Меню Закрыть

Достоинства и недостатки двигателя внутреннего сгорания – Плюсы и минусы двигателя внутреннего сгорания

Содержание

Плюсы и минусы двигателя внутреннего сгорания

Человечество уже несколько сотен лет пользуется двигателями внутреннего возгорания. Они приводят в движение машины, автобусы, мотоциклы, трактора и многую другую технику. ДВС пришел к нам на смену паровому двигателю.

Основная специфика этих устройств заключается в том, что возгорание происходит прямо внутри рабочей камеры, в результате чего, энергия горения превращается в механические силы. Суть работы таких двигателей в том, что внутри цилиндров, под давлением, возникает горение топливно-воздушной смеси, которая воспламеняется различными способами.

Классификация двигателей внутреннего сгорания

  1. Поршневые. В агрегатах такого типа, полученная от горения энергия превращается в механическую при помощи кривошипно-шатунного механизма.
  2. Карбюраторные. В этом случае топливная смесь возникает внутри карбюратора, далее попадает в цилиндр. Воспламенение осуществляется за счет свечей.
  3. Инжекторные. Эти двигатели снабжены электронным устройством. Топливо впрыскивается в коллектор через форсунки.
  4. Дизельные. Топливно-воздушная смесь в них воспламеняется без использования искр от свечей.
  5. Роторные. В таких моторах энергия трансформируется в механическую работу при помощи кручения ротора газами.
  6. Газотурбинные. Ротор таких двигателей снабжен клиновидными лопатками, приводящими в действие вал турбины.

Плюсы двигателя внутреннего сгорания

  • Малый вес мотора
    . В большинстве случаев подобные устройства не занимают много места, и весят достаточно легко. К тому же, объем топливных баков, также может располагаться в сравнительно маленьких пространствах.
  • На одной заправке имеется возможность проехать большие расстояния. Это особенно актуально для водителей автобусов или дальнобойщиков. Постоянные остановки на дозаправку могли бы значительно отягощать и без того нелегкую работу водителей.
  • Высокая мощность. Сегодня двигатели внутреннего сгорания могут обладать огромным запасом лошадиных сил. Все зависит от стоимости. Если у вас имеются крупные финансы, вы сможете купить себе монстра среди рядовых автомобилей. Но и прокормить его будет непросто. Бензин, в прямом смысле, начнет вылетать в трубу, что естественно, обойдется собственнику в копеечку.
  • Простота в использовании. Разобраться в устройстве моторов сегодня может любой желающий, если приложит к этому некоторые усилия. Большинство из них имеют одинаковые системы, поняв, из чего состоит один двигатель, вы с легкостью сможете разобраться в любом другом.
  • Возможность быстрой заправки. Количество заправочных станций сейчас настолько велико, что водителям не приходится опасаться за обсохший бак. Они расположены практически в любом населенном пункте, а длительность заправки не превышает 10 минут.
  • Доступность. Автомобили с двигателями внутреннего сгорания перестали быть редкостью. Они прочно вошли в нашу жизнь. Автосалоны предлагают потребителям любые машины на вкус и цвет. На вторичном рынке их стоимость настолько низкая, что их приобретают даже студенты и школьники.
  • Большой ресурс работы. Современные моторы могут проработать без капитального ремонта десятки лет. К слову сказать, что надежность агрегатов потихоньку снижается, и все же остается на должном уровне вот уже многие годы.

Минусы

  • Безусловным минусом ДВС является
    высокая степень выбросов
    , вырабатывающихся во время езды. Главная проблема лежит в том, что топливо сгорает не полностью. На передвижение машины уходит лишь 15% горючего материала, остальное вылетает в воздух, в результате не достигшей совершенства камеры сгорания топлива. Отработанные газы включают в себя сотни вредных компонентов, тяжелых металлов и производных углеводорода.
  • Всегда требуется наличие коробки переключения передач. Это устройство необходимо для того, чтобы менять передаточное число, регулирующее количество оборотов двигателя, которые в свою очередь передают энергию на колеса, и те начинают вращаться либо быстрее, либо медленнее.
  • Необходимость
    смены масла каждые 10 000 км пробега
    . Это обусловлено загрязнением жидкости, попадающими в двигатель мелкими частицами, а также при появлении рабочих отходов от поршней и коленвала.
  • Высокая стоимость топлива. Цена за литр бензина или солярки неуклонно растет вверх. Такими темпами передвижение на автомобилях с ДВС будет большой роскошью. Выходом из данной ситуации может послужить установка газового оборудования, так как цена на газ сейчас в 2 раза меньше стоимости бензина, и пока что остается примерно на отметке в 23 рубля, в зависимости от региона.
  • Ограниченный ресурс дешевых моторов. Производители двигателей низкой стоимости используют некачественные детали, имеющие большой износ. Хотя, при наличии современных смазок, время работы можно значительно повысить. Главное вовремя менять жидкости и прочие расходные материалы.
  • Низкий коэффициент полезного действия. Данный показатель отражает эффективность работы двигателя относительно вырабатываемой энергии в механические силы. Его выражают в процентах. В отличие от электрических моторов, КПД которых может достигать 95%, КПД двигателей внутреннего сгорания не обладает такими показателями. Потери полезного действия происходят в результате неполного сгорания топлива, расходов на тепло, а также потери на прочее оборудование, такое как кондиционер, помпа, генератор.

Современные двигатели шагнули далеко вперед от своих предшествующих собратьев. На сегодняшний день им нет конкурентов. Возможно, если люди не придумают чего-то в корне нового, такие моторы просуществуют в нашем мире еще не одно десятилетие. Как бы хотелось, чтоб ДВС жили вечно, но их существование закончится вместе с нефтью, и придет эра электрических двигателей.

Но, несмотря на то, что ДВС заслужили всеобщую любовь, они могут стать причиной глобального экологического кризиса. Выбросы, создаваемые в атмосферу миллионами автомобилей, поднимают реальную угрозу нашей планете.

Похожие записи

plusiminusi.ru

Двигатели внутреннего сгорания. Их преимущества и недостатки

Муниципальное образовательное учреждение

Средняя общеобразовательная школа №6

Реферат по физике на тему:

Двигатели внутреннего сгорания. Их преимущества и недостатки.

Ученика 8 «А» класса

Бутринова Александра

Учитель: Шульпина Таисия Владимировна

Содержание:

1. Введение ……………………………………………………………….. Стр.3

1.1.Цель работы

1.2.Задачи

2.Основная часть.

2.1.История создания двигателей внутреннего сгорания………………. Стр.4

2.2.Общее устройство двигателей внутреннего сгорания……………… Стр.7

2.2.1. Устройство двухтактного и четырехтактного двигателей

внутреннего сгорания;……………………………………….……………..Стр.15

2.3.Современные двигатели внутреннего сгорания.

2.3.1. Новые конструкторские решения, внедренные в двигатель внутреннего сгорания;……………………………………………………………………Стр. 21

2.3.2. Задачи, которые стоят перед конструкторами……………………Стр.22

2.4. Преимущество и недостатки над другими типами двигателям внутреннего сгорания ……………………………………………………..Стр.23

2.5. Применение двигателя внутреннего сгорания..…………………….Стр.25

3.Заключене ………………………………………………………………. Стр.26

4.Список литературы…………………………………………………….. Стр.27

5. Приложения ……………………………………………………………. Стр.28

1. Введение.

