрязнение воздуха, но это гораздо меньше очевидно, что они одновременно тратят энергию. Выхлоп смесь горячих газов выкачивается со скоростью и вся энергия в ней содержит — тепло и движение (кинетическая энергия) — исчезает бесполезно в атмосферу. Было бы здорово, если бы двигатель Могли ли как-то использовать эту бесполезную энергию, чтобы машина ехала быстрее? Именно это и делает турбокомпрессор.

Автомобильные двигатели получают энергию за счет сжигания топлива в прочных металлических канистрах, называемых цилиндрами. Воздух входит каждый цилиндр смешивается с топливом и горит, чтобы произвести небольшой взрыв который выталкивает поршень, вращая валы и шестерни, которые вращают колеса автомобиля. Когда поршень возвращается внутрь, он нагнетает отработанный воздух. и топливная смесь выходит из цилиндра в качестве выхлопа. Количество мощности Производительность автомобиля напрямую зависит от того, насколько быстро он сжигает топливо. В у вас больше цилиндров и чем они больше, тем больше топлива машина может гореть каждую секунду и (по крайней мере теоретически) тем быстрее можешь идти.

Один из способов ускорить движение автомобиля — это добавить больше цилиндров. Вот почему сверхбыстрые спортивные автомобили обычно имеют восемь и двенадцать цилиндров вместо четырех или шести цилиндры в обычном семейном автомобиле. Другой вариант — использовать турбонагнетатель, который каждую секунду нагнетает в цилиндры больше воздуха, они могут сжигать топливо быстрее. Турбокомпрессор — это простой, относительно дешевый, дополнительный немного обвеса, который может получить больше мощности от того же двигателя!

Рекламные ссылки

Как работает турбокомпрессор?

Если вы знаете, как работает реактивный двигатель, вы на полпути к пониманию турбонагнетателя автомобиля.А реактивный двигатель всасывает холодный воздух спереди, сжимает его в камеру где он горит топливом, а затем выдувает горячий воздух из спины. В качестве горячий воздух уходит, он с ревом проносится мимо турбины (что-то вроде очень компактная металлическая ветряная мельница), которая приводит в движение компрессор (воздушный насос) спереди двигателя. Это бит, который нагнетает воздух в двигатель, чтобы заставить топливо гореть должным образом. Турбокомпрессор на автомобиле применяет очень принцип аналогичен поршневому двигателю. Он использует выхлопные газы для водить турбину.Это вращает воздушный компрессор, который выталкивает дополнительный воздух. (и кислород) в цилиндры, позволяя им сжигать больше топлива каждый второй. Вот почему автомобиль с турбонаддувом может производить больше мощности (что это еще один способ сказать «больше энергии в секунду»). Нагнетатель (или «нагнетатель с механическим приводом», чтобы дать ему полное название) очень похож на турбокомпрессор, но вместо того, чтобы приводиться в действие выхлопными газами с помощью турбины, он приводится в действие вращающимся коленчатым валом автомобиля. Обычно это недостаток: там, где турбокомпрессор питается от отработанной энергии выхлопных газов, нагнетатель фактически крадет энергию от собственного источника энергии автомобиля (коленчатого вала), что обычно бесполезно.

Фото: Суть турбокомпрессора: два газовых вентилятора (турбина и компрессор), установленные на одном валу. Когда один поворачивается, другой тоже поворачивается. Фото любезно предоставлено Исследовательским центром NASA Glenn Research Center (NASA-GRC).

Как на практике работает турбонаддув? Турбокомпрессор — это два маленьких вентилятора (также называемых крыльчатками). или бензонасосы), сидящие на одном металлическом валу, так что оба вращаются вместе. Один из этих вентиляторов, называемый турбиной , находится в выхлопная струя из цилиндров.Когда цилиндры выдувают горячий газ лопасти вентилятора, они вращаются, и вал, к которому они присоединены (технически называемый центральный вращающийся узел ступицы или CHRA) также вращается. Второй вентилятор называется , компрессор и, поскольку он сидит на том же валу, что и турбина, он тоже вращается. Он установлен внутри воздухозаборника автомобиля, так что, вращаясь, он втягивает воздух в автомобиль и нагнетает его в цилиндры.

Теперь здесь небольшая проблема. Если сжать газ, он станет горячее (вот почему велосипедный насос нагревается, когда вы начинаете накачивать шины).Горячее воздух менее плотный (поэтому теплый воздух поднимается над радиаторами) и меньше эффективны для сжигания топлива, поэтому было бы намного лучше, если бы воздух, поступающий из компрессора, был охлажден перед входом цилиндры. Для его охлаждения мощность компрессора проходит через над теплообменником, который удаляет дополнительное тепло и направляет его в другое место.

Как работает турбокомпрессор — подробный обзор

Основная идея заключается в том, что выхлоп приводит в движение турбину (красный вентилятор), которая напрямую подключен (и питает) компрессор (синий вентилятор), который нагнетает воздух в двигатель.Для простоты мы показываем только один цилиндр. Итак, вкратце, как все это работает:

  1. Холодный воздух поступает в воздухозаборник двигателя и направляется к компрессору.
  2. Вентилятор компрессора помогает всасывать воздух.
  3. Компрессор сжимает и нагревает поступающий воздух, а затем снова его выдувает.
  4. Горячий сжатый воздух от компрессора проходит через теплообменник, который охлаждает его.
  5. Охлажденный сжатый воздух поступает в воздухозаборник цилиндра.Дополнительный кислород помогает сжигать топливо в цилиндре быстрее.
  6. Поскольку цилиндр сжигает больше топлива, он быстрее вырабатывает энергию и может передавать больше мощности на колеса через поршень, валы и шестерни.
  7. Отработанный газ из цилиндра выходит через выхлопное отверстие.
  8. Горячие выхлопные газы, обдувающие турбинный вентилятор, заставляют его вращаться с высокой скоростью.
  9. Вращающаяся турбина установлена ​​на том же валу, что и компрессор (показан здесь бледно-оранжевой линией).Итак, когда вращается турбина, вращается и компрессор.
  10. Выхлопные газы покидают автомобиль, расходуя меньше энергии, чем в противном случае.

На практике компоненты можно было соединить примерно так. Турбина (красная справа) забирает отработанный воздух через свой впуск, приводя в действие компрессор (синий, слева), который забирает чистый наружный воздух и нагнетает его в двигатель. Эта конкретная конструкция имеет электрическую систему охлаждения (зеленую) между турбиной и компрессором.

Иллюстрация: Как турбина и компрессор соединены в турбонагнетателе с электрическим охлаждением. Из патента США № 7,946,118: Охлаждение турбонагнетателя с электрическим управлением Уиллом Хиппеном и др., Ecomotors International, выдано 24 мая 2011 г. Изображение любезно предоставлено Управлением по патентам и товарным знакам США.

Откуда берется дополнительная мощность?

Турбокомпрессоры дают автомобилю больше мощности, но эта дополнительная мощность не поступать напрямую из отработанных выхлопных газов — и это иногда сбивает людей с толку.С турбонагнетателем мы используем часть энергии выхлопных газов для приведения в действие компрессора, что позволяет двигателю сжигать больше топлива каждую секунду. Это дополнительное топливо — вот где дополнительная мощность автомобиля происходит от. Все выхлопные газы приводят в действие турбокомпрессор и, поскольку турбокомпрессор не подключен к коленчатому валу или колесам автомобиля, он не напрямую, каким-либо образом увеличивает мощность автомобиля. Это просто включение один и тот же двигатель для более быстрого сжигания топлива, что делает его более мощным.

Сколько дополнительной мощности вы можете получить?

Если турбокомпрессор дает двигателю большую мощность, более крупный и лучший турбокомпрессор даст это даже больше мощности. Теоретически вы можете продолжать улучшать свой турбокомпрессор. чтобы сделать ваш двигатель все более мощным, но в конечном итоге вы достигнете предела. Цилиндры такие большие, и топлива они могут сжечь ровно столько, сколько нужно. Через впускное отверстие определенного размера вы можете втолкнуть в них столько воздуха, сколько выхлопных газов, что ограничивает энергию, которую вы можете использовать для приведения в действие турбокомпрессора.Другими словами, в игру вступают и другие ограничивающие факторы, которые необходимо учитывать. аккаунт тоже; нельзя просто турбонаддувом проложить себе путь до бесконечности!

Преимущества и недостатки турбокомпрессоров

Фото: Типичный автомобильный турбокомпрессор. Вы можете четко видеть два вентилятора / нагнетателя (один над другим) и их вход / выход. Фото любезно предоставлено Армией США.

Вы можете использовать турбокомпрессоры как с бензиновыми, так и с дизельными двигателями и более или менее на любых вид транспортного средства (автомобиль, грузовик, корабль или автобус).Основное преимущество использования турбонагнетателя заключается в увеличении выходной мощности. для двигателя того же размера (каждый ход поршня в каждом цилиндре генерирует большую мощность, чем в противном случае). Тем не менее, большая мощность означает больше энергии, вырабатываемой энергии в секунду, и закон сохранения энергии говорит нам, что это означает, что вы также должны вкладывать больше энергии, поэтому вы должны, соответственно, сжигать больше топлива. Теоретически это означает, что двигатель с турбонагнетателем не более экономичен, чем двигатель без него.Однако на практике двигатель, оснащенный турбонагнетателем, намного меньше и легче, чем двигатель, производящий такую ​​же мощность без турбонагнетателя, поэтому автомобиль с турбонагнетателем может обеспечить лучшую экономию топлива в этом отношении. Производители теперь часто могут обойтись без установки гораздо меньшего двигателя на тот же автомобиль (например, V6 с турбонаддувом вместо V8 или четырехцилиндрового двигателя с турбонаддувом вместо V6). И именно здесь автомобили с турбонаддувом получают свое преимущество: при хорошей работе они могут сэкономить до 10 процентов вашего топлива.Поскольку они сжигают топливо с большим количеством кислорода, они, как правило, сжигают его более тщательно и чисто, вызывая меньшее загрязнение воздуха.

« Большинство отраслевых экспертов ожидают, что к 2027 году более половины автомобилей, проданных в США, будут оснащаться одним двигателем.

The New York Times, 2018

Большая мощность при том же размере двигателя — это замечательно, так почему же не все двигатели имеют турбонаддув? Одна из причин заключается в том, что преимущества экономии топлива, обещанные ранними турбокомпрессорами, не всегда оказывались столь впечатляющими, как утверждали производители (стремящиеся воспользоваться любым маркетинговым преимуществом над своими конкурентами).Одно исследование 2013 года, проведенное Consumer Reports, показало, что небольшие двигатели с турбонаддувом дают значительно худшую экономию топлива, чем их «безнаддувные» (обычные) аналоги, и пришел к выводу: «Не принимайте экологические хвастовства двигателей с турбонаддувом за чистую монету. Есть более эффективные способы экономить топливо, в том числе гибриды, дизели и другие передовые технологии ». Надежность тоже часто была проблемой: турбокомпрессоры добавляют еще один уровень механической сложности к обычному двигателю — короче говоря, есть еще немало вещей, которые могут пойти не так.Это может значительно удорожать обслуживание турбин. По определению, турбонаддув — это получение большего от той же базовой конструкции двигателя, и многие компоненты двигателя должны испытывать более высокие давления и температуры, что может привести к более быстрому выходу деталей из строя; вот почему, вообще говоря, двигатели с турбонаддувом служат не так долго. Даже вождение с турбонаддувом может отличаться: поскольку турбокомпрессор приводится в действие выхлопными газами, часто наблюдается значительная задержка («турбо-задержка») между тем, когда вы нажимаете ногу на акселератор, и моментом включения турбонаддува, и это может привести к турбо машины очень разные (а иногда и очень хитрые) в управлении.В последние несколько лет ведущие производители, такие как Garrett и BorgWarner, активно разрабатывают частично или полностью электрические турбокомпрессоры для решения этой проблемы; Предложение Гарретта называется E-Turbo, а предложение Борга — eBooster®.

Кто изобрел турбокомпрессор?

Кого благодарим за турбокомпрессоры? Альфред Дж. Бючи (1879–1959), автомобильный инженер, работавший в двигательной компании Gebrüder Sulzer в Винтертуре, Швейцария. Как и в случае с турбонагнетателем, который я проиллюстрировал выше, в его первоначальной конструкции использовался приводной от выхлопа вал турбины для питания компрессора, который нагнетал больше воздуха в цилиндры двигателя.Первоначально он разработал турбокомпрессор за годы до Первой мировой войны и запатентовал его в Германии в 1905 году, но продолжал работать над улучшенными конструкциями до своей смерти четыре десятилетия спустя.

Однако

Бючи была не единственной важной фигурой в этой истории. Несколькими годами ранее сэр Дугалд Кларк (1854–1932), шотландский изобретатель двухтактного двигателя, экспериментировал с разделением ступеней сжатия и расширения внутреннего сгорания с помощью двух отдельных цилиндров. Это немного похоже на наддув, увеличивая как поток воздуха в цилиндр, так и количество топлива, которое может быть сожжено.Другие инженеры, в том числе Луи Рено, Готлиб Даймлер и Ли Чедвик также успешно экспериментировал с системами наддува.

Изображение: один из проектов турбокомпрессора Альфреда Бючи конца 1920-х годов (патент был подан в 1927 году и выдан в апреле 1934 года). Я раскрасил его, чтобы вы могли быстро разобраться в этом. Вы можете увидеть один цилиндр (желтый) и поршень, кривошип и шатун (красный) слева. Выхлопные газы из цилиндра проходят по трубе (зеленого цвета), приводящей в движение турбину.Он подключен к оранжевому «нагнетателю» (компрессору) и охладителю (синий ящик), который нагнетает воздух в цилиндр через синюю трубу. Есть множество других сложных деталей, но я не буду вдаваться во все детали; Если вам интересно, взгляните на патент США № 1,955,620: Двигатель внутреннего сгорания (обслуживается через Google Patents). Изображение любезно предоставлено Управлением по патентам и товарным знакам США.

Рекламные ссылки

Узнать больше

На этом сайте

Книги для старших читателей

Книги для младших читателей

  • Car Science Ричард Хаммонд.Дорлинг Киндерсли, 2007. Объясняет, почему ваша машина работает (в возрасте 9–12 лет).

Статьи

  • Garrett E-Turbo обещает большую мощность, лучшую эффективность и меньшее отставание от Аарона Турпена, New Atlas, 20 октября 2019 года. История новых электрических турбин Гарретта.
  • «Прыжки с турбонаддувом с гоночной трассы в Кюль-де-Сак», автор Стивен Уильямс. The New York Times, 25 октября 2018 года. Как турбокомпрессоры стали неотъемлемой частью современного автомобильного двигателя.
  • Маленький вентилятор, решающий самую большую проблему турбокомпрессора. Автор Алекс Дэвис.Wired, 24 августа 2017 г. Краткий обзор eBooster от BorgWarner.
  • Как сделать турбодвигатели более эффективными? «Просто добавь воды» Ник Чап. The New York Times, 29 сентября 2016 г. Компания Bosch возрождает идею распыления воды на цилиндры с турбонаддувом, чтобы они работали более прохладно и менее беспорядочно.
  • Автопроизводители считают, что турбины — мощный путь к экономии топлива, Лоуренс Ульрих. The New York Times, 26 февраля 2015 г. Почему такие производители, как Ford и BMW, так активно продвигают двигатели с турбонаддувом.
  • 50 лет назад Джим Коскс сделал турбонагнетатель революционной технологией. The New York Times, 19 декабря 2014 года. Как первые турбокомпрессоры в конце концов преодолели свои первые проблемы.
  • Чак Скватриглиа, «Если вы не водите турбо», то скоро будете. Wired, 24 сентября 2010 г. Ожидается, что к 2015 г. количество автомобилей с установленными турбокомпрессорами удвоится, поскольку производители ищут новые способы повышения производительности от двигателей меньшего размера.
  • Turbo приветствует экологические сертификаты Йорна Мадслиена.BBC News, 11 октября 2009 г. Турбины заставляют автомобили двигаться быстрее; они также могут сделать их более «зелеными» за счет снижения расхода топлива.

Патенты

Если вы ищете подробные технические описания того, как все работает, патенты — хорошее место для начала. Здесь Вот некоторые недавние патенты на турбокомпрессоры, которые стоит проверить:

  • Патент США № 1,955,620: Двигатель внутреннего сгорания Альфреда Дж. Бючи, выдан 17 апреля 1934 г. Первый турбодвигатель, разработанный самим изобретателем турбокомпрессоров.
  • Патент США №
  • № 2 309 968: Управление турбокомпрессором и метод, выданный Ричардом Дж. Ллойдом, Корпорация Гарретт, 1 февраля 1977 года. Основное внимание уделяется системе управления турбокомпрессором, которая эффективно работает при различных оборотах двигателя.
  • Патент США № 4 083 188: Система турбонагнетателя двигателя, выданная Emerson Kumm, The Garrett Corporation, 11 апреля 1978 г. Современный турбонагнетатель для дизельного двигателя с низкой степенью сжатия.
  • Патент США № 7,946,118: Охлаждение турбонагнетателя с электрическим управлением Уиллом Хиппеном и др., Ecomotors International, выдан 24 мая 2011 г.Новый метод охлаждения турбокомпрессора.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2010, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

eBooster является зарегистрированным товарным знаком BorgWarner Inc. Corporation

Подписывайтесь на нас

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом друзьям с помощью:

Цитируйте эту страницу

Вудфорд, Крис. (2010/2020) Турбокомпрессоры. Получено с https://www.explainthatstuff.com/how-turbochargers-work.html. [Доступ (укажите дату здесь)]

Подробнее на нашем сайте…

Краткая история реактивных автомобилей | Анорак Axon’s Automotive

В середине 1960-х — 1970-х, например, роторные двигатели Ванкеля на короткое время казались перспективными благодаря храбрым пионерам автомобильной промышленности, таким как NSU, Mazda и Citroën, с турбонаддувом, получившим широкую поддержку к 1970-м годам для повышения производительности и снижения выбросов. через Saab, GM, BMW, Renault и другие.

К концу 1980-х годов турбодизельные двигатели стали последней технологией, которая должна быть обязательной, опередив их огромное падение в последнее время, вызванное скандалом с мошенничеством с выбросами Volkswagen ‘dieselgate’, с водородом и более поздними гибридами, наслаждающимися краткие моменты в центре внимания.Однако они будут в конечном итоге отменены из-за незавершенного законодательства Великобритании к 2030 году, когда продажа всех новых, традиционных двигателей внутреннего сгорания (ДВС) будет объявлена ​​вне закона в пользу всех покупателей новых автомобилей, у которых будет решительно выбирать. полностью электрический автомобиль с низким уровнем выбросов.

В это более оптимистичное десятилетие, начиная с середины 1950-х годов или около того, перспектива создания реактивных турбин на короткое время обсуждалась горсткой автопроизводителей по всему миру (особенно для автоспорта), начиная от Rover и Lotus в Великобритания, Fiat и Renault в континентальной Европе, а также General Motors (GM) и Chrysler в США.

Преимущества и привлекательность газотурбинного двигателя в тот идеалистический век были (теоретически) легко понятны, так как реактивный двигатель не имеет поршней, к тому же газотурбинные агрегаты обычно легче и обладают улучшенным соотношением мощности к весу, чем поршневые двигатели. как возможность работать на различных видах топлива. В отличие от обычного двигателя ДВС, газотурбинный двигатель работает с использованием сжатого воздуха, подаваемого через камеру сгорания, в которую распыляется топливо, с последующим воспламенением топливно-воздушной смеси, при этом образующиеся газы используются для питания турбины.Вырабатываемая турбиной мощность затем используется для запуска компрессора, который сжимает воздух, подаваемый в камеру сгорания, а не также используется для приведения в движение. Эти выхлопные газы затем проходят через вторую «свободную турбину», прикрепленную к валу, для создания механической энергии, используемой для движения.

Хотя пара американских инженеров, работающих с базирующейся в Нью-Йорке Carney Associates, в начале 1946 года разработала компактный газотурбинный двигатель для использования в автомобилях, именно британская автомобильная компания стала первой, кто создал пригодный для использования дорожный автомобиль с газовой турбиной. двигатель, благодаря новаторской работе британского изобретателя авиационного реактивного двигателя Фрэнка Уиттла и его реактивного истребителя Gloster Meteor в конце Второй мировой войны.

Эта британская автомобильная компания — первая, кто попробовал использовать газотурбинные двигатели для легковых автомобилей — была маловероятным уравновешенным и консервативным Rover, поскольку компания Solihull зимой 1949/50 года разработала прототип спидстера с турбинным двигателем JET1 на базе P4, опередив его. его публичный дебют в марте 1950 года в качестве первого в мире автомобиля с газотурбинным двигателем, установленного в средней части корабля с выпускными отверстиями на верхней части хвостовой части. В июне 1952 года Rover подверг JET1 серьезным скоростным испытаниям на знаменитой бельгийской дороге с двусторонним движением Jabbeke, где он официально превысил 150 миль в час.

Концепт-кары Chrysler Turbine 1950-х и 1960-х годов

Выбросы NOx оставались острой проблемой для программы Chrysler Turbine Car, особенно после того, как в 1970-х годах начался государственный контроль над Turbine Car. Однако удивительно, что в 1972 году недавно созданное Агентство по охране окружающей среды было убеждено — отчасти благодаря коммерческому предложению инженера проекта Джорджа Хюбнера — выделить Chrysler 6,4 миллиона долларов на продолжение разработки турбин.

Помимо контроля NOx, конкретными целями гранта были увеличение пробега, снижение производственных затрат и обеспечение, по крайней мере, сопоставимых характеристик и надежности по сравнению с «обычными компактными американскими автомобилями с поршневым двигателем» [курсив добавлен].

После испытаний с тремя седанами Dodge / Plymouth 1973 года выпуска компания Chrysler представила турбину седьмого поколения. Хотя он вернулся к одиночному регенератору, он похвастался более точным электронным контролем топлива.

Первоначально устанавливаемый на пару Dodge Aspens 1976 года, этот двигатель также приводил в действие одноразовое купе с Т-образной крышей, в основном Chrysler LeBaron 1977 года с острыми передними крыльями, скрытыми фарами и тонкой вертикальной решеткой радиатора. Мощность была всего 104 лошадиных силы против 150 у шестого поколения, но эта новейшая турбина работала несколько горячее, поэтому 125 лошадиных сил были доступны за счет впрыска воды на входе компрессора и изменения положения направляющих лопаток на входе.

Затем Chrysler заключил аналогичный контракт (вместе с GM и Ford) с Управлением энергетических исследований и разработок (ERDA), которое позже было объединено с несколькими другими агентствами в сегодняшнее Министерство энергетики (DOE).

Все еще стремясь к совершенству турбины, инженеры вскоре практически устранили задержку дроссельной заслонки, привели выбросы углеводородов и окиси углерода в установленные законом пределы и достигли экономии топлива, приближающейся к аналогичным поршневым двигателям. Согласно условиям контракта, Chrysler разместила свои две турбины Aspens в Вашингтоне, округ Колумбия.C., где они работали безупречно.

Но к тому времени был 1979 год, и снизить уровень NOx все еще казалось невозможным. Хуже того, Chrysler мчался к банкротству, а новая глубокая рецессия вызвала повсеместное сокращение федеральных программ.

При этом Министерство энергетики прекратило финансирование в начале 1981 года, и Chrysler вскоре полностью отказался от исследований турбин после более чем четверти века и более 100 миллионов долларов собственных денег, плюс 19 миллионов долларов от налогоплательщиков. В жутком отголоске того, с чего все началось, самым последним построенным газотурбинным автомобилем был почти серийный Dodge Mirada 1980 года.

К сожалению, все закончилось, когда это произошло. По словам одного из официальных представителей проекта, «левый мертворожденный» был турбиной восьмого поколения, разработанной, по иронии судьбы, для важнейших новых переднеприводных компактных автомобилей Крайслер и их будущих производных. С одним валом турбины (вместо двух), электронной подачей топлива и прогнозируемой мощностью 85 лошадиных сил это была бы самая простая турбина и, вероятно, самая дешевая в производстве.

Были также надежды, что новая горелка с изменяемой геометрией станет долгожданным ответом на выбросы NOx.Но время и деньги были на исходе, поэтому этот двигатель не пошел дальше чертежей и макета из пенопласта.

К счастью, Chrysler продемонстрировал чувство истории в отношении построенных Ghia машин с турбонаддувом, выкладывая достаточно денег, чтобы спасти 10 от факела. Остальные были разрезаны под бдительным присмотром таможни США. Они должны были быть. Ввозные пошлины на эти «иномарки» были отменены только для целей программы испытаний; как только это закончилось, у Chrysler был выбор: либо вернуть их в Италию, либо заплатить значительные суммы, чтобы они оставались на американской земле.

Из 10 спасенных, девять учтены. У Крайслера все еще есть три; остальные шесть разошлись по разным музеям.

Мощность турбины теперь имеет такое же отношение к нашему автомобильному будущему, как грохочущие сиденья и задние плавники, особенно с учетом современного акцента на гибридные силовые агрегаты и альтернативные виды топлива. По крайней мере, у нас есть история турбины Крайслера и несколько ее артефактов, чтобы помнить будущее, которое почти было, но, в конце концов, никогда не могло быть.

Чтобы узнать больше о концепт-карах и прогнозируемых ими серийных моделях, посетите:

  • Концепт-кары
  • Классические автомобили
  • Consumer Guide отчеты автосалонов
  • Автомобили будущего

Как работает турбокомпрессор | Cummins

Существенная разница между дизельным двигателем с турбонаддувом и традиционным бензиновым двигателем без наддува состоит в том, что воздух, поступающий в дизельный двигатель, сжимается перед впрыском топлива .Именно здесь турбокомпрессор имеет решающее значение для выходной мощности и эффективности дизельного двигателя.

Работа турбокомпрессора заключается в сжатии большего количества воздуха, поступающего в цилиндр двигателя. Когда воздух сжимается, молекулы кислорода собираются ближе друг к другу. Это увеличение количества воздуха означает, что для безнаддувного двигателя такого же размера можно добавить больше топлива. Это приводит к увеличению механической мощности и повышению общей эффективности процесса сгорания. Следовательно, размер двигателя может быть уменьшен для двигателя с турбонаддувом, что приведет к лучшей компоновке, преимуществам экономии веса и общей улучшенной экономии топлива.

Как работает турбокомпрессор?

Турбокомпрессор состоит из двух основных частей: турбины и компрессора. Турбина состоит из турбинного колеса (1) и корпуса турбины (2) . Корпус турбины направляет выхлопной газ (3) в рабочее колесо турбины. Энергия выхлопного газа вращает турбинное колесо, и затем газ выходит из корпуса турбины через зону выхода выхлопных газов (4) .

Компрессор также состоит из двух частей: крыльчатки компрессора (5) и корпуса компрессора (6) .Принцип действия компрессора противоположен турбине. Колесо компрессора прикреплено к турбине валом из кованой стали (7) , и когда турбина вращает колесо компрессора, высокоскоростное вращение втягивает воздух и сжимает его. Затем корпус компрессора преобразует высокоскоростной воздушный поток низкого давления в воздушный поток высокого давления и низкого давления посредством процесса, называемого диффузией. Сжатый воздух (8) проталкивается в двигатель, позволяя двигателю сжигать больше топлива для выработки большей мощности.

  1. Колесо турбины
  2. Корпус турбины
  3. Выхлопные газы
  4. Площадь выхода выхлопных газов
  5. Колесо компрессора
  6. Корпус компрессора
  7. Вал из кованой стали
  8. Сжатый воздух

Узнайте, как работает Turbo

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *