Меню Закрыть

Что такое такт двигателя: Что такое такт двигателя внутреннего сгорания

Содержание

4 такта работы ДВС. Основные решения поломок ДВС

Рассмотрим 4 такта работы ДВС:

  1. Впуск
  2. Сжатие
  3. Сгорание
  4. Выпуск

  1. При первом такте открывается клапан и в блок цилиндра добавляется топливная смесь. Топливная смесь состоит из воздуха и топлива в пропорции 14.7 к 1. При этом различают обогащенную топливную смесь, где пропорция бензина к воздуху примерно 40 к 1 и обедненную топливную смесь, где соотношение воздуха по отношению к бензину преобладает.
  2. При втором такте происходит сжатие топливной смеси в камере сгорания в блоке цилиндра.
  3. При третьем такте топливная смесь зажигается при помощи свечи зажигания.
  4. На четвертом такте происходит выпуск отработанных газов через выпускные клапаны ГБЦ.
ГБЦ оборудован маслосъемными и компрессионными кольцами.

Маслосъемные кольца позволяют оптимально использовать топливо, смазывая весь цилиндр и равномерно распределяя масло по его поверхности.

Компрессионные кольца играют роль уплотнителей, которые блокируют выход отработанных газов в тепловой зазор.

!!! Закоксовка колец — проблема, с которой сталкиваются автовладельцы. Ее суть в том, что компрессионные кольца становятся слишком плотными и больше не могут обеспечивать герметичность внутри цилиндра.

Распредвал синхронизирует работ впускных/выпускных клапанов с работой коленчатого вала.
Верхняя мертвая точка — это верхняя граница хода поршня, нижняя мертвая точка — это нижняя граница хода поршня.

Впускные и выпускные клапаны цилиндра имеют

клапанную пружину, клапанную тарелку и фиксирующий сухарь.

Впускные и выпускные клапана открываются и закрываются благодаря приводу ГРМ.

Привод ГРМ приводит в движение распределительный вал, масляный и водяной насос.

Различают верхневальные и нижневальные двигатели.

Верхневальные двигатели более распространены, ими оснащены все легковые автомобили. Нижневальные встречаются в грузовых автомобилях и в спец. технике, также в автомобилях УАЗ и Газель.
Главное отличие нижневальных и верхневальных двигателей в том, что в верхневальных двигателях больший крутящий момент на высоких оборотах, а в нижневальных — на низких.
Самые частые поломки ДВС и их основные решения:
— износ деталей цилиндро-поршневой группы — замена деталей цилиндро-поршневой группы
— разрыв или растяжение привода на распредвал — замена, правильная установка и регулировка элементов привода ГРМ!!! При заказе деталей учитывайте обстоятельства малой выработки шестерней и направляющих, чтобы ремонт не обошелся еще дороже.

!!! Соблюдайте метки при замене цепи, ремня, шестерни или эвольвенты привода ГРМ. Так вы точно правильно выставите положение коленчатого и кулачкового (распределительного) валов двигателя.

— неисправность системы зажигания — чаще всего замена катушки зажигания или конденсатора распределителя зажигания решают проблему
— поломка топливного насоса — чаще всего проблему решает замена топливного фильтра или промывка сетки приемника
— замена топливного насоса
— нарушение зазоров между элементами
— необходимо отрегулировать зазоры
— заклинивание шатунов, поршней — ремонт ДВС посредством гильзовки цилиндра/цилиндров, замена цилиндра/цилиндров, замена маслосъемных колец!!! Желательно загильзовывать все цилиндры, в противном случаеесть вероятность изменения геометрии цилиндров полублока
— отсутствие компрессии — замена компрессионных колец\ поршня или клапанов
— прогар поршня — замена поршня!!! Соблюдайте правила, прописанные в рукаводстве эксплуатации. Не допускайте прогара поршня, ведь это эксплуатационный дефект

Опубликовано: 18.05.2016

ТАКТЫ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ — это… Что такое ТАКТЫ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ?

ТАКТЫ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ
ТАКТЫ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ

— отдельные процессы, протекающие в цилиндре за один ход поршня и составляющие полный рабочий цикл двигателя внутреннего сгорания. Например, в четырехтактном двигателе рабочие процессы (всасывание, сжатие, рабочий ход и выхлоп), составляющие рабочий цикл, совершаются за 4 хода поршня, а в двухтактных двигателях за 2 хода. См. также

Двигатели внутреннего сгорания.

Самойлов К. И. Морской словарь. — М.-Л.: Государственное Военно-морское Издательство НКВМФ Союза ССР, 1941

.

  • ТАКЕЛЬГАРН
  • ТАКСИМЕТР

Смотреть что такое «ТАКТЫ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ» в других словарях:

  • Поршневой двигатель внутреннего сгорания — 4 тактный цикл двигателя внутреннего сгорания Такты: 1. Всасывание горючей смеси. 2. Сжатие. 3. Рабочий ход. 4. Выхлоп. Двухтактный цикл. Такты: 1. При движении поршня вверх  сжатие топливной смеси в …   Википедия

  • Бензиновый двигатель внутреннего сгорания — Бензиновый двигатель W16 Bugatti Veyron Бензиновые двигатели  это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической и …   Википедия

  • Двигатель внутреннего сгорания — Схема: Двухтактный двигатель внутреннего сгорания с глушителем …   Википедия

  • Объём двигателя — 4 тактный цикл двигателя внутреннего сгорания Такты: 1.Всасывание горючей смеси. 2.Сжатие. 3.Рабочий ход. 4.Выхлоп. Двухтактный цикл. Такты: 1. При движении поршня вверх  сжатие топливной смеси в текущем цикле и всасывание смеси для следующего… …   Википедия

  • Поршневой авиационный двигатель — 4 тактный цикл двигателя внутреннего сгорания Такты: 1.Всасывание горючей смеси. 2.Сжатие. 3.Рабочий ход. 4.Выхлоп. Двухтактный цикл. Такты: 1. При движении поршня вверх  сжатие топливной смеси в текущем цикле и всасывание смеси для следующего… …   Википедия

  • Четырёхтактный двигатель — Работа четырёхтактного двигателя в разрезе. Цифрами обозначены такты Четырёхтактный двигатель  поршневой двигатель внутреннего сгорания, в котором рабочий процесс в каждом из цилиндров совершается за два оборота коленчатого вала, то есть за… …   Википедия

  • Пятитактный роторный двигатель —   роторный двигатель с простым и равномерным вращательным движением главного рабочего элемента и с использованием такого же простого вращательного движения уплотнительных элементов. История Впервые такая схема расширительной машины в виде… …   Википедия

  • Четырехтактный двигатель — Бензиновые двигатели это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой. Управление мощностью в данном типе двигателей производится, как правило,… …   Википедия

  • Четырёхтактный мотор — Бензиновые двигатели это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой. Управление мощностью в данном типе двигателей производится, как правило,… …   Википедия

  • Дизельный двигатель — Дизельный двигатель  поршневой двигатель внутреннего сгорания, работающий по принципу самовоспламенения распылённого топлива от воздействия разогретого при сжатии воздуха.[1] Спектр топлива для дизелей весьма широк, сюда включаются все… …   Википедия

Что называется тактом в работе двигателя?

Такт – это что? Латинское слово tactus переводится как «прикосновение». От него произошло французское слово takt, означающее норму поведения. В немецком языке Takt означает музыкальный интервал. В русский язык это слово пришло с девятнадцатого века и употребляется в нескольких значениях.

Музыкант уверен, что это метрическая единица в музыке. Можно сбиться с такта во время танца. А когда сбивается с такта сердце – срочно нужен врач. Механик уверен, что это технический термин, относящийся к двигателю. Программист скажет – к процессору. А лингвист вспомнит о речевом такте. И только педагог с психологом сойдутся во мнении, что такт – это чуткость в отношениях с людьми.

Рабочий цикл двигателя

Рабочим циклом называется совокупность периодически повторяющихся в определенной последовательности процессов, протекающих в каждом цилиндре двигателя, в результате которых тепловая энергия переходит в работу.
Тактом называется процесс, происходящий в цилиндре при перемещении поршня от одной мертвой точки к другой.

Если рабочий цикл совершается за четыре хода поршня, чему соответствует два оборота коленчатого вала, то двигатель с таким циклом называется четырехтактным. Каждый такт такого двигателя имеет свое наименование и свои особенности.

Рис.2. Рабочий цикл четырёхтактного дизеля: 1-топливный насос; 2-поршень; 3-форсунка; 4-воздухоочиститсль; 5-впускной клапан; 6-выпускной клапан; 7-цилиндр

Такт впуска. При перемещении поршня от ВМТ до НМТ над ним освобождается пространство, куда через открывающийся впускной клапан 5 (рис.2) поступает чистый воздух у дизеля или смесь воздуха с мелко распыленным бензином (горючая смесь). Поступивший свежий заряд смешивается с остатками отработавших газов от предыдущего такта (такая смесь называется рабочей). При подходе к НМТ давление в цилиндре вследствие сопротивления во впускном трубопроводе, ниже атмосферного и составляет 0,07. 0,09. Температура газов в конце этого такта достигается 40. 70°С у дизеля и 70. 13О°С у карбюраторного двигателя.

Такт сжатия. При перемещении поршня от НМТ к ВМТ впускной клапан закрывается и поступивший в цилиндр воздух или рабочая смесь сжимается, вследствие чего их температура и давление повышаются. Величина повышения давления и температуры определяется степенью сжатия двигателя. У дизеля температура в конце такта сжатия достигает 550. 750°С, а давление 4. 5МПа; у карбюраторного двигателя рабочая смесь нагревается до 300. 430°, а давление составляет 0,8. 1.5МПа.

Такт расширения. При подходе поршня к ВМТ в цилиндр дизеля через форсунку впрыскивается топливо, которое, перемещаясь с нагретым и сжатым воздухом, сгорает; при этом давление газов в цилиндре возрастает до 6. 9 МПа, а их температура поднимается до 1800. 2000° С. Под действием давления расширяющихся газов поршень перемещается от ВМТ к НМТ. В конце этого такта температура газов понижается до 700. 900° С, а давление до 0,3. 0,5МПа.

В карбюраторном двигателе при подходе поршня к ВМТ сжатия горючая смесь воспламеняется от электрической искры, возникающей между электродами свечи, ввернутой в цилиндра. От сгорания смеси давление газов возрастает до 3,5. 5 МПа, а температура до 2100. 2400°. К концу такта расширения у карбюраторного двигателя температура газов снижается до 900. 1200°, а давление до 0,3. 0,35 МПа.

Такт выпуска. При перемещении поршня от НМТ к ВМТ открывается выпускной клапан, и отработавшие газы выталкиваются из цилиндра в атмосферу. При этом давление газов к концу такта снижается до 0,11. 0,12 МПа, а температура до 500. 700°С у дизеля и 300. 400° у карбюраторного двигателя.

Таким образом, в четырехтактном двигателе только один такт расширения – ход поршня под действием давления газов поворачивает коленчатый вал и совершает полезную работу; этот ход называется рабочим. Остальные такты – впуска, сжатия и выпуска – называются вспомогательными. После такта выпуска рабочий цикл двигателя повторяется.

Что такое рабочий цикл двигателя автомобиля

Существует несколько различных типов двигателей, при этом на колесном, гусеничном, водном и даже иногда воздушном транспорте (грузовые и легковые авто, спецтехника, моторные лодки, самолеты и т.п.), нередко можно встретить двигатель внутреннего сгорания (ДВС).

Так или иначе, широкое распространение силовой агрегат данного типа получил благодаря своей автономности, универсальности, а также целому ряду других преимуществ. При этом агрегаты имеют много различных параметров и характеристик, среди которых стоит отдельно выделить рабочий цикл. Далее мы поговорим о том, что означает рабочий цикл автомобильного двигателя внутреннего сгорания.

Вывод

Тактовая частота – характеристика процессора, численно характеризующая количество операций, который может произвести CPU за секунду. От данного параметра зависит мощность ПК. Тем не менее стоит помнить, что частота – далеко не единственная характеристика, которая влияет на общую производительность ПК. Если частоты процессора не хватает для удовлетворения ваших потребностей, то стоит либо приобрести новую видеокарту, либо разогнать старый процессор. Если вы выбрали второй вариант, то будьте предельно осторожны. Процедура разгона может привести к сгоранию CPU. Поэтому неопытным пользователям лучше этим не заниматься.

Рабочий цикл ДВС: что нужно знать

Если рассматривать принцип работы двигателя внутреннего сгорания, топливо в таких агрегатах сгорает в закрытой камере (камера сгорания), куда подается готовая топливно-воздушная смесь или воздух и топливо по отдельности (дизельные агрегаты и моторы с прямым впрыском).

Работа такого мотора основана на том, что во время сгорания топлива происходит расширение газов. Указанные газы становятся причиной роста давления в цилиндре, благодаря чему поршень получает «толчок». Затем энергия, переданная на поршень, преобразуется в механическую работу. Давайте рассмотрим принцип работы двигателя, а также рабочие циклы более подробно.

Двигатели, которые устанавливаются на автомобили, обычно работают по четырехтактному циклу (четырехтактный двигатель). Это значит, рабочий цикл совершается за два оборота коленвала и четыре хода поршня. Работу такого ДВС можно разделить на такты: такт впуска, такт сжатия, такт рабочего хода, такт выпуска.

Как работает четырехтактный бензиновый двигатель

Чтобы было понятнее, начнем с того, что когда поршень в цилиндре во время работы ДВС начинает занимать крайние положения (максимально приближен или удален по отношению к оси коленчатого вала), эти положения принято называть ВМТ и НМТ. ВМТ означает верхняя мертвая точка, тогда как НМТ значит нижняя мертвая точка. Теперь вернемся к тактам.

  • На такте впуска коленчатый вал двигателя делает первую половину оборота, при этом поршень из ВМТ движется в НМТ. В этот момент открыт впускной клапан, а выпускной клапан закрыт. При движении поршня вниз в цилиндре образуется разрежение, в результате чего в цилиндр «засасывается» топливно-воздушная смесь через открытый впускной клапан. Рабочая смесь состоит из воздуха и распыленного топлива (в некоторых двигателях на такте впуска поступает только воздух).
  • Следующим тактом является сжатие. После того, как произойдет наполнение цилиндра топливно-воздушной смесью, коленвал начинает совершать вторую половину оборота. В этот момент поршень начинает подниматься из НМТ в ВМТ. При этом впускной клапан уже закрыт. Далее поршень сжимает смесь в герметично закрытом цилиндре. Чем больше уменьшается объем цилиндра, тем сильнее сжимается смесь. Результатом такого сжатия является повышение температуры смеси.
  • К тому времени, когда поршень подойдет к концу такта сжатия (практически дойдет до ВМТ), смесь в бензиновых двигателях воспламеняется от внешнего источника (электрическая искра на свече зажигания). Затем топливный заряд сгорает, в результате в цилиндре резко повышается температура и давление. В этот момент поршень уже перемещается обратно из ВМТ в нижнюю мертвую точку, принимая на себя энергию расширяющихся газов.
  • После того, как поршень почти дойдет до НМТ в конце рабочего хода, происходит открытие выпускного клапана. После этого давление в цилиндре снижается, несколько падает и температура. Затем начинается такт выпуска. В это время коленчатый вал совершает последний полуоборот, при этом поршень снова поднимается из НМТ в ВМТ, буквально «выталкивая» отработавшие газы из цилиндра через открытый выпускной клапан в выпускной коллектор.

Работа четырехтактного дизельного ДВС

Хотя дизель конструктивно похож на бензиновый мотор, в дизельных двигателях изначально сжимается только воздух, после чего прямо в камеру сгорания впрыскивается дизтопливо. При этом воспламенение такой смеси происходит самостоятельно (под большим давлением, а также в результате контакта с нагретым от сильного сжатия воздухом).

Простыми словами, воздух сначала сжимается и нагревается, в среднем, до 650 градусов по Цельсию. В самом конце такта сжатия в камеру сгорания топливная форсунка впрыскивает солярку, затем смесь дизтоплива и воздуха самовоспламеняется.

С учетом данной особенности на такте впуска (поршень движется из ВМТ в НМТ), за счет разряжения в цилиндр подается воздух через открытый впускной клапан. Давление и температура воздуха в этот момент имеют низкие показатели.

Затем начинается сжатие, поршень поднимается из НМТ в верхнюю мертвую точку. Как и в случае с бензиновым мотором, впускной и выпускной клапаны полностью закрыты, что позволяет поршню сильно сжать воздух.

Будет полезно: Как циркулирует жидкость в системе охлаждения двигателя?

Если учесть, что давление воздуха в цилиндре высокое (необходимо для его нагрева), дизельное топливо в момент впрыска должно также подаваться под очень высоким давлением. Фактически, форсунке нужно «продавить» солярку в камеру сгорания, в которой уже находится сильно сжатый поршнем и горячий воздух.

Для решения этой задачи многие системы питания дизельного двигателя имеют ТНВД (топливный насос высокого давления). Также в схеме могут быть использованы насос-форсунки (форсунка и насос объединены в одно устройство). Еще существуют варианты, когда питание двигателя реализовано при помощи так называемого «аккумулятора» высокого давления. Речь идет о системах Common Rail.

После воспламенения заряда происходит расширение газов и начинается рабочий ход поршня. Температура в результате горения смеси повышается, происходит увеличение давления. Указанное давление газов «толкает» поршень, происходит рабочий ход. Завершающим этапом становится выпуск, когда поршень после совершения рабочего хода снова поднимается из НМТ в ВМТ. Затем весь описанный выше процесс (рабочий цикл двигателя) повторяется.

Так в чем же разница?

Статья получилась сложнее, чем я предполагал, но если подвести итог. ТО получается:

ОТТО – это стандартный принцип обычного мотора, которые сейчас стоят на большинстве современных автомобилей

АТКИНСОН – предлагал более эффективный ДВС, за счет изменения степени сжатия при помощи сложной конструкции из рычагов которые подсоединялись к коленчатому валу.

ПЛЮСЫ — экономия топлива, эластичнее мотор, меньше шума.

МИНУСЫ – громоздкая и сложная конструкция, низкий крутящий момент на низких оборотах, плохо управляется дроссельной заслонкой

В чистом виде сейчас практически не применяется.

МИЛЛЕР – предложил использовать пониженную степень сжатия в цилиндре, при помощи позднего закрытия впускного клапана. Разница с АТКИНСОНОМ огромна, потому как он использовал не его конструкцию, а ОТТО, но не в чистом виде, а с доработанной системой ГРМ.

Предполагается что поршень (на такте сжатия) идет с меньшим сопротивлением (насосные потери), и лучше геометрически сжимает воздушно-топливную смесь (исключая ее детонацию), однако степень расширения (при воспламенении от свечи) остается почти такая же, как и в цикле ОТТО.

ПЛЮСЫ — экономия топлива (особенно на низких оборотах), эластичность работы, низкий шум.

МИНУСЫ – уменьшение мощности при высоких оборотах (из-за худшего наполнения цилиндров).

Стоит отметить, что сейчас принцип МИЛЛЕРА используется на некоторых автомобилях при невысоких оборотах. Позволяет регулировать фазы впуска и выпуска (расширяя или сужая их при помощи фазовращателей). Так двигатель SKYACTIV, на низких оборотах работает по принципу МИЛЛЕРА, а на высоких по принципу ОТТО. В чистом виде МИЛЛЕР (однако, почему то он называется АТКИНСОН) работает на гибридах ТОЙОТА.

Сейчас видео версия смотрим

НА этом я заканчиваю, думаю было полезно и интересно. Рассказывайте своим друзьям (кидайте им ссылку на статью или видео), будет еще много интересных материалов. ИСКРЕННЕ ВАШ, АВТОБЛОГГЕР.

Похожие новости

  • Крутящий момент и мощность двигателя. Что важнее? Пару слов про …
  • Распределенный или непосредственный впрыск (MPI или GDI). Какая …
  • Гидрокомпенсаторы или толкатели (клапанов). Что лучше?

Синхронная работа нескольких цилиндров

Выше были описан принцип работы ДВС, при этом рассматривались процессы в одном цилиндре. Однако, как известно, большинство двигателей являются многоцилиндровыми. Для того чтобы добиться ровной и синхронной работы всех цилиндров, рабочий ход поршня в каждом отдельном цилиндре должен происходить через равный промежуток времени (одинаковые углы поворота коленвала).

В зависимости от компоновки двигателя и его конструктивных особенностей последовательность (порядок работы) может быть разной. Дело в том, что двигатели бывают не только рядными, но и V-образными.

Во втором случае такая компоновка позволяет разместить цилиндры под углом, при этом становится возможным увеличить общее количество цилиндров без увеличения самой длины блока цилиндра двигателя. Такое решение позволяет разместить мощный многоцилиндровый ДВС под капотом не только большого внедорожника или грузовика, но и легкового авто.

Обороты и мотресурс двигателя. Недостатки езды на низких и высоких оборотах. На каком количестве оборотов мотора ездить лучше всего. Советы и рекомендации.

Зависимость мощности и крутящего момента двигателя от числа оборотов коленвала. Крутящий момент бензинового и дизельного ДВС, полка момента, эластичность.

Что означает понятие объем двигателя. Определение рабочего объема мотора. Классы авто в зависимости от объема ДВС, плюсы и минусы большого объема двигателя.

Почему дизельный мотор имеет больший коэффициент полезного действия по сравнению с двигателями на бензине. Крутящий момент и обороты, энергия дизтоплива.

Виды двигателей внутреннего сгорания, отличия различных типов ДВС. Особенности компоновки, объем двигателя, мощность, крутящий момент и другие параметры.

Что нужно знать об электромобилях. Устройство машин с электродвигателем, основные характеристики. Эксплуатация и обслуживание в теории и на практике.

Как повысить частоту?

Мало кто знает, но мощность процессора можно повысить. Как увеличить производительность CPU? Чтобы ответить на этот вопрос, нужно понять от чего она зависит. Тактовая частота прямо пропорциональна произведению множителя, который закладывается при проектировании, на частоту шины. Причем встречаются два вида множителей – заблокированные и открытые. Не трудно понять, что первые не поддаются разгону.

Процедура увеличения тактовой частоты проводится на устройствах с разблокированным множителем. Для того, чтобы произвести разгон необходимо обладать специальными знаниями, уметь работать с БИОС и знать английский язык (хотя бы уметь читать). Процедура увеличения частоты довольно-таки сложна и неопытные пользователи вряд ли смогут ее произвести без негативных последствий для ПК. Если вкратце, то суть разгона в том, чтобы постепенно увеличивать частоту шины процессора через вышеупомянутый множитель.

Важно! Разгон CPU – опасная процедура, которая может негативно сказаться на компьютере, а то и вовсе вывести его из строя. Это связано с тем, что при повышении частоты процессор начинает сильнее нагреваться. Соответственно, если у вас слабая система охлаждения, то CPU может попросту сгореть.

Что такое мертвые точки и такты ДВС

Количество этапов, входящих в один рабочий цикл ДВС (двигателя внутреннего сгорания), принято считать исходя из числа ходов поршня в цилиндре. Такие этапы получили название такты двигателя. Непосредственно ход поршня определяется его перемещением из одной крайней точки в другую. Они получили наименование мертвые, поскольку если в такой точке произойдет остановка поршня, он не сможет начать движение без внешнего воздействия. Простыми словами мертвые точки — это позиции, при которых движение в текущем направлении поршня прекращается и он начинает обратный ход.

Мертвые точки и ход поршня ДВС

Существуют две мертвые точки:

  • Нижняя (НМТ) — положение, при котором расстояние между поршнем и осью вращения коленвала минимально.
  • Верхняя (ВМТ) — положение, при котором цилиндр находится на максимальном удалении от оси вращения коленвала двигателя.

В англоязычной документации ВМТ обозначается как TDC (Top Dead Centre), А НМТ — BDC (Bottom Dead Centre).

Существуют двигатели, рабочий цикл которых может состоять из двух, а также из четырех тактов. Исходя из этого их разделяют на двухтактные и четырехтактные моторы.

В речи

Речь человека, подобно музыке, тоже имеет свой такт. Как в слове существует ударение, то есть более громко произносимый звук, так и во всей фразе есть смысловое ударение. Речевой такт характеризуется ударением в группе слов. В речи всегда есть паузы – подлиннее и покороче. Пауза после законченной фразы более длинная, внутри фразы – более короткие паузы.

Фраза может состоять из одного или нескольких предложений. Каждое предложение – из одного или нескольких тактов. Каждый такт – из одного или нескольких слов. Таким образом, такт – это единица речевого потока.

Такт образует незаконченную конструкцию речи. Он, как кирпичик, всего лишь часть целого. Что будет создано из таких кирпичиков, зависит от оратора. Самое выразительное деление на такты встречается в стихотворениях. Неправильное деление речи на такты совершенно изменяет смысл сказанного.

Как работает четырехтактный двигатель

Конструктивно рабочий цикл типового четырехтактного агрегата обеспечивается работой следующих элементов:

  • цилиндр;
  • поршень — выполняет возвратно-поступательные движения внутри цилиндра;
  • клапан впуска — управляет процессом подачи топливовоздушной смеси в камеру сгорания;
  • клапан выпуска — управляет процессом выброса отработавших газов из цилиндра;
  • свеча зажигания — осуществляет воспламенение образовавшейся топливовоздушной смеси;
  • коленчатый вал;
  • распределительный вал — управляет открытием и закрытием клапанов;
  • ременной или цепной привод;
  • кривошипно-шатунный механизм — переводит движение поршня во вращение коленчатого вала.

Рабочий цикл четырехтактного двигателя

Рабочий цикл такого механизма состоит из четырех тактов, в ходе которых реализуются следующие процессы:

  1. Впуск (нагнетание топлива и воздуха). В начале цикла поршень находится в ВМТ. В момент, когда коленвал начинает вращаться, он воздействует на поршень и переводит его в НМТ. Это приводит к образованию разрежения в камере цилиндра. Распредвал воздействует на клапан впуска, постепенно открывая его. Когда поршень оказывается в крайнем положении клапан полностью открыт, в результате чего происходит интенсивное нагнетание топлива и воздуха в камеру цилиндра.
  2. Сжатие (увеличение давления горючей смеси). На втором этапе поршень начинает обратное перемещение к верхней мертвой точке такта сжатия. Коленвал совершает еще один поворот, а оба клапана полностью закрыты. Внутреннее давление увеличивается до величины 1,8 МПа и повышается температура горючей смеси до 600 С°.
  3. Расширение (рабочий ход). При достижении верхней позиции поршнем в камере сгорания устанавливается максимальная компрессия до 5 МПа и срабатывает свеча зажигания. Это приводит к возгоранию смеси и увеличению температуры до 2500 С°. Давление и температура приводят к интенсивному воздействию на поршень, и он начинает вновь перемещаться к НМТ. Коленвал совершает еще поворот, и таким образом, тепловая энергия переходит в полезную работу. Распредвал открывает выпускной клапан, и при достижении поршнем НМТ он полностью раскрыт. В результате отработавшие газы начинают постепенно выходить из камеры, а давление и температура снижаются.
  4. Выпуск (удаление отработавших газов). Коленвал двигателя поворачивается, и поршень начинает движение в верхнюю точку. Это приводит к выталкиванию отработавших газов и еще большему снижению температуры и уменьшению давления до 0,1 МПа. Далее, начинается новый цикл, в ходе которого указанные процессы вновь повторяются.

В ходе каждого такта коленчатый вал двигателя совершает поворот на 180°. За полный рабочий цикл коленвал поворачивается на 720°.

Четырехтактный двигатель получил широкое распространение. Он может работать как с бензином, так и с дизельным топливом. Отличием рабочего цикла для дизеля является то, что воспламенение топливовоздушной смеси происходит не от искры, а от высокого давления и температуры в конечной точке такта сжатия.

Как посмотреть тактовую частоту процессора

Известно несколько способов, как узнать частоту процессора на своем персональном компьютере. Самый простой – заглянуть в свойства ПК. Если возникла необходимость узнать тактовую частоту, выполните следующие действия:

  1. Перейдите в «Мой Компьютер», путем открытия ярлыка на рабочем столе.
  2. В открывшемся окне нажмите правой кнопкой мыши на пустой области.
  3. Выберите пункт «Свойства».
  4. В следующем окне обратите внимание на центральную область экрана, а именно на блок «Система».
  5. В строке «Процессор» отображены все важные характеристики ЦП.

Кроме стандартных методов есть еще и обширные способы проверки – с помощью стороннего софта. Лучшей утилитой, отображающей характеристики ключевых компонентов компьютера, считается CPU-Z.

Достаточно выполнить её установку на ПК и запустить. В окошке «Тактовая частота» она отображает то, что нужно.

Особенности работы двухтактных моторов

Основой того, чем отличается двухтактный двигатель от четырехтактного, можно назвать тот факт, что в первом за один рабочий цикл коленвал совершает два оборота, а во втором весь рабочий цикл укладывается в один оборот коленвала (360°). Поршень при этом совершает лишь два хода. Процессы, происходящие в камере сгорания в течение рабочего цикла у двухтактного мотора, не отличаются от четырехтактных, но впуск горючей смеси и выпуск отработавших газов выполняются одновременно с тактами сжатия и расширения.

Процесс одновременного удаления отработавших газов и нагнетания в цилиндр свежего заряда, происходящий в двухтактном двигателе, получил название продувка.

Принцип работы простейшего двухтактного двигателя заключается в следующем:

  1. Такт сжатия. В начале цикла поршень находится в НМТ и движется в положение ВМТ такта сжатия. При этом происходит перекрытие окна продувки (впуска), а затем канала выпуска. В момент, когда поршень закрывает окно выпуска, начинается сжатие горючей смеси, и в пространстве под поршнем возникает разрежение. Это обеспечивает нагнетание топлива в камеру через приоткрытый клапан впуска.
  2. Такт расширения (рабочего хода). Когда поршень приближается к ВМТ, происходит срабатывание свечи зажигания, и горючая смесь воспламеняется. Это провоцирует резкое повышение давления и температуры, в результате чего поршень начинает движение вниз. Таким образом, газы совершают полезную работу, а поршень при движении к НМТ увеличивает компрессию топливовоздушной смеси. С ростом давления клапан начинает закрываться и препятствует попаданию горючей смеси во впускной коллектор. При достижении поршнем выпускного окна, происходит открытие последнего, и отработавшие газы удаляются в систему выхлопа. Давление в камере снижается, а дальнейшее движение поршня открывает канал продувки и топливовоздушная смесь подается в камеру, вытесняя отработавшие газы.

Будет полезно: Как почистить радиатор отопления своими руками?

В зависимости от того, как реализована система продувки в устройстве двухтактного двигателя, их разделяют на разные типы:

  • С контурной кривошипно-камерной продувкой. Горючая смесь подается в камеру цилиндра напрямую из картера двигателя. При этом она всасывается в момент движения поршня к ВМТ, а при движении поршня к НМТ обеспечивается продувка за счет избыточного давления.
  • С клапанно-щелевой продувкой. Применяется для одноцилиндровых двигателей. Газораспределение реализуется путем перекрытия окон, выполненных в стенке цилиндра.
  • С прямоточной продувкой. В такой конструкции впуск выполняется через специальные продувочные окна, выполненные по окружности цилиндра в его нижней части. В свою очередь, выпуск реализуется через выхлопной клапан.
  • С использованием продувочных насосов. Применяется на многоцилиндровых двухтактных двигателях. При этом воздух для продувки сжимается специальным компрессором.

В отличие от четырехтактного, двухтактный двигатель не имеет системы газораспределения. Не требуют такие конструкции и организации сложной системы смазки. С другой стороны, четырехтактные моторы более экономичны по расходу топлива, а также меньше подвержены вибрации и обеспечивают более чистый выхлоп.

Какие есть двигателя внутреннего сгорания? Классификация двигателей внутреннего сгорания.

Двигатели внутреннего сгорания различаются по типам. Давайте разберем типы двигателей внутреннего сгорания:

  • Поршневые;
  • Роторно-поршневые;
  • Газотурбинные;
  • Дизельные.

Существуют различные виды двигателей внутреннего сгорания и производительность каждого отличается друг от друга. Как работает каждый вид?

Поршневые

Механическая работа формируется при использовании кривошипно-шатунного механизма. При его воздействии, движение передается на коленвал.

В карбюраторных двигателях формирование воздушно-топливной смеси производится в карбюраторе, после чего она перераспределяется в цилиндр.

В инжекторных двигателях регулировкой подачи топлива занимается ЭБУ. Распределение топлива осуществляется во впускной коллектор, попадая туда через форсунки.

Роторно-Поршневые

Механическая работа формируется при использовании ротора. Он выполняет работу газораспределительного механизма, коленвала, а также поршней.

Газотурбинные

В этих моторах механическая работа формируется также при использовании ротора. Он при вращении заставляет двигаться турбинный вал.

Дизельные

При впрыске топлива используются форсунки. Однако для воспламенения этим моторам не требуется свеча. Под температурой происходит нагревание сжатого воздуха. Температура же обязательно должна быть больше, чем температура горения.

Принцип работы двигателя внутреннего сгорания

Поршневой двигатель в своей работе является цикличным. Цикл может производить около ста тактов в одну минуту, что позволяет коленвалу непрерывно вращаться.

Такт двигателя внутреннего сгорания – это ход поршня. То есть поршень двигается именно либо вверх, либо вниз. Цикл – это последовательность тактов, которые постоянно повторяются.

Также существуют 2 типа поршневых ДВС, – это 2-тактные моторы и 4-тактные.

Принцип работы двухтактного двигателя внутреннего сгорания

Как только водитель заводит автомобиль, тут же начинают двигаться поршни. Они всегда двигаются по направлению либо вверх, либо вниз. Изначально поршень начинает движение вниз. Когда он касается нижней мертвой точки и меняет свое направление, то в цилиндр, а именно в камеру сгорания начинает проходить подача топлива. Когда поршень поднимается вверх, топливо начинает сжиматься.

От свечей зажигания образовывается искра. И когда поршень доходит до верхней стадии, то происходит воспламенение топливной смеси. В дальнейшем пары расширяются и заставляют поршень двигаться вниз.

Двухтактные двигатели неэффективны по сравнению с четырехтактными, поскольку при удалении отработавших газов теряется мощность.

Вся маломощная техника использует именно 2-тактные моторы.

Принцип работы четырехтактного двигателя внутреннего сгорания

Все автомобили, которые используются в 21 веке уже имеют 4-тактные моторы.

Четырехтактный двигатель отличается от двухтактного тем, что при осуществлении впуска/выпуска топливно-горючей смеси, а также отработанных газов никак не совмещаются со сжатием/расширением, а работают как отдельные процессы.

В отношениях

Словарь Ефремовой так объясняет значение слова «такт» в отношениях с людьми: чувство меры в поведении, деликатность, подсказывающая бережное отношение, подход к человеку. Понятие педагогического такта тесно связано с психологией. Что значит такт, хорошо объяснял К. Д. Ушинский. Он говорил, что воспитатель-практик обязан иметь психологический такт. Без этого бесполезны его знания теории педагогики.

Такт основан на душевных качествах: терпение, доверие, отзывчивость, чуткость. Они помогают правильно понять ситуацию, разрешить назревший конфликт, подобрать верные слова и не ущемить чувство собственного достоинства собеседника.

Можно быть тактичным и бестактным. Пример тому – девочка Алиса. Она пытается вести светскую беседу и быть образцом порядочности, но ей это не удается.

Алиса в стране чудес попала в слезное море и заметила, что рядом кто-то барахтается. Оказалось, это мышь. Начав вести с ней светскую беседу, она заговорила о своей кошке, как она ловко ловит мышей. Но мышь обиделась. Тогда Алиса стала рассказывать о соседском фокстерьере и дошла до случая, когда он всех крыс и мышей переловил. На это мышь резонно заметила: «Вы просто бестактная девочка. Уплываю».

Рабочие циклы двигателей

Рабочий цикл четырехтактного карбюраторного двигателя

Работа двигателя внутреннего сгорания может быть представлена в виде систематически повторяющихся процессов, которые принято называть рабочими циклами. Рабочим циклом двигателя называется ряд последовательных, периодических повторяющихся процессов в цилиндрах, в результате которых тепловая энергия топлива преобразуется в механическую работу. При этом каждый полный рабочий цикл может быть разделен на одинаковые (повторяющиеся) части – такты.

Часть рабочего цикла, совершаемого за время движения поршня от одной мертвой точки до другой, т. е. за один ход поршня, называется тактом . Двигатели, рабочий цикл которых совершается за четыре хода поршня (два оборота коленчатого вала), называются четырехтактными. В головке блока цилиндров, над камерой сгорания (рис. 1) карбюраторного двигателя устанавливаются впускной 4 и выпускной 6 клапаны, управляемые газораспределительным механизмом, а также свеча зажигания 5.

Рабочий цикл карбюраторного четырехтактного двигателя состоит из последовательных тактов впуска, сжатия, расширения и выпуска.

Такт впуска

В результате вращения коленчатого вала при пуске двигателя (вручную или с помощью специального устройства – например, заводной рукоятки или электродвигателя – стартера) поршень совершает движение от верхней мертвой точки (ВМТ) к нижней мертвой точке (НМТ). При этом впускной клапан 4 открыт, а выпускной клапан 6 закрыт. Так как объем цилиндра при движении поршня вниз (к НМТ) быстро увеличивается, давление над поршнем уменьшается до 0,07. 0,09 МПа, т. е. внутри цилиндра создается вакуум – избыточное разрежение. Впускной клапан 3 сообщается со специальным устройством – карбюратором, который приготавливает горючую смесь из топлива и воздуха. Вследствие разности давлений в карбюраторе и цилиндре горючая смесь всасывается через открытый впускной клапан в цилиндр двигателя.

Если двигатель уже работает, то горючая смесь, попадая в цилиндр из карбюратора, смешивается с остаточными продуктами сгорания от предыдущего цикла, и образует рабочую смесь. Смешиваясь с остаточными продуктами сгорания и соприкасаясь с нагретыми деталями цилиндра, рабочая смесь нагревается до температуры 75. 125 ˚С.

Такт сжатия

При подходе поршня к НМТ впускной клапан закрывается. Далее поршень начинает перемещаться вверх (к ВМТ), сжимая смесь воздуха, топлива и остаточных продуктов сгорания, которые не были удалены из цилиндра при выпуске. При движении поршня от НМТ к ВМТ вследствие сокращения объема цилиндра при закрытых клапанах повышаются давление, при этом возрастает температура рабочей смеси (в соответствии с законом Гей-Люссака). В конце такта сжатия давление внутри цилиндра повышается до 0,9…1,5 МПа, а температура смеси достигает 270-480 ˚С. В этот момент к электродам свечи зажигания 5 подводится высокое напряжение, которые вызывает между ними искровой разряд, результате чего рабочая смесь воспламеняется и сгорает. В процессе сгорания топлива выделяется большое количество теплоты, из-за чего температура газов (продуктов сгорания) повышается до 2200-2500 ˚С, и давление внутри цилиндра достигает 3,0…4,5 МПа. Газы начинают расширяться, перемещая поршень вниз, к НМТ.

Будет полезно: Как определить наружную сторону шины?

Такт расширения (рабочий ход)

Под давлением расширяющихся газов поршень движется от ВМТ к НМТ (при этом оба клапана закрыты). В этот промежуток времени (такт) происходит преобразование тепловой энергии в полезную работу, поэтому ход поршня в такте расширения называют рабочим ходом. При движении поршня к НМТ объем цилиндра увеличивается, вследствие чего давление уменьшается до 0,3…0,4 МПа, а температура газов снижается до 900…1200 ˚С.

Такт выпуска

При подходе поршня к НМТ открывается выпускной клапан 6, в результате чего продукты сгорания рабочей смеси вырываются наружу из цилиндра. При дальнейшем вращении коленчатого вала поршень начинает перемещаться от НМТ к ВМТ. Выталкивая отработавшие газы через открытый выпускной клапан, выпускной канал 7 и выпускную трубу в окружающую среду. К концу такта выпуска давление в цилиндре составляет 0,11…0,12 МПа, а температура – 600…900 ˚С.

При подходе поршня к ВМТ выпускной клапан закрывается, впускной открывается и начинается такт впуска, дающий начало новому рабочему циклу.

Рабочий цикл четырехтактного дизеля

Рабочий цикл дизельного двигателя принципиально отличается от цикла карбюраторного двигателя тем, что рабочая смесь (смесь топлива, воздуха и остаточных продуктов сгорания) приготовляется внутри цилиндра, поскольку воздух подается в цилиндр отдельно, а топливо отдельно – через форсунку. В дизельном двигателе нет специального устройства для поджигания рабочей смеси – она самовозгорается в результате высокой степени сжатия. Т. е. в дизеле, в отличие от карбюраторного двигателя, через впускной клапан подается не горючая смесь, а атмосферный воздух, а топливо впрыскивается через форсунку в конце такта сжатия. В цилиндре, как и в случае с карбюраторным двигателем, остаются продукты сгорания рабочей смеси, которые не удалось удалить продувкой. Смесеобразование (перемешивание воздуха, топлива и остаточных продуктов сгорания) в дизеле протекает внутри цилиндра, что и обуславливает основные отличия череды тактов, составляющих рабочий цикл.

Высокая степень сжатия приводит к тому, что поступивший в цилиндр через впускной клапан воздух, смешивается с остаточными газами и раскаляется (в буквальном смысле этого слова) до высоких температур. И в это время в цилиндр впрыскивается топливо, которое вспыхивает и начинает гореть.

Рабочие процессы в дизельном двигателе протекают в следующей последовательности (рис. 2) :

Такт впуска

В период такта впуска поршень 2 движется от НМТ к ВМТ. При этом впускной клапан 5 открыт, выпускной клапан 6 закрыт. В цилиндре 7 из-за разности давлений в окружающей среде и в цилиндре в конце такта впуска возникает разрежение 0,08. 0,09 МПа, при этом температура внутри цилиндра не превышает 40…70 ˚С.

Такт сжатия

В процессе такта сжатия оба клапана закрыты. Поршень 2 движется от НМТ к ВМТ, сжимая смесь воздуха и отработавших газов. Давление в конце такта сжатия достигает 3…6 МПа, а температура – 450…650 ˚С (превышает температуру самовоспламенения топлива).

При подходе поршня к ВМТ, в цилиндр через форсунку 3 впрыскивается распыленное жидкое топливо. Топливо подается к форсунке (через трубку высокого давления) топливным насосом 1 высокого давления (ТНВД). Форсунка обеспечивает тонкое распыление топлива в сжатом воздухе. Распыленное топливо самовоспламеняется и сгорает. В результате сгорания температура в цилиндре достигает 1600…1900 ˚С, давление – 6…9 МПа.

Такт расширения (рабочий ход)

Из чего состоит двигатель

Чтобы понять принцип работы, познакомимся с основными составляющими движка:

  • блок цилиндров;
  • кривошипно-шатунный механизм (включает коленвал, поршни, шатуны) ‒ он необходим для преобразования поступательно-возвратных движений поршня во вращательное движение коленвала;
  • головка блока вместе с газораспределительным механизмом, который открывает впускные и выпускные клапаны, для того чтобы поступала рабочая смесь и выходили отработавшие газы. ГРМ может включать один или более распредвалов, которые состоят из кулачков для толкания клапанов, самих клапанов и клапанных пружин. Для стабильной работы четырехтактного движка существует ряд вспомогательных систем:
  • система зажигания ‒ для поджига горючей смеси в цилиндрах;
  • впускная система ‒ для подачи воздуха и рабочей смеси в цилиндр;
  • топливная система ‒ для непрерывной подачи топлива, получения смеси воздуха и горючего;
  • система смазки – для смазки трущихся деталей, а также одновременного удаления продуктов износа;
  • выхлопная система – для удаления отработанных газов из цилиндров, снижения токсичности выхлопа;
  • система охлаждения – для поддержки оптимальной температуры движка.

Как работает двигатель внутреннего сгорания — Mafin Media

Ко всем статьям

Читатели Mafin Media уже знакомы с типами двигателей внутреннего сгорания (ДВС) и запросто отличат VR-образную «шестерку» от рядной «четверки» и вспомнят о недостатках и преимуществах роторно-поршневого двигателя. В новом материале расскажем простыми словами, как устроено «автомобильное сердце».

Механические самоходные транспортные средства активно разрабатывались еще в XVIII веке. Но именно в 1880-х годах немецкие конструкторы Готтлиб Даймлер и Карл Бенц установили первые бензиновые двигатели на мотоцикл и трехколесную коляску. Самоходный экипаж Бенца приводился в движение одноцилиндровым мотором мощностью 1,5 л. с. (традиционно мощность принято измерять в лошадиных силах и киловаттах). За почти полтора столетия «самоходной» истории принцип работы ДВС кардинально не изменился: колеса приводятся в движение механической энергией, получаемой благодаря сгоранию топливно-воздушной смеси внутри двигателя.

«Коктейль» для двигателя

Топливно-воздушная смесь — это «коктейль» из собственно топлива и воздуха. Для бензинового двигателя рабочее соотношение в среднем составляет 1 к 15, то есть 1 единица топлива и 15 единиц воздуха. Если добавить больше горючего (обогатить смесь), пострадает экономичность, если меньше (обеднить) — мощность. Со слишком обедненной или обогащенной смесью мотор вообще может отказываться заводиться.

Готовиться смесь может по-разному. В устаревших карбюраторных двигателях горючее «готовится» в отдельном механизме авто — карбюраторе. После смешивания воздуха с топливом смесь подается в двигатель и там сгорает. У карбюраторных моторов много минусов, а их ремонтопригодность сегодня уже не так востребованна. Поэтому самые популярные системы подачи топлива — инжекторные (от англ. inject — впрыскивать). В зависимости от конструкции мотора топливо подается либо во впускной коллектор — трубопровод, через который авто получает воздух из окружающей среды, — либо напрямую в цилиндры. Подобные решения сложнее, но позволяют экономить топливо и снижать количество вредных выбросов в атмосферу. Основная деталь инжекторного впрыска — форсунка. Именно она впрыскивает топливо:.

Компоненты двигателя: где и как сгорает смесь

Самое важное происходит в корпусе двигателя, который объединяет блок цилиндров (слева на фото) и головку блока цилиндров (справа на фото).

Блок цилиндров содержит полые внутри цилиндрические трубки, в которых размещаются поршни.

Головка блока цилиндров (ГБЦ) монтируется на блок цилиндров и образует герметичные (т. е. непроницаемые для посторонних жидкостей и газов) камеры сгорания.

Внутри камеры сгорания устанавливаются поршни — детали цилиндрической формы, совершающие возвратно-поступательные движения под действием сгорания смеси.

Поршни — часть кривошипно-шатунного механизма (КВШ), комплекса деталей, который преобразует движения поршня во вращение коленчатого вала. Последний и двигает колеса автомобиля. Так выглядит КВШ вместе с поршнями двигателя:

В головке блока цилиндров находятся упомянутые выше форсунки — вместе со свечами зажигания (в бензиновом моторе) и клапанами. Свечи зажигания производят электрическую искру, предназначенную для воспламенения топливно-воздушной смеси.

! — Если автомобиль оснащен непосредственным впрыском топлива (в камеру сгорания), форсунки находятся в ГБЦ, а если впрыск распределительный — форсунки установлены во впускном коллекторе вблизи впускных клапанов.

Клапаны относятся к механизму газораспределения и внешне напоминают большие гвозди:

Такая форма дана им неслучайно: нижней, выпуклой частью они закрывают и открывают впускные и выпускные отверстия в камере сгорания, поочередно впуская подготовленную топливно-воздушную смесь или воздух и выпуская отработанные газы. Соответственно, в зависимости от своей роли клапаны бывают впускными и выпускными.

Обычно на один цилиндр приходится от двух до четырех клапанов. За то, чтобы «доступ» в камеру сгорания открывался вовремя, и отвечает механизм газораспределения (ГРМ), в который выходят клапаны. В зависимости от мотора ГРМ приводится в действие ремнем или цепью.

Рассмотрим цилиндр в разрезе:

Четыре такта

Любой двигатель функционирует согласно циклу, состоящему из нескольких тактов, то есть ходов (движений) поршня. Большинство автомобильных моторов — четырехтактные.

Рассмотрим такты бензинового двигателя:

  1. Впуск: открывается впускной клапан, в камеру сгорания попадает топливно-воздушная смесь, а поршень идет вниз.
  2. Сжатие: оба клапана закрыты, поршень идет вверх, сжимая и нагревая смесь.
  3. Рабочий ход: оба клапана закрыты, под действием электрической искры от свечи зажигания сжатая и разогретая топливно-воздушная смесь воспламеняется, образовавшиеся при этом газы толкают поршень вниз.
  4. Выпуск: выпускной клапан открыт, поршень идет вверх, выталкивая отработанные газы в сторону выхлопной трубы.

После этого цикл повторяется. У дизельного двигателя вместо свечи установлена форсунка, и смесь воспламеняется не при помощи искры, а от сжатия — впрыска дизельного топлива через форсунку под большим давлением. Впускной клапан при этом подает в камеру сгорания только воздух. Кстати, в некоторых современных бензиновых моторах форсунка тоже впрыскивает топливо непосредственно в цилиндр.

А как запускается первый такт?

Каждый автомобиль обладает набором бортовой электроники — проводов, аккумулятора, стартера и т. д. Аккумулятор за время поездок накапливает достаточно энергии, чтобы при помощи специального механизма — стартера — раскрутить коленвал и завести мотор.

И что дальше?

Мощность от двигателя к колесам передается с помощью коробки передач, редуктора и приводных валов. Если мотор соединить с колесами напрямую, автомобиль после запуска начнет движение на одной-единственной передаче, с небольшой скоростью, а после торможения сразу заглохнет. Об этих передачах и о типах коробок (автоматах, вариаторах, механиках и т. д.) Mafin Media расскажет в следующем материале.

Сравнение двухтактного и четырехтактного двигателей

Садовые бензиновые агрегаты значительно упрощают жизнь владельцам загородной недвижимости. В их основе лежит двигатель внутреннего сгорания.

Мотокосы, цепные пилы, кусторезы могут оснащаться как двухтактным, так и четырехтактным двигателем, от чего будет зависеть мощность, производительность, вес, техническое обслуживание всего агрегата.

Тактом рабочего цикла двигателя внутреннего сгорания является ход поршня от одной мертвой точки до другой. Один такт соответствует 180-градусному повороту (полуобороту) коленчатого вала. При 4-х тактном процессе рабочий цикл осуществляется за два оборота вала, при 2-х тактном — за один.

Двухтактные и четырехтактные двигатели имеют существенные отличия.

По весу двухтактные двигатели легче, чем четырехтактные. Четырехтактные весят, примерно, на 50% больше, так как для сложной конструкции требуется больше деталей.

Благодаря большей эффективности 4-х тактные двигатели мощнее. Но более легкие двухтактные моторы могут иметь большее отношение мощности к весу и считаются практичней из-за одноцилиндрового двигателя, тогда как четырехтактной модели требуется несколько цилиндров, чтобы обеспечить постоянную выработку электроэнергии.

Четырехтактные двигатели экономичнее и обеспечивают хороший контроль циклов впуска и выпуска воздуха, что приводит к более чистой работе. При двухтактном цикле часть топлива расходуется впустую, т.к. оно выходит во время такта впуска и сжатия.

В 4-х тактных двигателях моторное масло отделено от топлива и впрыскивается из отдельного резервуара, в результате чего он получает лучшую смазку. В двухтактном двигателе смазочное масло смешивается с топливом, что снижает срок его службы. Но из-за совместной циркуляции смазочного масла и топлива, двухтактные агрегаты могут функционировать в любых условиях. Из-за того, что двухтактные двигатели сжигают масло и топливо, они образуют грязный продукт сгорания. Более грязное сгорание приводит к большему износу системы двигателя, что сокращает общий срок его службы.

Техника с двухтактным двигателем стоит дешевле. Но стоимость использования за час будет выше из-за дополнительных затрат на масло и низкой топливной экономичности. Их дешевле приобретать, но у них короткий срок службы.

Рабочий цикл четырехтактного двигателя — как это работает

В числе процессов, характеризующих работу мощных и производительных машин и механизмов, следует отметить рабочий цикл четырехтактного двигателя. Это совокупность процессов, повторяющихся в определенной последовательности, во время которых цилиндр наполняется рабочей смесью, после чего происходит ее сжатие и воспламенение. Газы, образовавшиеся при сгорании, расширяются, а затем – удаляются из цилиндра.

Рабочий цикл четырехтактного двигателя

Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу.

Если рабочий цикл совершается за два хода поршня, т. е. за один оборот коленчатого вала, то такой двигатель называется двухтактным. В настоящее время двухтактные двигатели на автомобилях не применяют, а используют лишь на мотоциклах и как пусковые двигатели на тракторах. Это связано прежде всего с тем, что они имеют сравнительно высокий расход топлива и недостаточное наполнение горючей смеси из-за плохой очистки цилиндров от отработавших газов. Автомобильные двигатели работают, как правило, по четырехтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения и выпуска. В карбюраторном четырехтактном одноцилиндровом двигателе рабочий цикл происходит следующим образом.

Такт впуска

Поршень находится в в.м.т. и по мере вращения коленчатого вала (за один его полуоборот) перемещается от в.м.т. к н.м.т. При этом впускной клапан открыт, а выпускной клапан закрыт. При движении поршня вниз объем над ним увеличивается, поэтому в цилиндре создается разряжение, равное 0,07—0,095 МПа, в результате чего свежий заряд горючей смеси, состоящей из паров бензина и воздуха, засасывается через впускной трубопровод в цилиндр. От соприкосновения свежего заряда с нагретыми деталями в конце такта впуска он имеет температуру 75—125 °С.

Степень заполнения цилиндра свежим зарядом характеризуется коэффициентом наполнения, который для высокооборотных карбюраторных двигателей находится в пределах 0,65—0,75. Чем выше коэффициент наполнения, тем большую мощность развивает двигатель.

Такт сжатия

После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала поршень перемещается от н.м.т. к в.м.т. Впускной клапан закрывается, а выпускной закрыт. По мере сжатия горючей смеси температура и давление ее повышаются. В зависимости от степени сжатия давление в конце такта сжатия может составлять 0,8—1,5 МПа, а температура газов 300— 450 °С.

Такт расширения, или рабочий ход

В конце такта сжатия горючая смесь воспламеняется от электрической искры, возникающей между электродами свечи, и быстро сгорает, в результате чего температура и давление образующихся газов резко возрастают, поршень при этом перемещается от в.м.т. к н.м.т. Максимальное давление газов на поршень при сгорании для карбюраторных двигателей находится в пределах 3,5—5 МПа, а температура газов 2100—2400 °С.

При такте расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип передает вращение коленчатому валу. При расширении газы совершают полезную работу, поэтому ход поршня при этом такте коленчатого вала называют рабочим ходом. В конце рабочего хода поршня давление в цилиндре снижается до 0,3—0,75 МПа, а температура — до 900—1200 °С.

Такт выпуска

Коленчатый вал через шатун перемещает поршень от н.м.т. к в.м.т. При этом выпускной клапан открыт и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной трубопровод. В начале процесса выпуска продуктов сгорания давление в цилиндре значительно выше атмосферного, но к концу такта оно падает до 0,105—0,120 МПа, а температура газов в начале такта выпуска составляет 750— 900 °С, понижаясь к его концу до 500—600 °С. Полностью очистить цилиндры двигателя от продуктов сгорания практически невозможно (слишком мало времени), поэтому при последующем впуске свежей горючей смеси она перемешивается с остаточными отработавшими газами и называется рабочей смесью.

Коэффициент остаточных газов характеризует степень загрязнения свежего заряда отработавшими газами и представляет собой отношение массы продуктов сгорания, оставшихся в цилиндре, к массе свежей горючей смеси. Для современных карбюраторных двигателей коэффициент остаточных газов находится в пределах 0,06—0,12. По отношению к рабочему ходу такты впуска, сжатия и выпуска являются вспомогательными.

Двухтактный двигатель – особенности работы

Весь цикл работы двухтактного двигателя происходит за один оборот коленвала. Это позволяет на выходе получать приблизительно в 1,4-1,8 раз большую мощность, с того же рабочего объема, имея те же самые обороты двигателя. Разумеется, коэффициент полезного действия у таких агрегатов значительно ниже, чем у тех же 4 тактных моделей. Это используется при создании тяжелых и низкооборотных двигателей судов. Здесь они напрямую соединяются с гребным валом. Нашли свое применение такие модели и в мотоциклах.

Это так же приводит к тому, что модели, работающие в 2 такта, очень сильно греются. Здесь выделятся большая тепловая энергия. В некоторых случаях приходится подключать к ним дополнительное охлаждение, чтобы агрегат всегда находился в работоспособном состоянии. Однако, можно выделить и плюс подобной технологии. Ввиду того, что работа поршня ограничивается 2 тактами, он совершает гораздо меньше движений за единицу времени, поэтому потери на трение минимальны. Это напрямую отражается на износе основных рабочих деталях двухтактного двигателя.

Еще одной актуальной проблемой для данной модели является тот факт, что постоянно нужно искать компромисс между потерями свежего заряда и качеством продувки. Да, принцип работы заставляет ведущих инженеров и техников трудится над созданием универсальной системы, которая бы сводила к минимуму потери. 4 тактный двигатель вытесняет отработанные газы в тот момент, когда его поршень находится в верхней мертвой точке. Здесь ситуация коренным образом меняется. Вся отработка вылетает в трубу в тот момент, когда цилиндр практически полностью свободен, то есть этот процесс захватывает его объем полностью. Качество обдува играет в этом очень важную роль.

Именно поэтому не всегда удается разделить свежую рабочую смесь от выхлопных газов. В любом случае они будут смешиваться. Особенно отчетливо такая проблема выделяется у карбюраторных моделей моторов, которые напрямую подают готовое к работе горючее в цилиндр. Естественно, в данном случае стоит говорить о большем количестве используемого воздуха. Отсюда возникает необходимость применения сложных по структуре и составу воздушных фильтров. 4 тактный двигатель обделен этим недостатком.

Принцип работы данной модели двигателя говорит о том, что его применение может быть ограничено ввиду особенностей конструкции и большого количества потерь. Однако от 2 тактов еще никто не отказывается, создавая все больше устройств на его основе. Стоит отметить, что сегодня на рынке представлено множество различных механизмов, которые используют как 4 тактный двигатель внутреннего сгорания, так и двухтактный. Кстати, тот экземпляр, о котором мы решили поговорить сегодня, может иметь не только простейшее строение, в некоторых механизмах используются достаточно сложные его варианты.

Рабочий цикл двухтактного двигателя – достоинства и недостатки

Самое главное преимущество двухтактных двигателей – более высокая, по сравнению с четырехтактными, литровая мощность. Дело здесь в том, что при равном количестве цилиндров и количестве оборотов коленчатого вала в минуту, каждый цилиндр совершает рабочий ход вдвое чаще. При этом, за счет того, что фактический рабочий ход двухтактного двигателя короче (он укорочен за счет процессов газообмена), реально объем двигателя увеличивается на 50-60%.

Не менее важное преимущество – компактность. Благодаря этому качеству двухтактные двигатели нашли широкое применение не только в небольших транспортных средствах наподобие снегоходов, но и в садовой технике, а также инструментах (к примеру, в бензопилах). Кроме того, отсутствие газораспределительного механизма заметно делает конструкцию проще и дешевле в производстве. Есть у двухтактных ДВС и существенные недостатки. Они расходуют больше топлива впустую, так как при открытии выпускного окна в систему выхлопа попадает часть несгоревшей смеси. Система смазки классического двухтактного мотора крайне примитивна – бензин смешивается с маслом заранее, и оба эти вещества попадают в камеру сгорания одновременно. Обусловлено это тем, что организовать масляную ванну в картере невозможно – картер участвует в процессе газообмена.

В результате масло, не пошедшее на смазывания стенок цилиндра, сгорает вместе с топливом. Ресурс двухтактного двигателя также значительно меньше, главным образом, за счет высоких оборотов коленвала. По этой причине в двигателях этого типа применяется только специальное высококачественное масло, разработанное для применения в двухтактных двигателях. Экологические параметры также оставляют желать лучшего: в выхлопе, из-за особенностей газораспределения, содержится большое количество СО и СН.

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

Двигатели будущего: чувство такта — журнал За рулем

Умы изобретателей неустанно рождают альтернативные конструкции традиционных агрегатов. Чаще всего это один из главных узлов автомобиля — двигатель. Отделим реальность от утопии?

У OPOC единый коленвал в центре двигателя. Сделать мотор легче и компактнее, отказавшись от второго коленвала, позволила оригинальная компоновка шатунов. За открытие впускных и выпускных окон в стенках цилиндров отвечают сами поршни.

У OPOC единый коленвал в центре двигателя. Сделать мотор легче и компактнее, отказавшись от второго коленвала, позволила оригинальная компоновка шатунов. За открытие впускных и выпускных окон в стенках цилиндров отвечают сами поршни.

У OPOC единый коленвал в центре двигателя. Сделать мотор легче и компактнее, отказавшись от второго коленвала, позволила оригинальная компоновка шатунов. За открытие впускных и выпускных окон в стенках цилиндров отвечают сами поршни.

Все схемы открываются в полный размер по клику.

ВСТРЕЧНОЕ ДВИЖЕНИЕ

Особенность двухтактного дизеля профессора Питера Хофбауэра, посвятившего 20 лет своей жизни работе в концерне «Фольксваген», — два поршня в одном цилиндре, движущиеся навстречу друг другу. И название это подтверждает: Opposed Piston Opposed Cylinder (OPOC) — встречные поршни, встречные цилиндры.

Похожую схему еще в середине прошлого века использовали в авиации и танкостроении, например, на немецких «Юнкерсах» или советском танке T-64. Дело в том, что в традиционном двухтактном двигателе оба окна для газообмена перекрывает один поршень, а в двигателях с встречными поршнями в зоне хода одного поршня располагается впускное окно, в зоне хода второго — выпускное. Такая конструкция позволяет раньше открывать выпускное окно и благодаря этому лучше очищать камеру сгорания от отработавших газов. И заранее закрывать, чтобы сберечь некоторое количество рабочей смеси, которое у двухтактного двигателя обычно выбрасывается в выхлопную трубу.

В чем же изюминка конструкции профессора? В центральном (между цилиндрами) расположении коленвала, обслуживающего сразу все поршни. Это решение привело к довольно замысловатой конструкции шатунов. Их по паре на каждой шейке коленвала, причем на внешние поршни приходится по паре шатунов, расположенных по обе стороны цилиндра. Это схема позволила обойтись одним коленвалом (у прежних моторов их было два, размещенных по краям двигателя) и сделать компактный, легкий агрегат. В четырехтактных двигателях циркуляцию воздуха в цилиндре обеспечивает сам поршень, в моторе OPOC — турбонаддув. Для лучшей эффективности быстро разогнать турбину помогает электромотор, который в определенных режимах становится генератором и рекуперирует энергию.

Опытный образец, сделанный для армии без оглядки на экологические нормы, при массе 134 кг развивает 325 л.с. Подготовлен и гражданский вариант — с примерно на сотню сил меньшей отдачей. Как заявляет создатель, в зависимости от исполнения мотор ОРОС на 30–50% легче прочих дизелей сравнимой мощности и в два — четыре раза компактнее. Даже по ширине (это самое внушительное габаритное измерение) ОРОС всего вдвое превосходит один из самых компактных автомобильных агрегатов в мире — двухцилиндровый фиатовский «Твинэйр».

Мотор OPOC — образец модульной конструкции: двухцилиндровые блоки можно компоновать в многоцилиндровые агрегаты, соединяя их электромагнитными муфтами. Когда полная мощность не требуется, для экономии топлива один или несколько модулей могут отключаться. В отличие от обычных двигателей с отключаемыми цилиндрами, где коленвал шевелит даже «отдыхающие» поршни, механических потерь можно избежать. Интересно, а как обстоят дела с топливной экономичностью и вредными выбросами? Разработчик предпочитает обходить этот вопрос молчанием. Понятное дело — тут позиции двухтактников традиционно слабы.

РАЗДЕЛЬНОЕ ПИТАНИЕ

В двигателе Кармело Скудери классические четыре такта распределены между двумя цилиндрами: впуск и сжатие происходят в одном, а рабочий ход и выпуск — в другом.

В двигателе Кармело Скудери классические четыре такта распределены между двумя цилиндрами: впуск и сжатие происходят в одном, а рабочий ход и выпуск — в другом.

В двигателе Кармело Скудери классические четыре такта распределены между двумя цилиндрами: впуск и сжатие происходят в одном, а рабочий ход и выпуск — в другом.

Еще один пример ухода от традиционных догм. Кармело Скудери покусился на святое правило четырехтактных моторов: весь рабочий процесс должен происходить строго в одном цилиндре. Изобретатель поделил цикл между двумя цилиндрами: один отвечает за впуск смеси и ее сжатие, второй — за рабочий ход и выпуск. При этом традиционные четыре такта двигатель, именуемый мотором с разделенным циклом (SCC — Split Cycle Combustion), проходит всего за один оборот коленвала, то есть в два раза быстрее.

Вот как этот мотор работает. В первом цилиндре поршень сжимает воздух и подает его в соединительный канал. Клапан открывается, форсунка впрыскивает топливо, и смесь под давлением врывается во второй цилиндр. Сгорание в нем начинается при движении поршня вниз, в отличие от двигателя Отто, где смесь поджигают чуть раньше, чем поршень достигнет верхней мертвой точки. Таким образом, сгорающая смесь не препятствует в начальной стадии горения движущему навстречу поршню, а, наоборот, подталкивает его. Создатель мотора обещает удельную мощность в 135 л.с. с литра рабочего объема. Причем при значительном сокращении вредных выбросов благодаря более эффективному сгоранию смеси — например, с уменьшением выхода NOx на 80% в сравнении с этим же показателем для традиционного ДВС. Заодно утверждают, что SCC на 25% экономичнее равных по мощности атмосферных моторов. Однако лишний цилиндр — это дополнительная масса, увеличение габаритов, возрастающие потери на трение. Что-то не верится… Особенно если взять в пример новое поколение наддувных двигателей, сделанных под девизом даунсайзинга.

Кстати, для этого двигателя придумана оригинальная схема рекуперации и наддува «в одном флаконе» под названием Air-Hybrid. Во время торможения двигателем цилиндр рабочего хода отключается (клапаны закрыты), а цилиндр сжатия наполняет специальный резервуар сжатым воздухом. При разгоне происходит обратное: не работает цилиндр сжатия, а в рабочий нагнетается запасенный воздух — своего рода наддув. Собственно, при такой схеме не исключается и полный пневморежим, когда воздух будет толкать поршни в одиночку.

МОЩНОСТЬ ИЗ ВОЗДУХА

Лино Гуззелло использовал для улучшения характеристик двигателя рекуперацию воздуха. Он аккумулируется в дополнительном резервуаре, связанном с двигателем.

Лино Гуззелло использовал для улучшения характеристик двигателя рекуперацию воздуха. Он аккумулируется в дополнительном резервуаре, связанном с двигателем.

Лино Гуззелло использовал для улучшения характеристик двигателя рекуперацию воздуха. Он аккумулируется в дополнительном резервуаре, связанном с двигателем.

Профессор Лино Гуззелла также использовал идею накопления сжатого воздуха в отдельном резервуаре: один из клапанов открывает путь от баллона к камере сгорания. В остальном это обычный двигатель с турбонаддувом. Опытный образец построили на базе 0,75-литрового двигателя, предложив его как замену… 2-литровому атмосферному мотору.

Разработчик для оценки эффективности своего творения предпочитает сравнивать его с гибридными силовыми агрегатами. Причем при схожей экономии топлива (около 33%) конструкция Гуззеллы удорожает мотор всего лишь на 20% — сложная бензоэлектрическая установка обходится почти в десять раз дороже. Однако в тестовом образце топливо экономится не столько за счет наддува из баллона, сколько благодаря малому рабочему объему самого двигателя. Но перспективы у сжатого воздуха в работе обычного ДВС все же есть: его можно использовать для пуска мотора в режиме «старт-стоп» или для движения автомобиля на малых скоростях.

КРУТИТСЯ, ВЕРТИТСЯ ШАР…

Среди необычных ДВС мотор Герберта Хюттлина выделяется наиболее примечательной конструкцией: традиционные поршни и камеры сгорания здесь размещены внутри шара. Поршни движутся в нескольких направлениях. Во-первых, навстречу друг другу, образуя между собой камеры сгорания. Кроме того, они соединены попарно в блоки, посаженные на единую ось и вращающиеся по хитрой траектории, заданной кольцевой фигурной шайбой. Корпус поршневых блоков объединен с шестерней, передающей крутящий момент на выходной вал.

Из-за жесткой связи между блоками при наполнении смесью одной камеры сгорания одновременно происходит выпуск отработавших газов в другой. Таким образом, за поворот поршневых блоков на 180 градусов происходит 4-тактный цикл, за полный оборот — два рабочих цикла.

Устройство шарового двигателя со встроенным электромотором: 1 — приводная шестерня; 2 — статор электромотора; 3 — постоянные магниты; 4 — ротор электро- мотора; 5 — камера сгорания 1; 6 — шаровые направляющие поршней; 7 — коль- цевая направляющая для движения поршней; 8 — подшипник ротора; 9 — камера сгорания 2; 10 — свеча зажигания; 11 — отвод выхлопных газов; 12 — забор воздуха; 13 — выходной вал.

Устройство шарового двигателя со встроенным электромотором: 1 — приводная шестерня; 2 — статор электромотора; 3 — постоянные магниты; 4 — ротор электро- мотора; 5 — камера сгорания 1; 6 — шаровые направляющие поршней; 7 — коль- цевая направляющая для движения поршней; 8 — подшипник ротора; 9 — камера сгорания 2; 10 — свеча зажигания; 11 — отвод выхлопных газов; 12 — забор воздуха; 13 — выходной вал.

Устройство шарового двигателя со встроенным электромотором: 1 — приводная шестерня; 2 — статор электромотора; 3 — постоянные магниты; 4 — ротор электро- мотора; 5 — камера сгорания 1; 6 — шаровые направляющие поршней; 7 — коль- цевая направляющая для движения поршней; 8 — подшипник ротора; 9 — камера сгорания 2; 10 — свеча зажигания; 11 — отвод выхлопных газов; 12 — забор воздуха; 13 — выходной вал.

Первый показ шарового двигателя на Женевском автосалоне привлек всеобщее внимание. Концепция, безусловно, интересная — за работой 3D-модели можно наблюдать часами, пытаясь разобраться, как работает та или иная система. Однако за красивой идеей должно последовать воплощение в металле. А разработчик пока ни слова не говорит о хотя бы приблизительных значениях основных показателей агрегата — мощности, экономичности, экологичности. И, главное, о технологичности и надежности.

МОДНАЯ ТЕМА

Роторно-лопастной двигатель изобрели чуть меньше века назад. И, наверное, еще долго не вспоминали бы о нем, не появись амбициозный проект российского народного автомобиля. Под капотом «ё-мобиля» пусть и не сразу, но должен появиться именно роторно-лопастной двигатель, да еще в паре с электромотором.

Вкратце о его устройстве. На оси установлены два ротора с парой лопастей на каждом, образующих камеры сгорания переменной величины. Роторы вращаются в одном направлении, но с разными скоростями — один догоняет другой, смесь между лопастями сжимается, проскакивает искра. Второй начинает движение по окружности, чтобы на следующем круге «подтолкнуть» соседа. Посмотрите на рисунок: в правой нижней четверти происходит впуск, в правой верхней — сжатие, затем против часовой стрелки — рабочий ход и выпуск. Воспламенение смеси осуществляется в верхней точке окружности. Таким образом, за один оборот ротор происходит четыре рабочих такта.

Схемы роторно-лопастного двигателя.

Схемы роторно-лопастного двигателя.

Схемы роторно-лопастного двигателя.

Очевидные преимущества конструкции — компактность, легкость и хороший КПД. Однако есть и проблемы. Из них главная — точная синхронизация работы двух роторов. Задача эта непростая, а решение должно быть недорогим, иначе «ё-мобиль» никогда не станет народным.

Ход двигателя в зависимости от диаметра отверстия

Еще во времена Формулы-1, когда двигалась V-10, нередко можно было увидеть обороты двигателя почти до 20 000 об / мин — число, которое вы никогда не увидите на дорожных автомобилях. Это стало возможным только благодаря чрезвычайно короткому ходу двигателя и широкому проходу. Джейсон Фенске из Engineering Explained выпустил видео, в котором рассказывается, как именно изменение размеров двигателя может развить большую мощность, даже если его общий рабочий объем остается прежним.

Диаметр цилиндра двигателя — это диаметр каждого цилиндра, а ход — это расстояние внутри цилиндра, которое проходит поршень.По сути, максимальная мощность двигателя зависит от того, сколько оборотов он может развивать. Чем больше оборотов в минуту, чем больше ходов, тем больше мощности он выдает в целом. Поэтому логично, что самые мощные двигатели также имеют самые высокие обороты. Поскольку поршню с коротким ходом не нужно перемещаться так далеко за каждый цикл, он может преодолевать большее расстояние за то же время по сравнению с двигателем с более длинным ходом и меньшим внутренним диаметром. Это означает больше оборотов. Точно так же больший диаметр означает больший размер клапанов, а это значит, что он может всасывать и выталкивать больше воздуха в каждом цикле.А больше воздуха означает больше мощности.

Работает и в обратном направлении. Допустим, ваша цель — эффективность, а не мощность. Таким образом, лучшим двигателем будет двигатель с маленьким диаметром цилиндра и большим ходом. Почему? Что ж, это немного сложнее, чем уравнение мощности, но оно включает площадь поверхности. По сути, чем больше площадь поверхности цилиндра во время сгорания, тем меньше энергии теряется на тепло, что приводит к более эффективному циклу.

Но это всего лишь простые объяснения.Если вы хотите узнать все, что нужно знать о диаметре ствола и ходу поршня, посмотрите видео Фенске выше.

Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты. Вы можете найти больше информации об этом и подобном контенте на сайте piano.io.

Длина хода двигателя

Ход двигателя — это расстояние, которое поршень проходит внутри цилиндра.Длина хода определяется коленчатым валом. Он может быть указан в дюймах или миллиметрах.

Как это измеряется?

Лучший способ найти длину хода:

  1. Определите коленчатый вал.
    1. Марка, модель, номер детали и / или другая информация будет выбита или выгравирована на кривошипе.
  2. Посмотрите спецификации в Интернете.
    — ИЛИ —
  3. Обратитесь к производителю.

Другой вариант — проверить коленчатый вал в механической мастерской.

Наконец, длину хода можно измерить с помощью набора штангенциркулей и настилочного моста. Этот метод даст вам представление о штрихе. Но это не так точно, как другие методы.

  1. Установите суппорт с круговой шкалой (губками вверх) на мостик палубы.
  2. С поршнем в ВМТ надеть перемычку на цилиндр.
  3. Суппорты с нулевой шкалой на поршневой платформе.
  4. Проверните коленчатый вал, пока поршень не достигнет НМТ.
  5. Откройте суппорты с круговой шкалой до тех пор, пока стержень глубины не коснется зазора деки поршня.

** Измерение на штангенциркуле — это ход. **

Как это влияет на производительность?

Длина хода влияет на топливную экономичность и выходную мощность двигателя. Длина хода также является важным показателем, используемым для расчета рабочего объема двигателя.

Удлиненный ход Более короткий ход
Увеличивает рабочий объем Уменьшает смещение
Увеличивает крутящий момент и мощность Пиковая мощность при более высоких оборотах
Использует больше топлива Использует меньше топлива
Медленнее до макс. Об / мин Быстрее до максимальных об / мин
Работает в нижнем диапазоне оборотов

ID ответа 5001 | Опубликовано 25.05.2018 11:14 | Обновлено 12.11.2019 14:46

Изучите автомобильную инженерию у инженеров-автомобилестроителей

4-тактный принцип

В 4-тактном двигателе ход поршня (движение от нижней мертвой точки к верхней мертвой точке или наоборот) необходимы для завершения рабочего цикла.

Такт впуска (от ВМТ до НМТ): свежая смесь в двигателе SI (искровое зажигание) или свежий воздух в дизельном двигателе всасывается в цилиндр через впускные клапаны, которые могут открываться с небольшим опережением перед ВМТ и могут закрываться с некоторой задержкой после BDC, чтобы максимизировать введенную массу.

Такт сжатия (от НМТ до ВМТ): свежая смесь в двигателе SI или свежий воздух в дизельном двигателе сжимается при закрытых всех клапанах. Ближе к концу такта сжатия сгорание инициируется посредством искрового зажигания (двигатель с искровым зажиганием) или впрыска топлива (дизельный двигатель).

Рабочий ход (от ВМТ до НМТ): горячие сгоревшие газы расширяются, толкая поршень вниз и прикладывая к нему работу, которая в пять (или более) раз превышает работу, прилагаемую поршнем во время такта сжатия. Ближе к концу рабочего такта выпускные клапаны могут начать открываться, и часть сгоревших газов выбрасывается из цилиндра благодаря перепаду давления.

Такт выпуска (от НМТ до ВМТ): поршень удаляет оставшиеся сгоревшие газы.Ближе к концу такта выпуска впускные клапаны могут открываться, а вскоре после ВМТ выпускной клапан может закрываться, это называется перекрытием. После этого можно начинать новый цикл.

Хотя цикл завершается 4 ходами при 2 оборотах кривошипа, можно выделить 6 рабочих фаз, поскольку во время одного хода могут происходить разные фазы:

  • Впуск
  • Сжатие
  • Горение
  • Расширение
  • Выхлоп (продувка)
  • Выхлоп (смещение)

Следует отметить, что требуется 2 рабочих фазы для замены сгоревших газов свежей смесью.

2-тактный принцип

В 2-тактном двигателе полный рабочий цикл требует всего лишь двух ходов поршня (т.е. 1 оборот коленчатого вала).

Для получения более высокой выходной мощности два хода, используемые для газообмена, подавляются и заменяются процессом продувки. Процесс продувки определяется вытеснением сгоревших газов, когда поршень приближается к концу рабочего такта, посредством свежего заряда, находящегося под давлением.

В простейшей конструкции давление свежего заряда создается за счет самого картера, объем которого изменяется в зависимости от объема цилиндра, так что минимальный объем картера (а затем максимальное давление) достигается, когда поршень находится в положении НМТ в главном цилиндре.

Возможна более компактная конструкция по сравнению с 4-тактным двигателем, поскольку впускные и выпускные клапаны могут быть заменены портами (отверстиями) в гильзе цилиндра, открытием и закрытием которых можно управлять непосредственно движением поршня.

Два хода следующие:

Ход сжатия : после закрытия впускного и выпускного отверстий поршень сжимает заряд цилиндра (при этом объем в картере увеличивается, втягивая свежий заряд в картер путем нажатия) . Ближе к концу такта сжатия сгорание инициируется искровым зажиганием (двигатель SI) или впрыском топлива (дизельный двигатель).

Рабочий ход : горячие сгоревшие газы расширяются, толкая поршень вниз.Ближе к концу этого хода выпускное отверстие открывается, и часть отработавших газов удаляется из цилиндра благодаря разнице давлений. После этого отверстия продувки открываются, и свежий заряд под давлением выводит сгоревшие газы, так что новый цикл может начаться снова после того, как поршень достигнет НМТ.

Опять же, что касается 4-тактного двигателя, в течение 2-х тактов происходит 6 различных фаз:

  • Уборка
  • Впуск
  • Сжатие
  • Горение
  • Расширение
  • Продувка

Однако для достижения такого цикла необходим клапан с регулируемым давлением на продувочном отверстии.Если используются простые отверстия в стенках цилиндра, край впускного отверстия должен находиться ниже, чем выпускной канал, чтобы обеспечить фазу продувки. Это могло бы вызвать короткое замыкание части индуцированного свежего заряда в начале такта сжатия, поскольку выпускное отверстие остается открытым в течение некоторого времени после закрытия впускного отверстия.

Процесс продувки представляет собой ахилловую пяту двухтактного двигателя, поскольку в его простейшей компоновке с простыми отверстиями в стенках цилиндров часть свежего заряда будет течь непосредственно в выпускное отверстие, вызывает высокий расход топлива и выбросы углеводородов в SI. двигатель.

По этим причинам в использование 2-тактных двигателей SI было ограничено вспомогательными двигателями малой мощности (такими как газонокосилки, пильные цепи, подвесные двигатели для движения лодок …), где недостатки считались приемлемыми из-за высокая простота, низкая стоимость и высокая удельная мощность этих двигателей.

2-тактные двигатели также используются для больших дизелей для морских и стационарных применений (внутренний диаметр около 1 м), где они обычно предпочтительнее 4-тактных двигателей из-за чрезмерно высоких термомеханических напряжений, которые должны выдерживать клапаны (напряжение увеличивается с увеличением диаметра клапана. , который пропорционален диаметру цилиндра).

В настоящее время нет примеров применения двухтактных двигателей в автомобильной сфере.

Romain Nicolas отзыв:

Базовые 2-тактные и 4-тактные двигатели имеют почти противоположные характеристики. Тем не менее, некоторые исследования продолжают использовать преимущества одного типа и применять его к двигателям другого типа, например, с прямым впрыском для двухтактных двигателей. Считаете ли вы, что 2-тактные двигатели появятся в автомобильной промышленности для нетрадиционных нужд, таких как расширитель диапазона для серийных гибридов? Как вы думаете, будут ли устранены недостатки двухтактных двигателей, чтобы они заняли место в сегодняшнем двигателе внутреннего сгорания?

2-тактный Vs.4-тактные двигатели: в чем разница?

Автомобильные двигатели трансформировались с годами, но остались две основные конструкции двигателей внутреннего сгорания с бензиновым двигателем: 2-тактный и 4-тактный. Хотя мы уверены, что вы хотя бы слышали эти термины раньше, знаете ли вы разницу между ними? Как они работают и что лучше? Читайте дальше, чтобы узнать ответы!

Как работают двигатели внутреннего сгорания и что вообще такое «инсульт»?

Чтобы понять, чем отличаются эти два двигателя, сначала необходимо ознакомиться с основами.

Во время цикла сгорания двигателя поршень перемещается вверх и вниз внутри цилиндра. Термины «верхняя мертвая точка» (ВМТ) и «нижняя мертвая точка» (НМТ) относятся к положению поршня в цилиндре. ВМТ — это его позиция, ближайшая к клапанам, а НМТ — это ее позиция, наиболее удаленная от них. Ход s — это когда поршень перемещается из ВМТ в НМТ или наоборот. A c сгорание r evolution или c сгорание c ycle — это полный процесс всасывания газа и воздуха в поршень, его воспламенения и вытеснения выхлопных газов:

  1. Впуск: Поршень движется вниз по цилиндру, позволяя смеси закипания и воздуха попасть в камеру сгорания
  2. Компрессия: Поршень движется обратно вверх по цилиндру; впускной клапан закрыт для сжатия газов в пределах
  3. Горение: Искра от свечи зажигания воспламеняет газ
  4. Выхлоп: Поршень поднимается вверх по цилиндру, и выпускной клапан открывается

Разница между двухтактным и четырехтактным двигателем

Разница между 2-тактным и 4-тактным двигателями заключается в том, насколько быстро происходит этот процесс цикла сгорания, в зависимости от того, сколько раз поршень перемещается вверх и вниз в течение каждого цикла.

, 4-тактный:

В 4-тактном двигателе поршень совершает 2-тактный ход за каждый оборот: один такт сжатия и один такт выпуска, за каждым из которых следует обратный ход. Свечи зажигания срабатывают только один раз за каждый второй оборот, а мощность вырабатывается через каждые 4 такта поршня. Эти двигатели также не требуют предварительного смешивания топлива и масла, поскольку имеют отдельный отсек для масла.

Посмотрите это короткое видео, чтобы подробнее узнать, как работает четырехтактный двигатель:

2-тактный:

В двухтактном двигателе весь цикл сгорания завершается всего одним ходом поршня: тактом сжатия, за которым следует взрыв сжатого топлива.Во время обратного хода выхлоп выпускается, и в цилиндр поступает свежая топливная смесь. Свечи зажигания срабатывают один раз за каждый оборот, а мощность вырабатывается за каждые 2 такта поршня. Двухтактные двигатели также требуют предварительного смешивания масла с топливом.

Посмотрите это короткое видео, чтобы подробнее узнать, как работает двухтактный двигатель:

За и против:

Итак, что «лучше»? Вот несколько плюсов и минусов обеих конструкций двигателей:

  • Что касается эффективности, 4-тактный двигатель, безусловно, выигрывает.Это связано с тем, что топливо расходуется раз в 4 такта.
  • Четырехтактные двигатели тяжелее; они весят на 50% больше, чем сопоставимый двухтактный двигатель.
  • Обычно 2-тактный двигатель создает больший крутящий момент при более высоких оборотах, в то время как 4-тактный двигатель создает более высокий крутящий момент при более низких оборотах.
  • 4-тактный двигатель также намного тише, 2-тактный двигатель значительно громче и издает характерный пронзительный «жужжащий» звук.
  • Поскольку двухтактные двигатели предназначены для работы на более высоких оборотах, они также имеют тенденцию изнашиваться быстрее; 4-тактный двигатель обычно более долговечен.При этом двухтактные двигатели более мощные.
  • Двухтактные двигатели имеют гораздо более простую конструкцию, что упрощает их ремонт. У них нет клапанов, а скорее порты. В четырехтактных двигателях деталей больше, поэтому они дороже и ремонт обходится дороже.
  • Двухтактные двигатели требуют предварительного смешивания масла и топлива, а четырехтактные — нет.
  • Четырехтактные более экологически чистые; в двухтактном двигателе сгоревшее масло также выбрасывается в воздух вместе с выхлопными газами.

Двухтактные двигатели обычно используются в небольших приложениях, таких как автомобили с дистанционным управлением, инструменты для газонов, бензопилы, лодочные моторы и внедорожники. Четырехтактные двигатели используются во всем: от картингов, газонокосилок и мотоциклов, вплоть до типичного двигателя внутреннего сгорания в вашем автомобиле. Вам решать, какой движок вы предпочитаете и для чего.

В Berryman Products мы стремимся предоставлять быстрое индивидуальное обслуживание и производить продукцию, соответствующую высочайшим стандартам качества, надежности и экологической ответственности.Посетите наш веб-сайт и страницу в Facebook для получения точной информации и качественных продуктов, необходимых для решения наиболее распространенных проблем с автомобилем.

2-тактный / 4-тактный — мотоцикл

В чем разница между 2-тактными и 4-тактными двигателями?

Топливо для двухтактного двигателя содержит небольшое количество масла. Это называется «2-тактным», потому что всего одно движение поршня вверх и вниз — 2 хода — выполняет полный цикл впуска, сжатия, сгорания и выпуска.Впускные или выпускные клапаны не используются, а вместо этого используются небольшие отверстия, называемые продувочными портами в стенке цилиндра, для втягивания воздуха и удаления выхлопных газов. Поскольку сгорание происходит при каждом обороте коленчатого вала в 2-тактном двигателе, этот формат обеспечивает большую мощность, чем 4-тактный двигатель, и мощность имеет более мгновенную подачу. Это некоторые причины, по которым двухтактные двигатели давно используются на многих различных типах мотоциклов.
Однако озабоченность по поводу более экологичных характеристик возросла, и теперь 4-тактные двигатели стали нормой, потому что они по своей природе имеют лучшую экономию топлива и меньше дыма выхлопных газов.По состоянию на 2019 год только двухтактные мотоциклы Yamaha выпускаются для соревнований по закрытому маршруту, а некоторые модели предназначены для экспорта. Тем не менее, двухтактные продукты Yamaha имеют простую, легкую конструкцию и сравнительно легкие в обслуживании, а их высокая надежность делает их популярными во многих регионах. Сегодня двухтактные снегоходы Yamaha используются для передвижения по ледяной и холодной окружающей среде России, а наши двухтактные подвесные моторы широко используются в Африке для рыбной ловли. И многие энтузиасты мотоциклов продолжают любить двухтактные двигатели за их резкое, захватывающее чувство ускорения.
Что касается 4-тактных двигателей, они работают на бензине без подмешивания масла, а поршень поднимается и опускается два раза за каждый цикл сгорания, поэтому он называется «4-тактным». Однако для 4-тактных двигателей требуются клапаны для впуска и выпуска, которые должны работать с высокой точностью, что делает этот тип двигателя более сложным, тяжелым и имеет другие недостатки. Но они обеспечивают стабильную подачу мощности, хорошую топливную эффективность, более чистые выбросы и многое другое. Вот почему почти все двухколесные автомобили, от больших мотоциклов до маленьких скутеров, используют четырехтактные двигатели.

Ход впуска — обзор

13.19 Цикл Аткинсона

В двигателях с циклом Отто давление в цилиндре в конце такта расширения (рабочего хода) все еще составляет от 3 до 5 атм, когда выпускной клапан открывается. Британский инженер Джеймс Аткинсон (1846–1914) понял, что эффективность цикла Отто может быть улучшена, если газы сгорания могут быть расширены до давления, близкого к атмосферному, перед тем, как они будут выпущены из двигателя.В 1882 году он изобрел поршневой двигатель, который позволял тактам впуска, сжатия, мощности и выпуска четырехтактного цикла происходить за один оборот коленчатого вала. Коленчатый вал был установлен на отдельной оси от поршневых штоков и был соединен серией рычагов, которые позволяли совершать все четыре хода цикла за один оборот коленчатого вала (рис. 13.51). Сложный коленчатый вал также произвел рабочий ход, который был длиннее, чем ход сжатия, что позволило двигателю достичь большей эффективности, чем эквивалентный двигатель цикла Отто.

Рисунок 13.51. Идеальный цикл Аткинсона состоит из следующих операций: 1-2 с , изэнтропическое (обратимое и адиабатическое) расширение; 2 с –3: изохорическое (постоянный объем) охлаждение; 3–4–3 ′, изобарический (постоянное давление) выпуск и впуск; 3–4 — изобарическое (постоянное давление) охлаждение; 4–5 с , сжатие изоэнтропическое; 5 с –1, изохорный нагрев (горение).

Двигатели с циклом Аткинсона были немного более эффективными, чем сопоставимые двигатели с циклом Отто того времени, но они также были больше и дороже.Следовательно, двигатель Аткинсона не добился успеха на рынке и вскоре исчез.

Дополнительная работа, производимая циклом Аткинсона по сравнению с эквивалентным циклом Отто, — это область, ограниченная областью 2 a → 2 s → 3 → 4 → 2 a . Тепловой КПД холодного ASC Аткинсона определяется как

(ηT) Atkinsoncold ASC = 1 − k (ER − CR) ERk − CRk

, где ER = v 2 с / v 1 — степень изоэнтропического расширения, а CR = v 4 / v 5 s — степень изэнтропического сжатия.Обратите внимание, что по мере приближения степени расширения ER к степени сжатия CR тепловой КПД холодного ASC Аткинсона должен приближаться к тепловому КПД холодного ASC цикла Отто. Чтобы быть эффективным, степень расширения должна быть больше степени сжатия. Типичные значения: степень сжатия = 8: 1 и степень расширения = 10: 1.

Ilmor Engineering, фирма, совладельцем которой является Роджер Пенске и которая поставляет двигатели Honda для Indy Racing League, разрабатывает новый трехцилиндровый двигатель, имитирующий цикл Аткинсона.Два цилиндра работают в обычном четырехтактном цикле и опорожняют свой выхлоп в третий цилиндр расширения низкого давления, что позволяет процессам расширения и сжатия работать независимо. Опытный образец двигателя был впервые представлен на выставке двигателей в Штутгарте в 2009 году.

13.19.1 Современный цикл Аткинсона

В 1947 году американский инженер по имени Ральф Миллер запатентовал оригинальную вариацию первоначального цикла Аткинсона. Он понял, что вместо того, чтобы изменять фактическую длину такта впуска, можно просто отложить закрытие впускного клапана после окончания такта впуска.Затем, когда поршень возвращался вверх по цилиндру, он просто выталкивал воздух обратно во впускной коллектор. Сжатие начиналось только тогда, когда впускной клапан был окончательно закрыт, и, изменяя его при закрытии впускного клапана, можно было эффективно изменить степень сжатия двигателя.

Сегодня термин цикл Аткинсона используется для описания модифицированного четырехтактного цикла Отто Миллера, в котором впускной клапан остается открытым дольше, чем обычно, чтобы поршень выталкивал часть впускаемого воздуха обратно из цилиндра.Это снижает степень сжатия, но степень последующего расширения не изменяется. Это означает, что степень сжатия меньше степени расширения, что соответствует одной из основных характеристик цикла Аткинсона.

Целью современного цикла Аткинсона является обеспечение того, чтобы давление в камере сгорания в конце рабочего такта было как можно ближе к атмосферному давлению. Это максимизирует энергию, получаемую в процессе сгорания.

Поскольку двигатель с циклом Аткинсона не сжимает столько воздуха, как двигатель с циклом Отто аналогичного размера, он имеет более низкую удельную мощность (выходная мощность на единицу массы двигателя).Четырехтактные двигатели с циклом Аткинсона с добавлением турбонагнетателя или нагнетателя для компенсации потери удельной мощности известны как двигатели цикла Миллера .

Хотя двигатель с циклом Отто, модифицированный для работы по циклу Аткинсона, обеспечивает хорошую экономию топлива, он имеет меньшую выходную мощность, чем традиционный двигатель с циклом Отто. Однако мощность двигателя может быть дополнена электродвигателем в периоды, когда требуется больше мощности. Это составляет основу гибридных электромобилей с циклом Аткинсона.Их электродвигатели могут использоваться независимо от двигателя с циклом Аткинсона или в сочетании с ним, чтобы обеспечить наиболее эффективные средства производства желаемой мощности. Toyota, Ford, Chevrolet, Lexus и Mercedes в последние годы производили гибридные электромобили с двигателями цикла Аткинсона. Для получения дополнительной информации см. Анимированный двигатель цикла Аткинсона по адресу http://www.animatedengines.com/atkinson.shtml.

Stroke Engine — обзор

Масла для двухтактных двигателей

Двухтактные двигатели в основном используются в небольших мотоциклах и лодках (подвесные двигатели), особенно когда желательны высокая удельная мощность, малый вес и низкая цена, как в случае мопедов, скутеров, ходовых тележек, снегоуборочных машин, гидроциклов, цепных пил и бензинового садового оборудования, такого как кусторезы, воздуходувки и культиваторы почвы.Почти все двухтактные двигатели используют TLL. Часто эти моторы не подвергаются такому широкому диапазону рабочих температур, как автомобили, поэтому эти масла могут быть маслами с одной вязкостью. В небольших двухтактных двигателях масло предварительно смешивается с бензином, часто в богатом соотношении бензин: масло (обычно 40: 1), и сжигается при использовании вместе с бензином. Более крупные двухтактные двигатели, используемые на лодках и мотоциклах, будут иметь более экономичную систему впрыска масла, чем масло, предварительно смешанное с бензином. В большинстве простых двухтактных двигателей двигатель дышит через классические карбюраторы.В отличие от четырехтактных двигателей свежая топливно-воздушная смесь в классическом двухтактном двигателе продувает цилиндр после сгорания. Это приводит к истощению около 30% свежей смеси в виде несгоревшего масляного тумана. Наряду с частичным сгоранием масла двухтактные двигатели производят высокие выбросы и вызывают сильный запах, дым и шумовое загрязнение.

Составы масла для двухтактных двигателей состоят на 85–90% из базовых масел, примерно на 1–5% из растворителей, а остальная часть состоит из присадок. В то время как масла для четырехтактных двигателей в значительной степени основаны на полиолефине и масле гидрокрекинга, в двухтактных двигателях используются все обычные базовые масла.Смазочные материалы для двухтактных бензиновых двигателей обычно состоят из минерального масла или синтетической базовой жидкости, эксплуатационных присадок и растворителя (обычно относительно низкокипящего нефтяного дистиллята) для улучшения смешиваемости бензина и смазочного материала. Смазочные материалы для двухтактных двигателей более высокого качества часто содержат различные синтетические эфиры или полиизобутилен, и это особенно характерно для биоразлагаемых масел, которые были специально разработаны для морских подвесных двигателей. Использование биоразлагаемых смазочных материалов на основе синтетических эфиров сочетает высочайшие технические характеристики с улучшенной экологической совместимостью.Малодымные двухтактные масла содержат значительное количество (от 10 до 50%) полибутенов. Присадки в масла для двухтактных двигателей (присадки DD и AW, антиоксиданты, ингибиторы ржавчины и коррозии, пеногасители, присадки, улучшающие текучесть) соответствуют требованиям двигателя. Для двухтактных масел для подвесных двигателей требуются беззолообразующие присадки.

После обнаружения углеводородных соединений в отложениях Боденского озера (Боденское озеро) в 1980-х годах в двухтактных подвесных моторах в соседних странах (Швейцарии, Германии и Австрии) требовалось использовать биоразлагаемые масла.Сначала использовались растительные масла на основе RSO. Швейцарское правительство ввело запрет на использование двухтактных двигателей мощностью более 10 л.с. на Боденском озере.

Современные двухтактные двигатели требуют качественных масел для надежной работы и длительного срока службы. Основные критерии качества масел для двухтактных двигателей приведены в Таблице 12.9. ISO классифицирует масла для двухтактных двигателей по трем категориям: ISO-L-EGB, -EGC и -EGD, используя в качестве критериев испытаний смазывающую способность, дымность, отложения выхлопных газов, моющее действие и чистоту поршней.Категории характеристик для двухтактных масел для подвесных двигателей были в первую очередь разработаны Американской национальной ассоциацией производителей морского оборудования (NMMA) и изложены в «сертификации NMMA для смазочных материалов для двухтактных бензиновых двигателей» NMMA TCW-3. Благодаря своей базовой конструкции малые бензиновые двигатели показывают высокие выбросы углеводородов, намного превышающие выбросы четырехтактных двигателей. Эти сравнительно высокие уровни выбросов вызывают растущую обеспокоенность общественности, поскольку углеводороды не подвержены биологическому разложению.Усиление воздействия экологического законодательства также влияет на масла для двухтактных двигателей, особенно масла для подвесных двигателей. Экологически оптимизированные масла часто имеют разные региональные классификации в соответствии с местным экологическим законодательством (см. Стандарты ЕС, Агентство по охране окружающей среды США (EPA) и канадские правила). Следовательно, их биоразлагаемость зависит от различных минимальных требований. На международном уровне Международный совет ассоциаций морской индустрии (ICOMIA) определил согласованные требования.В 1997 г. был принят стандарт ICOMIA 27–97 для экологически безопасных масел для подвесных двигателей [63]. Эти масла основаны на полностью синтетических компонентах с базовыми маслами, которые обладают очень низкой токсичностью для водорослей, дафний и рыб и быстрой биоразлагаемостью. Благодаря использованию эфиров соответствующего высокого качества, эти продукты являются лучшими маслами для двухтактных двигателей и даже могут использоваться для смазки бензопил. Использование смазочных материалов на основе сложных эфиров сочетает высочайшие технические характеристики с улучшенной экологической совместимостью.

Таблица 12.9. Критерии качества масел для двухтактных двигателей

Смазывающие и противоизносные свойства

Функция очистки (моющие / диспергирующие свойства)

A отложений в выхлопной системе

Низкая дымность

Чистота свечей зажигания и предотвращение преждевременного зажигания

Хорошая смешиваемость с топливом даже при низких температурах 9407

Защита от коррозии

Хорошая текучесть

После исх.[54].

Директивы ЕС 97/68 / EC [64] и 2002/88 / EC [65] регулируют экологические и эксплуатационные требования для двигателей малой внедорожной мобильной техники, оснащенных двигателем внутреннего сгорания, таких как двухтактные двигатели и прогулочные транспортные средства, включая снегоходы. и ходунки [66]. EPA ограничило выбросы от внедорожных больших двигателей с искровым зажиганием, таких как те, которые используются в вилочных погрузчиках, наземном оборудовании аэропортов и двигателях для отдыха (морских и наземных) с 7 января 2003 г. [67,68].

Долгое время считалось, что двухтактные смазочные материалы на основе минеральных масел являются ярким примером продукта, нуждающегося в замене, особенно в судостроении. Согласно NMMA, новые правила EPA со строгими стандартами выбросов для двухтактных двигателей [69] не могут выполняться этими двигателями и означают конец этого традиционного типа карбюраторных двигателей.

Базовые компоненты на основе разветвленных синтетических сложных эфиров полиолов могут использоваться в рецептурах биоразлагаемых двухтактных масел вместе с выбранными присадками к смазочным материалам [6].Некоторые другие типы эфиров также используются в качестве базовых масел для смазок для двухтактных бензиновых двигателей с воздушным охлаждением. В патенте США № 5912214, выданном Henkel Corp., описаны базовые компоненты на основе сложного эфира для бездымных и не содержащих растворителей двухтактных бензиновых смазочных композиций с превосходной смешиваемостью с бензином и индексом дымности не менее 75 (тест JASO M 342–92) [70]. Базовые компоненты сложных эфиров состоят из смеси сложных эфиров или сложных эфиров (таких как линейные олигоэфиры и сложные эфиры полиолов). Примерами являются тристеарат ТМП и сложные полиэфиры, состоящие из глицерин-адипиновой кислоты-нонановой кислоты / октанола (мольное соотношение 1/2/1/2).Некоторые из этих базовых масел также являются биоразлагаемыми, как определено в соответствии со стандартным методом испытаний Координационного Совета Европейского Союза CEC L-33-A-93 (Биоразлагаемость масел для бензиновых двигателей для двухтактных двигателей в воде).

Масло для двухтактных двигателей на основе растительного масла реализуется Agro Management Group, Inc. (Колорадо-Спрингс, Колорадо). Компания Green Earth Technologies, Inc. (GET; Стэмфорд, Коннектикут) разработала полностью биоразлагаемое (зеленое) моторное масло G-Oil ™ 2-Cycle Oil на основе таллового жира с превосходными характеристиками с точки зрения четырех квалификаторов масла: VI , сульфатная зола, температура вспышки и полипропилен (Таблица 12.10) [59]. Особенно низкое содержание золы, что обеспечивает низкое содержание твердых частиц в выхлопе. Чтобы масло G-Oil ™ 2-Cycle Oil соответствовало требованиям API TC или превышало их, необходимо лишь ограниченное количество имеющихся в продаже присадок.

Таблица 12.10. Сравнение моторных масел

Моторное масло Квалификационные параметры
VI Зола a Температура вспышки (° C) PP (° C)
G-Oil ™ 2-тактное масло 147 & lt; 1 128 — 42
Галф Прайд 130 & lt; 10 63 — 39
Mobile One 154 150 110 — 42

Кокосовое масло, широко доступное в южных штатах Индии, широко используется в качестве масло для двухтактных двигателей (масло 2 т), выпускаемое авторикшами, но вызывает повышенный износ двигателя.Трибологические свойства кокосового масла были оценены с использованием тестера с четырьмя шарами и испытательного стенда для проверки износа двухтактных двигателей [71]. Добавление присадки AW / EP приводит к значительному снижению износа кокосового масла в качестве масла 2Т.

В прошлом масло жожоба оценивалось как (дорогое) смазочное средство для двухтактных двигателей, но, вероятно, без учета его коммерческого применения [72]. Составы масла жожоба с коммерческими смазочными материалами показали хорошую смешиваемость с бензином, сопоставимую тенденцию к задирам и образованию отложений и улучшенные характеристики износа.

Смазка, смешанная с метиловым эфиром пальмового масла (PME), в двухтактном двигателе PME действует как присадка к смазочному маслу [73,74]. Смазочное масло на минеральной основе демонстрирует лучшие характеристики трения по сравнению со смазочным маслом на основе пальмового масла, но последнее превосходит его с точки зрения износостойкости [75].

Последние достижения в технологии двухтактных двигателей позволили значительно снизить выбросы и повысить топливную экономичность.

Добавить комментарий

Ваш адрес email не будет опубликован.