1.1. Цель работы :

Проанализировать открытие и достижения ученых по вопросу изобретения и применения двигателя внутреннего сгорания (Д.В.С.), рассказать о его преимуществах и недостатках.

1.2. Задачи:

1.Изучить нужную литературу и отработать материал

2.Провести теоретические исследования (Д.В.С.)

3.Выяснить какие из (Д.В.С.) лучше.

2.Основная часть.

2.1 .История создания двигателя внутреннего сгорания

.

Проект первого двигателя внутреннего сгорания (ДВС) принадлежит известному изобретателю часового анкера Христиану Гюйгенсу и предложен ещё в XVII веке. Интересно, что в качестве топлива предполагалось использовать порох, а сама идея была подсказана артиллерийским орудием. Все попытки Дениса Папена построить машину на таком принципе, успехом не увенчались. Исторически первый работающий двигатель внутреннего сгорания запатентованный в 1859 г. бельгийским изобретателем Жаном Жозефом Этьеном Ленуаром.(рис.№1)

Рис.1

У двигателя Ленуара низкий термический КПД, кроме того, по сравнению с другими поршневыми двигателями внутреннего сгорания у него была крайне низкая мощность, снимаемая с единицы рабочего объёма цилиндра.

Двигатель с 18-литровым цилиндром развивал мощность всего в 2 лошадиных силы. Эти недостатки были следствием того, что в двигателе Ленуара отсутствует сжатие топливной смеси перед зажиганием. Равномощный ему двигатель Отто (в цикле которого был предусмотрен специальный такт сжатия) весил в несколько раз меньше, и был гораздо более компактным.
Даже очевидные преимущества двигателя Ленуара — относительно малый шум (следствие выхлопа практически при атмосферном давлении), и низкий уровень вибраций (следствие более равномерного распределения рабочих ходов по циклу), не помогли ему выдержать конкуренцию.

Однако в процессе эксплуатации двигателей выяснилось, что расход газа на лошадиную силу составляет 3 куб/м. в час в место предполагавшегося ориентировочно 0,5 куб/м. Коэффициент полезного действия двигателя Ленуара составлял всего-навсего 3,3%, тогда как паровые машины того времени достигали к. п. д. 10%.

В 1876 г. Отто и Ланген выставили на второй Парижской всемирной выставке новый двигатель мощностью в 0,5 л.с.(рис.№2)

Рис.2 Двигатель Отто

Несмотря на несовершенство конструкции этого двигателя, напоминающего первые пароатмосферные машины, он показал высокую по тому времени экономичность; расход газа состовлял,82 куб/м. на лошадиную силу в час и к.п.д. сост

mirznanii.com

принцип работы и недостатки — «ИнфоСорт»

Содержание статьи:

Поршневой двигатель внутреннего сгорания в наше время является самым популярным, его устанавливают на большую часть автомобилей. Мы рассмотрим принцип работы ДВС и его недостатки.

ДВС появился в начале XX века и он пришел на смену паровым двигателям, а в наше время остается одним из самых эффективных двигателей, но это будет длиться до того, пока на смену ДВС массово не придут электродвигатели. Уже сейчас некоторые модели появляются сразу с обоими типами двигателей : ДВС и электродвигатель, такие системы называют гибридами. Но а пока ДВС не остались позади рассмотрим принципы его работы и существующие недостатки.

Определение, особенности ДВС

В процессе развития науки и техники конструкция ДВС постоянно совершенствовались. Двигатели сумели доказать свою эффективность. Так появились поршневые двигатели внутреннего сгорания и как подвид – карбюраторные и инжекторные моторы. Можно выделить дизельные двигатели, роторно-поршневые и газотурбинные агрегаты.

Бензиновые ДВС

Традиционный поршневой мотор оснащен внутренней камерой сгорания. Это цилиндр внутри блока двигателя. При горении топлива выделяется энергия, которая затем превращается в механическое движение коленчатого вала. За счет поступательного движения поршней, которые воздействуют на систему из шатунов и коленчатого вала, получается вращение маховика. Можно подробней ознакомиться с конструкцией в соответствующем ГОСТ двигателя внутреннего сгорания поршневого.

Карбюраторный двигатель внутреннего сгорания отличается тем, что рабочая смесь топлива и воздуха готовится в специальном устройстве – карбюраторе. Смесь впрыскивается в цилиндры за счет разряжения. Далее она воспламеняется благодаря свече зажигания.

Инжекторный ДВС имеет более современную конструкцию. Здесь вместо традиционного механического устройства в системе питания имеются электронные форсунки. Они отвечают за впрыск точных порций горючего непосредственно в цилиндры двигателя.

Дизельные ДВС

Дизельный поршневой двигатель внутреннего сгорания имеет определенные конструктивные и принципиальные отличия от бензиновых ДВС.

Если в бензиновом агрегате для воспламенения используется искра от свечи, то в дизельных работает другой принцип и свечей кроме накала здесь нет. Дизельное топливо попадает в цилиндры через форсунки, смешивается с воздухом, а затем вся эта смесь сжимается, вследствие чего нагревается до температуры горения.

Роторно-поршневые

Роторно-поршневой двигатель существенно отличается от традиционных ДВС. Газы воздействуют на специальные детали и элементы. Так, под воздействием газов подвижный ротор движется в специальной камере в форме восьмерки. Камера выполняет функции поршней, ГРМ и коленвала. Камера имеет форму «восьмерки».

Комбинированные агрегаты

В газотурбинных двигателях внутреннего сгорания тепловая энергия превращается в механическую за счет вращения специального ротора со специальными лопатками. Этот ротор приводит в действие вал турбины.

Специальные поршневые и комбинированные двигатели внутреннего сгорания (а это газотурбинные моторы и роторные) можно смело заносить в красную книгу. Сегодня роторно-поршневой мотор изготавливает лишь японская Mazda. Crysler однажды выпустил опытную серию газотурбинных ДВС, однако это было в 60-х и больше к данному вопросу никто из автопроизводителей не возвращался по сегодняшний день.

В Советском Союзе газотурбинные ДВС устанавливали на танки и десантные корабли, однако и там в дальнейшем решено было отказаться от агрегатов данной конструкции.

Устройство ДВС

Двигатель представляет единый механизм. Он состоит из блока цилиндров, деталей кривошипно-шатунного механизма, механизма ГРМ, системы впрыска и выпуска.

Внутри блока цилиндров расположена камера сгорания, где непосредственно воспламеняется топливно-воздушная смесь, а продукты сгорания приводят в действие поршни. Посредством кривошипно-шатунного механизма энергия сгорания топлива передается на коленчатый вал. Механизм ГРМ необходим для обеспечения своевременного открытия и закрытия впускных и выпускных клапанов.

Принцип действия

При запуске двигателя в цилиндры через впускной клапан впрыскивается смесь топлива и воздуха и поджигается от искры на свече зажигания, сгенерированной системой зажигания. При горении образуются газы. Когда происходит тепловое расширение, вследствие избыточного давления поршень начинает двигаться, вращая тем самым коленчатый вал.

Работа поршневых двигателей циклична. В цикле поршневого двигателя внутреннего сгорания может быть от двух до четырех тактов. Циклы в процессе работы мотора повторяются несколько сотен раз за одну минуту. Так коленчатый вал может непрерывно вращаться.

Двухтактный ДВС

Когда мотор запускается, то поршень приводится в движения за счет поворота коленчатого вала. Когда поршень достигнет положения нижней мертвой точки и начнет двигаться вверх, в цилиндр будет подана топливно-воздушная смесь.

При движении вверх поршень начнет сжимать смесь. Когда поршень достигнет верхнего положения, будет сгенерирована искра. Топливно-воздушная смесь воспламенится. Расширяясь, газы будут толкать поршень вниз.

В этот момент откроется выпускной клапан, через который продукты сгорания смогут выйти из камеры. Далее снова дойдя до нижней мертвой точки, поршень начнет свой путь в ВМТ. Все эти процессы проходят за один оборот коленчатого вала.

Когда поршень начнет новое движение, откроется впускной клапан и новая порция топливно-воздушной смеси заместит собой отработанные газы. Весь процесс начнется заново. Двухтактный поршневой двигатель внутреннего сгорания совершает меньшее число движений в отличии от четырехтактного. Снижены потери на трение, но выделяется больше тепла.

Механизм газораспределения заменяется поршнем. В процессе движения поршня открываются и закрываются впускные и выпускные отверстия в блоке цилиндров. По сравнению с четырехтактным силовым агрегатом, газообмен в двухтактном моторе – это главный недостаток. В момент выхода отработанных газов теряется эффективность и мощность.

Несмотря на этот недостаток поршневых двигателей внутреннего сгорания двухтактных, они применяются в мопедах, скутерах, в качестве лодочных моторов, в бензопилах.

Четырехтактный двигатель внутреннего сгорания

Четырехтактный ДВС недостатков двухтактного мотора лишен. Такие моторы устанавливаются на большинство автомобилей и прочую технику. Впуск и выпуск отработанных газов – это отдельный процесс, и он не совмещен со сжатием, хотя работает поршневой двигатель внутреннего сгорания от воспламенения смеси. Работа мотора синхронизируется за счет газораспределительного механизма – клапаны открываются и закрываются синхронно с оборотами коленчатого вала. Впуск топливной смеси осуществляется лишь после полного выхода отработанных газов.

Преимущества ДВС

Начать стоит с самых популярных моторов – рядных четырехцилиндровых агрегатов. Среди достоинств – компактность, малый вес, одна ГБЦ, высокая ремонтопригодность.

Среди всех видов ДВС можно выделить еще оппозитные моторы. Они не особо популярные по причине более сложной конструкции. Применяют их преимущественно на гоночных авто. Среди достоинств – отличная первичная и вторичная балансировка, а отсюда и мягкая работа. На коленвал оказывается меньшая нагрузка. Как результат, незначительные потери мощности. Двигатель имеет низкий центр тяжести, а автомобиль лучше управляется.

Рядные шестицилиндровые моторы отлично сбалансированы, а сам агрегат работает очень плавно. Несмотря на большое количество цилиндров, цена производства не очень высокая. Также можно выделить ремонтопригодность.

Недостатки ДВС

Основной недостаток поршневых двигателей внутреннего сгорания – это все же не токсичность и шумность, а слабая эффективность. В ДВС только 20 % энергии затрачивается на собственно механическую работу. Все остальное расходуется на обогрев и другие процессы. Также двигатели выпускают в атмосферы вредные вещества такие, как оксиды азота, угарный газ, различные альдегиды.

Источники: fb.ru

infosort.ru

Двигатели внутреннего сгорания. Их преимущества и недостатки

Мощность двигателя измеряется в киловаттах либо в лошадиных силах (используется чаще). При этом 1 л. с. равна примерно 0,735 кВт. Как мы уже говорили, работа двигателя внутреннего сгорания основана на использовании силы давления газов, образующихся при сгорании в цилиндре топливовоздушной смеси.

В бензиновых и газовых двигателях смесь воспламеняется от свечи зажигания (рис. 7), в дизельных — от сжатия.


Рис. 7 Свеча зажигания

При работе одноцилиндрового двигателя его коленчатый вал вращается неравномерно: в момент сгорания горючей смеси резко ускоряется, а все остальное время замедляется. Для повышения равномерности вращения на коленчатом валу, выходящем наружу из корпуса двигателя, закрепляют массивный диск — маховик (см. рис. 6). Когда двигатель работает, вал с маховиком вращаются.

2.2.1. Устройство двухтактного и четырехтактного

двигателей внутреннего сгорания;

Двухтактный двигатель — поршневой двигатель внутреннего сгорания, в котором рабочий процесс в каждом из цилиндров совершается за один оборот коленчатого вала, то есть за два хода поршня. Такты сжатия и рабочего хода в двухтактном двигателе происходят так же, как и в четырехтактном, но процессы очистки и наполнения цилиндра совмещены и осуществляются не в рамках отдельных тактов, а за короткое время, когда поршень находится вблизи нижней мертвой точки (рис.8).

Рис.8 Двухтактный двигатель

В связи с тем, что в двухтактном двигателе, при равном количестве цилиндров и числе оборотов коленчатого вала, рабочие ходы происходят вдвое чаще, литровая мощность двухтактных двигателей выше, чем четырехтактных — теоретически в два раза, на практике в 1,5-1,7 раза, так как часть полезного хода поршня занимают процессы газообмена, а сам газообмен менее совершенный, чем у четырехтактных двигателей.

В отличие от четырехтактных двигателей, где вытеснение отработавших газов и всасывание свежей смеси осуществляется самим поршнем, в двухтактных двигателях газообмен выполняется за счет подачи в цилиндр рабочей смеси или воздуха (в дизелях) под давлением, создаваемым продувочным насосом, а сам процесс газообмена получил название — продувка. В процессе продувки, свежий воздух (смесь) вытесняет продукты сгорания из цилиндра в выпускные органы, занимая их место.

По способу организации движения потоков продувочного воздуха (смеси), различают двухтактные двигатели с контурной и прямоточной продувкой.

Четырёхтактный двигатель — поршневой двигатель внутреннего сгорания, в котором рабочий процесс в каждом из цилиндров совершается за два оборота коленчатого вала, то есть за четыре хода поршня (такта). Этими тактами являются:

Второй такт — сжатие .

После того как топливовоздушная смесь, приготовленная карбюратором или инжектором, попала в цилиндр, смешалась с остатками отработавших газов и за ней закрылся впускной клапан, она становится рабочей. Теперь наступил момент, когда рабочая смесь заполнила цилиндр и деваться ей стало некуда: впускной и выпускной клапаны надежно закрыты. В этот момент поршень начинает движение снизу вверх (от НМТ к ВМТ) и пытается прижать рабочую смесь к головке цилиндра. Однако, как говорится, стереть в порошок эту смесь ему не удастся, поскольку преступить черту ВМТ поршень
не может, а внутреннее пространство цилиндра проектируют так (и соответственно располагают коленчатый вал и подбирают размеры кривошипа), чтобы над поршнем, находящимся в ВМТ, всегда оставалось пусть не очень большое, но свободное пространство — камера сгорания. К концу такта сжатия давление в цилиндре возрастает до 0,8–1,2 МПа, а температура достигает 450–500 °С. (рис.10)

Рис.10 Второй такт -сжатие

Третий такт — самый ответственный момент, когда тепловая энергия превращается в механическую. В начале третьего такта (а на самом деле в конце такта сжатия) горючая смесь воспламеняется с помощью искры свечи зажигания (рис.11)

Рис.11.Третий такт, рабочий ход.

Рис.12 Выпуск .

Все четыре такта периодически повторяются в цилиндре двигателя, тем самым обеспечивая его непрерывную работу, и называются рабочим циклом.

2.3.Современные двигатели внутреннего сгорания.

2.3.1. Новые конструкторские решения, внедренные в двигатель внутреннего сгорания.

Со времен Ленуара по настоящие время двигатель внутреннего сгорания подвергся большим изменениям. Изменился их внешний вид, устройство, мощность. На протяжении многих лет конструкторы всего мира пытались повысить КПД двигателя внутреннего сгорания, при меньшей затрате топлива, добиться большей мощности. Первым шагом к этому послужило развитие промышленности, появление более точных станков для изготовления Д.В.С, оборудования, появились новые (легкие) металлы. Следующие шаги в моторостроение, зависели от принадлежности моторов. В автомобиле строения нужны были мощные, экономичные, компактные, легко обслуживаемые, выносливые двигатели. В кораблестроение, тракторостроении нужны бы ли тяговые, с большим запасом хода двигатели (в основном дизельные) В авиации мощные без отказные долговечные моторы .

Для достижения выше сказанных параметров использовались высоко-оборотистые и мало-оборотистые. В свою очередь на всех двигателях изменялись степени сжатия, объемы цилиндров, фазы газораспределения ,кол-во впускных и выпускных клапанов на один цилиндр, способы подачи смеси в цилиндр. Первые двигатели были с двумя клапанам, смесь подавалась через карбюратор, состоящий из воздушного диффузора дросильной заслонки и калиброванного топливного жиклёра. Карбюраторы быстро модернизировались, подстраиваясь под новые двигатели и их режимы работы . Главная задача карбюратора приготовление горючей смеси и подачи её в коллектор двигателя. Далее использовались другие приемы для увеличения мощности и экономичности двигателя внутреннего сгорания .

2.3.2. Задачи, которые стоят перед конструкторами.

Технический прогресс шагнул так далеко что двигатели внутреннего сгорания изменились практически до не узнаваемости. Степени сжатия в цилиндрах двигателя внутреннего сгорания возросли до 15 кг/кв.см на бензиновых двигателях и до 29 кг/кв.см на дизельных. Число клапанов выросло до 6 на цилиндр, с малых объемов двигателя снимают мощности которые раньше выдавали двигатели больших объемов, например: с двигателя 1600 куб.см снимают мощность 120 л.с., а с двигателя 2400 куб.см. до 200 л.с . При всем при этом требования к Д.В.С. с каждым годом возрастает . Это связанно с вкусами потребителя. К двигателям представляют требования связанные с уменьшением вредных газов. В наше время на территории России введена норма ЕВРО-3, в Европейских странах введен стандарт ЕВРО -4. Это заставило конструкторов всего мира перейти на новый способ подачи топлива, контроля, работы двигателя. В наше время за работу Д.В.С. контролирует, управляет, микропроцессор. Отработанные газы дожигаются разными видами катализаторов. Задача современных конструкторов заключается в следующем : угодить потребителю, созданием моторов с нужными параметрами ,и уложиться в нормы ЕВРО-3, ЕВРО-4.

2.4. Преимущество и недостатки

над другими

mirznanii.com

Плюсы и минусы реактивного двигателя

1939 год, Германия — впервые в небо поднялся самолёт, работающий на реактивном двигателе. Он превосходил по скорости полета истребители того времени. Но потреблял больше топлива и требовал длинной взлетно-посадочной полосы. Несмотря на недостатки, это был прорыв в авиации.

Сейчас этот усовершенствованный движитель применяется для запуска ракет, космических аппаратов, гражданских и военных самолётов. Рассмотрим его плюсы и минусы более подробно.

Реактивный двигатель: принцип действия и типы

Двигатель, в котором создается сила тяги за счет преобразования внутренней энергии топлива в кинетическую энергию рабочего тела, называется реактивным.

Рабочее тело с большой скоростью выходит из сопла, сообщая ему реактивную силу, направленную в противоположную сторону. Действуя согласно закону сохранения импульса, продукт сгорания топлива и двигатель перемещаются относительно друг друга в противоположных направлениях.

Если надуть воздушный шарик и, не завязывая, отпустить его, то получится простейший реактивный двигатель. Рабочее тело – накачанный в шарик воздух – будет вырываться наружу, заставляя шарик перемещаться в противоположном направлении.

Для работы реактивного двигателя нужны составляющие:

  1. Топливо.
  2. Камера сгорания (реактор), в которой внутренняя энергия топлива преобразуется в тепловую энергию рабочего тела.
  3. Сопла, из которых под давлением вырываются наружу продукты сгорания топлива, сообщая двигателю реактивную тягу.

Бывает двух типов:

  1. Воздушно-реактивный – тепловая энергия образуется при сгорании топлива в присутствии кислорода.
  2. Ракетный – работающий в безвоздушном пространстве.

Преимущества реактивного двигателя

Перед остальными видами такие:

  • Простота конструкции. Для создания простейшего реактивного двигателя достаточно камеры сгорания и сопла. В камере сгорания образуется рабочее тело с высокой тепловой энергией, которое проходя через сопло передает аппарату реактивную тягу.
  • Малое количество подвижных деталей. Для повышения эффективности работы воздушно-реактивного двигателя, созданы дополнительные механизмы. Они обеспечивают принудительное нагнетание воздуха в камеру сгорания. Их конструкция проста. Обычно это воздухозаборник с крутящимся винтом и лопастями. У ракетного таковые отсутствуют вообще.
  • Высокие удельный импульс и мощность. Удельный импульс характеризует насколько большое ускорение передается самолёту или ракете рабочим телом, что позволяет развить хорошую скорость полета. Сравнение мощностей различных типов двигателей наглядно демонстрирует преимущества реактивного: карбюраторный ДВС – 200 кВт; дизельный ДВС – 2200 кВТ.; атомный – 55 000 кВт; турбинный паровой — 300 000 кВт; реактивный – 30 000 000 кВт.
  • КПД достигает 47-60%. Этот показатель гораздо выше, чем у двигателей внутреннего сгорания (25-35%) или турбинного (27-30%). Это значит, что реактивный совершает больше полезной работы.
  • Управляемость с помощью тяги во время космических полетов. Меняя расход топлива, можно уменьшать или увеличивать скорость полета, делать манёвры и вовсе отключать двигатель, а затем снова его запускать. При этом ему не требуется взаимодействовать с другими телами.
  • Работает при низком давлении воздуха или вовсе без него в условиях безвоздушного пространства. Пока ещё не создан механизм, который зарекомендовал себя лучше в условиях космоса.

Недостатки реактивного двигателя

  • Создает сильный шум при работе. При взлете реактивного самолёта создается шум до 120 децибел. Для человеческого уха это значение близко к болевому порогу. Если стоять на расстоянии 100 метров от места взлета космического корабля, можно получить контузию. Ведь уровень шума достигает 150 децибел. Ученым пока не удается подавить шум от реактивного движителя или решить эту проблему иным способом.
  • Расходует большой объем топлива. Он невероятно прожорлив. Чтобы вывести на орбиту ракетную систему с исходным весом 3000 тонн, необходима установка пяти таких двигателей. Они придают рабочему телу скорость 3 км/с. При этом высвобождается 10 тонн отработанных газов в секунду. За 4 секунды в камерах без остатка сгорает одна цистерна ракетного топлива.
  • Ограниченный ресурс для космических полетов. Все виды топлива, которые применяют для ракет, выделяют ограниченное количество энергии. Этого недостаточно для совершения полетов в пределах Галактики и даже между планетами Солнечной системы. Перспективным направлением считается использование ядерной энергии.
  • Большой вес и размер летательных аппаратов. Перед учеными, изучающими космос, стоят колоссальные задачи. Одна из главных – создание летательного аппарата для межпланетных и межзвездных перелетов. Они научились выводить на земную орбиту ракеты, спутники, достигли Луны. Для дальних полетов использовать реактивный двигатель невыгодно и нецелесообразно. Ученые подчитали, что для полета ракеты на Марс, ее стартовый вес должен составлять – 30 000 тонн, а на Юпитер – 250 000 тонн. Соответственно, увеличатся и размеры летательных аппаратов.
  • Топливо расходуется быстро. Для длительного полета необходим большой объем энергоносителя. Емкости с горючим составляют значительную часть от массы самолёта или космического корабля.

Подведем итоги

Реактивный двигатель — это мощный механизм, без которого не может обойтись современные самолётостроение и ракетостроение. Он заставил летать самолёты в 1,5 раза быстрее и выше, чем поршневой мотор. Его сила тяги не зависит от наличия окружающей среды, точки опоры или иного тела.

Конструкция позволяет управлять ракетами в безвоздушном пространстве. Это делает его крайне необходимым для исследования космоса.

Чем выше его скорость летательного аппарата, тем большую полезную работу совершает двигатель. При меньшей скорости – полезная работа меньше.

Реактивный двигатель внедряют в автомобилестроении, строительстве поездов, для гоночных болидов, снегоуборочных машин, ледоколов. Компания «Rolls Royce» создала мотоцикл с газореактивным мотором.

Похожие записи

plusiminusi.ru

Плюсы и минусы парового двигателя и машины

Начнем рассмотрение темы с определения самого термина, паровая машина, это двигатель наружного сгорания, реорганизовывающий энергию пара жидкости, в работу выполняемую поршнем, с последующим преобразованием во вращение передаточного вала. В более обширном значении паровая машина — всякий агрегат с наружным сгоранием топлива, который реорганизовывает кинетическую энергию рабочего тела в полезную работу.

Первая такая машина сконструирована в XVII и состояла из цилиндра с одним поршнем, поднимающегося под давлением пара, а опускался под собственным весом.

По этой же схеме были сооружены в 1705 году насосные паровые машины для откачивания воды. Серьезные доработки в вакуумной машине были осуществлены Джеймсом Уаттом в далеком 1770 году. Последующей значительной доработкой данного типа двигателя (использование рабочим телом пара воды под высоким давлением) было произведено Оливером Эвансом уже в 1789 году.

Преимущества парового двигателя

  • Использование любого горючего топлива. Ключевым преимуществом таких машин, как двигателей наружного сгорания топлива, в том, что по причине изолирования котла от узлов паровой машины появляется возможность использовать произвольное топливо – от дров до урана. Самый яркий пример этого преимущества использование энергии атомного ядра, ибо реактор не способен вырабатывать механическую энергию, а генерирует тепло, которое и применяется для испарения жидкости, повергающего в ход паровые машины (обычно это турбины).
  • Использование возобновляемых источников энергии. Вторым важным фактором является то, что есть и иные источники энергии, которые невозможно использовать в других двигателях работающих на горюче смазочных материалах, к примеру, солнечная или гидроэнергия. Также любопытным курсом разработок есть применение разности внутренней энергии Мирового океана на различных его глубинах.
  • Стабильность работы не зависит от значения атмосферного давления. Локомотивы с паровыми агрегатами хорошо рекомендуют себя на значительных высотах, связано это с тем, что их работоспособность не снижается в связи с понижением атмосферного давления. Паровозы по сей день применяются в горах Латинской Америки.
  • Меньше масса по сравнению с остальными видами двигателей. Также, паровые поезда существенно легче, чем их дизельные или электрические аналоги, что чрезвычайно важно для горных колей. Особенностью пародвигателей есть то, что им не нужна трансмиссия, усилие передается непосредственно колёсам.
  • Посейчас безальтернативно используется на электрогенерирующих станциях. Паровые турбины, принципиально являющиеся вариацией паровой машины, достаточно широко применяются в качестве силовых агрегатов электрогенераторов. Ориентировочно 86 % электроэнергии, вырабатываемой в мире, производится с применением турбин на пару.

Недостатки парового двигателя

  • Загрязнение окружающей среды. Важнейшим недостатком на сегодняшний день является низкая экологичность двигателя. В процессе сгорания топлива высвобождаются: азот, сера. Также в атмосферу отправляется, большее количество тяжелых металлов.. Нельзя забывать и о том, что совершается высвобождение серьезного количества тепла. Это существенно сказывается и на климат Земли.
  • Высокий расход топлива. Длившаяся целый век работа над доработкой конструкции паровой машины так и не привела к триумфу. И на сегодняшний день паровой поршневой силовой агрегат является самым «марнотратным» из всех остальных машин-двигателей.
  • КПД так и не перешагнул отметку в 10%. Машины внешнего сгорания в свое время способствовали повсеместному использованию в коммерческих целях машин в промышленности и явились энергетическим фундаментом промышленного прорыва XVIII века. Но им было суждено уступить пальму первенства двигателям внутреннего сгорания, паровым турбинам и электромоторам, КПД которых оказалось значительно выше.
  • Высокая эксплуатационная опасность. Хоть паровые двигатели и отличаются высокой надежностью и выносливостью, все же риски при эксплуатации в шахтах мануфактурах не раз давали о себе знать, взрывы и утечки пара могут серьезно навредить обслуживающему его персоналу и прилегающему имуществу.
  • Наличие кривошипно-шатунного механизма. Кривошипно-шатунный механизм это конструкционный недочет, который устранить не удалось, а негативных последствий вытекает из него более чем достаточно, к примеру: низкооборотистость двигателя, следовательно, и тихоходность транспорта на основе данного типа двигателя, громоздкость конструкции, следовательно, невозможность установки допустим на воздушный транспорт.

Применение паровой машины

До конца первой половины XX века паровые двигатели повсеместно применялись во многих областях хозяйственной деятельности, по причине множества достоинств (высокая надёжность, работа с большими перепадами нагрузок, простота). К областям применения относится: транспорт. предприятия легкой и тяжелой промышленности с силовым и тепловым потреблением:

Однозначно употреблялись как привод в насосных станциях, паровозах, пароходах, тягачах, лесопильно-сушильных агрегатах и т.д.

Вывод

Основные изъяны парового поршневого силового агрегата такие как: не высокий коэффициент полезного действия, громоздкость конструкции и низкая оборотистость — с эволюцией производственных мощностей и вездесущим распространением машин и механизмов становились всё ощутимее. Возникла объективная необходимость в альтернативных видах тепловых двигателей, и они были разработаны:

  1. Двигатель внутреннего сгорания.
  2. Двигатель Стирлинга.
  3. Роторный двигатель.
  4. Твердотельный двигатель.
  5. Реактивный двигатель.

Справедливости ради следует отметить, что двигатели внешнего сгорания полностью не «вымерли», а лишь нашли свою нишу во всем многообразии социально-промышленных потребностей человека.

Похожие записи

plusiminusi.ru

Двигатели внутреннего сгорания. Их преимущества и недостатки

Муниципальное образовательное учреждение

Средняя общеобразовательная школа №6

Реферат по физике на тему:

Двигатели внутреннего сгорания. Их преимущества и недостатки.

Ученика 8 «А» класса

Бутринова Александра

Учитель: Шульпина Таисия Владимировна

Содержание:

1. Введение ……………………………………………………………….. Стр.3

1.1.Цель работы

1.2.Задачи

2.Основная часть.

2.1.История создания двигателей внутреннего сгорания………………. Стр.4

2.2.Общее устройство двигателей внутреннего сгорания……………… Стр.7

2.2.1. Устройство двухтактного и четырехтактного двигателей

внутреннего сгорания;……………………………………….……………..Стр.15

2.3.Современные двигатели внутреннего сгорания.

2.3.1. Новые конструкторские решения, внедренные в двигатель внутреннего сгорания;……………………………………………………………………Стр. 21

2.3.2. Задачи, которые стоят перед конструкторами……………………Стр.22

2.4. Преимущество и недостатки над другими типами двигателям внутреннего сгорания ……………………………………………………..Стр.23

2.5. Применение двигателя внутреннего сгорания..…………………….Стр.25

3.Заключене ……………………………………………………………….Стр.26

4.Список литературы……………………………………………………..Стр.27

5. Приложения …………………………………………………………….Стр.28

1. Введение.

1.1. Цель работы :

Проанализировать открытие и достижения ученых по вопросу изобретения и применения двигателя внутреннего сгорания (Д.В.С.), рассказать о его преимуществах и недостатках.

1.2. Задачи:

1.Изучить нужную литературу и отработать материал

2.Провести теоретические исследования (Д.В.С.)

3.Выяснить какие из (Д.В.С.) лучше.

2.Основная часть.

2.1.История создания двигателя внутреннего сгорания.

Проект первого двигателя внутреннего сгорания (ДВС) принадлежит известному изобретателю часового анкера Христиану Гюйгенсу и предложен ещё в XVII веке. Интересно, что в качестве топлива предполагалось использовать порох, а сама идея была подсказана артиллерийским орудием. Все попытки Дениса Папена построить машину на таком принципе, успехом не увенчались. Исторически первый работающий двигатель внутреннего сгорания запатентованный в 1859 г. бельгийским изобретателем Жаном Жозефом Этьеном Ленуаром.(рис.№1)

Рис.1

У двигателя Ленуара низкий термический КПД, кроме того, по сравнению с другими поршневыми двигателями внутреннего сгорания у него была крайне низкая мощность, снимаемая с единицы рабочего объёма цилиндра.

Двигатель с 18-литровым цилиндром развивал мощность всего в 2 лошадиных силы. Эти недостатки были следствием того, что в двигателе Ленуара отсутствует сжатие топливной смеси перед зажиганием. Равномощный ему двигатель Отто (в цикле которого был предусмотрен специальный такт сжатия) весил в несколько раз меньше, и был гораздо более компактным.
Даже очевидные преимущества двигателя Ленуара — относительно малый шум (следствие выхлопа практически при атмосферном давлении), и низкий уровень вибраций (следствие более равномерного распределения рабочих ходов по циклу), не помогли ему выдержать конкуренцию.

Однако в процессе эксплуатации двигателей выяснилось, что расход газа на лошадиную силу  составляет 3 куб/м. в час в место предполагавшегося ориентировочно 0,5 куб/м. Коэффициент полезного действия двигателя Ленуара составлял всего-навсего 3,3%, тогда как паровые машины того времени достигали к. п. д. 10%.

 В 1876 г. Отто и Ланген выставили на второй Парижской всемирной выставке новый двигатель мощностью в 0,5 л.с.(рис.№2)

Рис.2 Двигатель Отто

Несмотря на несовершенство конструкции этого двигателя, напоминающего первые пароатмосферные машины, он показал высокую по тому времени экономичность; расход газа состовлял,82 куб/м. на лошадиную силу в час и к.п.д. составил 14%. За 10 лет для мелкой промышленности было изготовлено около 10000 таких двигателей.

  В 1878 г. Отто построил по идее Боуде-Роша четырёхтактный двигатель.  Одновременно с использованием газа в качестве топлива стала разрабатываться идея использования паров бензина, газолина, лигроина в качестве материала для горючей смеси, а с 90-х годов и керосина. Расход горючего в этих двигателях составлял около 0,5 кг на лошадиную силу в час.  

С того времени двигатели внутреннего сгорания (Д.В.С.) изменились по конструкции, по принципу работы, используемых материалов при изготовлении. Двигатели внутреннего сгорания стали мощнее, компактней, легче, но все же в ДВС из каждых 10 литров топлива только около 2 литров используется на полезную работу, остальные 8 литров сгорают впустую. То есть КПД ДВС составляет всего 20 %.

2. 2. Общее устройство двигателя внутреннего сгорания.

В основе работы каждого Д.В.С. лежит движение поршня в цилиндре под действием давления газов,  которые образуются при сгорании топливной смеси, именуемой в дальнейшем рабочей.  При этом горит не само топливо. Горят только его пары, смешанные с воздухом, которые и являются рабочей смесью для ДВС. Если поджечь эту смесь, она мгновенно сгорает, многократно увеличиваясь в объеме. А если поместить смесь в замкнутый объем, а одну стенку сделать подвижной, то на эту стенку 
будет воздействовать огромное давление, которое будет двигать стенку. 

Д.В.С., используемые на легковых автомобилях, состоят из двух механизмов: кривошипно-шатунного и газораспределительного, а также из следующих систем: 


  • питания;

  • выпуска отработавших газов;

  • зажигания;

  • охлаждения;

  • смазки.

Основные детали ДВС: 

  • головка блока цилиндров;

  • цилиндры;

  • поршни;

  • поршневые кольца;

  • поршневые пальцы;

  • шатуны;

  • коленчатый вал;

  • маховик;

  • распределительный вал с кулачками;

  • клапаны;

  • свечи зажигания.

Большинство современных автомобилей малого и среднего класса оснащены четырехцилиндровыми двигателями. Существуют моторы и большего объема — с восемью и даже двенадцатью цилиндрами (рис. 3). Чем больше объем двигателя, тем он мощнее и тем выше потребление топлива. 

Принцип работы ДВС проще всего рассматривать на примере одноцилиндрового бензинового двигателя. Такой двигатель состоит из цилиндра с внутренней зеркальной поверхностью, к которому прикручена съемная головка. В цилиндре находится поршень цилиндрической формы — стакан, состоящий из головки и юбки (рис. 4). На поршне есть канавки, в которых установлены поршневые кольца. Они обеспечивают герметичность пространства над поршнем, не давая возможности газам, образующимся при работе двигателя, проникать под поршень. Кроме того, поршневые кольца не допускают попадания масла в пространство над поршнем (масло предназначено для смазки внутренней поверхности цилиндра). Иными словами, эти кольца играют роль уплотнителей и делятся на два вида: компрессионные (те, которые не пропускают газы) и маслосъемные (препятствующие попаданию масла в камеру сгорания) (рис. 5). 


 
Рис. 3. Схемы расположения цилиндров в двигателях различной компоновки: 
 а — четырехцилиндровые; б — шестицилиндровые; в — двенадцатицилиндровые (α — угол развала) 

 
Рис. 4. Поршень 

Смесь бензина с воздухом, приготовленная карбюратором или инжектором, попадает в цилиндр, где сжимается поршнем и поджигается искрой от свечи зажигания. Сгорая и расширяясь, она заставляет поршень двигаться вниз.

Так тепловая энергия превращается в механическую. 


 
Рис. 5. Поршень с шатуном: 

 1 — шатун в сборе; 2 — крышка шатуна;3 — вкладыш шатуна; 4 — гайка болта; 5 — болт крышки шатуна; 6 — шатун; 7 — втулка шатуна; 8 — стопорные кольца; 9 — палец поршня; 10 — поршень; 11 — маслосъемное кольцо; 12, 13 — компрессионные кольца 

Далее следует преобразование хода поршня во вращение вала. Для этого поршень с помощью пальца и шатуна шарнирно соединен с кривошипом коленчатого вала, который вращается на подшипниках, установленных в картере двигателя (рис. 6). 

 
Рис. 6 Коленчатый вал с маховиком: 

1 — коленчатый вал; 2 — вкладыш шатунного подшипника; 3 — упорные полукольца; 4 — маховик; 5 — шайба болтов крепления маховика; 6 — вкладыши первого, второго, четвертого и пятого коренных подшипников; 7 — вкладыш центрального (третьего) подшипника 

В результате перемещения поршня в цилиндре сверху вниз и обратно через шатун происходит вращение коленчатого вала.

Верхней мертвой точкой (ВМТ) называется самое верхнее положение поршня в цилиндре (то есть место, где поршень перестает двигаться вверх и готов начать движение вниз) (см. рис. 4).

Самое нижнее положение поршня в цилиндре (то есть место, где поршень перестает двигаться вниз и готов начать движение вверх) называют нижней мертвой точкой (НМТ) (см. рис.4).

Расстояние между крайними положениями поршня (от ВМТ до НМТ) называется ходом поршня. 

Когда поршень перемещается сверху вниз (от ВМТ до НМТ), объем над ним изменяется от минимального до максимального. Минимальный объем в цилиндре над поршнем при его положении в ВМТ — это камера сгорания. 

А объем над цилиндром, когда он находится в НМТ, называют рабочим объемом цилиндра. В свою очередь, рабочий объем всех цилиндров двигателя в сумме, выраженный в литрах, называется рабочим объемом двигателя. Полным объемом цилиндра называется сумма его рабочего объема и объема камеры сгорания в момент нахождения поршня в НМТ. 
  
Важной характеристикой ДВС является его степень сжатия, которая определяется как отношение полного объема цилиндра к объему камеры сгорания. Степень сжатия показывает, во сколько раз сжимается поступившая в цилиндр топливовоздушная смесь при перемещении поршня от НМТ к ВМТ. У бензиновых двигателей степень сжатия находится в пределах 6–14, у дизельных — 14–24. Степень сжатия во многом определяет мощность двигателя и его экономичность, а также существенно влияет на токсичность отработавших газов.

Мощность двигателя измеряется в киловаттах либо в лошадиных силах (используется чаще). При этом 1 л. с. равна примерно 0,735 кВт. Как мы уже говорили, работа двигателя внутреннего сгорания основана на использовании силы давления газов, образующихся при сгорании в цилиндре топливовоздушной смеси. 

В бензиновых и газовых двигателях смесь воспламеняется от свечи зажигания (рис. 7), в дизельных — от сжатия. 


 
Рис. 7 Свеча зажигания

При работе одноцилиндрового двигателя его коленчатый вал вращается неравномерно: в момент сгорания горючей смеси резко ускоряется, а все остальное время замедляется. Для повышения равномерности вращения на коленчатом валу, выходящем наружу из корпуса двигателя, закрепляют массивный диск — маховик (см. рис. 6). Когда двигатель работает, вал с маховиком вращаются. 

2.2.1. Устройство двухтактного и четырехтактного

двигателей внутреннего сгорания;

Двухтактный двигатель — поршневой двигатель внутреннего сгорания, в котором рабочий процесс в каждом из цилиндров совершается за один оборот коленчатого вала, то есть за два хода поршня. Такты сжатия и рабочего хода в двухтактном двигателе происходят так же, как и в четырехтактном, но процессы очистки и наполнения цилиндра совмещены и осуществляются не в рамках отдельных тактов, а за короткое время, когда поршень находится вблизи нижней мертвой точки (рис.8).

Рис.8 Двухтактный двигатель

В связи с тем, что в двухтактном двигателе, при равном количестве цилиндров и числе оборотов коленчатого вала, рабочие ходы происходят вдвое чаще, литровая мощность двухтактных двигателей выше, чем четырехтактных — теоретически в два раза, на практике в 1,5-1,7 раза, так как часть полезного хода поршня занимают процессы газообмена, а сам газообмен менее совершенный, чем у четырехтактных двигателей.

В отличие от четырехтактных двигателей, где вытеснение отработавших газов и всасывание свежей смеси осуществляется самим поршнем, в двухтактных двигателях газообмен выполняется за счет подачи в цилиндр рабочей смеси или воздуха (в дизелях) под давлением, создаваемым продувочным насосом, а сам процесс газообмена получил название — продувка. В процессе продувки, свежий воздух (смесь) вытесняет продукты сгорания из цилиндра в выпускные органы, занимая их место.

По способу организации движения потоков продувочного воздуха (смеси), различают двухтактные двигатели с контурной и прямоточной продувкой.

Четырёхтактный двигатель — поршневой двигатель внутреннего сгорания, в котором рабочий процесс в каждом из цилиндров совершается за два оборота коленчатого вала, то есть за четыре хода поршня (такта). Этими тактами являются:

Первый такт — впуск:

Во время этого такта поршень перемещается из ВМТ в НМТ. При этом впускной клапан открыт, а выпускной закрыт. Через впускной  клапан цилиндр заполняется горючей смесью  до тех пор, пока поршень не окажется в НМТ, то есть его дальнейшее движение вниз станет невозможным. Из ранее сказанного мы с вами уже знаем, что перемещение поршня в цилиндре влечет за собой перемещение кривошипа, а следовательно, вращение коленчатого вала и наоборот. Так вот, за первый такт работы двигателя (при перемещении поршня из ВМТ в НМТ) коленвал проворачивается на пол оборота (рис.9).

Рис.9 Первый такт — всасывания

Второй такт — сжатие.

После того как топливовоздушная смесь, приготовленная карбюратором или инжектором, попала в цилиндр, смешалась с остатками отработавших газов и за ней закрылся впускной клапан, она становится рабочей.  Теперь наступил момент, когда рабочая смесь заполнила цилиндр и деваться ей стало некуда: впускной и выпускной клапаны надежно закрыты. В этот момент поршень начинает движение снизу вверх (от НМТ к ВМТ) и пытается прижать рабочую смесь к головке цилиндра. Однако, как говорится, стереть в порошок эту смесь ему не удастся, поскольку преступить черту ВМТ поршень 
не может, а внутреннее пространство цилиндра проектируют так (и соответственно располагают коленчатый вал и подбирают размеры кривошипа), чтобы над поршнем, находящимся в ВМТ, всегда оставалось пусть не очень большое, но свободное пространство — камера сгорания. К концу такта сжатия давление в цилиндре возрастает до 0,8–1,2 МПа, а температура достигает 450–500 °С. (рис.10)

Рис.10 Второй такт -сжатие

Третий такт — рабочий ход (основной)

Третий такт — самый ответственный момент, когда тепловая энергия превращается в механическую. В начале третьего такта (а на самом деле в конце такта сжатия) горючая смесь воспламеняется с помощью искры свечи зажигания (рис.11)

Рис.11.Третий такт, рабочий ход.

Четвертый такт — выпуск


Во время этого процесса впускной клапан закрыт, а выпускной открыт. Поршень, перемещаясь снизу вверх (от НМТ к ВМТ), выталкивает оставшиеся в цилиндре после сгорания и расширения отработавшие газы через открытый выпускной клапан в выпускной канал (рис.12)


Рис.12 Выпуск .

Все четыре такта периодически повторяются в цилиндре двигателя, тем самым обеспечивая его непрерывную работу, и называются рабочим циклом.

2.3.Современные двигатели внутреннего сгорания.

2.3.1. Новые конструкторские решения, внедренные в двигатель внутреннего сгорания.

Со времен Ленуара по настоящие время двигатель внутреннего сгорания подвергся большим изменениям. Изменился их внешний вид, устройство, мощность. На протяжении многих лет конструкторы всего мира пытались повысить КПД двигателя внутреннего сгорания, при меньшей затрате топлива, добиться большей мощности. Первым шагом к этому послужило развитие промышленности, появление более точных станков для изготовления Д.В.С, оборудования, появились новые (легкие) металлы. Следующие шаги в моторостроение, зависели от принадлежности моторов. В автомобиле строения нужны были мощные, экономичные, компактные, легко обслуживаемые, выносливые двигатели. В кораблестроение, тракторостроении нужны бы ли тяговые, с большим запасом хода двигатели (в основном дизельные) В авиации мощные без отказные долговечные моторы .

Для достижения выше сказанных параметров использовались высоко-оборотистые и мало-оборотистые. В свою очередь на всех двигателях изменялись степени сжатия, объемы цилиндров, фазы газораспределения ,кол-во впускных и выпускных клапанов на один цилиндр, способы подачи смеси в цилиндр. Первые двигатели были с двумя клапанам, смесь подавалась через карбюратор, состоящий из воздушного диффузора дросильной заслонки и калиброванного топливного жиклёра. Карбюраторы быстро модернизировались, подстраиваясь под новые двигатели и их режимы работы . Главная задача карбюратора приготовление горючей смеси и подачи её в коллектор двигателя. Далее использовались другие приемы для увеличения мощности и экономичности двигателя внутреннего сгорания .

2.3.2. Задачи, которые стоят перед конструкторами.

Технический прогресс шагнул так далеко что двигатели внутреннего сгорания изменились практически до не узнаваемости. Степени сжатия в цилиндрах двигателя внутреннего сгорания возросли до 15 кг/кв.см на бензиновых двигателях и до 29 кг/кв.см на дизельных. Число клапанов выросло до 6 на цилиндр, с малых объемов двигателя снимают мощности которые раньше выдавали двигатели больших объемов, например: с двигателя 1600 куб.см снимают мощность 120 л.с., а с двигателя 2400 куб.см. до 200 л.с . При всем при этом требования к Д.В.С. с каждым годом возрастает . Это связанно с вкусами потребителя. К двигателям представляют требования связанные с уменьшением вредных газов. В наше время на территории России введена норма ЕВРО-3, в Европейских странах введен стандарт ЕВРО -4. Это заставило конструкторов всего мира перейти на новый способ подачи топлива, контроля, работы двигателя. В наше время за работу Д.В.С. контролирует, управляет, микропроцессор. Отработанные газы дожигаются разными видами катализаторов. Задача современных конструкторов заключается в следующем : угодить потребителю, созданием моторов с нужными параметрами ,и уложиться в нормы ЕВРО-3, ЕВРО-4.

2.4. Преимущество и недостатки

над другими типами двигателям внутреннего сгорания .

Оценивая преимущества и недостатки Д.В.С. с другими типами двигателей, нужно сравнивать конкретные типы двигателей.


Преимущества:

Недостатки:

Д.В.С

1. Высокая дальность передвижения на одной заправке;
2. Малый вес и объем источника энергии (топливного бака).

. Низкий средний КПД во время эксплуатации;
2. Высокое загрязнение окружающей среды;
3. Обязательное наличие КПП;
4. Отсутствие режима рекуперации энергии;
5. Работа ДВС подавляющую часть времени с недогрузом

Электродвигатель

1. Малый вес;
2. Максимальный момент доступный при 0 об/мин;
3. Нет необходимости в КПП;
4. Высокий КПД;

1. Малое плечо на одной зарядке;
2. Долгая зарядка;
3. Малый срок службы батареи;
4. Большой объем и вес батареи

Паровой двигатель

1.Работа на любом топливе.
2.Самая высокая единичная мощность.
3.Различные варианты теплоносителя.
4.Широкая линейка мощностей.
5.Солидный ресурс.

1.Высокая инертность (длительный период запуска).
2.Высокая стоимость.
3.Производство тепла преобладает над электроэнергией.
4.Сложный и дорогой капитальный ремонт.
5.Высок нижний порог эффективного применения.

Реактивный двигатель

1. Сверх большие скорости

2.Преодоление больших расстояний.

4.Большая мощность.


1.Большой расход топлива .

2.Дорогое обслуживание.

3.Узкий спектр применения .

2.5. Применение двигателя внутреннего сгорания.

Д.В.С. применяются во многих транспортных средствах и в промышленности. двухтактные двигатели применяются там, где очень важны небольшие размеры, но относительно неважна топливная экономичность, например, на мотоциклах, небольших моторных лодках, бензопилах и моторизованных инструментах. Четырёхтактные же двигатели устанавливаются на абсолютное большинство остальных транспортных средств.

3. Заключение.

Мы проанализировали открытие и достижения ученных по вопросу изобретения двигателей внутреннего сгорания, выяснили какие у них преимущества и недостатки.

4. Список литературы.

1. Двигатели внутреннего сгорания, т. 1-3, Москва.. 1957.

2.Физика 8 класс. А.В. Перышкин.

3.Википедия(свободная энциклопедия)

4.Журнал «За рулем»

5. Большой справочник школьника 5-11 классы. Москва. Издательство Дрофа.

5. Приложение

Рис.1 http://images.yandex.ru

Рис.2 http://images.yandex.ru

Рис.3 http://images.yandex.ru

Рис.4 http://images.yandex.ru

Рис.5 http://images.yandex.ru

Рис.6 http://images.yandex.ru

Рис.7 http://images.yandex.ru

Рис.8 http://images.yandex.ru

Рис.9 http://images.yandex.ru

Рис.10 http://images.yandex.ru

Рис.11 http://images.yandex.ru

Рис.12 http://images.yandex.ru

auto-dnevnik.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *