Меню Закрыть

Система суфлирования двигателя – —

Содержание

Система суфлирования турбореактивного двигателя

Изобретение относится к турбореактивным двухконтурным двигателям авиационного применения. Система суфлирования турбореактивного двигателя включает в себя трубопровод суфлирования, соединенный с трубой суфлирования, установленной на сопло. Выходной конец патрубка трубы суфлирования выполнен изогнутой формы с образованием емкости для конденсата масла. Выходное сечение патрубка выполнено перпендикулярным оси трубы. Технический результат изобретения — исключение попадания масла на взлетно-посадочную полосу после выключения двигателя. 3 ил.

 

Изобретение относится к турбореактивным двухконтурным двигателям авиационного применения.

Известна система суфлирования турбореактивного двигателя, в котором выходной конец патрубка трубы суфлирования, предназначенной для стравливания воздуха, содержащего пары масла, выполнен прямой формы. («Авиационный двигатель ПС-90А», А.А. Иноземцев и др., Москва, Либра-К 2007 г., стр.137-138, рис.7.28).

Недостатком известной конструкции, принятой за прототип, является попадание масла на взлетно-посадочную полосу после выключения двигателя, что не обеспечивает требование инспекции SAFA к эксплуатации двигателей ПС-90А и его модификация в европейских аэропортах.

Технический результат заявленного изобретения заключается в исключении попадания масла на взлетно-посадочную полосу после выключения двигателя за счет скопления конденсата масла в трубе суфлирования.

Указанный технический результат достигается тем, что в системе суфлирования турбореактивного двигателя, включающей в себя трубопровод суфлирования, соединенный с трубой суфлирования, установленной на сопло, согласно изобретению, выходной конец патрубка трубы суфлирования выполнен изогнутой формы с образованием емкости для конденсата масла, а выходное сечение патрубка выполнено перпендикулярным оси трубы.

Выполнение выходного конца патрубка трубы суфлирования изогнутой формы с образованием емкости для конденсата масла обеспечивает скопление конденсата масла в трубе, что исключает попадание масла на взлетно-посадочную полосу после выключения двигателя.

Выполнение выходного сечения патрубка перпендикулярным оси трубы обеспечивает поддержание необходимого давления суфлирования в системе наддува лабиринтных уплотнений масляных полостей.

На фиг.1 — изображен общий вид системы суфлирования турбореактивного двигателя.

На фиг.2 — сечение А-А на фиг.1 в увеличенном виде.

На фиг.3 — изображена труба суфлирования со скопившимся конденсатом масла в емкости.

Система суфлирования турбореактивного двигателя включает в себя трубопровод суфлирования 1, соединенный с трубой суфлирования 2, установленной на сопло 3. Труба суфлирования 2 крепится к соплу 3 через фланец 4. С помощью наконечника 5 труба 2 соединяется с трубопроводом 1 системы суфлирования. Выходной конец 6 патрубка трубы суфлирования 2 выполнен изогнутой формы с образованием емкости 7 для конденсата масла с выходным сечением 8, перпендикулярным оси 9 трубы 2.

После остановки двигателя скопившийся в емкости 7 выходного конца 6 изогнутой формы трубы суфлирования 2 конденсат масла остается в трубе, что исключает попадание масла на взлетно-посадочную полосу.

Система суфлирования турбореактивного двигателя, включающая в себя трубопровод суфлирования, соединенный с трубой суфлирования, установленной на сопло, отличающаяся тем, что выходной конец патрубка трубы суфлирования выполнен изогнутой формы с образованием емкости для конденсата масла, а выходное сечение патрубка выполнено перпендикулярным оси трубы.

 

Похожие патенты:

Изобретение относится к области авиадвигателестроения, а именно к устройствам маслосистем авиационных газотурбинных двигателей. Маслосистема авиационного газотурбинного двигателя содержит установленные в магистралях откачки и суфлирования приводные центробежные воздухоотделитель и суфлер.

Изобретение относится к области машиностроения и касается устройства маслосистемы авиационного теплонапряженного газотурбинного двигателя с форсажной камерой, устанавливаемого на сверхзвуковые маневренные самолеты.

Изобретение относится к газотурбинным машинам и может быть использовано при монтаже их роторов. При монтаже ротора газотурбинного двигателя его устанавливают в подшипниковых опорах качения.

Опора турбины газотурбинного двигателя содержит подшипник (4), вал (6) и лабиринт (11) с фланцем (10) между подшипником (4) и диском (8) турбины. С внешней стороны фланца (10) лабиринта (11) установлен дополнительный фланец (12) с образованием полости продувки (13).

Изобретение относится к области авиационной техники, а именно к процессу запуска газотурбинных двигателей. В начальный момент запуска газотурбинного двигателя обмотка якоря основного генератора и обмотка возбуждения возбудителя через блок управления подключаются к источнику питания, при этом блок управления обеспечивает опережение вектора магнитного потока основного генератора относительно оси полюса ротора и начальная раскрутка газотурбинного двигателя осуществляется реактивным моментом, а с увеличением частоты вращения индуцированная электродвижущая сила в обмотке якоря возбудителя, выпрямленная блоком вращающегося выпрямителя, питает обмотку возбуждения основного генератора, создавая активный вращающий момент и, при достижении заданной частоты вращения, блок управления отключается от обмотки основного генератора, а бесконтактный явнополюсный синхронный генератор с вращающимся выпрямителем переходит в генераторный режим.

Изобретение относится к области авиадвигателестроения, в частности к устройствам для смазки опорных подшипников роторов турбомашин. Особенностью предложенной конструкции является использование для привода во вращение откачивающего насоса размещенного внутри масляной полости опорного подшипника ротора гидромотора, работающего на энергии масла, подающегося на смазку опорного подшипника ротора.

Изобретение относится к области авиадвигателестроения, в частности к маслосистеме авиационных газотурбинных двигателей. При экстремальных условиях работы двигателя (например, при фигурных полетах самолета) вследствие роста гидравлического сопротивления в магистралях откачки, увеличения перемешивания масла с воздухом и интенсификации процесса растворения воздуха в масле, на входе откачивающих насосов образуется масловоздушная эмульсия с большим процентным содержанием в ней воздуха, что может привести к снижению напора и падению производительности откачивающего насоса, являющегося наименее надежным звеном маслосистемы.

Высокотемпературная турбина газотурбинного двигателя, в наружном корпусе которой установлены сопловая лопатка и ниже по потоку газа разрезное секторное кольцо, а также рабочая лопатка и уплотнительные гребешки на верхней полке.

Газотурбинная установка содержит газотурбинный двигатель с компрессором, устройство воздухоподготовки газотурбинного двигателя, топливную систему с камерами сгорания, устройством подачи и регулирования топлива, масляную систему узлов трения газотурбинного двигателя и исполнительных агрегатов с теплообменником охлаждения масла, нагнетающим насосом, теплообменником подогрева топлива, выполненными в отдельном регулируемом циркуляционном контуре.

Изобретение относится к упругодемпферным опорам газотурбинных двигателей авиационного и наземного применения. Упругодемпферная опора газотурбинного двигателя содержит расположенные внутри корпуса шарикоподшипник с упругим элементом, имеющим прорези, и роликоподшипник.

Турбина двухроторного газотурбинного двигателя содержит наружный корпус, воздушный коллектор, предмасляную и масляную полости, роторы высокого и низкого давлений, каналы подачи масла в роликоподшипники, масляные уплотнения, межроторное лабиринтное уплотнение, питающие форсунки. В соответствии с заявленным предложением турбина снабжена опорной кольцевой обечайкой с радиальным буртом, кольцевой гайкой с радиальным буртом на ее боковой поверхности, опорной втулкой и радиально-торцевым масляным уплотнением. Опорная втулка установлена на вале ротора высокого давления и зафиксирована кольцевой гайкой. Опорная кольцевая обечайка выполнена за одно целое с валом ротора низкого давления и установлена с образованием верхней масляной ванны. Радиально-торцевое масляное уплотнение выполнено в виде двух подпятников с расположенными между ними графитовыми уплотнительными кольцами и распорной втулкой с фиксирующей пружиной. Масляные уплотнения между предмасляной и масляной полостями выполнены в виде браслетных графитовых уплотнений. В опорной кольцевой обечайке и в подпятнике, прилегающем к торцу вала ротора низкого давления, выполнены отверстия, сообщенные друг с другом. Кольцевая гайка установлена с образованием средней масляной ванны. Питающие форсунки размещены напротив средней масляной ванны. Позволяет уменьшить подогрев масла в масляной полости, уменьшить невозвратный расход масла, позволяет повысить экологичность двигателя и уменьшить его заметность. 3 ил.

Изобретение относится к упругодемпферным опорам газотурбинных турбореактивных двигателей авиационного и наземного применения. Упругодемпферная опора турбореактивного двигателя включает внутреннюю втулку, соединенную с С-образным упругим элементом, опорное кольцо и задний фланец лабиринта. Опорное кольцо выполнено за одно целое с задним фланцем лабиринта. Между опорным кольцом и внутренней втулкой установлена перфорированная промежуточная втулка. А между перфорированной промежуточной втулкой и внутренней втулкой расположена демпферная полость. Отверстия промежуточной втулки выполнены с возможностью сообщения кольцевых каналов подвода масла в опорном кольце с щелевой демпферной полостью. Радиальные выступы на заднем хвостовике промежуточной втулки находятся в зацеплении с осевыми выступами заднего хвостовика внутренней втулки. На радиальном ребре перфорированной промежуточной втулки установлен Г-образный в поперечном сечении жиклер подвода масла. Радиальный хвостовик жиклера расположен между составными частями С-образного упругого элемента. Техническим результатом заявленного изобретения является повышение эффективности и надежности работы упругодемпферной опоры, а также снижение веса конструкции опоры. 2 ил.

Маслосистема энергетической газотурбинной установки (ЭГТУ) относится к области двигателестроения, а именно к маслосистемам ЭГТУ, применяемым на газоперекачивающих и электрических станциях для привода различных агрегатов (насосов, газовых и воздушных компрессоров, электрогенераторов и т.п.). Характерной особенностью предложенной ЭГТУ является использование автономных дренажных емкостей для каждой масляной полости свободной турбины, подключенных к индивидуальному насосу откачки, что позволит исключить в системе откачки масла разбалансировку в работе насосов, вызванную перетечками воздушных потоков из одной масляной полости в другую через объединенную дренажную полость. Изобретение позволит отказаться от использования дополнительно откачивающего насоса с электроприводом, а объединение между собой напорных магистралей нагнетающих насосов в системе подачи масла позволит повысить надежность работы ЭГТУ в случае поломки одного из нагнетающих насосов. 1 з.п. ф-лы, 1 ил.

Маслосистема авиационного газотурбинного двигателя (ГТД) относится к авиадвигателестроению, а именно к системам смазки ГТД. Характерная особенность предложенной маслосистемы — предварительная грубая очистка сжатых воздуха и газов, поступающих в суфлирующую магистраль масляной полости подшипниковой опоры ротора турбины, от водомасляных загрязнений, что позволяет снизить гидравлическое сопротивление объединенной, единой магистрали суфлирования, сообщающейся со всеми остальными суфлируемыми масляными полостями двигателя, и дает возможность уменьшить рабочую нагрузку на суфлер-сепаратор, обеспечивающий окончательную чистовую очистку выбрасываемых в окружающую атмосферу воздуха и газов. Давление воздуха и газов в масляных полостях будет снижено, что повысит надежность работы системы суфлирования двигателя, а расход смазки сокращен. Следует обратить внимание также на улучшение экологических характеристик двигателя. 1 з.п. ф-лы, 1 ил.

Настоящее изобретение относится к области разработки газотурбинных двигателей, а более конкретно к конструкции газосборника выходного устройства турбовальных двигателей — ТВаД, предназначенных для эксплуатации в составе вертолетов. Во внутреннем корпусе газосборника размещена трубка подвода масла, снабженная наконечником с упругими демпфирующими-уплотнительными кольцами, а в угольнике для обеспечения сборки выполнена проточка, соответствующая длине наконечника, при этом один конец трубки подвода масла приварен к корпусу (угольнику), а на второй конец приварен наконечник, в канавках которого установлены упругие демпфирующие-уплотнительные кольца, что позволяет снизить уровень напряжений в трубке от воздействия переменных температур и динамических нагрузок при работе двигателя. 1 з.п. ф-лы, 1 ил.

Турбокомпрессор (10, 10′), приводимый в действие отработавшими газами, для двигателя внутреннего сгорания содержит датчик (32) частоты вращения и элемент (30, 30′, 40, 40′, 40″) в виде втулки для осевой фиксации по меньшей мере одного подшипника (24, 26) вала (22) турбокомпрессора. Элемент (30, 30′, 40, 40′, 40″) в виде втулки на периферийной поверхности (46, 46′, 46″) содержит по меньшей мере одно сквозное отверстие (48, 48′, 48″), через которое датчик частоты вращения проходит через элемент (30, 30′, 40, 40′, 40″) в виде втулки. По меньшей мере одно сквозное отверстие (48, 48′, 48″), по меньшей мере, в своей части имеет по существу коническую форму в радиальном направлении элемента (30, 30′, 40, 40′, 40″) в виде втулки. Достигается упрощение сборочно-монтажных работ за счёт корректировки углового положения втулки непосредственно при установке датчика за счёт конической формы отверстия. 4 з.п. ф-лы, 5 ил.

Вентилятор (1) газотурбинного двигателя включает в себя радиально-упорный подшипник (9), внутреннее кольцо (14) которого закреплено гайкой (10) с радиальными выступами (22) под ключ на резьбовом хвостовике (13) и жиклер (26) подачи масла на смазку. Гайка (10) выполнена с конусным, направленным к оси (15) вентилятора, хвостовиком (16). На наружной поверхности (17) хвостовика (16) установлен в виде радиальных выступов (19) индуктор (18) датчика (20) частоты вращения. На внутренней поверхности (23) конусного хвостовика (16) выполнено радиальное кольцевое ребро (24) с образованием кольцевой полости (25) подвода масла. Полость подвода масла на входе соединена с жиклером (26), а на выходе — с радиальными каналами (30) во внутреннем кольце (14) подшипника. Отношение внутреннего диаметра D внутреннего кольца радиально-упорного подшипника вентилятора к осевому расстоянию L между радиальными выступами индуктора и радиальными выступами резьбового хвостовика гайки находится в пределах 3…6. Отношение внутреннего диаметра D к внутреннему диаметру d радиального кольцевого ребра на конусном хвостовике гайки находится в пределах 1,05…1,2. Путем равномерной подачи масла со стороны внутреннего кольца подшипника, а также путем исключения ложных сигналов на индуктивном датчике повышается надежность вентилятора газотурбинного двигателя. 2 ил.

Газотурбинный двигатель содержит корпус, ротор, включающий вал. Один конец вала жестко скреплен с рабочим колесом турбины, на который насажена цилиндрическая втулка ротора, выполненный с возможностью его газодинамического поддержания, а на свободном конце зафиксировано колесо центробежного компрессора, снабженный упорным подшипником. На цилиндрической втулке со стороны, прилегающей к колесу турбины, надета первая чашеобразная цапфа-пята первого радиально-упорного магнитного подшипника, ориентированная своим дном к колесу турбины. На свободном конце вала последовательно установлены, с упором друг в друга, чашеобразная цапфа-пята второго радиально-упорного магнитного подшипника, ориентированная своим дном к колесу компрессора, первый и второй упорные лепестковые газовые подшипники. Каждый радиальный магнитный подшипник реализован по схеме Хальбаха, для чего он включает в себя тонкостенную цилиндрическую втулку, выполненную из немагнитного материала, планки трапециевидного сечения, выполненные из магнитного материала, постоянные магниты, выполненные в виде планок трапециевидного сечения. Упорный магнитный подшипник содержит подпятник, выполненный из немагнитного материала, размещенный в кольцевом корпусе, между дном которого и торцевой поверхностью цапфы-пяты закреплены сектора постоянных магнитов. Радиальный и упорный магнитный подшипники, размещенные со стороны турбины, выполнены с использованием магнитного материала с точкой Кюри не менее 900°C. Изобретение обеспечивает высокую несущую способность радиального и упорного подшипникового узлов в рабочем режиме при уменьшении в них потерь на трение, надежном запуске газотурбинного двигателя при низких температурах, повышении его надежности работы при высоких динамических нагрузках, а также повышении устойчивости ротора к «полускоростному вихрю», повышении механического КПД. 1 з.п. ф-лы, 4 ил.

Упругодемпферная опора ротора турбомашины содержит подшипник, установленный на валу, статорный элемент. Статорный элемент содержит обечайку и закрепленную на наружном кольце подшипника обечайку. Последняя обечайка соединена со статорным элементом посредством разрезной втулки и образует с ним демпфирующую полость, ограниченную уплотнениями. На противолежащих участках обечаек, расположенных между разрезной втулкой и ближайшим к ней уплотнением, выполнены шлицы и ответные шлицы, с образованием зазора между ними. Предпочтительно шлицы и ответные шлицы выполнены прямобочными. Достигается повышение надежности за счет снижения вероятности разрушения разрезной втулки в случае нештатной работы опоры турбомашины, а именно, в случае частичной передачи крутящего момента с вала на статорный элемент. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области авиационного двигателестроения, в частности к масляной системе авиационного газотурбинного двигателя. В известной маслосистеме, содержащей маслобак, масляный фильтр с сифонным затвором и жиклер стравливания воздуха в петле сифонного затвора, установленные в магистрали подачи масла в двигатель, причем петля сифонного затвора с жиклером стравливания воздуха расположена внутри полости маслобака, а жиклер сообщен со свободным его объемом, согласно изобретению, восходящая часть петли сифонного затвора образована магистралью подвода масла к фильтру, а ниспадающая часть петли образована внутренней полостью корпуса масляного фильтра. Изобретение обеспечивает уменьшение гидравлического сопротивления в магистрали подачи масла к двигателю и сокращение потерь давления масла в ее тракте, а также сокращение длины магистрали подачи масла и, как следствие, массы потребных трубопроводов.

Изобретение относится к турбореактивным двухконтурным двигателям авиационного применения. Система суфлирования турбореактивного двигателя включает в себя трубопровод суфлирования, соединенный с трубой суфлирования, установленной на сопло. Выходной конец патрубка трубы суфлирования выполнен изогнутой формы с образованием емкости для конденсата масла. Выходное сечение патрубка выполнено перпендикулярным оси трубы. Технический результат изобретения — исключение попадания масла на взлетно-посадочную полосу после выключения двигателя. 3 ил.

findpatent.ru

Масляная система газотурбинного двигателя | Банк патентов

Масляная система предназначена для газотурбинных двигателей. Изобретение решает задачу повышения качества и надежности работы масляной системы газотурбинного двигателя. Масляная система газотурбинного двигателя содержит маслобак, который через ряд элементов, например через нагнетающий насос, фильтр тонкой очистки и теплообменник соединен с масляными полостями и опор двигателя. Масляные полости через соответствующие откачивающие масляные насосы соединены с маслобаком через воздухоотделитель. Маслобак посредством трубопровода суфлирования маслобака соединен с трубопроводом суфлирования масляных полостей с образованием объединенного трубопровода. Угол между осью трубопровода суфлирования маслобака и осью трубопровода суфлирования масляной полости на входе в объединенный трубопровод составляет менее 90o. Другая масляная полость трубопроводом суфлирования соединена с объединенным трубопроводом суфлирования с образованием второго объединенного трубопровода. Угол между осями трубопровода суфлирования этой лопасти и объединенного трубопровода на входе во второй объединенный трубопровод также составляет менее 90o. Выходное сечение объединенного трубопровода суфлирования, в данном случае последнего по потоку перед суфлером, располагается от его входного сечения на расстоянии L≥0,1d, где d — диаметр последнего по потоку объединенного трубопровода. 2 ил.


Изобретение относится к авиадвигателестроению, в частности к масляным системам газотурбинных двигателей. От степени совершенства масляной системы двигателя зависит не только общий срок службы двигателя, но и безотказность его работы. На всех режимах работы двигателя и при любых условиях эксплуатации масляная система должна обеспечивать надежную подачу в двигатель масла с заданными параметрами. Различного рода нарушения подачи масла, даже кратковременные, могут вызвать повышенный износ, перегрев, а следовательно, и разрушение двигателя. В процессе работы повышение давления в масляных полостях двигателя может привести к переполнению масляных полостей маслом и, следовательно, к перегреву подшипников и нарушению работы маслосистемы в целом. Кроме того, в процессе нахождения в двигателе масло насыщается газами, возрастает его нагрев и ускоряется процесс его окисления, поэтому масляная система должна не только обеспечивать подачу масла в двигатель, но и своевременно удалять отработавшее масло. Отработавшее, нагретое и насыщенное воздухом масло сливается в маслосборники масляных полостей двигателя и откачивается оттуда насосами. Для предотвращения сбоев в работе двигателя необходимо отводить в атмосферу воздух из масляных полостей через систему суфлирования. В настоящее время используются масляные системы, в которых соединение трубопроводов суфлирования масляных полостей и маслобака осуществляются под углом 90o, что технологически наиболее просто в изготовлении. Однако при соединении трубопроводов под таким углом имеет место наибольшее сопротивление в объединенном трубопроводе при слиянии потоков и тем самым повышается давление в масляных полостях и маслобаке, что приводит к ухудшению работоспособности масляной системы двигателя. Известна масляная система газотурбинного двигателя, содержащая маслобак, масляную полость и трубопроводы суфлирования (Патент РФ 2117794, F 02 C 7/06, БИ 23 за 1998 г.) — аналог. Недостатком известного решения является то, что трубопроводы суфлирования опоры и центробежного суфлера соединяются под углом 90o. Соединение трубопроводов под углом 90o дает максимальное сопротивление при слиянии воздушно-масляной смеси в объединенном трубопроводе. Это может привести к уменьшению расхода в трубопроводе суфлирования опоры, что приведет к увеличению в нем давления. Чем больше разность расходов воздушно-масляной смеси в трубопроводе, который соединяет суфлер с клапаном, и в трубопроводе суфлирования опоры, тем больше вероятность того, что в трубопроводе суфлирования опоры может произойти запирание (гидравлический удар) воздушно-масляной смеси, что приведет к увеличению давления за откачивающими маслонасосами и ухудшению откачки масла из опор двигателя. Ухудшению откачки масла из опор двигателя приводит к повышению температуры масла и перегреву подшипников опор двигателя. Известна масляная система газотурбинного двигателя, содержащая маслобак и, по меньшей мере, одну масляную полость, трубопроводы суфлирования маслобака и масляной полости, которые соединены между собой с образованием объединенного трубопровода (Бич М.М., Вейнберг Е.В., Сурнов Д.Н. Смазка авиационных газотурбинных двигателей. М., Машиностроение, 1979, с. 34). Недостатком данной схемы является то, что трубопроводы суфлирования маслобака и масляных полостей также соединяются под углом 90o, что приводит к возникновению максимального сопротивления при повороте воздушно-масляной смеси и, следовательно, к потере энергии потоков воздушно-масляной смеси. Эти потери, как известно, имеют место главным образом из-за отрыва потока от внутренних стенок трубопровода, что приводит к поджатию струи потока в трубопроводе суфлирования маслобака в месте ее поворота и к последующему ее расширению в объединенном трубопроводе. Поджатие струи, а затем расширение происходит уже в месте слияния обоих потоков и, следовательно, сказывается на потерях не только в трубопроводе суфлирования маслобака, но и в объединенном трубопроводе, что естественно ухудшает суфлирование двигателя. Под объединенным трубопроводом понимается трубопровод, образованный в результате соединения трубопровода суфлирования маслобака и трубопровода суфлирования масляных полостей. Ухудшение суфлирования двигателя приводит к уменьшению скорости воздушно-масляного потока в трубопроводах суфлирования. В этом случае частицы масла, проходящие через горячие стойки опор двигателя, перегреваются и осаждаются в виде кокса в трубопроводах суфлирования, уменьшая их проходное сечение. Уменьшение проходного сечения трубопроводов суфлирования приводит к следующим недостаткам в работе двигателя: увеличению давления в масляных опорах, переполнению опор маслом, перегреву подшипников, ухудшению работы откачивающих маслонасосов, обмасливанию воздушно-масляного тракта двигателя, обмасливанию лопаток турбины после остановки двигателя. Перечисленные факторы могут привести к нарушению заданных режимов функционирования маслосистемы, а следовательно, и всего двигателя. Заявляемое изобретение решает задачу повышения качества и надежности работы масляной системы газотурбинного двигателя. Указанная задача решается тем, что в масляной системе газотурбинного двигателя, содержащей маслобак и, по меньшей мере, одну масляную полость, трубопроводы суфлирования маслобака и масляной полости соединены между собой с образованием объединенного трубопровода, причем угол между осью трубопровода суфлирования масляной полости и осью трубопровода суфлирования маслобака на входе в объединенный трубопровод составляет менее 90o, а выходное сечение последнего по потоку объединенного трубопровода располагается от его входного сечения на расстоянии L≥0,1d, где d — диаметр объединенного трубопровода. На фиг. 1 представлена схема масляной системы газотурбинного двигателя; на фиг.2 — узел А фиг.1 в увеличенном масштабе. Масляная система газотурбинного двигателя содержит маслобак 1, который через ряд элементов, например через нагнетающий насос 2, фильтр тонкой очистки 3 и теплообменник 4, соединен с масляными полостями 5 и 6 опор двигателя. Масляные полости 5 и 6 через соответствующие откачивающие масляные насосы 7 и 8 соединены с маслобаком 1 через воздухоотделитель 9. Маслобак 1 посредством трубопровода суфлирования 10 маслобака 1 соединен с трубопроводом суфлирования 11 масляной полости 6 с образованием объединенного трубопровода 12. Угол между осью трубопровода суфлирования 10 маслобака 1 и осью трубопровода суфлирования 11 масляной полости 6 на входе в объединенный трубопровод 12 составляет менее 90o. Масляная полость 5 трубопроводом суфлирования 13 соединена с объединенным трубопроводом суфлирования 12 с образованием второго объединенного трубопровода 14. Угол между осями трубопровода суфлирования 13 и объединенного трубопровода 12 на входе во второй объединенный трубопровод 14 также составляет менее 90o. Выходное сечение объединенного трубопровода суфлирования 14, в данном случае — последнего по потоку перед суфлером, располагается от его входного сечения на расстоянии L≥0,1d, где d — диаметр последнего по потоку объединенного трубопровода. Масляная полость, как правило, включает в себя подшипник, обеспечивающий вращение валов двигателя; масляный коллектор, обеспечивающий смазку, охлаждение и удаление продуктов износа; масляный откачивающий насос, который обеспечивает откачку горячего масла из полости; уплотнения, предотвращающие попадание масла в газовоздушный тракт двигателя; система суфлирования, обеспечивающая удаление горячей воздушно-масляной смеси из масляной полости. Заявляемая масляная система работает следующим образом. При запуске двигателя масло из маслобака 1 поступает в нагнетающий насос 2. После нагнетающего насоса 2 масло поступает в фильтр тонкой очистки 3, а затем в топливный теплообменник 4. Масло, охлаждаемое топливом в теплообменнике 4, поступает на смазку и охлаждение узлов и деталей двигателя. Количество масла, поступающего к смазываемым узлам двигателя, определяется сечениями жиклеров в форсунках подачи масла. После смазки и охлаждения узлов и деталей трения масло интенсивно перемешивается с воздухом, что приводит к образованию масляно-воздушной смеси. Масляно-воздушная смесь откачивается из масляных полостей 5 и 6 двигателя откачивающими насосами 7 и 8 и поступает через воздухоотделитель 9 в маслобак 1. В воздухоотделителе 9 воздух отделяется из масляно-воздушной смеси и через трубопровод суфлирования 10 маслобака 1 отводится к суфлеру 15, а масло сливается в маслобак 1. Масляно-воздушная смесь из трубопровода суфлирования 10 смешивается с масляно-воздушной смесью, которая поступает по трубопроводу суфлирования 11 из масляной полости 5, с образованием объединенного трубопровода 12. Угол между осью трубопровода суфлирования 10 маслобака 1 и осью трубопровода суфлирования 11 масляной полости 6 на входе в объединенный трубопровод 12 составляет менее 90o. После этого объединенный поток масляно-воздушной смеси по трубопроводу 12 направляется к суфлеру 15, перед которым соединяется с суфлирующим трубопроводом 13 масляной полости 6, с образованием еще одного объединенного потока в объединенном трубопроводе 14. Угол между осями трубопровода суфлирования 13 и объединенного трубопровода 12 на входе во второй по потоку объединенный трубопровод 14 также составляет менее 90o. Выходное сечение объединенного трубопровода суфлирования 14, в данном случае последнего по потоку, располагается от его входного сечения на расстоянии L≥0,1d, где d — диаметр последнего по потоку объединенного трубопровода. Под объединенным трубопроводом понимается трубопровод, образованный в результате соединения трубопровода суфлирования маслобака и трубопроводов суфлирования масляных полостей. Если, как в рассматриваемом случае, объединенных трубопроводов несколько, то условиям формулы должен соответствовать, по меньшей мере, один из них, а именно объединенный трубопровод, расположенный последним среди всех объединенных трубопроводов, по направлению движения потока рабочей среды. В суфлере 15 происходит выделение масла из воздушно-масляной смеси, причем воздух в дальнейшем отводится в атмосферу, а масло по трубопроводу 16 возвращается в маслобак 1. Производительность откачивающих насосов 7 и 8 предварительно рассчитывается таким образом, чтобы они смогли обеспечить необходимую для нормальной работы двигателя откачку масла из масляных полостей. В описании рассмотрена масляная система, имеющая две масляные полости, однако их число может быть различным и зависит от особенностей конструкции масляных систем. В случае, если масляная система имеет одну масляную полость, то ее работа осуществляется по той же схеме. Только в данном случае в результате соединения суфлирующего трубопровода одной масляной полости и суфлирующего трубопровода маслобака образуется только одна объединенная полость, для которой также должны выполняться условия, изложенные в формуле изобретения. Возможны различные конструктивные варианты выполнения соединения трубопроводов с образованием объединенного трубопровода, которые зависят от соотношения диаметров этих трубопроводов (фиг.2). Предлагаемая система суфлирования масляной системы газотурбинного двигателя позволяет осуществить слияние потоков, движущихся в трубопроводах с различными скоростями. В этом случае имеет место турбулентное течение потоков, сопровождаемое при их соединении незначительными потерями энергии потока в одном из трубопроводов и повышением скорости потока во втором трубопроводе. В процессе этого смешения происходит обмен количествами движения между частицами воздушно-масляной смеси, обладающими различными скоростями. Этот обмен количествами движения ведет к выравниванию поля скоростей в объединенном потоке. При этом струя воздушно-масляной смеси, движущаяся с большей скоростью, теряет часть энергии, передавая ее воздушно-масляной струе, движущейся с меньшей скоростью. Таким образом, разность полных напоров между сечениями до и после смешения воздушно-масляных струй, движущихся с большой скоростью, будет достаточно большой положительной величиной. Эта разность будет тем больше, чем больше часть энергии, передаваемая воздушно-масляной струе, движущейся с меньшей скоростью. Запас энергии воздушно-масляной среды, движущейся с меньшей скоростью, при смешивании этих двух струй увеличивается. При этом скорость потока во втором трубопроводе будет увеличиваться при уменьшении угла между боковым и основным трубопроводом. В предлагаемом изобретении увеличивается скорость прохождения воздушно-масляной смеси в объединенных трубопроводах суфлирования маслобака и масляных полостей двигателя. Это приводит к уменьшению давления в суфлирующих полостях двигателя, снижает температуру масла в опорах, улучшает охлаждение и смазку подшипников и исключает обмасливание воздушно-газового тракта, исключает коксование в трубопроводах суфлирования и улучшает работоспособность маслосистемы двигателя в целом.

Формула изобретения


Масляная система газотурбинного двигателя, содержащая маслобак и, как минимум, одну масляную полость, трубопроводы суфлирования которых соединены между собой с образованием объединенного трубопровода, отличающаяся тем, что угол между осью трубопровода суфлирования масляной полости и осью трубопровода суфлирования маслобака на входе в объединенный трубопровод составляет менее 90o, а выходное сечение последнего по потоку объединенного трубопровода располагается от его входного сечения на расстоянии L≥0,1 d, где d — диаметр объединенного трубопровода.


PD4A Изменение наименования, фамилии, имени, отчества патентообладателя

(73) Патентообладатель(и):

Федеральное государственное унитарное предприятие «Научно-производственный центр газотурбостроения «Салют» (RU)

Адрес для переписки:

105118, Москва, пр-кт Буденного, 16, ФГУП «НПЦ газотурбостроения «Салют», Правовое управление, П.В. Пегову

Дата публикации: 27.01.2012



bankpatentov.ru

Система суфлирования. Техническое обслуживание маслосистемы двигателя

Похожие главы из других работ:

Использование двухступенчатого обратного осмоса для получения воды для инъекций

Система GMP

Международный стандарт GMP (good manufactured practice) включает в себя достаточно обширный ряд показателей, которым должны соответствовать npeдприятия, выпускающие ту или иную продукцию…

Машины и их основные элементы

2. Плоская система сил

Частный случай общей поставки задачи. Пусть все действующие силы лежат в одной плоскости — например, листа. Выберем за центр приведения точку О — в этой же плоскости. Получим результирующую силу  и результирующую пару  в этой же плоскости…

Методы проведения стандартных испытаний по определению показателей качества исходных материалов и готовых изделий

2. Автоматизированная система

Автоматизированная система — это система, состоящая из персонала и комплекса средств автоматизации его деятельности, реализующая автоматизированную технологию выполнения установленных функций…

Метрологическое обеспечение стандартизации, сертификации и качества измерения параметров или значений физических величин

2.1 МАГНИТОЭЛЕКТРИЧЕСКАЯ СИСТЕМА

Приборы этой системы (рис.3) содержат постоянный магнит — 1, к которому крепятся полюса — 2. В межполюсном пространстве расположен стальной цилиндр — 3 с наклеенной на него рамкой — 4. Ток в рамку подается через две спиральные пружины -5…

Метрологическое обеспечение стандартизации, сертификации и качества измерения параметров или значений физических величин

2.2 ЭЛЕКТРОМАГНИТНАЯ СИСТЕМА

Приборы этой системы (рис.5) имеют неподвижную катушку — 1 и подвижную часть в виде стального сердечника — 2, связанного с индикаторной стрелкой — 3 противодействующей пружины — 4. Измеряемый ток, проходя по катушке…

Метрологическое обеспечение стандартизации, сертификации и качества измерения параметров или значений физических величин

2.4 ИНДУКЦИОНААЯ СИСТЕМА

Приборы индукционной системы получили широкое распространение для измерения электрической энергии. Принципиальная схема прибора приведена на рис.9. Электрический счетчик содержит магнитопровод — 1 сложной конфигурации…

Метрологическое обеспечение стандартизации, сертификации и качества измерения параметров или значений физических величин

2.5 ФЕРРОДИНАМИЧЕСКАЯ СИСТЕМА

Отличием ферродинамического измерительного механизма является размещение неподвижной катушки на магнитопроводе. Замкнутый через железо (ферродинамический) механизм, в котором магнитный поток, созданный током…

Метрологическое обеспечение стандартизации, сертификации и качества измерения параметров или значений физических величин

2.6 ЭЛЕКТРОСТАТИЧЕСКАЯ СИСТЕМА

Принцип действия основан на взаимодействии двух заряженных электродов, один из которых является подвижным. В электростатическом приборе измеряются силы, возникающие в электрическом поле, пропорциональные квадрату напряженности поля Е…

Метрологическое обеспечение стандартизации, сертификации и качества измерения параметров или значений физических величин

2.7 ТЕРМОДИНАМИЧЕСКАЯ СИСТЕМА

стандартизация сертификация физическая величина электрический Принцип действия приборов термоэлектрической системы основан на использовании электродвижущей силы, возникающей в цепи, состоящей из разнородных проводников…

Метрологическое обеспечение стандартизации, сертификации и качества измерения параметров или значений физических величин

2.8 ВИБРАЦИОННАЯ СИСТЕМА

Вибрационная система характеризуется применением ряда настроенных пластин…

Модернизация привода передаточной тележки склада

4.4 Бирочная система

Бирочная система — это система допуска к работам, связанным с эксплуатацией, техническим обслуживанием и ремонтом оборудования и механизмов с электроприводом, гидроприводом и пневмоприводном…

Разработка конструкции приспособления для притира корпусных отверстий

3. Система ППР

Разработка системы автоматизированного управления дозатором технологических растворов

4 Система управления

На рисунке 4.1 представлена блок схема системы управления [5,6]. Рисунок 4.1 — Блок-схема системы управления Система управления состоит из трех уровней: — первый уровень — это персональный компьютер, он обрабатывает данные…

Разработка системы автоматического контроля технологических параметров газоперекачивающего агрегата

2.2 Система смазки

Система смазки предназначена для подачи смазки в подшипники корпусов сжатия компрессора, электродвигателя, мультипликатора и зубчатых муфт…

Разработка системы слива жидкого гелия

3. Система управления

Система управления — систематизированный набор средств влияния на подконтрольный объект для достижения определённых целей данным объектом. Объект системы управления может состоять из других объектов…

prod.bobrodobro.ru

Способ суфлирования масляной полости опоры ротора газотурбинного двигателя

Изобретение относится к смазке опор ротора газотурбинного двигателя, в частности к способам суфлирования масляных полостей опор ротора газотурбинных двигателей, и может найти применение в авиадвигателестроении, машиностроении и других областях техники. В способе суфлирования масляной полости опоры ротора газотурбинного двигателя, включающем подвод масла в масляную полость опоры ротора и отвод в суфлер воздушно-масляной смеси по магистрали суфлирования, согласно изобретению в масляную полость опоры ротора подают дополнительное масло и направляют его ко входу в магистраль суфлирования, причем дополнительное масло подают в количестве не менее 1% от количества масла, подаваемого в масляную опору ротора на смазку и охлаждение деталей и узлов трения. Изобретение повышает надежность работы газотурбинного двигателя путем уменьшения образования коксовых отложений в магистрали суфлирования. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к смазке опор ротора газотурбинного двигателя, в частности к способам суфлирования масляных полостей опор ротора газотурбинных двигателей, и может найти применение в авиадвигателестроении, машиностроении и других областях техники.

Известен способ суфлирования масляной полости опоры ротора газотурбинного двигателя, включающий отвод воздушно-масляной смеси из полости опоры по магистрали суфлирования в центробежный суфлер (см. М.М.Бич, Е.В.Вейнберг, Д.Н.Сурнов. Смазка авиационных газотурбинных двигателей. — М.: Машиностроение, 1979, с.36).

Недостатком известного способа суфлирования является то, что мельчайшие частицы смазки, перемещающиеся с потоком воздуха по магистрали суфлирования из масляной полости опоры, успевают перегреться и образовать на стенках магистрали суфлирования коксовые отложения, что приводит к уменьшению проходного сечения магистрали суфлирования и, как следствие, к снижению надежности работы опоры ротора и нарушению режима работы двигателя в целом.

Технический результат данного изобретения — повышение надежности работы газотурбинного двигателя путем уменьшения образования коксовых отложений в магистрали суфлирования.

Указанный технический результат достигается тем, что в способе суфлирования масляной полости опоры ротора газотурбинного двигателя, включающем подвод масла в масляную полость опоры ротора и отвод в суфлер воздушно-масляной смеси по магистрали суфлирования, согласно изобретению в масляную полость опоры ротора подают дополнительное масло и направляют его ко входу в магистраль суфлирования, причем дополнительное масло подают в количестве не менее 1% от количества масла, подаваемого в масляную опору ротора на смазку и охлаждение деталей и узлов трения.

Подавать дополнительное масло в количестве меньше 1% от количества масла, подаваемого в опору на смазку и охлаждение деталей и узлов трения не эффективно, так как это не приведет к увеличению размера капель воздушно-масляной смеси, что не позволит воздушно-масляной смеси пройти горячий участок магистрали суфлирования без образования коксовых отложений на стенках магистрали. Увеличение размера капель воздушно-масляной смеси позволяет увеличить время нагрева смеси до температуры, при которой начинается коксование масла, и, как следствие, пройти горячий участок магистрали суфлирования без образования коксовых отложений на ее стенках. Верхний предел подаваемого количества дополнительного масла ограничен конструкцией двигателя, в частности, конструкцией опор ротора и их габаритами. В зависимости от этого дополнительное масло может быть подано в опору в количестве, равном количеству масла или большем количества масла, подаваемого в масляную опору ротора на смазку и охлаждение деталей и узлов трения.

Подачу масла в масляную полость опоры ротора можно осуществлять при помощи форсунок или жиклеров, по меньшей мере одна из которых ориентирована отверстием в направлении ко входу в магистраль суфлирования, что позволяет обеспечить равномерную подачу масла в масляную полость и дозировать расход масла.

На чертеже схематично изображена система суфлирования масляной полости опоры ротора газотурбинного двигателя для реализации данного способа.

Система суфлирования масляной полости опоры ротора газотурбинного двигателя содержит магистраль 1 суфлирования, сообщенную с масляной полостью 2 опоры ротора и подсоединенную к центробежному суфлеру 3. В масляной полости 2 опоры расположены жиклеры 4 подачи масла на охлаждение и смазку деталей и узлов трения ротора, в частности подшипников 5, и жиклер 6, предназначенный для подачи к магистрали суфлирования дополнительного масла и ориентированный отверстием в направлении ко входу в магистраль 1 суфлирования таким образом, чтобы обеспечить соединение воздушно-масляной смеси и дополнительного масла в масляной полости 2 опоры непосредственно перед входом в магистраль 1 суфлирования. Масляная полость 2 опоры ротора сообщена с магистралью 7 подачи масла и магистралью 8 откачки масла. Магистраль 7 подачи масла сообщена с нагнетающим насосом 9, магистраль 8 откачки масла сообщена с откачивающими насосами 10. Жиклеры 4 и жиклер 6 подсоединены к магистрали 7 подачи масла. Маслобак 11 подсоединен входами к магистрали 8 откачки масла и напорной магистрали 12, а выходами — к магистрали 7 подачи масла и магистрали 13 суфлирования маслобака.

Способ суфлирования масляной полости опоры ротора газотурбинного двигателя осуществляется следующим образом.

При работе двигателя масло из маслобака 11 нагнетающим насосом 9 по магистрали 7 подачи масла подается через жиклеры 4 в масляную полость 2 опоры ротора. Отработанное масло по магистрали 8 откачки масла при помощи откачивающих насосов 10 возвращается в маслобак 11. Одновременно из верхней части масляной полости 2 опоры по магистрали 1 суфлирования воздух отводится в центробежный суфлер 3, откуда после сепарации воздух сбрасывается в атмосферу, а масло поступает в маслобак 11 по напорной магистрали 12. В масляную полость 2 опоры ротора из маслобака 11 перед входом в магистраль 1 суфлирования подается дополнительное масло по магистрали 7 подачи масла при помощи жиклера 6 в количестве 20% от количества масла, подаваемого в масляную полость 2 опоры на охлаждение и смазку подшипников 5. Дополнительное масло соединяется с воздушно-масляной смесью в масляной полости непосредственно перед входом в магистраль 1 суфлирования. Образованная после соединения с дополнительным маслом воздушно-масляная смесь направляется ко входу в магистраль 1 суфлирования.

Дополнительное масло подается для уменьшения образования коксовых отложений в магистрали 1 суфлирования. Ввод дополнительного масла позволяет увеличить размер капель воздушно-масляной смеси, поступающей в магистраль суфлирования. Увеличение размера капель воздушно-масляной смеси позволяет увеличить время нагрева смеси до температуры, при которой начинается коксование масла, и пройти горячий участок магистрали 1 суфлирования без перегрева воздушно-масляной эмульсии. Ориентирование отверстия жиклера 6 в направлении ко входу в магистраль 1 суфлирования позволяет подавать дополнительное масло в ту часть масляной опоры ротора, которая сообщается с магистралью 1 суфлирования. В этой зоне происходит смешение дополнительного масла с воздушно-масляной смесью, и образованная смесь, имеющая увеличенный размер капель, поступает на вход магистрали 1 суфлирования.

Масло из маслобака 11 нагнетающим насосом 9 по магистрали 7 подачи масла может подаваться в масляную полость 2 опоры ротора через форсунку. Выбор подачи масла через форсунки или жиклеры, а также их количество обусловлены конструкцией опор ротора двигателя, их габаритами, а также количеством масла, необходимого для подачи в масляную полость.

1. Способ суфлирования масляной полости опоры ротора газотурбинного двигателя, включающий подвод масла в масляную полость опоры ротора и отвод в суфлер воздушно-масляной смеси по магистрали суфлирования, отличающийся тем, что в масляную полость опоры ротора подают дополнительное масло и направляют его ко входу в магистраль суфлирования, причем дополнительное масло подают в количестве не менее 1% от количества масла, подаваемого в масляную опору ротора на смазку и охлаждение деталей и узлов трения.

2. Способ суфлирования масляной полости по п.1, отличающийся тем, что подачу масла осуществляют при помощи форсунок или жиклеров, по меньшей мере, одна из которых ориентирована отверстием в направлении ко входу в магистраль суфлирования.

findpatent.ru

Взаимосвязь масляной системы с системой суфлирования масляных полостей двигателя

В корпусах опор роторов любого ГТД его масляные полости отделены от воздушных с помощью подвижных уплотнений, устанавливаемых между валами и статором. (Здесь и далее под термином «опора» следует подразумевать силовые корпусы турбокомпрессора, внутри которых встроены подшипники валов).

Типы используемых в опорах ГТД уплотнений многообразны, но наиболее часто применяют лабиринтные и контактные графитовые уплотнения. Такие уплотнения по сути предназначены для исключения возможности утечек масла из масляных полостей опор двигателя, и они входят в состав этих узлов, являясь элементами их конструкции. Поскольку уплотнения не связаны с функционированием циркуляционного контура масляной системы, рассмотрение их конструктивных особенностей не включено в данное учебное пособие.

Как известно, для того, чтобы предотвратить утечку масла через любое уплотнение, величина давления воздуха перед ним должна быть больше величины давления внутри масляной полости, т.е. должен быть создан определённый перепад давления. При создании достаточного перепада давления воздух будет непрерывно проникать внутрь масляных полостей опор, препятствуя утечкам масла из них в предмасляную воздушную полость.. Очевидно, что для исключения возможности накопления в масляных полостях воздуха, которое приводило бы к уменьшению перепада давления на уплотнениях (в пределе до нуля), необходимо непрерывно осуществлять равновесный отвод воздуха из масляных полостей как на постоянных, так и на переменных режимах работы двигателя. Эту функцию выполняет система суфлирования.

Возможны различные варианты схем суфлирования масляных полостей двигателя – от объединенной системы отвода воздуха из всех масляных полостей до автономного суфлирования каждой из них. Способы отвода указанного воздуха и соответствующие конструктивные решения, относящиеся к системам суфлирования, многообразны. В учебном пособии [8] приведены основные принципы проектирования систем суфлирования ГТД и подробно исследована взаимосвязь масляной системы с системой суфлирования масляных полостей двигателя.

Данный вопрос является весьма важным, т.к. работоспособность масляной системы в значительной мере зависит от её взаимодействия с системой суфлирования. В частности, это связано с тем, что система суфлирования формирует уровни давлений в масляных полостях опор, коробок приводов и маслобака. А это оказывает непосредственное влияние на количественное распределение масла по потребителям, особенно в тех случаях, когда в масляных полостях опор компрессора и турбины на взлётном режиме будет иметь место различный уровень давлений. И от того, как с помощью системы суфлирования сформировано состояние величин давлений в масляных полостях опор в высотных условиях, зависит эффективность работы нагнетающего и особенно откачивающих насосов. Выбор схемы суфлирования масляных полостей двигателя самым непосредственным образом оказывает влияние на функционирование маслобака. Кроме того, система суфлирования оказывает влияние на процесс сепарации откачиваемой из узлов двигателя масловоздушной смеси.

Вопросы взаимодействия масляной системы с системой суфлирования детально рассмотрены в [8].

studfiles.net

46. Масляная система двигателя ал-31ф: работа системы суфлирования.

Суфлирование масляной полости передней опоры ротора КНД производится через два канала, стойки 17 и 21 переднего корпуса КНД и клапан суфлирования компрессора (1). Суфлирование по­лости кока (а) осуществляется через те же каналы и тот же кла­пан суфлировании.

Суфлирование предмаслянои полости задней опоры КНД (и) осуществляется через трубопровод, стойки № 2 й 12 промежу­точного корпуса и клапан суфлирования.

Суфлирование предмаслянои полости передней опоры КВД(л) осуществляется через кольцевой канал (к), стойки № 2 и 12 и клапан суфлирования (63).

Суфлирование пред масляных полостей опоры турбины осуществляется через кольцевую полость (х), стойки №7,8,9,10 и клапан суфлирования турбины (41).

На переходных режимах в предмасляные полости может попадать из масляных полостей незначительное количество масла, котор отводится за борт через клапаны суфлирования компрессора и турбины.

47. Нр-31: работа насоса при запуске двигателя ал-31ф

Запуском двигателя называется процесс вывода двигателя из состояния покоя или режима авторотации на режим МГ.

Для запуска двигателя на земле необходимо:

1. Раскрутить ротор от постороннего источника мощности с целью повышения давления воздуха и подачи его в ОКС — выполняется ГТДЭ- 117-1.

2. Подать в ОКС GTи управлять его расходом по закону:

PТ=PТО1×(К2×Рк-Pб)

Реализация этого закона позволяет управлять подачей топлива при запуске пропорционально Gв так как давление воздуха за компрессором Рк однозначно определяет расход воздуха через двигатель. Потребная подача топлива лежит в пределах допустимых границ «горячего» и «холодного» зависания: если превысить Gтрасп над потребной, произойдет резкий подъем Tгв) без подъема п2. Это приведет к перегреву двигателя и помпажу (рисунок 2.3)

Нижний предел потребнойGTприведет к «холодному» зависанию. Это приводит к тому, что Тг и п2 не увеличиваются, т.к. мощности турбины не хватает для раскрутки ротора двигателя.

В начале запуска топливо поступает от НР-31В к РТ-31В, перепускается на слив через проточку золотника распределителя и к форсункам не поступает. Сервопоршень ДК находится на упоре минимального расхода, а часть топлива перепускается от ШН на вход через предохранительный клапан и клапан перепуска.

При поступлении команды «+27В» от АПД-У9 на электромагнитный клапан распределителя топлива РТ-31В (149) золотник последнего (150) прекращает слив топлива, что приводит к повышению Рт перед распределительным золотником и подачу топлива в форсунки ОКС. Количество топлива, подводимого в ОКС, определяется затяжкой пружины A3, натяжение которой регулируется винтом (Р38) (57) и зависит от температуры окружающего воздуха (Тд).

При повышении n снижается количество топлива, сливаемого через автомат запуска, и Gтокс повышается пропорционально повышению Рк.

studfiles.net

система суфлирования опоры турбины двухконтурного турбореактивного двигателя — патент РФ 2456461

Система суфлирования опоры турбины двухконтурного турбореактивного двигателя относится к авиационному двигателестроению. Система суфлирования включает клапан, соединенный с трубопроводами подвода и отвода воздуха. Трубопровод подвода воздуха размещен в стойке опоры и сообщен с предмасляной полостью турбины. Трубопровод отвода воздуха связан с атмосферой. Клапан размещен в наружном контуре двигателя и снабжен дополнительным входным трубопроводом, размещенным в соседней стойке опоры. Входные трубопроводы соединены с клапаном входными каналами. Корпус клапана выполнен обтекаемой формы и снабжен крышкой, размещенной на внешней поверхности наружного контура. Выходной трубопровод соединен с крышкой. Входной канал клапана предпочтительно образован корпусом наружного контура двигателя и прикрепленной к нему профилированной накладкой. Осуществление изобретения позволяет уменьшить наружные габариты двигателя в его задней части, улучшить его обтекание при работе на летательном аппарате и тем самым улучшить летные характеристики летательного аппарата. 1 з.п. ф-лы, 4 ил.

Рисунки к патенту РФ 2456461

Изобретение относится к авиационному двигателестроению, а именно к системам суфлирования опоры турбины двухконтурного турбореактивного двигателя (ДТРД).

Известен ДТРД с системой наддува опор, включающий клапан суфлирования, соединенный с трубопроводами подвода и отвода воздуха, причем трубопровод подвода воздуха размещен в стойке опоры и сообщен с предмасляной полостью турбины, а трубопровод отвода воздуха связан с атмосферой (см. патент РФ № 2153590, кл. F02C 7/06, опубл. в 2000 г.).

Недостаток этой системы в том, что клапан суфлирования предмасляных полостей турбины расположен снаружи двигателя, в задней его части. В современных двигателях очень часто задняя часть двигателя расположена за обтекателем самолета и наличие выступающих частей на корпусе этой части двигателя часто бывает недопустимым из-за ухудшения его обтекания наружным потоком воздуха. Это в свою очередь может оказывать отрицательное влияние на общую аэродинамику самолета. В связи с этим размещение клапана суфлирования предмасляных полостей турбины снаружи двигателя в задней его части оказывается проблематичным.

Кроме того, при стравливании необходимого количества воздуха из предмаслянных полостей часто бывает недостаточно проходного сечения одной стойки опоры турбины, так как в современных двигателях стремятся делать стойки как можно тоньше.

Задачей изобретения является создание системы суфлирования опоры турбины ДТРД с размещением трубопроводов и клапана на задней части двигателя при отсутствии габаритов для их размещения на внешней поверхности наружного контура и для устранения возможного сопротивления наружному воздушному потоку в задней части двигателя.

Указанная задача решается тем, что в системе суфлирования опоры турбины ДТРД, включающей клапан, соединенный с трубопроводами подвода и отвода воздуха, причем трубопровод подвода воздуха размещен в стойке опоры и сообщен с предмасляной полостью турбины, а трубопровод отвода воздуха связан с атмосферой, согласно изобретению клапан размещен в наружном контуре двигателя и снабжен дополнительным входным трубопроводом, размещенным в соседней стойке опоры, входные трубопроводы соединены с клапаном входными каналами, корпус клапана выполнен обтекаемой формы и снабжен крышкой, размещенной на внешней поверхности наружного контура, а выходной трубопровод соединен с крышкой. Кроме того, входной канал клапана может быть образован корпусом наружного контура двигателя и прикрепленной к нему профилированной накладкой.

Такое решение позволяет уменьшить наружные габариты двигателя и устранить возможное сопротивление наружному воздушному потоку для задней части двигателя при установке его на летательном аппарате за счет размещения клапана и подводящих каналов в проточной части наружного контура. При таком размещении клапана необходимо уменьшить сопротивление для потока воздуха в наружном контуре двигателя. Это достигается за счет обтекаемой формы корпуса клапана и минимального сопротивления подводящих входных каналов, выполненных в виде плоских щелей. При наличии тонких стоек в опоре турбины их проходного сечения может не хватать для прохода необходимого количества воздуха при его стравливании через клапан в атмосферу. В этом случае дополнительный входной трубопровод для прохода воздуха из системы суфлирования к клапану позволяет поддерживать в системе суфлирования расчетное давление. Входные каналы, связывающие входной трубопровод с входной полостью клапана, подходят к клапану с двух противоположных сторон, что позволяет произвести рациональную компоновку предлагаемой системы суфлирования. Крышка клапана с совмещенным с ней выходным трубопроводом размещены на наружной части корпуса наружного контура и практически не выступает за корпус наружного контура. Такая установка крышки клапана позволяет при необходимости иметь доступ к клапану при эксплуатации, например для замены, при нарушении его работоспособности. Это обуславливает высокую эксплуатационную технологичность данного узла в составе двигателя.

Предлагаемая система позволяет убрать с наружной части двигателя трубопроводы подвода и отвода воздуха к клапану за счет закрепления на внутренней поверхности корпуса наружного контура профилированной накладки, которая создает щелевой входной канал и позволяет уменьшить до минимального его влияние на сопротивление для проходящего по наружному контуру воздуха.

Кроме того, наружные габариты двигателя становятся минимальными.

Предлагаемая конструкция достаточно компактна.

На фиг.1 показан продольный разрез задней части двигателя с опорой турбины и с клапаном суфлирования;

на фиг.2 — поперечный разрез А-А фиг.1;

на фиг.3 — вид Б фиг.2;

на фиг.4 — сечение В-В фиг.3

Двухконтурный турбореактивный двигатель содержит наружный и внутренний контуры 1 и 2. В полости наружного контура размещен клапан 3, соединенный трубопроводом подвода воздуха 4 и дополнительным трубопроводом подвода воздуха 5 с предмаслянной полостью 6. Трубопроводы 4 и 5 размещены в стойках опор турбины 7. Воздух из клапана в атмосферу отводится через трубопровод 8, выполненный за одно целое с крышкой 9 клапана. Входные трубопроводы 4 и 5 соединены с клапаном 3 входными каналами 10. Корпус клапана 11 размещен между стоек 7 и выполнен обтекаемой формы. Входные каналы 10 подсоединены к входной полости клапана с двух противоположных сторон. Крышка клапана 9 размещена на фланце корпуса 12 наружного контура 1. Входные каналы 10 могут быть выполнены с помощью закрепленной на корпусе 12 наружного контура профилированной накладки 13. В приведенном примере профилированная накладка 13 и корпус клапана 11 соединены сваркой с корпусом наружного контура 12.

Во время работы двигателя воздух из предмаслянных полостей поступает в трубопровод 4 и в дополнительный трубопровод 5, проходит через приемную камеру 14, попадает во входные каналы 10 и поступает во входную полость клапана 15. При увеличении давления в предмасляной полости выше расчетной клапан срабатывает и стравливает часть воздуха в атмосферу через трубопровод 8. За счет этого давление в предмасляной полости снижается и приходит в заданную норму. В случае возникшей необходимости замены клапана 3 снимают крышку 9 и заменяют клапан. Данная операция осуществима без каких-либо дополнительных разборок и снятия других узлов на двигателе и вполне доступна в эксплуатации на объекте.

Такое выполнение системы суфлирования опоры турбины ДТРД позволяет разместить трубопроводы и клапан в проточной части двигателя при недостатке наружных габаритов для размещения на внешней поверхности наружного контура двигателя. При таком размещении клапана минимальное сопротивление для потока воздуха в наружном контуре создается за счет обтекаемой формы корпуса клапана и подводящих каналов. Отсутствие трубопроводов и клапана на наружной поверхности наружного контура позволяет улучшить обтекание задней части двигателя при его установке на летательном аппарате. Размещение мало выступающей крышки клапана на наружной поверхности наружного контура не создает сопротивления наружному воздушному потоку при работе двигателя в составе летательного аппарата и сохраняет возможность замены клапана (при необходимости) без разборки двигателя и без снятия двигателя с летательного аппарата. Это обуславливает высокую эксплуатационную технологичность данного узла в составе двигателя. Дополнительный трубопровод, проходящий через соседнюю по отношению к основному трубопроводу стойку опоры турбины двигателя, позволяет более точно выдерживать давление в предмасляной полости за счет увеличения проходного сечения. Расположение клапана между стойками позволяет рационально объединить подвод воздуха через входные каналы из двух стоек к клапану и выполнить конструкцию максимально компактной. Конструкция входных каналов позволяет их сделать плоскими и использовать стенку наружного контура, как часть канала, и это сводит к минимуму их сопротивление внутри наружного контура.

Предлагаемое выполнение системы суфлирования опоры турбины ДТРД позволяет уменьшить наружные габариты двигателя в его задней части, улучшить его обтекание при работе на летательном аппарате и тем самым улучшить летные характеристики летательного аппарата.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Система суфлирования опоры турбины двухконтурного турбореактивного двигателя, включающая клапан, соединенный с трубопроводами подвода и отвода воздуха, причем трубопровод подвода воздуха размещен в стойке опоры и сообщен с предмасляной полостью турбины, а трубопровод отвода воздуха связан с атмосферой, отличающаяся тем, что клапан размещен в наружном контуре двигателя и снабжен дополнительным входным трубопроводом, размещенным в соседней стойке опоры, входные трубопроводы соединены с клапаном входными каналами, корпус клапана выполнен обтекаемой формы и снабжен крышкой, размещенной на внешней поверхности наружного контура, а выходной трубопровод соединен с крышкой.

2. Система суфлирования опоры турбины двухконтурного турбореактивного двигателя по п.1, отличающаяся тем, что входной канал клапана образован корпусом наружного контура двигателя и прикрепленной к нему профилированной накладкой.

www.freepatent.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *